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Abstract—Online ride-sharing services (RSS) have become
very popular owing to increased awareness of environmental
concerns and as a response to increased traffic congestion. To
request a ride, users submit their locations and route information
for ride matching to a service provider (SP), leading to possible
privacy concerns caused by leakage of users’ location data. We
propose QuickPool, an efficient SP-aided RSS solution that can
obliviously match multiple riders and drivers simultaneously,
without involving any other auxiliary server. End-users, namely,
riders and drivers share their route information with SP as
encryptions of the ordered set of points-of-interest (PoI) of their
route from their start to end locations. SP performs a zone based
oblivious matching of drivers and riders, based on partial route
overlap as well as proximity of start and end points. QuickPool
is in the semi-honest setting, and makes use of secure multi-
party computation. We provide security proof of our protocol,
perform extensive testing of our implementation and show that
our protocol simultaneously matches multiple drivers and riders
very efficiently. We compare the performance of QuickPool with
state-of-the-art works and observe a run time improvement of
1.6 - 2×, and communication improvement of at least 8×.

I. INTRODUCTION

The European shared-mobility market is estimated to be
about C70 billion as of 2022 [23] and projected to go to C150
billion by 2030. This projected rate of growth might not be
surprising given the increasing awareness about environmental
issues in the general population. Traditionally, ride-hailing ser-
vice (RHS) refers to hailing a cab assisted by a central provider
entity. Ride-sharing service (RSS) or carpooling, the focus of
this work, is more eco-friendly than individually owned or
RHS modes of transport, as sharing a ride means fewer cars on
the road leading to lesser pollution, along with the advantages
of dedicated high-occupancy-vehicle lanes. There are a number
of Service Provider (SP) entities that provide RSS, namely
QuickRide in India, BlaBlaCar, FlixCar in Europe, DiDi
Chuxing in China, Waze, Scoop in the US, among many others.
These SPs collect information from users both at subscription
time as well as for individual rides, for billing and statistics
purposes. SP would keep such information secure given the
need to maintain its reputation, but there can be privacy-breach
attacks [26] leading to identity theft and phishing attacks, or
a malicious employee with access to information intending to
obtain the same for personal gains. Such attacks might lead
to privacy issues potentially resulting in financial penalties
on SP [31]. Leakage of location information on riders and
drivers might also lead to user profiling for stalking or other
malicious activities. An article published in TheJournal reports
of a gang in Dublin, Ireland, that made use of ride-hailing
apps to target taxi drivers [32]. The article in TechCabal [30],
an online media company in Nigeria reported many women
getting stalked by drivers after multiple failed ride-hailing

requests. In another incident reported from Istanbul, Turkey,
drivers belonging to certain online ride apps were harassed and
insulted by taxi drivers [15]. As is evident from these reports,
individuals are vulnerable to harm when location and other
private information are revealed. Therefore, there is a need to
address the privacy concerns of both drivers and riders from
each other as well as from SP.

RSS involves SP, and end-users, namely, riders and drivers.
We note here that drivers are also riders but have a car and
are willing to share their ride for benefits like sharing ride
costs. While there are protocols that work in a decentralized
model without involving an SP, some of which are described
in Section I-A, in this work we consider a model that involves
all three parties. This is reasonable from a practical standpoint,
as we feel that in the RSS setting, users find it reassuring to
be ride-sharing with a driver associated with a well-known
service provider. It may be noted that even in the case of a
decentralized model one could achieve comparable security,
but there might be additional costs to realize the same. As
noted earlier, a driver is another rider who is willing to share
the ride with one or more “matching” rider(s). The criteria for
matching are described in detail in the following sections. One
of the primary functions of SP is to facilitate ride-matching.
We consider SP’s purview of operation (for e.g., a city and its
suburbs) to be partitioned into suitable size grids such that the
anonymity of parties inside the grid is well-preserved, similar
to other works [34], [13]. SP keeps track of the grid ID of
drivers when they advertise their availability for a ride (match
request). Similarly, only when the rider sends a ride request,
SP learns the grid ID. SP forwards the ride request to drivers
in the rider’s grid and compares the rider information with
driver information in the same grid, for matching. No grid
information is shared with SP by either party during the ride.

In privacy-preserving RSS, while the aforementioned
matching procedure remains the same, the locations of all rid-
ers and drivers are hidden from each other and from SP during
the ride-matching process. As described in Section II-B, we
model SP as a semi-honest adversary that receives encrypted
information from all end-user parties and follows the ride-
matching protocol. In the process, it might try to obtain more
information about the participating parties.

In RSS, two ride matching paradigms are considered in the
literature [10], [1], [27]:

• Intersection based matching
• End-point based matching

At a high level, the intersection based matching protocol
takes as inputs the routes of the rider and the driver, and returns
a successful match if the length of the contiguous common path



of the two parties is greater than a well-known threshold. The
term route will be explained in more detail in the following
sections.

The end-point based matching protocol uses start and end
points of the rider and driver to check for the proximity of the
respective points to be within a well-known threshold distance
to be deemed matchable. We use Euclidean distance (ED) as
the metric. Given two points X = (x1, x2) and Y = (y1, y2),
ED(X,Y ) =

√
(x1 − y1)2 + (x2 − y2)2. Both schemes are

described in detail in the following sections.

In the privacy-preserving versions of the protocols, the
encryptions of the routes as well as end-points are provided
as inputs to the protocols. In this paper, we provide efficient
implementations for privacy-preserving versions of both proto-
cols. We do not intend to compare the features of one protocol
versus the other. Both protocols are run simultaneously, and
the choice of which one of the two protocol results to use is
left to the rider.

In a secure privacy-preserving RSS (PP-RSS) solution,
during ride establishment, the locations of riders and drivers
are expected to be oblivious from each other as well as from
SP. In other words, there should not be leakage of any location
information to any of the drivers (or riders) about other riders
(or drivers) except between the matched pairs of driver and
rider, at the end of the protocol. We note that a system model
that does not include an SP as a helper node, SP-less model,
would inherently allow all matching drivers (or riders), that
match itself, to be known to a given rider (driver). We refer
to this as match leakage. Match leakages allow a rider to
gain more information than it requires, such as how many
drivers are traveling towards the direction of its choice. This
information may potentially be used by a competitor company,
acting as an adversary to launch location-harvesting attacks
[20]. More leakages are possible when a set of riders or
drivers collude with one another, but a secure protocol is
expected to be secure against colluding groups of drivers,
as well as against colluding groups of riders. In contrast to
the SP-less model, in an SP-aided model, where the SP is
modeled as a semi-honest adversary, the protocol should not
leak any location information of drivers and riders to the SP
as aforementioned. However, the SP is aware of all selected
pairs of drivers and riders, which helps the system generate
the maximum possible matching between riders and drivers.
Moreover, a rider (driver) only learns with which driver (rider)
it is matched. Thus, it manages to avoid the match leakage
attack. In the literature, there are works [37], [14] that consider
an auxiliary server along with SP, to realize efficient protocols.
It is assumed that the auxiliary server does not collude with
the SP, but in practice it maybe difficult to realize such non-
colluding servers. Given that there might be a few hundred
simultaneous ride requests received by the SP at some given
point in time, it is imperative that ride-matching should be
done without any perceptible delay. Thus, an efficient secure
PP-RSS using lightweight symmetric-key primitives would be
preferred over public-key operations. The riders and the drivers
in a ride-sharing service are usually mobile low-end devices,
therefore it is important for a practical solution that it should
not have heavy computational requirements from the riders or
the drivers. Additionally, protocols that make use of quantum-
safe primitives would definitely be preferable to ones that are

deemed quantum unsafe.
We ask the question whether we can have an efficient PP-
RSS solution that works in an SP-aided model using only
lightweight symmetric key quantum safe primitives, without
using any auxiliary server, and provides only the matching
specific information to only the selected driver-rider pair while
maximizing the number of simultaneous matches. In this work,
we answer that question in the affirmative.

A. Related works

We begin by listing a few works that operate in the
decentralized model, for completeness, even though our model
involves the SP. This is followed by works that either use an
auxiliary server or make use of public-key primitives. Lastly,
we list works that leak more information to riders than just
the specific matched driver. Table I lists some of the related
works and show one or more drawbacks in the earlier works.

Resilient to No auxiliary Quantum-safe/

match leakage server symmetric-key

[10], [27] ✗ ✓ ✗

[2], [29] ✗ ✓ ✓

[37], [14], [21], [38] ✓ ✗ ✗

[1], [36] ✓ ✓ ✗

Our work ✓ ✓ ✓

TABLE I: Prior works listing one or more feature specific
drawbacks of the protocol (need to fix the headings)

There are many works in the literature that deal with PP-
RSS, starting with the work of Friginal et al. [8] where they
give a dynamic carpooling architecture and identify various
privacy assets that need to be preserved. One of the early PP-
RSS protocols, PrivatePool, by Hallgren et al. [10] obliviously
matches riders based on proximity matching of end points as
well as overlaps in riders’ route trajectories. Their work does
not take into account the start time of travel and does not rely
on a central SP for ride matching. TOPPool [27] is a follow
up work by Pagnin et al. that incorporates the time of travel
for ride matching. It made use of private set intersection for
route segment matching and used an additive homomorphic
encryption scheme along with a privacy-preserving matching
method to aid in oblivious end point matching. The work of
Raza et al. [2] is another decentralized ride-sharing scheme
making use of public blockchain to ensure anonymity and
accountability. Sanchez et al. [29] gave a decentralized RSS
model that looked at peer trust enforcement using a distributed
reputation management protocol.

The works PSRide by Yu et al. [37] and pShare by
Huang et al. [14] made use of two non-colluding servers,
namely the SP Server and a Crypto Server to securely evaluate
Garbled Circuits for ride matching. The former work takes
into account bounds on drop-off and pick-up times and the
latter tries to reduce additional driver travel time for rider pick-
up. The work by Li et al. [21] used road network embedding
(RNE) to represent the road network and made use of additive
homomorphic encryption (AHE) to securely compute distances
between riders, and used an auxiliary non-colluding server for
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decryption. PGRide by Yu et al. [38] matched a group of riders
based on the smallest aggregate distance, aided by an external
proxy server, using somewhat homomorphic encryption (SHE)
to achieve matching. PRIS [11] by He et al. used map distance
as the metric to match suitable riders aided by SP. Their
method does an initial matching based on pre-selected spatial
regions and then used locations encrypted using an AHE to
filter in closeby riders.

Martelli et al. [22] compared location masking techniques
like k-anonymity, l-diversity, and obfuscation, and showed
that l-diversity using actual locations as points of interest
(PoI) gives better performance. SRide [1] by Aı̈vodji et al.
made use of secure multi-party computation (MPC) together
with SHE to obliviously match riders and drivers. Their
solution provided results for intersection based matching. In
their solution, a rider gets to know all matched drivers which
can lead to potential location-harvesting attacks by colluding
riders, for example, [25]. A recent work called TAROT by Xu
et al. [36] made use of Goldwasser-Micali (GM) public-key
encryption scheme to match end-users using reverse minhash-
based Jaccard similarity. Here also, the end-user decrypts all
the encrypted matching results using her public-key, which can
potentially lead to adversarial attacks.

B. Our contribution

As discussed in the prior section, to the best of our
knowledge, most of the works either rely on heavy public-key
primitives [29], [27], [10], [38] or make a strong assumption
of the existence of additional auxiliary servers [14], [37], [38],
[36], where such auxiliary servers perform key management
and perform secure matching. This ensures privacy under the
assumption that SP and the auxiliary servers do not collude.
However, it is unclear how to realize such non-colluding
servers in the context of RSS. As we have observed in
Section I-A, [1], [36] may have potential privacy concerns
due to leakage of additional information to riders, which we
aim to circumvent by considering a different system model.
Furthermore, the end-users of this application are equipped
with low-end (limited computational resources) devices. Thus,
the protocol should be extremely lightweight. Also, the system
must be extremely fast and generate high throughput (number
of matches in unit time) to facilitate its real-time nature.
With the above goals in mind, we appropriately choose the
system model and design the protocols to meet the above
criteria. Below, we provide an overview and summarize the
contributions of this work.
• System model. In this work, we consider PP-RSS in the
centralized model, where the location privacy of end-users is
preserved from the SP as well as other users. With the SP
performing oblivious matching, we address the concerns dis-
cussed in the above paragraph, and our construction achieves
the following properties. Here we emphasize that the privacy
against an SP is maintained by modeling SP as a semi-honest
adversary.
Symmetric key versus public key primitives. Our
construction relies only on symmetric key primitives
and does not require any public key primitives. We rely
only on pseudorandom generator (PRG), pseudorandom
function (PRF), and secret sharing. As the symmetric
key primitives are extremely lightweight compared to

public key cryptography, our work achieves much better
efficiency compared to prior works. Moreover, a lightweight
construction is more suitable for low-end mobile devices,
as the users (riders and drivers) are assumed to be mobile
devices. Furthermore, since we do not need any public key
cryptography, our construction does not rely on any specific
hardness assumptions, thus our construction is plausibly
post-quantum secure.

Local maximum matching. In our construction, only SP
obtains the output corresponding to every pair of riders and
drivers whether they are matched. Therefore, SP can use
these outputs to execute any local matching algorithm such
that the maximum number of riders and drivers are matched.
In prior works that consider a SP-less model, there does not
exist any single party that gets the outcome of all the pairs,
hence obtaining the maximum matching by executing any
local algorithm is not possible.

Strong security guarantee. In some of the prior works [1],
[36], a rider learns about all drivers that satisfy the matching
criteria with itself, thus weakening the security. In our
construction, a rider (or driver) learns about only one driver
(or rider) with whom it is matched.

• Intersection based matching. Using an approach similar
to [27], we consider users with routes selected by their mobile
apps. If a rider and a driver have significant overlap between
their routes then they are matched. Executing the private set
intersection (PSI) on the routes of the parties would give
the desired result. [27] relies on oblivious pseudorandom
function (OPRF), which is computationally expensive than
standard PRF. Thus, we use PRF in place of OPRF. For this,
we establish a common key between the parties. Using the
common key, parties evaluate a PRF on the PoIs of their
routes and send them to SP. Since the evaluated values are
outputs of a PRF, they are random-looking. Hence, SP cannot
infer any information about the received values. However, SP
can locally find out the cardinality of the intersection of the
involved parties. If the size of the intersection is greater than
a predetermined threshold then the parties are considered as
a match. We achieve significant speed-up compared to [27]
e.g., [27] requires O(n log n) communication whereas we
require O(n), where n is the size of the route. We provide
the details in Section III-A.
• End-point based matching. The second approach that we
consider is end-point based matching. That is, if the starting
and ending locations of the rider and the driver are ‘nearby’
then they are a match. We evaluate a function that outputs
1 if the Euclidean distance between start locations of driver
and rider, and respectively between their end locations are
lesser than a threshold. Observe that we evaluate the above-
mentioned function where the comparands are not held by a
single party. For this, we resort to techniques of multiparty
computation (MPC) [3], [7], [28] where the inputs are
secret shared among the SP, driver and rider as the three
participating parties, and each party holds a share of the
input. Parties perform the computation on their shares and
maintain the sharing semantics. To complete the evaluation,
parties are required to interact. We use MPC with 3 parties,
secure against one semi-honest adversary, to compute the
distances between the starting and ending locations of the
rider and the driver. Finally, to compare the shared output of
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the above-mentioned computation with the publicly known
threshold value, we use function secret sharing [4], [16]. We
provide the details in Section III-B.
• Simultaneous matching. Prior works have focused on
checking if a single rider-driver pair satisfies the matching
criteria. The users learn the outcome if the pair is a match or
not. However, while processing multiple requests, it may be
possible that some users get multiple matches whereas some
others get very few matches. In such a case, if the matching
for all the requests is not executed to maximize the number
of matches that may lead to starvation of a set of users. We
address this issue by matching multiple pairs together. For
every pair of riders and drivers, SP learns if they are a match
or not. With these outputs, SP executes a maximum bipartite
matching to maximize the number of matches. We elaborate
more on this in Section IV.
• Benchmarks. We implement both the end-point and in-
tersection based matching algorithms, and compare the per-
formance of the latter with the state-of-the-art protocol, O-
PrivatePool from TOPPool [27]. We observe that QuickPool
achieves almost 1.6 − 2× speedup and requires at least 8×
less communication as compared to O-PrivatePool. For the
end-point based matching protocol, we can complete the
execution of up to 40 riders and 40 drivers within 1 minute,
whereas, for the intersection based matching protocol, within
the same time, we can handle up to 100 riders and 100
drivers, considering the route length of the users to be at
most 2048. Moreover, in the end-point matching protocol,
each rider or driver needs to transmit significantly less data
compared to SP. For instance, in scenarios with up to 100
riders and 100 drivers, each end-user needs to send only
∼3.13KB. QuickPool achieves a throughput of approximately
45.19 matches/min for end-point based matching and 323.79
matches/min for intersection based matching with a route
length of 256, both in a scenario involving 60 riders and 60
drivers. Further details are provided in Section V.
• Scalability considerations. In times of peak-traffic, it is
quite likely that the number of drivers and riders can each
be considerably high. In order to have a scalable solution,
we propose to execute our matching in epochs of σ sec-
onds, where σ is configurable by the SP based on real-
time considerations like public events, peak-hour traffic etc.
Additionally, SP will also be able to tune a parameter β,
where β is the batch size of driver and rider requests on
which the matching algorithms are executed. In other words,
at the end of σ seconds, if in case we have more than β
number of driver and rider unmatched requests, we pick the
first β number of rider and driver requests, sorted on arrival
time, and perform the match. Any unmatched requests in
the current epoch get pooled together with incoming new
requests and the matching process is repeated in the next
epoch. We note here that executing the matching algorithm
in batches might not give the global optimum maximum
matching, but we adopt this method to be able to handle load
surges gracefully. However, a resourceful SP with multiple
servers can run multiple instances of β riders and drivers on
separate servers in parallel, reducing the number of epochs
and the overall execution time.

Organization. Section II introduces various primitives that we
use throughout the work as well as the system and adversarial

models that we consider in this work. Section III provides the
technical details of our constructions for a pair of a rider and
a driver. Matching multiple riders and drivers simultaneously
is discussed in Section IV. Section V demonstrates the effi-
ciency of our constructions by providing the benchmarking
results. Finally, we conclude with a discussion in Section VI
on obtaining a comprehensive privacy-preserving ride-sharing
solution.

II. SYSTEM MODEL AND PRELIMINARIES

A. Preliminaries

Points of interest (PoI) are geographical markers [22], like
well-known landmarks, road intersection points, etc., that
describe the route of a rider or a driver. For start and end
locations, the nearest PoI is considered. Details of each PoI
are published by the SP (and available in the mobile app
provided by the SP) along with its unique ID (which is
represented as 32-bit non-negative integers) as well as its
precise latitude and longitude coordinates. These (x, y) co-
ordinates are represented in the UTM1 format, where x and y
are 32-bit non-negative integers, and represented in Z2k with a
suitable value of k. We note here that PoIs give an additional
location anonymity even after the ride is matched. However,
during the ride matching process, only encryptions of PoI IDs
(or their respective encrypted co-ordinates) are shared by users.

Route is an ordered set of PoIs of a rider or a driver, on
the path from its start location to end location. A route
is represented as a sequence of connected route segments
between each PoI in the path. In other words, a route τ =
{(v1, v2), (v2, v3), . . . , (vn−1, vn)}, where each vi is a PoI
identifier.

Private set intersection (PSI) is a cryptographic tool that
allows two parties to compute the intersection of their re-
spective sets without revealing any information about their
individual sets to each other. [24] gives a literature survey
of works on PSI. PSI has been used by many schemes in
ride-sharing as well as ride-hailing settings [10], [27], [40],
[39]. Prior works [10], [27] rely on this primitive to execute
the intersection based matching protocols. Here, a rider and
a driver execute the role of the two parties of PSI, and their
respective routes are the input sets to the PSI protocol.

Secure multi-party computation (MPC) [3], [7] allows
multiple distrusting parties to jointly and securely compute
a common function of their inputs, without revealing the
inputs or intermediate outputs to any of the other parties,
and revealing only the final output to all parties. In order to
accomplish this, each party creates shares of their input, in
a way that the original data is revealed only when a specific
number of shares (also known as threshold) are put together.
Next, in the secret-sharing phase, each party receives a share
from each of the other parties. Finally, they jointly proceed
to compute the function with the help of their shares. The
result is obtained by each party in secret-shared format which
is reconstructed to obtain the result in plaintext format.

Function secret sharing (FSS) is a tool introduced by Boyle
et al. [5] that facilitates evaluating a function f in a distributed

1Universal Transverse Mercator coordinate system
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manner. FSS splits the function into pieces such that the eval-
uations at any point on these pieces give an additive sharing of
the function output. Among many functions, distributed point
function (DPF) and distributed comparison function (DCF)
are popularly used in the setting where the function is split
into two pieces. In this work, we use DCF to perform secure
comparisons. Below we describe more on DCFs.

Distributed comparison function (DCF) [4] is a comparison
function f<

α,β outputting β if input x ≤ α and zero otherwise.
In the context of the current work, we consider a secure 2-
party DCF (a rider and a driver) with a semi-honest dealer
(SP).

B. System and adversarial model

We consider an online Ride-Sharing System (RSS) involv-
ing an SP. The SP receives encrypted information from each
of the end parties, facilitates ride-matching, and informs the
successful parties. The details of the matching algorithms are
described in detail in Sections III-A and III-B.

We consider a semi-honest setting where all parties follow
the protocol. We allow collusion among drivers and also
collusion among riders. SP does not collude with drivers
or riders, and drivers do not collude with riders. However,
each party is interested to know more about the other parties
than what is ordinarily available, and computable from the
protocol transcription. In both the matching methods, the
location information of each driver and rider is expected to
be kept oblivious from SP and all other participating parties.
After a successful match, only the two matched parties get to
know each other’s locations and none of the other participating
drivers or riders learn anything.

C. Assumptions and limitations

In this work, we expect riders and drivers to make use
of their mobile devices for ride and match requests via the
mobile apps, provided by the SP at the time of subscription.
The apps are responsible for keeping an updated view of the
road network topology of the area of operations. Given the
source and destination points of the end-users, the apps are
expected to obtain an optimum route consisting of the closest
PoIs, and follow the protocol as described in the paper. Any
security breach from the point of view of the apps is out of the
scope of this work. In our protocol, SP provides match results
of both types of matching and the mobile apps should have the
capability to convey the same to the user and solicit user input
about which of the two results to use for final matching. Secure
communication channels are assumed to be present between
the end-users, and between SP and end-users.

III. QUICKPOOL SINGLE DRIVER-RIDER MATCHING

As aforementioned, in RSS, the involved parties are a rider,
R, and a driver D. A rider and a driver are termed ‘matched’
if certain criteria are met. These criteria ensure that R or
D do not deviate from their intended route more than their
acceptable deviation threshold. Considering such constraints,
in the literature, primarily two paradigms are considered to
decide if a R and D should be matched, namely, intersection
based matching and end-point based matching. In this work,
we consider both approaches.

In this section, we describe how a single pair of rider-driver
matching is performed. In Section IV, we will see how to
match more than one pair simultaneously. In summary, every
rider-driver pair together with the SP executes the matching
algorithms (Section III-A and Section III-B), and SP obtains
the output for every possible pair. The algorithm in Section IV
uses the output of Section III to execute a local matching
algorithm to output multiple matching pairs. It then returns
the matching result to each successful rider and driver. SP
then restarts its matching process together with the unmatched
riders and drivers, along with any newly available drivers’ and
riders’ ride requests.

A. Intersection based matching

When a rider R raises a request for matching, it looks for
a driver which has an aligning route with itself. Similarly, a
driver D would prefer a rider with whom its route matches.
This notion of preference is formalized in the form of inter-
section based matching, where R and D provide their routes,
and if there is a significant overlap in the route (as specified
by a threshold), they are matched. However, it is required that
the routes of the users remain hidden. Below, we will first
discuss how to check if a rider and a driver are matched in a
privacy-preserving manner.

a) Matching a pair: Let R and D be a rider and a
driver respectively with routes τR and τD. A route, τ , can
be modeled as a path in a graph G = (V,E) where G
represents the road network of the operational area. V is the
set of PoI identifiers, and (u, v) ∈ E be an edge if u is
‘reachable’ from v. For simplicity, we assume that for a given
source and destination pair, there is a unique designated route.
Furthermore, a route is represented as a sequence of edges,
that is τ = {(v1, v2), (v2, v3), . . . , (vn−1, vn)}. Along with the
route, a user also provides the matching threshold, however,
the threshold value does not need to be private. Consider R’s
inputs are the route τR and the threshold tR and D’s inputs are
the route τD and the threshold tD.

To check if R and D are a match we do the following:

f(τR, tR, τD, tD) =

1 if |τR ∩ τD| ≥ max(tR, tD)

0 if otherwise

PrivatePool [10] provides a solution to the above problem
by using threshold private set intersection (tPSI). However,
the construction of tPSI has significant performance overhead
(Sec. §1, pp. 2, [27]). TOPPool [27] addresses this issue
by moving from tPSI to standard PSI without incurring any
additional overhead. However, a PSI construction relies on
public-key cryptographic primitives such as oblivious pseudo-
random function (OPRF), which has significant computational
overhead. In this work, we propose a solution without relying
on any public-key cryptographic primitive, thus achieving an
extremely fast and lightweight solution. We consider SP as
one of the computational parties (without input) that facilitates
the computation. On a very high level, our approach is the
following. R and D establish a common key among themselves
which is unknown to SP. They use the key to evaluate a PRF
(not the costly OPRF) locally on the edges of their respective
routes. They send the evaluated values to SP. SP obtains
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the cardinality of the intersection locally, if the threshold
condition is met, it sets R and D as matched. Observe that the
values received by SP appear completely random as they are
evaluations of PRF. We elaborate further on the construction
below.

Let τR = {(vR1 , vR2 ), . . . , (vRm−1, v
R
m)} and

τD = {(vD1 , vD2 ), . . . , (vDn−1, v
D
n )}. The riders R and D establish

a common key k by exchanging messages in a single round.
R (D) samples a random value kR (kD) and sends it to D
(R). R and D set k = k1 ⊕ k2 to be the common key. Let
F : {0, 1}∗ → {0, 1}∗ be a secure PRF. R and D evaluate the
PRF, F, using the key k on the elements of their private inputs,
that is,

R computes y
(R)
j = F(k, v

(R)
j ||v(R)j+1),∀j ∈ [m− 1],

D computes y
(D)
j = F(k, v

(D)
j ||v(D)

j+1),∀j ∈ [n− 1].

R and D respectively send YR and YD to SP, where
YR = {y(R)1 , . . . , y

(R)
m−1} and YD = {y(D)

1 , . . . , y
(D)
n−1}.

Also, they send their corresponding threshold values, tR and
tD. Note that, since the SP receives the PRF evaluations of
the private inputs it does not learn any information about the
underlying values. However, it can compute the cardinality
of the intersection on the evaluated values. Furthermore, SP
checks if the cardinality of the intersection is more than the
provided threshold values, namely tR and tD. If the matching
criteria are met, SP sets R and D as a match. Observe that, there
are no messages exchanged between the rider and the driver
that depend on their private inputs, hence privacy is guaranteed.
Below, we describe the protocol ΠInt(Fig. 1) The protocol ΠInt

requires 2 rounds of communication and m+ n+2 elements.
In this protocol, the computations on the riders’ and drivers’
sides are extremely lightweight (PRF evaluation on their local
input), whereas the rest of the matching is performed by the
service provider on PRF outputs.

Input:
• R’s private input: τR = {(v(R)1 , v

(R)
2 ), . . . , (v

(R)
m−1, v

(R)
m )} and

public input: tR.

• D’s private input: τD = {(v(D)
1 , v

(D)
2 ), . . . , (v

(D)
n−1, v

(D)
n )} and

public input: tD.
• SP does not have any input in the protocol.

Output: 1 if |τR ∩ τD| ≥ max{tR, tD}, otherwise 0

Protocol:
• R and D sample random values k1 and k2 locally and send it
to D and R respectively.
• Both R and D locally set k = k1 ⊕ k2.

• R computes y
(R)
j = F(k, v

(R)
j ||v(R)j+1) for all j ∈ [m − 1].

Further, it sets YR = {yR1 , . . . , yRm−1}.

• D computes y
(D)
j = F(k, v

(D)
j ||v(D)

j+1) for all j ∈ [n − 1].
Further, it sets YD = {yD1 , . . . , yDn−1}.
• R and D send (YR, tR) and (YD, tD) respectively to SP.
• SP computes d = |YR ∩ YD| and sets Output = 1 if d ≥
max{tR, tD} otherwise sets Output = 0.

Protocol ΠInt

Fig. 1: Intersection based ride-sharing service

b) Security proof: Here, we will discuss the proof of se-
curity of our construction. We claim that out of the three parties
(SP, R, D) if one of them is corrupt (semi-honest), the privacy
of the honest parties will still be maintained. We establish
our claim by showing that there is a simulator (probabilistic
polynomial time algorithm) that generates an indistinguishable
view of the corrupt parties without participating in the protocol.
Due to the asymmetric nature of our protocol, we will first
provide the simulator SSP for a corrupt SP, and then we will
argue why the simulated view is indistinguishable from the
view of the corrupt party.

The simulator SSP has the input b where b = 1 if |τR ∩
τD| ≥ max{tR, tD}, 0 otherwise. SSP picks random routes
τ ′R and τ ′D for R and D respectively such that |τ ′R ∩ τ ′D| = d,
where d ≥ max{tR, tD} if b = 1, otherwise d < max{tR, tD}.
It locally samples a random key k on behalf of R and D. Then,
using τ ′R and τ ′D, it follows the protocol steps on behalf of R
and D respectively. Note that SP receives Y (R) and Y (D) which
are evaluations of PRF’s, thus looks indistinguishable from the
protocol messages.

Input Input to the simulator SSP is b = 1 if |τR ∩ τD| ≥
max{tR, tD}, 0 otherwise.
• SSP samples a random key k, integers m,n, d such that
m,n > d and d ≥ max{tR, tD} if b = 1, otherwise d <
max{tR, tD}.
• SSP picks random routes for R and D in the following way.
τ ′R = {(v1, v2), . . . , (vd−1, vd), (vd, v

(R)
d+1), . . . , (v

(R)
m−1, v

(R)
m )}

τ ′D = {(v1, v2), . . . , (vd−1, vd), (vd, v
(D)
d+1), . . . , (v

(D)
n−1, v

(D)
n )}

• SSP computes yi = F(k, vi∥vi+1) for all i ∈ [d− 1],
y
(R)
i = F(k, v

(R)
i ∥v(R)i+1) for all i ∈ [d,m− 1]

and y
(D)
i = F(k, v

(D)
i ∥v(D)

i+1) for all i ∈ [d, n− 1].

• SSP sends Y (R) = {y1, . . . , yd, y(R)d+1, . . . , y
(R)
m } and Y (D) =

{y1, . . . , yd, y(D)
d+1, . . . , y

(D)
n } to SP, on behalf of R and D respec-

tively.

Simulator SSP

Fig. 2: Simulator SSP for ΠInt for a corrupt SP

Let SR be the simulator corresponding to a corrupt rider
R. It interacts with R on behalf of SP and D. During the
simulation, it samples a random key [k]D and sends it to
R, on behalf of D. Then, on behalf of SP, it receives Y (R)

as per protocol specification. Since D and SP do not send
any messages to R, the simulated view is indistinguishable.
Observe that the simulation for the corrupt driver is the same
as that of the corrupt rider. Thus, we omit SD.

Input Input to simulator SR is the route of the rider τR.
• SR samples a random key [k]D ,sends it to R on behalf of D.

• SR receives Y (R) as computed in Fig. 1.

Simulator SR

Fig. 3: Simulator SR for ΠInt for a corrupt R
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B. End-point based matching

Orthogonal to the intersection based matching, end-point
based matching algorithm is well-studied in the literature. In
this matching algorithm, if a driver and rider pair have the start
positions as well as the end positions close by, then they are a
match. As aforementioned, to further preserve anonymity we
use the PoI closest to the start or end location to identify the
respective location, and refer to the UTM coordinates of the
respective PoIs as the start and end locations. We compute the
Euclidean distance between the rider and the driver, and if it is
lesser than a predetermined threshold value then we consider
them as a match. To compute the same, we rely upon MPC
and FSS techniques.

a) Matching a pair: A rider R and a driver D are
considered to be matched if they satisfy the following criteria.

1) The distance between the start locations of R and D is
≤ ρs, where ρs is the threshold start distance.

2) The distance between the end locations of R and D is
≤ ρe, where ρe is the threshold end distance.

In TOPPool [27], an additive homomorphic encryption scheme
(Paillier scheme) is used to encrypt the locations of the rides,
and a secure comparison algorithm is run to determine if any
two riders can be matched by using an oblivious end-point
matching algorithm. In our method, we securely compute the
Euclidean distance, respectively, between the start locations,
the end locations and use the respective threshold values to
determine a successful match.

We perform the check in two steps. In the first step, R, D,
and SP execute a 3-party MPC protocol, with 1 semi-honest
corruption, to compute the square of the Euclidean distances
of the corresponding start and end locations. This is followed
by two secure comparison protocols.

3-party computation of Euclidean distance (ED). To check
if R and D are a match or not, we compute the square of the
Euclidean distance between the start locations of the R and D.
Then we compare it with the square of the threshold value. We
do the same for the end locations as well. If both conditions are
met, then they are considered as a match. Below we describe
how we compute the Euclidean distance between two secret
locations (we describe the same for the start points. For the
end points, it will follow similarly).

The riders and the drivers have their input as the start
location and the end location. As aforementioned, a location is
represented by its closest PoI and its UTM coordinates. Let R’s
inputs be rLocs = (rxs, rys) and rLoce = (rxe, rye), similarly,
D’s inputs be dLocs = (dxs, dys) and dLoce = (dxe, dye).
We let ED(u, v) to be the Euclidean distance between two
points u and v. We need to obliviously compute SDS =
[ED(rLocs, dLocs)]

2 and EDS = [ED(rLoce, dLoce)]
2.

Note that, for the above computation, one part of the
input is held by R and the other part is available with D.
We aim to compute the SDS and EDS without revealing
anyone’s input to any party other than the input holder. For
this, we rely on the secure multiparty computation (MPC)
tool, where an input holder splits the input into multiple
parts in such a way that each of the parts does not contain
any information about the input. In other words, each of the

parts looks random and the input can be retrieved only if
all the parts are put together. Splitting the input in such a
way is commonly known as secret sharing. The computation
of the desired function happens in two alternate stages, local
computation and interaction. In the first step, R and D prepare
for the secret sharing of their inputs. In the communication
phase, they exchange the corresponding shares of the inputs.
In the later phase, to compute the function, R and D perform
local computation followed by another round of interaction
to complete the distributed computation. Below we elaborate
more on the local computation and communication.

Secret sharing semantics. In this work, we will use two types
of secret sharing.

– Additive secret sharing. Let s be a secret (held by one of
the two parties) and s is additively shared between R and D.
[s] denotes the shares of s. [s]r and [s]d be the shares of R
and D respectively. Note that, [s]d + [s]r = s. Furthermore,
[s]r and [s]d are random values, therefore individually these
values do not reveal any information about s.
– Augmented additive sharing. As before, consider s to be
a secret, and JsK represents the augmented sharing of s.
The augmented sharing of s consists of two components: a
random mask (δs) and a masked value (ms = s+ δs). In the
augmented sharing, both R and D hold the masked value ms;
however, the mask (δs) is additively shared among the rider
and the driver.

Note that, both the secret sharing mentioned above have
the homomorphic property, that is, [c1x+ c2y] = c1 [x]+c2 [y]
and Jc1x+ c2yK = c1JxK+ c2JyK where c1 and c2 are publicly
known values. Here the parties with their respective secrets
perform the operations and obtain the shares of the computed
values.

Key setup. For the above computation, R and D along with
the service provider SP establish a set of common keys:

– R and D obtain a common key krd. R samples a random
key [krd]1 and sends it to D. Similarly, D samples a random
key [krd]2 and sends it to R. Each party outputs krd = [krd]1⊕
[krd]2.
– R and SP obtain a common key kr. SP samples the key kr
and sends it to the rider R.
– D and SP obtain a common key kd. SP samples the key
kd and sends it to the driver D.
– R, D and SP obtain a common key kall. SP samples the
key kall and sends it to both the rider R and the driver D.

Sampling common random values. We will use the common
keys to sample common random values. This will be required
for the input sharing as well as for the computation. If more
than one party is involved in sampling a random value, in
that case, they will use the common key (as discussed in the
above paragraph) to evaluate a PRF on an agreed value (e.g, a
counter, ctr, which is incremented after each evaluation). For
example, consider R and SP wish to sample a common random
value, v, then both SP and R evaluate PRF(kr, ctr) = v.

Input sharing. R has four input values rxs, rys, rxe and rye. We
aim to achieve augmented additive sharing of these values. To
share these values, R and SP sample random values δrxs , δrys ,
δrxe and δrye using the key kr, these are the masks of the respec-
tive values. It is required to generate additive sharing of these
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values. For that, SP and R sample [δrxs ]r , [δrys ]r , [δrxe ]r , [δrye ]r
using the key kr. SP computes [δrxs ]d = δrxs − [δrxs ]r and sends
it to D. SP does the same for [δrys ]d , [δrxe ]d , [δrye ]d. Then, R
locally computes mrxs = rxs + δrxs . Similarly, R computes
mrys ,mrxe and mrye . R sends mrxs ,mrys ,mrxe and mrye to D.
To share D’s input, D, R and SP follow the similar steps.

Computation of SDS and RDS by R and D. Using the
homomorphic property of the J·K-sharing scheme, R and D
compute JrxsK−JdxsK = (mrxs −mdxs , [δrxs ]− [δdxs ]). Similarly,
R and D compute JrysK−JdysK, JrxeK−JdxeK and JryeK−JdyeK.
Given 2 vectors x and y, we denote their dot product z as
z = ⟨x, y⟩. Since

SDS = ⟨(rxs − dxs, rys − dys), (rxs − dxs, rys − dys)⟩
EDS = ⟨(rxe − dxe, rye − dye), (rxe − dxe, rye − dye)⟩,

we will describe how to compute z such that each component
is an augmented additive share. Note that

JxK = (Jx1K, Jx2K) = ((mx1 , [δx1 ]), (mx2 , [δx2 ])),

JyK = (Jy1K, Jy2K) = ((my1 , [δy1 ]), (my2 , [δy2 ])).

Here δx1 , δx2 , δy1 , δy2 are additively shared among R and D.
However, SP holds these values in clear. To compute ⟨x, y⟩, SP
prepares the following: δxy = δx1 · δy1 + δx2 · δy2 and generates
additive sharing of it. To generate the additive sharing of δxy,
SP and R sample a common random value [δxy]r using the
common key kr. Then SP computes [δxy]d = δxy − [δxy]r and
sends it to D. Furthermore, SP, R and D prepare [·]-sharing of
a random value, say δz. For that SP and R sample a random
value [δz]r using their common key kr and SP and D also
sample another random value [δz]d using their common key kd.
SP sets δz = [δz]r + [δz]d. Observe that, R and D hold additive
sharing of δz, the mask of ⟨x, y⟩. However, to maintain the
sharing semantics, they are required to compute the masked
value mz. Note that

z = x1y1 + x2y2

⇒ mz = (mx1 − δx1)(my1 − δy1) + (mx2 − δx2)(my2 − δy2) + δz

⇒ mz = mx1my1 +mx2my2 −mx1δy1 −my1δx1 −mx2δy2 −my2δx2
+ δx1δy1 + δx2δy2 + δz

Let δxy = δx1δy1 + δx2δy2 . R and D respectively compute

[mz]r = mx1my1 +mx2my2 −mx1 [δy1 ]r −my1 [δx1 ]r
−mx2 [δy2 ]r −my2 [δx2 ]r + [δxy]r + [δz]r (1)

[mz]d = −mx1 [δy1 ]d −my1 [δx1 ]d
−mx2 [δy2 ]d −my2 [δx2 ]d + [δxy]d + [δz]d . (2)

To complete the computation, R and D exchange their
shares of mz with each other. R and D both locally compute
mz = [mz]r + [mz]d. Therefore, JzK = (mz, [δz]).

Output. R, D and SP complete this phase of the computation
by outputting JSDSK and JEDSK where SP holds δSDS and δEDS

and R and D hold mSDS and mEDS.

Performing the comparison: To decide if R and D are
matched or not, it is required to check if SDS ≤ ρ2s & EDS ≤
ρ2e are satisfied. In the literature, there are different ways
of performing comparison. Considering bit representations
of decimal values and the most significant bit (msb) as
the sign bit, extracting the msb provides the output of the
comparison with 0. This approach is widely used in various

prior works [17], [6], [28], [12]. It requires evaluating a
boolean circuit of depth log2(k) (later works [19], [17], [28]
optimized it evaluating a circuit with depth log4(k)), where
the computation is performed over Z2k . This approach incurs
more interaction among the parties. Another line of works
considers function secret sharing based approach [5], [4], [16],
where to evaluate a comparison, a distributed comparison
function (DCF) is evaluated, which is represented by a key. The
keyholder locally evaluates the DCF using its key and obtains
a random sharing of the output. However, generating the keys
for the DCF is heavier when it is generated using MPC.
Many prior works [16] bypass this challenge by considering an
additional helper party other than the evaluators. Fortunately,
in our case, the helper party is available naturally in the form
of SP. In our construction, SP generates the DCF keys for R
and D. Upon receiving the keys, R and D perform the DCF
evaluation locally and obtain an additive sharing of the output.
Below, we elaborate further on the execution of the comparison
protocol using DCF. Consider a function fα(x), parameterized
by α, such that fα(x) = 1 if x ≤ α, 0 otherwise.

The Gen algorithm of DCF takes α as an input and outputs
K0 and K1. The helper party (SP) executes the Gen algorithm
locally and sends K0, K1 to the evaluators. The evaluators
(R and D) hold additive shares of the secret x and α. They
reconstruct x + α by exchanging the shares of x + α, which
is obtained by locally applying the homomorphic property of
the additive secret sharing. The evaluators perform the Eval
algorithm locally to obtain the sharing of the comparison
output. In this work, since SP holds δSDS and δEDS where these
values are already additively shared with R and D, δSDS and
δEDS are considered as the α of the corresponding comparison
protocols. SP generates keys by providing δSDS and δEDS as
input to the Gen algorithm. R and D upon receiving the keys
perform the Eval on mSDS−ρ2s and mEDS−ρ2e . R and D get the
sharing of the output of the comparison protocol. They send
the shares to SP, who reconstructs the output, and if both the
conditions are met (that is, both the outputs are 1), it sets R
and D as matched. We describe the ΠEndPoint(Fig. 4) protocol
below. The communication cost of ΠEndPoint is 193 elements,
and it requires 4 rounds of interaction.

Input:
• R’s input rxs, rys, rxe and rye.
• D’s input dxs, dys, dxe and dye.
• SP does not have any input in the protocol.
• Public input ρs and ρe.

Output: 1 if SDS ≤ ρ2s & EDS ≤ ρ2e , 0 otherwise, where
SDS = ⟨(rxs − dxs, rys − dys), (rxs − dxs, rys − dys)⟩
EDS = ⟨(rxe − dxe, rye − dye), (rxe − dxe, rye − dye)⟩.

Protocol:
• Input sharing. For an input v, consider P (either R or D) to
be the input owner.
– SP and P sample a random mask δv. SP and R sample random
shares of δv, [δv]R. SP computes [δv]D = δv − [δv]R and sends it
to D.

– P computes mv = v+ δv and sends it to the other party, that
if P = R, it sends it to the D and vice versa.

Protocol ΠEndPoint(R,D)
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– R and D obtain JvK = (mv, [δ])

• Computation of SDS and EDS.
– Local computation. Parties compute Jrxs − dxsK = JrxsK −
JdxsK and Jrys − dysK = JrysK − JdysK. Similarly, they compute
Jrxe − dxeK and Jrye − dyeK.

– Dot product. Let v1 = rxs−dxs, v2 = rys−dys, v3 = rxe−dxe,
v4 = rye − dye.

- SP computes δ12 = δ2v1 + δ2v2 and δ34 = δ2v3 + δ2v4 . SP and
R sample [δ12]R and [δ34]R. Then, SP computes [δ12]D =
δ12 − [δ12]R and [δ34]D = δ34 − [δ34]R and sends [δ12]D and
[δ34]D to D. SP and R sample random values [δSDS]R and
[δEDS]R. Similarly, SP and D sample random values [δSDS]D
and [δEDS]D. SP sets δSDS = [δSDS]R + [δSDS]D and δEDS =
[δEDS]R + [δEDS]D.

- R and D compute mSDS and mEDS following (1) and (2)
respectively.

• Comparison.
– SP executes DCF Gen algorithm with input δSDS and δEDS

and generates the keys Kr
SDS, Kd

SDS, Kr
EDS and Kd

SDS. SP sends
Kr

SDS, Kr
EDS to R and Kd

SDS, Kd
EDS to D.

- R and D perform DCF Eval algorithm with Kr
SDS and Kr

EDS

on input mSDS − ρ2s and mEDS − ρ2e .

- R and D send their outputs to SP.

• Output. SP reconstructs the outputs. If both the outputs are 1,
SP outputs 1, 0 otherwise.

Fig. 4: Endpoint based ride-sharing matching

b) Security proof: Here, we will discuss the security
proof for the endpoint matching protocol. Similar to Sec-
tion III-A0b, we will first discuss the simulator, SSP , for
corrupt SP followed by the simulator, SR, for corrupt R.

SSP has inputs bSDS and bEDS where bSDS = 1 if SDS ≤
ρ2s , 0 otherwise and bEDS = 1 if EDS ≤ ρ2e , 0 otherwise.
To simulate the view of SP, SSP samples random inputs of
R and D. With the random inputs, SSP , execute the steps of
ΠEndPoint honestly on behalf of R and D. In the last step of
the protocol, where R and D send their shares of the outputs,
SSP sends random additive sharing of bSDS and bEDS to SP.
The simulated view is indistinguishable from the view of the
corrupt SP of the protocol.

Input Inputs to simulator SSP are the bits bSDS and bEDS where

bSDS = 1 if SDS ≤ ρ2s , 0 otherwise and bEDS = 1 if EDS ≤ ρ2e , 0
otherwise respectively.
• SSP samples random inputs on behalf of R and D and execute
the protocol steps until the last interaction from R, D to SP,
honestly on behalf of R and D.
• In the last step, SSP sends an additive sharing of bSDS and
bEDS to SP on behalf of R and D.

Simulator SSP

Fig. 5: Simulator SSP for ΠEndPoint for a corrupt SP

SR has the inputs of the corrupt rider R, that is, (rxs, rys),
(rxe, rye). SR needs to simulate the view of R. The view
of R comprises of the exchanged messages during the input

sharing, dot product, and DCF evaluations. In the input sharing
phase, corresponding to R’s input SR (on behalf of SP) and
R, sample the masks for the inputs and the shares of the
masks. Then R sends the masked values to D, SR receives
the masked values on behalf of D. Corresponding to D’s
inputs, on behalf of SP, SR and R sample shares of the
random masks. Here note that D’s inputs are not known to
SR. However, it needs to prepare the masked values on behalf
of D and send them to R. SR samples random values as the
masked values and sends them to D. Since the masks are
unknown to R, the masked values are indistinguishable from
randomly sampled values. Thus, this step of the simulation is
indistinguishable. To perform the dot product, SP generates
correlated randomness δ12, δ13, δSDS and δEDS. These values
are additively shared between R and D. Therefore, on behalf
of SP, SR along with R sample random values [δ12]R, [δ34]R,
[δSDS]R and [δEDS]R. To complete the computation of the dot
product, R and D need the masked values, mSDS and mEDS.
SSP sends uniformly sampled [mSDS]D and [mEDS]D to R and
it receives [mSDS]R and [mEDS]R on behalf of D. All these
messages in the protocol are also uniformly distributed; hence,
the simulated view is indistinguishable from the view of R.
Finally, for the DCF evaluations, the keys Kr

SDS and Kr
EDS are

uniformly distributed. Therefore, SR sends uniformly sampled
keys, Kr

SDS and Kr
EDS to R on behalf of SP and it receives the

shares of the outputs of the comparisons from R. The simulated
view is indistinguishable from the view of R. The simulator
for the corrupt driver, SD, is similar to SR.

Input Input to simulator SR is the starting and ending points of R,
that is, (rxs, rys), (rxe, rye).
• Input sharing.
- R’s input.
• SR and R sample random δv for all v ∈ {rxs, rys, rxe, rye}.
• SR and R sample random [δv]R for all v ∈ {rxs, rys, rxe, rye}.
• SR receives mv on behalf of D, for all v ∈ {rxs, rys, rxe, rye}.
- D’s input.
• SR and R sample random [δv]R for all v ∈

{dxs, dys, dxe, dye}.
• SR samples mv, for all v ∈ {dxs, dys, dxe, dye} and sends

them to R.

• Local computation. To simulate the local computations, SR

follows the protocol steps on behalf of D and SP.
• Dot Product.
- Simulating the masks generation. SR along with R sample
[δ12]R, [δ34]R, [δSDS]R and [δEDS]R (described in Fig. 4) on behalf
of SP.

- Simulating the masked value. SR samples random [mSDS]D,
[mEDS]D and sends it to R on behalf of D and it receives [mSDS]R,
[mEDS]R from R on behalf of D.

• DCF evaluation. SR samples random keys Kr
SDS and Kr

EDS

and sends them to R on behalf of SP. It receives shares of outputs
of the comparisons from R on behalf of SP.

Simulator SR

Fig. 6: Simulator SR for ΠEndPoint for a corrupt R
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IV. MATCHING MULTIPLE PAIRS

In Section III-A and Section III-B, we describe two differ-
ent procedures to check if a rider and a driver are a match. Let
Π(R,D) indicates if R and D are a match or not, where Π can
be instantiated using ΠInt or ΠEndPoint. SP obtains the output,
Π(R,D) for every pair R and D. Note that it is possible that
some riders may be matched with a common driver, where
one of the riders may have a match with another driver, but
the other rider does not have any other matches. In that case,
random assignments of rider-driver pairs may lead to starvation
of some users (remain unmatched). We elaborate on this with
an example below. Consider the following scenario with 2
riders, R1, R2 and 2 drivers, D1, D2 such that Π(R1,D1) = 1,
Π(R1,D2) = 1, Π(R2,D1) = 1 and Π(R2,D2) = 0. In
the above example, if R1 and D1 are matched, then both
R2 and D2 will remain unmatched. However, (R1,D2) and
(R2,D1) is an optimal match. Given a set of riders and drivers,
it is possible to find the optimal matching by executing a
maximum bipartite matching. Since SP gets the output of the
matching protocol for every pair in clear, it can construct
the adjacency matrix of the corresponding bipartite graph
and execute the matching algorithm locally. Therefore, any
state-of-the-art maximum matching algorithm can be used to
obtain the optimum matching without incurring any communi-
cation overhead. Furthermore, the computation overhead will
be towards SP only, depending on the underlying matching
algorithm. Also, in the case of the intersection based matching
algorithm, it is easy to obtain a preference list (based on the
cardinality of the intersection set) corresponding to every rider
and driver. For a rider Ri, let D(i) = {D(i)

1 , . . . ,D
(i)
mi} be the

preference list. That is, ∀j ∈ [mi], f(τRi , tRi , τDj , tDj ) = 1 and
|τRi∩τDj | ≥ |τRi∩τDj+1 | for all j ∈ [mi−1]. Similarly, driver
Dj has the preference list R(j) = {R(j)

1 , . . . ,R
(j)
nj }. Then, SP

can also locally execute the stable matching algorithm [9].

When a rider (driver) raises a ride (match) request, it is
checked with all the available drivers (riders) to see if they are
a match. As discussed above, we execute a bipartite maximum
matching. For that, we consider a bipartite graph, G = (V,E)
where V = R ∪ D, R and D are the set of all riders and
drivers, respectively. Note that, R and D form a partition of
V . We consider (R,D) ∈ E to be an edge in the graph if
R ∈ R and D ∈ D are matched, that is, ΠEndPoint(R,D) = 1.
Thus, we execute a maximum bipartite matching algorithm on
G to obtain the maximum number of matches. It is easy to see
that a maximum matching in G will give a maximum possible
matching between the set of riders and drivers.

V. EXPERIMENTS AND RESULTS

In this section, we evaluate the effectiveness of QuickPool
in providing an efficient ride-sharing solution. Firstly, we
describe the implementation details of QuickPool and then we
benchmark our proposed intersection based matching and end-
point based matching protocols and show that compared to
previous works [27], our protocols achieve significant speed-
up without compromising user privacy.

A. Implementation details

We now outline the implementation details of QuickPool,
which we utilize for benchmarking the intersection based
matching and end-point based matching protocols.

a) Environment: The benchmarks are conducted over
MAN network simulated on a local server, equipped with a
4.5GHz, 24 cores, 48 threads, AMD Ryzen™ Threadripper
PRO 5965WX processor having 256GB RAM. Each rider and
driver as well as the SP are executed as multiple processes on a
single server. We consider a bandwidth of 500 Mbps and 10 ms
latency and use the Linux tc command from network emulation
package netem to emulate a MAN network for inter-process
communication. Both intersection based matching and end-
point based matching protocols are benchmarked in MAN,
as QuickPool, being a ride-sharing solution, is typically more
suited for MAN environments. Each of the test suites is
executed ten times without interruption and the average run
time is reported in this paper.

b) Implementation of QuickPool: We implement Quick-
Pool in C++17, leveraging the codebase of Asterisk [17]
and EMP toolkit [35]2. We set the computational security
parameter κ = 128 and ensure a statistical security of at least
2−32. To implement the intersection based matching protocol,
we utilize the AES implementation from the EMP toolkit,
which internally utilizes highly efficient AES-NI. We utilize
funshade [16] implementation for DCF instantiations which
are used for performing secure comparisons.

c) Instantiation of other Protocols: We compare our
intersection based matching protocol with the O-PrivatePool
protocol introduced in TOPPool [27], which internally employs
the BaRK-OPRF PSI protocol [18]. The BaRK-OPRF PSI
protocol is recognized as one of the fastest state-of-the-art PSI
protocols for large batches of data. Since the implementation
of O-PrivatePool is not publicly available, we base our com-
parison on the BaRK-OPRF PSI protocol (utilizing the open-
source code accessible at [33]), which we run on our server
in MAN settings. Given that O-PrivatePool relies on BaRK-
OPRF, we assert that O-PrivatePool will take at least as much
time as BaRK-OPRF. We are unable to compare our end-point
based matching algorithm with prior works, as to the best of
our knowledge, there is no publicly available implementation
accessible for such algorithms.

B. Performance benchmarks of QuickPool

We now benchmark the intersection-based and end-point-
based matching protocols, highlighting their efficiency in terms
of both communication cost and runtime.

a) Intersection based matching: We analyze the perfor-
mance of the intersection based matching protocol (Fig. 1) by
setting the number of riders equal to the number of drivers and
varying both from 1 to 100, as depicted in Fig. 7. Additionally,
we also vary the set size from 32 up to 4096, where by ‘set
size’ we mean the route length of each user. We observe that
even with a set size of up to 2048, considering the number of
riders and drivers to be up to 100, per party communication
cost remains almost within 3MB. Note that in this protocol,
SP does not send any data to any other party throughout the
process. Regarding runtime, with a set size of up to 2048
and up to 100 riders and drivers, the total runtime is below 1
minute. Additionally, we report the throughput for a set size of

2Our implementation is publicly available at: https://github.com/cris-c
oders-iisc/QuickPool. Our code is developed for benchmarking and is not
optimized for industry-grade use.
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256 in Table II, which captures the number of rider-driver pairs
matched per minute and is computed as throughput (/minute)
= min(# riders, # drivers) ∗ 60/run time.
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Fig. 7: Performance of intersection based matching algorithm
over a MAN network, for varying numbers of riders/drivers in
{1,5,10,20,40,60,80,100} and set size in {2j}j∈[5,12].

# riders/ Intersection based End-point based

drivers Run time (sec) Throughput (/min) Run time (sec) Throughput (/min)

5 0.31426 954.62 0.94 319.15

10 0.62484 960.25 2.88 208.33

20 2.10365 570.44 9.88 121.46

40 6.01544 398.97 36.45 65.84

60 11.11847 323.79 79.67 45.19

80 17.64009 272.11 139.65 34.37

100 24.41076 245.79 216.86 27.67

TABLE II: Run time and throughput (per minute) for intersection
(considering set size = 256) and end-point based matching algorithms
for varying numbers of riders/drivers.

b) End-point based matching: Similar to the intersec-
tion based matching protocol, we analyze the performance of
the end-point based matching protocol (Fig. 4) by varying
the number of riders and drivers, as depicted in Fig. 8. We
observed that even with 100 riders and drivers, the total
communication remains below 30MB, while with up to 40
riders and drivers, the communication cost is less than 5MB.
Notably, in this protocol, each rider and driver transmits
significantly very less data compared to SP. For instance, in
a scenario with 100 riders and drivers, each of the riders and
drivers needs to send only ∼3.13KB, as shown in Table III.
Note that the amount of data sent by SP is comparatively
higher, as it needs to transmit the DCF keys to both the rider
and the driver. Regarding runtime, this protocol completes its
execution very quickly. For instance, with up to 40 riders and
drivers, it takes less than 1 minute to complete. Additionally,
we report the throughput in Table II for varying number of
riders and drivers. Note that although the throughput decreases
with the increase of users due to increased computation and
runtime, the likelihood of successful matching in real scenarios
increases. This is because there are more matching options
available for each rider/driver.

C. Comparison with previous works

The BaRK-OPRF protocol operates between a single pair
of parties for computing private set intersection. We conducted
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Fig. 8: Performance of end-point based matching algorithm
over a MAN network, for varying numbers of riders/drivers in
{1,5,10,20,40,60,80,100}.

# riders
/drivers

1 5 10 20 40 60 80 100

sent by
SP

2.91 72.19 288.52 1153.59 4613.44 10379.53 18451.88 28830.47

sent by
each user

0.031 0.16 0.31 0.63 1.25 1.88 2.5 3.13

TABLE III: Communication cost (in KB) of SP, riders and drivers
in end-point based matching over MAN for varying numbers of users
(riders/drivers)

experiments with BaRK-OPRF, varying the set size from 32 to
4096, and compared both of its per party communication cost
and runtime with our intersection-based matching protocol for
a single rider and driver. Our observations indicate that our
protocol significantly outperforms BaRK-OPRF. For instance,
even with a set size of 4096, our protocol’s execution time is
∼106ms, while BaRK-OPRF takes longer, with ∼140ms even
for a set size of 32. Fig. 9 illustrates this comparison for other
set sizes as well. We observe that QuickPool achieves 1.6 -
2× and at least 8× improvement over BaRK-OPRF in terms
of run time and communication cost respectively.
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Fig. 9: Performance comparison over a MAN network between
BaRK-OPRF and QuickPool for a single rider and driver, for varying
set size in {2j}j∈[5,12].

VI. TOWARDS A COMPREHENSIVE AND PRACTICAL
SOLUTION

In this work, we propose algorithms for both intersection
based and end-point based driver-rider matching that are more
efficient compared to prior works. We also demonstrate their
effectiveness for multiple simultaneous matching. Our works
can be used as building blocks that an SP can use to build
secure applications. However, a few more steps are needed to
make our algorithms into a practical solution. We will briefly
discuss them below.
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Scalability. Our matching algorithms will be executed every
epoch of σ duration. SP can set σ, and β, the number of
unmatched rider and driver requests, by using results in Table
II as a reference. However, the SP can vary these parameters
based on incoming ride request variations due to time-of-day,
weather-based traffic conditions and other practical considera-
tions.

Time matching. TOPPool [27] proposes matching a rider
and a driver, not just with either the intersection or end-point
matching, but also their respective ride times. To facilitate the
time-based matching in QuickPool, we need to perform one
additional DCF to compare the differences between the rider’s
and the driver’s ride times with a publicly known end-user-
specific threshold value. The result of the comparison can be
used as a match criteria together with either intersection based
or end-point based matching.

Group matching. In group matching [38], multiple riders
who satisfy the matching criteria (significant overlap in the
respective routes or nearby start and end-points) are considered
as a single group. Then, a representative of a group is matched
with a driver. One can trivially extend the rider-driver matching
protocol in QuickPool to perform group matching. First, we
compare pairs of riders to obtain a matched group. Next, a
representative of this matched group can execute a matching
protocol with the drivers. Here, the matching protocol may not
necessarily be ride-sharing matching. One can use ride-hailing
matching as well where the driver’s location should be close
to the riders’ locations. For this, we can use a relaxed version
of end-point based matching where we check if the difference
between the start location of the driver and the start location
of the rider is less than a threshold value.

Other desirable features. A secure and anonymous payment
system such as eCash or equivalent needs to be integrated into
the system for fare payment after ride completion. Similar
to features available in existing ride matching services, an
anonymous rating system to mutually rate riders and drivers
can be implemented for quality improvement and reputation
maintenance.
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