
A Note on Efficient Computation of the Multilinear Extension

Ron D. Rothblum∗

July 11, 2024

Abstract

The multilinear extension of an m-variate function f : {0, 1}m → F, relative to a finite field

F, is the unique multilinear polynomial f̂ : Fm → F that agrees with f on inputs in {0, 1}m.
In this note we show how, given oracle access to f : {0, 1}m → F and a point z ∈ Fm, to

compute f̂(z) using exactly 2m+1 multiplications, 2m additions and O(m) additional operations.
The amount of space used corresponds to O(m) field elements.

1 Introduction

The multilinear extension is a method for encoding the truth table of a function in a redundant form
that is extremely useful in many applications. In particular, multilinear extensions have proven to
be extremely useful in the development of efficient proof-systems. We refer the reader to the recent
book by Thaler [Tha22], for further details on the key role that multilinear extensions play in these
applications.

The Multilinear Extension. Let F be a finite field and m ∈ N be an integer. For every function
f : {0, 1}m → F there exists a unique multilinear polynomial f̂ : Fm → F that agrees with f on
{0, 1}m. We refer to f̂ as the multilinear extension of f .

The multilinear extension f̂ can be expressed explicitly as:

f̂(z) =
∑

b∈{0,1}m
eq(z, b) · f(b), (1)

where eq(z, b) =
∏

i∈[m] eq1(zi, bi) and eq1(zi, bi) = zi · bi + (1− zi) · (1− bi).

Efficient Evaluation of the Multilinear Extension. Consider the following basic computa-
tional task: given as input z ∈ Fm and the truth table of f : {0, 1}m → F, output f̂(z). A few
methods for performing this computation have been described in the literature:

1. A direct method, described in [CTY11] (see also [Tha22, Lemma 3.7]) iterates over all indices
b ∈ {0, 1}m and for each index computes the contribution to the sum in Eq. (1). This
involves computing the sequence of values

(
eq(z, b)

)
b∈{0,1}m . Each value in this sequence can

be generated using O(m) arithmetic operations, which leads to an overall cost of O(m · 2m)
field operations.

∗Technion. Email: rothblum@cs.technion.ac.il.

1

rothblum@cs.technion.ac.il


2. An alternate method, due to [VSBW13] (see also [Tha22, Lemma 3.8]), observes that the
values eq(z, b)’s in the foregoing sequence are in fact related, and uses a memoization approach
to generate them. Using their approach to compute f̂(z) requires 2m+1 multiplications and
2m+1 additions.1 This memoization technique however also requires O(2m) space, in contrast
to the “direct” approach that uses O(m) space. Their approach is also incompatible with
some applications, such as in the context of streaming algorithms [CTY11, CMT12].

3. Chiesa et al. [CFFZ24, Section 4.1] implicitly gave a method for computing the multilinear
extension using O(2m) field operations and O(m) space. We remark that a similar result was
obtained as an unpublished observation due to Victor Vu in 2013 [Tha24]. We describe Vu’s
approach in Appendix A.

Our Result. We describe a new approach for computing the multilinear extension, which im-
proves on the aforementioned results – it requires only 2m+1 multiplications, 2m additions (and an
additional O(m) field operations, including inversions) and uses only O(m) space. In particular,
the amount of space used is exponentially smaller than the [VSBW13] approach and the number
of additions is about half. The main beneift over [CFFZ24, Section 4.1] is that the number of
multiplications is halved.

In a nutshell, our approach follows the direct approach but utilizes the relations between the
sequence of values eq(z, b), to generate it more efficiently on-the-fly and while leveraging a particu-
larly convenient order of the b’s. We remark that our algorithm can be used in a streaming setting
(i.e., when the values of f are given as a stream of data), as long as the stream is given in a specific
order, which we describe below.

1.1 Applications and Related Works

We note that, typically, proof-systems have a high space usage regardless of the computation of
the multilinear extensions. In such cases, the asymptotic improvement in space, that we achieve
(as compared to [VSBW13]) is lost. Still, we believe that even in these contexts, our approach
may be concretely beneficial both due to the concrete space saving and, in contexts in which it is
a bottleneck, also the saving in the number of additions and/or multiplications.

In particular, proof-systems based on multilinear techniques, usually use an efficient implemen-
tations of the sumcheck protocol [Tha13, XZZ+19]. This implementation uses 2m space regardless
of the computation of the multilinear extension. Recent works by Setty et al. [STW23, Appendix
G] and Chiesa et al. [CFFZ24] show a time-space tradeoff for the sumcheck protocol ([STW23]
actually focus on the harder case of sparse polynomials). Still, even combining their techniques
with our approach it is unclear how to construct a sumcheck prover that runs simultaneously in
linear-time and logarithmic space. Recent works show other optimizations to the sumcheck prover
[Che23, Gru24, BDT24, DT24], focusing on use cases that arise in practice. Their techniques could
potentially be combined with our approach.

A recent line of work, [BTVW14, BHR+20, BHR+21, BCHO22, FPP24, NDC+24] has studied
proof-systems in which the prover is space-efficient. In this context we believe that our algorithm
may be a helpful also as a step towards achieving new asymptotic results.

1Actually, the description in [VSBW13] uses 3 · 2m multiplications and 2m additions, but a known optimization
(described, for example, in [DT24, Algorithm 1]) converts 2m of the multiplications to be additions.

2



Setty et al. [STW23, Page 13] propose a way to obtain time-space tradeoff for computing the
multilinear extension, that is geared towards sparse multilinear polynomials. In the general case
though, it requires either a polynomial amount of space or super-linear time.

2 Computing the Multilinear Extension Efficiently

Proposition 1. Given as input z ∈ Fm, the sequence of values (eq(z, b))b∈{0,1}m can be generated in
time O(2m) and space O(m). In more detail, the algorithm performs exactly 2m field multiplications
and an additional O(m) additions, multiplications and inversions.

Proof. Assume first that all of the entries of z are not in {0, 1} (later we shall show how to handle
the general case).

We generate the sequence according to the Gray code ordering of the integers between 0 to
2m − 1. Recall that the Gray code has the property that the binary representation of each integer
in the ordering only differs by a single bit from the previous one – i.e., it can be produced by
XORing the current index with a unit vector. For any b ∈ {0, 1}m and i ∈ [m], using ei to denote
the i-th unit vector we have that:

eq(z, b⊕ ei) = eq1(zi, bi ⊕ 1) ·
∏
j ̸=i

eq1(zj , bj) =
eq1(zi, bi ⊕ 1)

eq1(zi, bi)
· eq(z, b), (2)

where we use our assumption that zi /∈ {0, 1} so as not to divide by 0.2 By precomputing the

2m values
(
eq1(zi,σ⊕1)
eq1(zi,σ)

)
i∈[m],σ∈{0,1}

before the enumeration starts, using Eq. (2) we can therefore

compute eq(z, b⊕ ei) from eq(z, b) using a single multiplication.
Thus, we can generate the sequence of values (eq(z, b))b∈{0,1}m , by enumerating over b ∈ {0, 1}m,

according to the Gray code order, and in each step store only the previous eq(z, b) and update it
using a single multiplication. Overall, following the precomputation phase, the process requires
2m − 1 multiplications.

To handle general vectors z ∈ Fm, we partition z according to coordinates S ⊆ [m] that are
Boolean valued vs. those that are not (i.e., coordinates in S̄ are in F\{0, 1}). Recall that for every
b ∈ {0, 1}m it holds that eq(z, b) = eq(zS , bS) · eq(zS̄ , bS̄). Observe that eq(zS , bS) = 0 whenever
bS ̸= zS and otherwise (i.e., zS = bS)) it holds that eq(zS , bS) = 1. Thus, in our enumeration we can
skip over all vectors b for which bS ̸= zS and for the remaining vectors, perform the enumeration
only over the coordinates in S̄.

Combining Proposition 1 with Eq. (1) we immediately obtain the following corollary.

Corollary 2. There exists a time O(2m) and space O(m) algorithm that, given as input z ∈ Fm and
oracle access to a function f : {0, 1}m → F, outputs f̂(z). In more detail, the algorithm performs
exactly 2m+1 multiplications, 2m additions and an additional O(m) field operations.

Note that in case the function f is Boolean-valued, the number of multiplications reduces to
2m.

Remark 3. Our approach can be parallelized by partitioning the index set 2m into k equal sized
parts and handling each part separately. This will reduce the parallel time by a factor of k but
requires an additional k ·m bits of space, due to the k running indices.
2Observe that eq(zi, bi) = 0 if and only if zi = NOT (bi).

3



2.1 Generating eq(z, ·) in Lexicographic Order

In some applications it may be important to generate the stream of values eq(z, ·) in lexicographic
order rather than the Gray code order used in Proposition 1. For example, if the function f is
given as a stream of values in lexicographic order.

We describe two ways to adapt our algorithm to this setting:

1. We can use a similar algorithm to the one in Proposition 1 while observing that (1) the
number of multiplications needed per update is equal to the Hamming distance from the
(binary representation of the) previous index, and (2) that the amortized Hamming distance
between the binary representation of consecutive integers (in lexicographic order) is roughly 2.
However, this approach doubles the number of multiplications as compared to the Gray code
order. As noted above, an approach similar to this was made as an unpublished observation
by Vu, see Appendix A.

2. If F is a binary extension field (i.e., it has characteristic 2), we can handle the lexicographic
order without doubling the number of multiplications, as follows.

Consider the function G : {0, 1}m → {0, 1}m that maps an index i ∈ {0, 1}m to its Gray code
encoding (i.e., the i-th index in the Gray code order). This function is linear over GF(2)
(see, e.g., [BCC+10, Section 2]). Observe that eq(z,G(b)) = eq(G−1(z), b) clearly holds for
all z ∈ {0, 1}m. But since G is linear, both sides of the equation are multilinear (in z), and
therefore the equation must hold for all z ∈ Fm.

Thus, when using a binary extension field, to stream the values of eq(z, b) in lexicographic
order, we can simply use the algorithm described in the proof of Proposition 1 to stream the
values of eq(G−1(z), b)) in the Gray code order.

Acknowledgements

The author is grateful to Binyi Chen, Ben Fisch, Justin Thaler and Hadas Zeilberger for extremely
useful discussions. We thank Giacomo Fenzi for pointing out the connection to [CFFZ24, Section
4.1].

References

[BCC+10] Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou, Ruben Nieder-
hagen, Adi Shamir, and Bo-Yin Yang. Fast exhaustive search for polynomial systems
in F2. In Stefan Mangard and François-Xavier Standaert, editors, Cryptographic Hard-
ware and Embedded Systems, CHES 2010, 12th International Workshop, Santa Bar-
bara, CA, USA, August 17-20, 2010. Proceedings, volume 6225 of Lecture Notes in
Computer Science, pages 203–218. Springer, 2010. 4

[BCHO22] Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and Michele Orrù. Gemini: Elastic
SNARKs for diverse environments. In Orr Dunkelman and Stefan Dziembowski, editors,
Advances in Cryptology - EUROCRYPT 2022 - 41st Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Trondheim, Norway, May

4



30 - June 3, 2022, Proceedings, Part II, volume 13276 of Lecture Notes in Computer
Science, pages 427–457. Springer, 2022. 2

[BDT24] Suyash Bagad, Yuval Domb, and Justin Thaler. The sum-check protocol over fields
of small characteristic. Cryptology ePrint Archive, Paper 2024/1046, 2024. https:

//eprint.iacr.org/2024/1046. 2

[BHR+20] Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik
Soni. Public-coin zero-knowledge arguments with (almost) minimal time and space
overheads. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptography -
18th International Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020,
Proceedings, Part II, volume 12551 of Lecture Notes in Computer Science, pages 168–
197. Springer, 2020. 2

[BHR+21] Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik
Soni. Time- and space-efficient arguments from groups of unknown order. In Tal
Malkin and Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 41st
Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August
16-20, 2021, Proceedings, Part IV, volume 12828 of Lecture Notes in Computer Science,
pages 123–152. Springer, 2021. 2

[BTVW14] Andrew J. Blumberg, Justin Thaler, Victor Vu, and Michael Walfish. Verifiable com-
putation using multiple provers. Cryptology ePrint Archive, Paper 2014/846, 2014.
https://eprint.iacr.org/2014/846. 2

[CFFZ24] Alessandro Chiesa, Elisabetta Fedele, Giacomo Fenzi, and Andrew Zitek-Estrada. A
time-space tradeoff for the sumcheck prover. IACR Cryptol. ePrint Arch., page 524,
2024. 2, 4

[Che23] Binyi Chen. Hardware-optimizations for sumcheck, 2023. https://hackmd.io/

@bychen92/H1JDAAMoo. 2

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified com-
putation with streaming interactive proofs. In Shafi Goldwasser, editor, Innovations in
Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012, pages
90–112. ACM, 2012. 2

[CTY11] Graham Cormode, Justin Thaler, and Ke Yi. Verifying computations with streaming
interactive proofs. Proc. VLDB Endow., 5(1):25–36, 2011. 1, 2

[DT24] Quang Dao and Justin Thaler. Constraint-packing and the sum-check protocol over
binary tower fields. Cryptology ePrint Archive, Paper 2024/1038, 2024. https://

eprint.iacr.org/2024/1038. 2, 6

[FPP24] Cody Freitag, Omer Paneth, and Rafael Pass. Public-coin, complexity-preserving,
succinct arguments of knowledge for NP from collision-resistance. In Marc Joye and
Gregor Leander, editors, Advances in Cryptology - EUROCRYPT 2024 - 43rd Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Zurich, Switzerland, May 26-30, 2024, Proceedings, Part IV, volume 14654 of Lecture
Notes in Computer Science, pages 112–141. Springer, 2024. 2

5

https://eprint.iacr.org/2024/1046
https://eprint.iacr.org/2024/1046
https://eprint.iacr.org/2014/846
https://hackmd.io/@bychen92/H1JDAAMoo
https://hackmd.io/@bychen92/H1JDAAMoo
https://eprint.iacr.org/2024/1038
https://eprint.iacr.org/2024/1038


[Gru24] Angus Gruen. Some improvements for the PIOP for ZeroCheck. Cryptology ePrint
Archive, Paper 2024/108, 2024. https://eprint.iacr.org/2024/108. 2

[NDC+24] Wilson D. Nguyen, Trisha Datta, Binyi Chen, Nirvan Tyagi, and Dan Boneh. Mangrove:
A scalable framework for folding-based SNARKs. IACR Cryptol. ePrint Arch., page
416, 2024. 2

[STW23] Srinath T. V. Setty, Justin Thaler, and Riad S. Wahby. Unlocking the lookup singularity
with lasso. IACR Cryptol. ePrint Arch., page 1216, 2023. 2, 3

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Ran Canetti
and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part II, volume 8043 of Lecture Notes in Computer Science, pages 71–89. Springer,
2013. 2

[Tha22] Justin Thaler. Proofs, arguments, and zero-knowledge. Found. Trends Priv. Secur.,
4(2-4):117–660, 2022. 1, 2

[Tha24] Justin Thaler. Personal Communication, 2024. 2

[VSBW13] Victor Vu, Srinath T. V. Setty, Andrew J. Blumberg, and Michael Walfish. A hybrid
architecture for interactive verifiable computation. In 2013 IEEE Symposium on Se-
curity and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 223–237.
IEEE Computer Society, 2013. 2, 6

[XZZ+19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn
Song. Libra: Succinct zero-knowledge proofs with optimal prover computation. IACR
Cryptol. ePrint Arch., page 317, 2019. 2

A Vu’s Approach

In this appendix we describe Vu’s approach for a space efficient implementation of the [VSBW13]
algorithm for computing the sequence of values eq(z, ·).

For every vector b ∈ {0, 1}j , where j ∈ {0, . . . ,m}, let χb =
∏j

i=1 eq1(zi, bi). Consider a full
binary tree with 2m leaves, where each vertex is labeled by a string of length at most m in the
following way: the root is labeled with the empty string, and the two children of a vertex labeled
by b, are labeled by b0 and b1. We associate with every vertex b the value χb defined above.

Observe that for b ∈ {0, 1}j and σ ∈ {0, 1}, it holds that χbσ = χb · eq1(zi+1, σ). Thus, the value
associated with each vertex can be computed from its parent using a single multiplication (or using
the optimization in [DT24, Algorithm 1], both children can be computed using one multiplication
and one addition).

The idea underlying [VSBW13] is to generate the entire tree, and observe that the desired values
are associated with the leaves. Vu’s observation is that the values associated in the leaves can be
generated by scanning the leaves via a depth-first search of the tree, which requires storing at most
m field elements associated with the current position in the scan.

6

https://eprint.iacr.org/2024/108

	Introduction
	Applications and Related Works

	Computing the Multilinear Extension Efficiently
	Generating eq(z,) in Lexicographic Order

	Vu's Approach

