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Abstract. Oblivious transfer (OT) is a fundamental cryptographic pro-
tocol that plays a crucial role in secure multi-party computation (MPC).
Most practical OT protocols by, e.g., Naor and Pinkas (SODA’01) or
Chou and Orlandi (Latincrypt’15), are based on Diffie-Hellman (DH)-
like assumptions and not post-quantum secure. In contrast, many other
components of MPC protocols, including garbled circuits and secret shar-
ings, are post-quantum secure. The reliance on non-post-quantum OT
protocols presents a significant security bottleneck with the advent of
quantum computing. In this paper, we address this issue by construct-
ing a simple, efficient OT protocol based on Saber, a Mod-LWR-based
key exchange protocol. We implemented our OT protocol and conducted
experiments to evaluate its performance. Our results show that our OT
protocol significantly outperforms the state-of-the-art Kyber-based post-
quantum OT protocol by Masny and Rindal (CCS’19) in terms of both
computation and communication costs. Furthermore, the computation
speed of our OT protocol is faster than the best-known DH-based OT
protocol by Chou and Orlandi (Latincrypt’15), making it competitive to
replace DH-based OT in the high-bandwidth network setting.
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1 Introduction

Oblivious transfer (OT) is a fundamental cryptographic primitive in modern
cryptography, as it implies secure multiparty computation [29]. Several flavors
of OT exist and have been proven equivalent. One-out-of-two OT is the simplest
form, defined as follows: a sender has two input messages m0 and m1, and a
receiver has a choice bit x. The receiver is supposed to receive mx and remains
unknown about m1−x, while the sender learns nothing about the choice.

Previously, there have been many efficient construction for Oblivious Trans-
fer, such as Naor-Pinkas OT [37], Chou-Orlandi OT [18] etc., quite a lot of
which based on Diffie-Hellman-like assumptions. But with the development of
quantum computers, the confidentiality and integrity of some classic cryptogra-
phy system may be compromised. Many other components of secure multi-party
computation (MPC) protocols like garbled circuits and secret sharing are ei-
ther post-quantum secure or information-theoretically secure. This makes OT



become a potential security bottleneck in the era of quantum computing. So
it is important to construct some practical post-quantum OT to extend post-
quantum secure multiparty protocols, which would be used as a crucial building
block for designing post-quantum MPC protocols. The current best candidate
is the Masny-Rindal OT [33] built from the Module-LWE-based key exchange
protocol Kyber [48]. However, there is still space for more simplicity and speed
in practice.

Therefore, in this work, we build an OT from Saber key exchange scheme [19],
following the framework of Naor-Pinkas OT [37]. The goals of our construction
are simplicity, efficiency, and post-quantum security.

We choose to base our OT protocol on Saber, because it remains secure
against quantum computers and is one of the round 3 candidates of the NIST
Post-Quantum Cryptography Standardization effort [39]. Furthermore, compared
with its Mod-LWE-based competitor Kyber, the underlying Mod-LWR [5] as-
sumption of Saber eliminates randomness in ciphertext generation, so Mod-
LWR-based schemes naturally require smaller bandwidth and enable determinis-
tic operations. Moreover, all integer moduli in Saber are powers of 2, contributing
to the simplicity and facilitating constant-time implementations. In summary,
Saber offers simplicity by design, and its implementation achieves both efficiency
and flexibility.

In the Saber key exchange, the sender and receiver use information reconcil-
iation c to help to get the same bits from the inner product of two Mod-LWR
samples, in the form of

(
s′T · ⌊p

q A · s⌉
)

and
(

sT · ⌊p
q AT · s′⌉

)
. The reconcilia-

tion c contains higher bits of one inner product, which helps to recover the error
introduced by rounding and can make the probability of the two keys disagreeing
negligible. We tweak this key exchange into an OT protocol as shown in Fig. 1.

Like the Naor-Pinkas construction, the sender shares a seed with the receiver
in advance to generate a shared matrix A and a random polynomial vector r.
Then the sender computes an Mod-LWR sample ⌊A · s⌋q→p, while the receiver
also computes one ⌊AT · s′⌋q→p symmetrically. The receiver assigns the sample
to a vector indexed by the input bit x and assigns the subtraction result with r
to the other. Then, the one indexed by 0 is sent to the sender, who gets two b′

vectors. By the pseudorandomness of the Mod-LWR samples, the sender cannot
determine the value of x. The sender computes two vectors’ reconciliation bits
c0, c1, encrypts two messages m0, m1 respectively, and sends them with its own
Mod-LWR sample b. On the receiver’s side, it can derive only one key from s′, b
and decrypts one ciphertext cx i.e. the one indexed by its input bit x, so the
receiver gets exactly the message indexed by x, remaining unaware about the
other message.

The correctness of this protocol can be shown by proving that c helps derive
shared keys for both sides and checking key derivations. It has been proven
in [19] and [7] that the reconciliation c can ensure the key agreement with only
negligible failure probability. Intuitively, the distance between v′ and vx is close
enough to be corrected by c and a rounding constant h2.
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Sender Receiver

s′ ← βµ(Rk×1
q )

b′
x = ⌊AT · s′⌉q→p

b′
1−x = r− ⌊AT · s′⌉q→p

b′
0

←−−−−−−−−

s← βµ(Rk×1
q )

b = ⌊A · s⌉q→p

b′
1 = r− b′

0

v0 = b′
0 · (s mod p) + h1

v1 = b′
1 · (s mod p) + h1

c0 = ⌊v0⌋ 1
2 p→t, c1 = ⌊v1⌋ 1

2 p→t

k0 = H (⌊v0⌋p→2) , e0 = k0 ⊕m0

k1 = H (⌊v1⌋p→2) , e1 = k1 ⊕m1
b, {ci}, {ei}
−−−−−−−−−→

i ∈ {0, 1} v′ = bT ·
(
s′ mod p

)
+ h1

kx = H(⌊v′ − 2ϵp−ϵq−1cx + h2⌋p→2)
mx = kx ⊕ ex

Fig. 1. Our Saber-based Oblivious Transfer protocol, where A, r consists of the com-
mon reference string, H is a hash function modeled as random oracle, h1, h2, p, q are
parameters, x ∈ {0, 1} is the chosen bit of the receiver, and m0, m1 are the messages
to be sent by the sender.

For security, we show that by adapting the technique from [17], our protocol,
augmented by consistency checking, achieves sender-sided simulation security
and input extractability against a corrupted receiver. This notion of security
has been shown to be sufficient to achieve UC security when combined with the
KOS OT extension protocol [28]. Since the KOS protocol is later shown to have
a flaw in its security proof, we adapt the argument in [17] to the state-of-the-art
SoftSpoken OT extension protocol and show that the weakened security notion
already suffices for SoftSpoken OT [47].

We implement our protocol and conduct experiments using the Saber pa-
rameter with 192-bit classical security. Compared with the implementation of
Masny-Rindal OT [33] instantiated with Kyber768, our results demonstrate
faster running time and smaller communication size. In the LAN setting (local
loopback with high bandwidth), our implementation is even faster than classic
OT protocols based on the DH-like assumption.

1.1 Related Work

Oblivious transfer (OT) was first proposed by Rabin in [45] and has been proved
to be a fundamental component of secure multiparty computation [51,22,29,26].
OT has many variants in terms of functionality, including 1-out-of-2 OT, 1-
out-of-N OT [38], and k-out-of-N OT [23]. In this work, we focus on the most
fundamental 1-out-of-2 OT functionality.

Since it has been proved that public-key operations are essential for OT [24],
Ishai et al. proposed the OT extension protocols where a small number of “base”
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OTs can be a large number of output OTs with only symmetric-key primi-
tives [25]. The OT extension protocol was subsequently improved in a number of
works [30,3,4,28,40,41] with SoftSpokenOT being the state-of-the-art [47]. No-
tably, another line of work seek to reduce the communication of the extension
process by relying on different variants of the Learning Parity with Noise (LPN)
assumptions [11,10,50,8,12,9]. Both classes of extension methods do not rely on
non-post-quantum assumptions and rely on a small number of base OT correla-
tions, which motivates the design of efficient and post-quantum OT protocols.

As a fundamental component, many candidate constructions have been pro-
posed (e.g. [6,37,1,27,31,18]) and some are still actively utilized in today’s MPC
libraries. Nevertheless, when considering post-quantum security, the choice is
rather limited. In the following we review post-quantum OT protocols in the
literature.

OT from Key Exchange. In [33], Masny and Rindal proposed a generic transfor-
mation from key exchange to OT and instantiated this transformation with the
Mod-LWE-based Kyber scheme [48]. Subsequently, the random oracle program-
ming technique in [33] is abstracted as “programmable once public functions”
and utilized in subsequent works [34,35,36]. Unlike Masny-Rindal OT, in those
protocols the sender sends the public key as the first message and can be re-used
across different sessions.

Nevertheless, this change introduces stronger security requirements of the
key exchange scheme, namely, even if the sender’s first message is maliciously
created, the receiver’s response should be indistinguishable from uniform ran-
domness. This property is dubbed with different names (“dense KEM” in [34]
or “strong random response in [36]). When using Lattice-based assumptions like
LWE, the modulus-to-noise ratio needs to be super-polynomial the information
reconciliation cannot be simulated. Thus, OT protocols in [34,35,36] mainly fo-
cuses on DH-based encryption schemes which inherently has this property.

OT from Dual-mode Encryption. A line of work [42,44,15,14] is based on dual-
mode cryptosystems, which builds on lattice trapdoor [21]. To the best of our
knowledge, lattice trapdoor can only be instantiated from plain LWE [46] and
thus OT protocols in this class are less efficient than those based on Mod-
LWE [33] or Mod-LWR as in this work.

Theoretical Constructions. In [20] the authors proposed a series of transfor-
mation that boosts an “elementary” OT protocol with relatively weak security
guarantee to one that is UC-secure. They then presented a candidate elementary
OT from the post-quantum LPN assumption. Nevertheless, the transformation
process involves non-black-box use of cryptographic primitives (e.g. evaluating
PKE within GC). Therefore, we believe that the practical performance of this
OT is less efficient than OTs built directly from key exchange.

In summary, the Mesny-Rindal protocol [33] instantiated with Kyber PKE [48]
represents the state-of-the-art among post-quantum OT protocols in terms of

4



practical performance. This protocol also serves as the baseline for post-quantum
OT in our experiment of Section 6.

1.2 Our Contribution

In this paper, we propose an oblivious transfer protocol from the Saber key ex-
change protocol, which mimics the classical Naor-Pinkas construction [37] based
on Diffie-Hellman key exchange. Using the technique of [17], we argue that with
an additional round of consistency check our protocol suffices for the secure
composition with the SoftSpoken OT extension [47]. Finally, we implement our
protocol and benchmark its performance with the classical OT protocols as well
as existing OT protocols with post-quantum security. The experimental results
demonstrate that our performance is superior to that of our existing counterparts
in the LAN environment. We highlight the advantages of this work as follows.

– Ease of implementation with post-quantum security. Our protocol is easy
to implement (less than 300 lines of code in C++), which is a virtue of
widely-used classical OT protocols (e.g. [37,18]). In particular, the choice of
Mod-LWR assumption allows us to introduce noise via deterministic round-
ing rather than sampling them from a distribution (e.g. discrete Gaussian),
which helps to simplify the design and implementation of the OT protocol.

– Fast running time compared with both classical OT and post-quantum OT.
Our protocol outperforms Kyber-based Masny-Rindal OT in both compu-
tation and communication costs. It also achieves similar running time in
LAN settings compared to OT based on the classical DH-like assumption,
however, it incurs a slightly larger communication size

In conclusion, our work provides a simple, efficient and secure way of con-
structing post-quantum OT and OT extension protocols.

2 Preliminaries

In this section, we define our protocol’s notations and the UC security definitions.
We also briefly introduce the Mod-LWR assumption and the Saber key exchange
protocol.

2.1 Notations

We use λ ∈ N to denote the security parameter. We use “PPT” to abbrevi-
ate “probabilistic, polynomial time” and use negl(λ) to denote a function that
shrinks faster than any inverse polynomial of λ. We borrow the notations and
parameters from Saber [19]. We denote the ring of integers modulo an integer
q as Zq. We then define polynomial ring Rq = Zq[X] and the quotient ring
Rq[X]/(Xn + 1). In Saber, n is a fixed power of 2 (they choose n = 256). We
also inherit the notation extension: for a ring R, Rℓ×k denotes the ring of ℓ× k-
matrices over R, and the (mod p) operator is extended to polynomials in Rq
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and matrices over Rq by performing modulo operation coefficient-wise. βµ(Zq)
(resp. βµ(Rq)) denotes a distribution over Zq (resp. Rq) where each vector ele-
ment (resp. polynomial coefficient) follows a centered binomial distribution with
parameter µ and corresponding standard deviation σ =

√
µ
2 . We use boldface

letters to denote matrices and vectors. For a probability distribution X on Zq,
X← X (Rℓ×k

q ) denotes sampling the matrix X ∈ Rℓ×k whose each coefficient is
respectively sampled from X .

We denote the rounding function by ⌊·⌉q→p : Zq → Zp or ⌊p
q ·⌉ which maps

x ∈ Zq into the index of the interval that x belongs to in Zp. We denote the
flooring function by ⌊·⌋q→p : Zq → Zp which maps x ∈ Zq to ⌊ q

p x⌋ in Zp. By
definition, we can transform this rounding computation into flooring: ∀x ∈ Zq,
⌊x⌉q→p = ⌊x + q

2p⌋q→p.
We recall the computationally indistinguishable notion as follows.

Definition 1. Two distribution ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N are
computationally indistinguishable (denoted as X c

≈ Y) if for any PPT distin-
guisher D, we have

|Pr[D(Xλ) = 1]− Pr[D(Yλ) = 1]| = negl(λ).

We define the syntax and correctness of two-message OT protocols as follows.

Definition 2. A two-message OT protocol is defined by four PPT algorithms
(Setup, OT1, OT2, OT3) where the setup algorithm Setup prepares for the obliv-
ious transfer, for example generates some common random strings as seed for
further operand generation.

– OT1(1λ, crs, x): Run by the receiver, taking crs and receiver’s input bit x as
input, outputting the receiver’s message otr and a secret state st.

– OT2(1λ, crs, (m0, m1), otr): Run by the sender, taking the sender’s input mes-
sages m0 and m1 and receiver’s first round message otr as input, outputting
sender’s second round answer ots.

– OT3(1λ, x, ots, st): Run by the receiver to evaluate mx from the interaction
above.

And we also say that a two-round OT scheme is correct, if with probability 1−
negl(λ) the following hold. For every choice bit x ∈ {0, 1} of the reciever and for
any input messages m0 and m1 of the sender, and for any otr, st ∈ OT1(1λ, crs, x)
and ots ∈ OT2(1λ, crs, (m0, m1), otr), we have OT3(1λ, x, ots, st) = mx.

2.2 LWR and Mod-LWR Problems

The learning with rounding (LWR) problem is introduced by Banerjee et al. [5]
and is a “derandomization” technique for the learning with errors (LWE) prob-
lem which generates the error terms deterministically. According to [5] and some
other works, there exists a reduction from the LWE problem to the LWR prob-
lem. Instead of using a random error term to generate “noisy” inner products,
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the LWR problem generates deterministic error by scaling and rounding coeffi-
cients modulo q to modulo p with p < q. We define the LWR and Mod-LWR
assumptions in Definition 3 and Definition 4.
Definition 3. Let N, m, p, q, µ ∈ N be parameters where p < q. The LWR prob-
lem states that for A← ZN×m

q , s← βµ(Zm×1
q ) and u← ZN×1

p ,(
A, ⌊p

q

(
AT s

)
⌉q→p

)
c
≈ (A, u)

Definition 4. Let N, k, p, q, µ ∈ N and R be parameters where p < q. The Mod-
LWR problem states that for A← RN×k

q , s← βµ(Rk×1
q ) and u← RN×1

p ,(
A, ⌊p

q

(
AT s

)
⌉q→p

)
c
≈ (A, u)

The parameters for Saber key exchange are chosen as Rp = Zp[x]/(xn + 1),
Rq = Zq[x]/(xn + 1), t = 2ϵt , p = 2ϵp , q = 2ϵq in which ϵt, ϵp, ϵq ∈ N, and
0 < ϵt + 1 < ϵp < ϵq, βµ is binomial distribution.

As mentioned in the preliminaries, the rounding operation can be done with
flooring. So, we define relevant constants as follows. h1 =

∑n−1
i=0

q
2p Xi ∈ Rq,

h2 =
∑n−1

i=0
(

p
4 −

p
4t

)
Xi ∈ Rp (also in Rq), and h = (h1, . . . , h1) ∈ Rk×1

q . It can
be verified that ∀x ∈ Rq, ⌊x⌉q→p = ⌊x + h1⌋q→p. Because the parameters are all
powers of 2, flooring is equivalent to a part selection of bits, as shown below.

∀x ∈ Zq, ⌊x⌉q→p = ⌊x + q

2p
⌋2ϵq →2ϵp =

(
x + q

2p

)
≫ (ϵq − ϵp) & (2ϵp − 1)

In [2], it is shown that the LWR problem with leaky secrets can be reduced
to the standard LWE problem provided sufficient min-entropy remains in the
secret. Moreover, in [32], it is proved that Mod-LWR over cyclotomic rings can
be reduced to the ring-LWE problem. We utilize this property when arguing the
sender’s input privacy in Section 4.2.

2.3 The Saber Key Exchange Protocol
We recall the Mod-LWR-based Saber key exchange protocol [19]. In this protocol,
the sender and receiver share public matrix A, and they both have access to a
random oracle H. The sender samples a secret s from the binomial distribution
βµ of polynomial module Rq, computes the rounding b = ⌊p

q A · s⌉ and sends
it to the receiver. Symmetrically the receiver samples a private s′ and computes
b′ = ⌊p

q AT · s′⌉ and sends b′ with a reconciliation information c. Now both
parties can compute a shared key: the sender can compute the key from c, s and
b′; the receiver computes from b and s′.

The two communicating parties sometimes fail to agree on the same key,
but using the additional reconciliation data c, we can ensure that this failure
probability is negligibly small.

The details of the Saber key exchange are shown in Fig. 2. Then, we can feed
the common secret k = k′ ∈ R2 into H to derive the session keys.
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Saber Key Exchange
Sender Receiver

s← βµ(Rk×1
q )

b = ⌊A · s + h⌋q→p ∈ Rk×1
p

b
−−−−−→

s′ ← βµ(Rk×1
q )

b′ = ⌊AT · s′ + h⌋q→p ∈ Rk×1
p

v′ = bT ·
(
s′ mod p

)
+ (h1 mod p)

c = ⌊v′⌋ 1
2 p→t, v′ ∈ Rpb′, c

←−−−−−v = b′T · (s mod p) + (h1 mod p)

k = H
(
⌊v − 2ϵp−ϵt−1c + h2⌋p→2

)
k′ = H

(
⌊v′⌋p→2

)

Fig. 2. The Saber key exchange protocol. Here A ∈ Rk×k
q is a public random matrix

and H : Rk×1
2 → {0, 1}λ is a random oracle.

2.4 Security Definitions

We argue the security of our protocol in the Universal Composition (UC) frame-
work [16] and allow the corrupted parties to deviate arbitrarily from the protocol
specification. This framework lays a solid foundation for designing and analyzing
protocols in arbitrary malicious environments.

In the UC framework, each party is identified by a unique identity pair
(pid, sid), where pid is the Party ID and sid is the Session ID. Parties with the
same code and the same sid are said to be a part of the same protocol session.
For simplicity, we omit the pid and sid in the protocol description.

The UC framework is based on the “simulation paradigm”, in which we
analyze the protocols in the real and ideal worlds, respectively. In the ideal
world, there is a functionality F communicating with all honest parties and an
adversary Sim. The corrupted parties are controlled by the Sim. In the real world,
however, the parties communicate and interact with each other to execute the
protocol. The corrupted parties are controlled by an adversary A.

Additionally, UC security captures arbitrary concurrently running protocols
using the notion of environment Z, which determines the inputs to parties and
sees the outputs generated by those parties. The environment Z can also com-
municate with the simulator Sim or the adversary A. We denote the output of
Z in the ideal world as IDEALF,Sim,Z while the output of Z in the real world is
denoted as REALΠ,A,Z . We define a protocol to be UC-secure in Definition 5.

Definition 5. We say a protocol Π UC-realizes the functionality F , if for any
PPT environment Z and any PPT adversary A, there exists a PPT simulator
Sim s.t. IDEALF,Sim,Z

c
≈ REALΠ,A,Z .

8



3 The Saber-based OT Protocol

In this section, we explain the protocol of Fig. 1 in detail. We also prove the
correctness of this protocol.

3.1 Our Construction

Following the syntax in Definition 2, we describe the OT protocol. Our con-
struction follows the framework of the Naor-Pinkas OT [37]. We note that in
the random oracle model, we can generate the crs by first running a coin-tossing
protocol to generate a seed, and then get (A, r) = FRO(seed). Here A is the
Mod-LWR public matrix and r is the random correlation in the receiver’s otr
messages.

– OT1(1λ, crs, x ∈ {0, 1}):
• Parse crs to get A, r.
• Sample receiver’s secret s′ ← βµ(Rk×1

q ).
• Compute b′

x = ⌊AT · s′⌉q→p and b′
1−x = r− b′

x.
• Output otr = b′

0, st = s′.
– OT2(1λ, crs, (m0, m1) ∈ {0, 1}2λ, otr):
• Parse crs to get A, r.
• Sample sender’s secret s← βµ(Rk×1

q ).
• Compute the Mod-LWR sample b = ⌊A · s⌉q→p.
• Compute v0 = (b′

0)T · (s mod p) + h1, v1 = (b′
1)T · (s mod p) + h1.

• Derive the reconciliation information which are used to correctly get the
highest bit of v0 and v1: c0 = ⌊v0⌋ 1

2 p→t, c1 = ⌊v1⌋ 1
2 p→t.

• Derive keys from the highest bit of v0 and v1. k0 = H(⌊v0⌋p→2), k1 =
H(⌊v1⌋p→2)

• Encrypt the message with the generated keys. e0 = k0⊕m0, e1 = k1⊕m1,
and outputs ots = (b, c0, c1, e0, e1).

– OT3(1λ, x ∈ {0, 1}, ots = (b, c0, c1, e0, e1), st):
• Parse ots and st to get (b, c0, c1, e0, e1) and s′ respectively.
• Compute v′ = bT · (s′ mod p) + h1.
• Use the highest bit of v′ to derive key chosen by x, with cx to reconcile

the rounding error, i.e. kx = H(⌊v′ − 2ϵp−ϵq−1cx + h2⌋p→2)
• Decrypt mx = ex ⊕ kx.

3.2 Correctness

The correctness of our OT protocol follows from the correctness of the Saber key
exchange scheme. According to Definition 2, the correctness of an OT protocol
means that the receiver can correctly get the message indexed by x after the
interaction with overwhelming probability, namely, Pr[OT3(1λ, ots) ̸= mx] ≤
negl(λ). For simplicity, we omit the q → p subscript and mod operator in the
following analysis.
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During the protocol execution, the sender gets b′
x = ⌊AT s′⌉ and b′

x̄ =
r − ⌊AT s′⌉ and computes vx = ⌊s′T A⌉ · s + h1 and vx̄ = ⌊r − s′T A⌉ · s + h1.
The receiver computes v′ = ⌊sT AT ⌋ · s′ + h1. We now show that with reconcil-
iation information cx, the keys derived respectively from v′ and vx agree with
overwhelming probability.

We utilize a useful observation about reconciliation failure due to Bos et
al. [7]. The reconciliation c = ⌊u′⌋ between two integer values u, u′ ∈ Zp is
correct if the distance between u and u′ is smaller than

(
p
4 −

p
4t

)
and fails if the

distance between u and u′ is bigger than
(

p
4 + p

4t

)
. Between these values, the

probability of success decreases linearly from 1 to 0. Therefore, we should prove
that the distance between v′ = ⌊sT AT ⌉ · s′ + h1 and vx = ⌊s′T A⌉ · s + h1 is less
than p

4 −
p
4t with only negligible probability.

Following Theorem 1 of [19], which shows proof of successful reconciliation,
we explicitly write out the errors introduced by scaling and rounding for the
analysis. We use e and e′ to denote the errors respectively for A · s and AT ·
s′, i.e. ⌊A · s⌉q→p = p

q A · s + e and ⌊AT · s′⌉q→p = p
q AT · s′ + e′. We recall the

result in Lemma 1.

Lemma 1 (Thoerem 1 in [19]). Let er ∈ Rq be a polynomial with uniformly
distributed coefficients with range [− p

4t , p
4t ]. Define

δ = Pr[
∥∥(

(s′)T e− (e′)T s + er

)
mod p

∥∥
∞ >

q

4 ],

then the two parties can agree on a n-bit key with probability 1− δ.

Proof. Using e and e′ we have defined above, the polynomial v′ and vx can be
written as following

v′ =
(

p

q
A · s + e

)T

s′ + h1 = p

q
s′T As + s′T e + h1

vx =
(

p

q
AT · s′ + e′

)T

s + h1 = p

q
s′T As + e′T s + h1

We thus have ∆vx = ∥vx− v′∥ = ∥s′T e− e′T s mod p∥∞. Using the observation
of Bos et al. [7], the probability of reconciliation failure can be computed as
Pr[∥∆vx + er∥∞ ≤ p

4 ]. The key agreement of vx and v′ is (1− δ) correct.

Concretely, using the recommended parameter set of Saber [19], we have δ <
2−136. The following corollary follows directly from Lemma 1 and the correctness
of the symmetric-key encryption scheme.

Corollary 1. The OT protocol in Fig. 1 is correct with 1− δ probability.

4 Security

Similar to practically efficient OT protocols in the literature [18,37,6], the prov-
able UC security of our Saber-based OT protocol in the last section remains
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elusive. In this section, we list several ways to argue the security of the basic
protocol by adding additional checks and tweaking the parameters of the under-
lying Mod-LWR problem.

Canetti et al. [17] proposed a weakened definition of security for OT such that
protocols secure under this definition suffices for the KOS OT extension proto-
col [28] and the resulting composed protocol is UC-secure. Therefore, proving
that our protocol satisfies the basic notion certifies its usage in OT extension,
which is a common technique to reduce the cost of oblivious transfer.

Under the weakened security notion, security against a corrupted sender fol-
lows from the Mod-LWR assumption. Nevertheless, due to the existence of ad-
ditional reconciliation information, which is absent in Diffie-Hellman-type pro-
tocols as in [17], we experience difficulty when reducing security against a cor-
rupted receiver to the Mod-LWR problem, as it’s unclear how to acquire such
information in the original Mod-LWR game.

To circumvent this issue, we propose two solutions. The first one consid-
ers the reconciliation information as leakage, and by recent results [32], the
Mod-LWR problem with key leakage can be reduced to the Mod-LWE problem
without leakage with shorter keys. The second solution is to abolish the recon-
ciliation information altogether and let two parties perform local rounding. This
approach appears under different contexts in the literature (e.g. in the original
reduction from LWR to LWE [5] and the HSS construction [13]). The caveat of
this approach is that now we require a super-polynomial modulus-to-noise ratio
to ensure negligible error.

We note that the security proof of KOS [28] is recently found to be flawed and
the SoftSpoken OT extension protocol is considered to be state-of-the-art [47].
Nevertheless, as we show in Section 5 the original argument in [17] still applies
to the SoftSpoken OT protocol. Therefore, we still choose to prove that our
protocol satisfies the weakened OT security notion in [17].

4.1 Relaxing the OT Functionality for OT Extensions

In [17], it is shown that the OT extension protocols only requires a relaxed notion
of base OT security. In particular, it suffices for the base OT to output random
messages, and the sender can launch a selective failure attack on the receiver’s
choice bit.

We recall the weakened functionality allowing selective failure attack for a
corrupted sender in Fig. 3 and the corresponding security notion in Definition 6.
Theorem 2 shows that this weakened security notion suffices for the composition
with the SoftSpoken OT extension protocol.

Definition 6. Let FSF-rOT be the oblivious transfer functionality as shown in
Figure 3. We say that a protocol ΠOT securely computes FSF-rOT with sender-
sided simulation with input extractability of receiver if the following holds:

1. For every PPT adversary S∗ controlling the sender in the real model, there
exists a non-uniform PPT adversary Sim for the ideal model, such that for
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any environment Z:

IDEALFSF-rOT,Sim,Z ≈ REALΠOT,S∗,Z .

2. For every PPT adversary R∗ controlling the receiver, the following holds:
– Extractability: If the sender did not abort, then there exists a PPT

extractor Ext such that the following holds.

Pr
[
((m0, m1), (b, mb))← ⟨S, R∗⟩, x′ ← ExtR∗

: x ̸= x′ ∧ (m0, m1) ̸= ⊥
]

= negl(λ)

– Input Privacy: R∗ cannot compute both sender messages except with
negligible probability.

Pr [((m0, m1), (m′
0, m′

1))← ⟨S, R∗⟩ : m0 = m′
0 ∧m1 = m′

1] = negl(λ)

4.2 Consistency Checks

Following the technique of [17], we add an additional checking round to meet
the security requirement of Definition 6. We present the protocol in Fig. 4.

We argue the security against a corrupted sender in Lemma 2. As for the case
of a corrupted receiver, the situation is more tricky since reducing the sender’s
message privacy to the Mod-LWR problem requires generating the reconciliation
information. Toward this end, we propose two solutions.

– We can view the reconciliation information as leakage and reduce the sender’s
input privacy to the stronger Mod-LWR with leaky secret assumption, as
shown in Lemma 4. [32] shows that this assumption can be reduced to the
standard Mod-LWE assumption with a shorter secret.

– Another approach is to rely on local processing to let the two parties agree
on the same key. This can be done by locally rounding the v value, and
the same approach appeared under different contexts in the literature. The
downside is that we have to increase the modulus-to-noise ratio to achieve
negligible error probability. We summarize the result in Lemma 5. We note
that this approach was also used in [34].

We present and prove the lemmas in the following. We state the security
of the protocol ΠSF−rOT in Theorem 1 without proving it, because this result
follows naturally from the respective lemmas. Since we are proving that ℓ parallel
executions of ΠSF−rOT with batched checking securely implement FSF-rOT, we use
the subscript i to denote the messages related to the i-th execution.

Theorem 1. Assuming the Mod-LWR assumption and 1) Mod-LWE assump-
tion or 2) the super-polynomial noise-to-noise ratio, i.e., µ

p = negl(λ), then
ΠSF−rOT UC-securely implements ℓ instances of FSF-rOT functionality in the ob-
servable random oracle model with sender-sided simulation.
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Functionality FSF-rOT of
(2

1

)
-OT

FSF-rOT interacts with a sender S and receiver R:

– On input (Choose, rec, sid) from R; if no message of the form (rec, sid, x) has
been recorded in the memory, sample x ← {0, 1}, store (rec, sid, x) and send
(rec, sid) to S and (x, sid) to R. If a message of the form (sen, sid, (m0, m1))
is stored, send (sent, sid, (x, mx)) to R and (sent, sid, (x, mx)) to S and ignore
future messages with the same sid.

– On input (Choose∗, rec, sid, x) from R∗ where x ∈ {0, 1}; if no message of the
form (rec, sid, x) has been recorded in the memory, store (rec, sid, x) and send
(rec, sid) to S and (x, sid) to R. If a message of the form (sen, sid, (m0, m1)) is
stored, send (sent, sid, (x, mx)) to R and (sent, sid, (m0, m1)) to S and ignore
future messages with the same sid.

– On input (Guess∗, sen, sid, x′) from S∗, if (rec, sid, x) exists in memory, x′ ∈
{0, 1,⊥,⊤} and there does not exist (sen, sid, (Guess, ·)) in memory then store
(sen, sid, (Guess, x′)) in memory and perform the following:

- If x′ = ⊥, do nothing.
- If x′ = ⊤, send (Cheat-Detect, S) to R and (Cheat-Detect) to S.
- If x′ = x, send (Cheat-Undetect) to S.
- If x′ ̸= x, send (Cheat-Detect, S) to R and (Cheat-Detect) to S.

– On input (Transfer, sen, sid) from S, if no message of the form
(sen, sid, (m0, m1)) is stored; sample m0, m1 ← {0, 1}λ, store
(sen, sid, (m0, m1)) in memory and send (Received, sid) to R and S. If
a message of the form (rec, sid, b) is stored, send (sent, sid, (x, mx)) to R and
(sent, sid, (m0, m1)) to S and ignore future messages with the same sid.

– On input (Transfer∗, sen, sid, (m0, m1)) from S∗, if no message of the form
(sen, sid, (m0, m1)) is stored then store (sen, sid, (m0, m1)) in memory and send
(Received, sid) to R and S. If a message of the form (rec, sid, x) is stored,
send (sent, sid, (x, mx)) to R and (sent, sid, (m0, m1)) to S and ignore future
messages with the same sid.

– On input (Abort, rec, x, sid) from R∗, if messages of the form
(sen, sid, (m0, m1)) is stored; send (sent, sid, (x, mx)) to R and
(Abort, sid, (m0, m1)) to S. Ignore future messages with the same sid.

Fig. 3. The ideal oblivious transfer functionality with selective failure attack on the
receiver’s choice bit.

Corrupted Sender. We argue that the protocol ΠSF−rOT can implement the
functionality FSF-rOT according to Definition 6 against a corrupted sender. We
first present the simulator in Figure 5 and then argue its effectiveness in Lemma 2.

Lemma 2. Assuming the Mod-LWR assumption holds, the protocol ΠSF−rOT se-
curely implements the FSF−rOT functionality against a corrupted sender according
to Definition 6.

Proof. We prove the effectiveness of the simulation via a series of hybrid exper-
iments.
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Protocol ΠSF−rOT with Saber

Parameters: Mod-LWE parameters q, p, t, n, k and security parameter λ.
Random Oracles: FRO1 : {0, 1}λ × {0, 1}λ → Rk×1

p , FRO2 : {0, 1}λ × Rk×1
2 →

{0, 1}λ, FRO3 : {0, 1}λ × {0, 1}λ → {0, 1}λ, FRO4 : {0, 1}λ × {0, 1}l×λ → {0, 1}λ.
In the following protocol, we omit sid in FRO(sid, ·) for simplicity.
Common Random String: The matrix A ∈ Rk×k

q and the vector r ∈ Rk×1
p .

Inputs: Sender has no input while the receiver holds a choice bit x ∈ {0, 1}.
Outputs: Sender gets two random messages k0, k1 ∈ {0, 1}λ while receiver gets
the chosen message kx.

Sender Receiver
input : none input : x

output : k0, k1 output : kx

s′
i ← βµ(Rk×1

q )

b′
x = ⌊AT · s′⌉q→p

b′
1−x = r− ⌊AT · s′⌉q→pb′

0
←−−−−−

s← βµ(Rk
q )

b′
1 = r− b′

0

b = ⌊A · s⌉q→p

v0 = b′
0 · (s mod p) + h1

v1 = b′
1 · (s mod p) + h1

c0 = ⌊v0⌋ 1
2 p→t, c1 = ⌊v1⌋ 1

2 p→t

k0 = FRO2 (⌊v0⌋p→2)
k1 = FRO2 (⌊v1⌋p→2)
chall = FRO3(k0)⊕FRO3(k1)
γ = FRO3(FRO3(k0))

v′ = bT ·
(
s′ mod p

)
+ h1

kx = FRO2(⌊v′ − 2ϵp−ϵq−1cx

+ h2⌋p→2)

b, c0, c1, chall, γ
−−−−−→

ans = FRO3(kx)⊕ x · chall
Check FRO3(ans) = γans

←−−−−−Check FRO3(ans) = FRO3(FRO3(k0))

Batch Verification: When running ℓ instances of the OT protocols together, the
two parties can hash the ans1, ..., ansℓ together using an additional random oracle
FRO4. In this way we can reduce communication bandwidth in the third message.

Fig. 4. The Saber-based oblivious transfer protocol with additional consistency checks.

Hybrid 1 This is the real world experiment. The receiver R uses real inputs.
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Hybrid 2 In this hybrid, we replace the receiver’s first message according to the sim-
ulation strategy, i.e. using random inputs independent from the real input.
By the Mod-LWR assumption, the output of this hybrid is computationally
indistinguishable from the previous hybrid.

Hybrid 3 In this hybrid, the simulator extracts the output values (ki,0, ki,1) for i ∈ [ℓ].
This step is only conceptual and does not change output distribution.

Hybrid 4 In this hybrid, the simulator aborts if the extraction for β, y, or y′ fails.
By the property of the random oracle, such extraction fails only when the
adversary finds collision in it, which happens with negligible probability.

Hybrid 5 In this hybrid, we extract the selective failure input x′
i for i ∈ [ℓ] according to

the simulation strategy and sends it to FSF-rOT. Since the simulator simply
mimics the actual behavior of the honest receiver, this step does not change
the output distribution.

Hybrid 6 In this hybrid, the simulator sends the extracted output values (ki,0, ki,1)i∈[ℓ]
to FSF-rOT if it does not abort. Since the functionality guarantees the abort
probability to be the same with the receiver with real input, this step does
not change the output distribution. This is the ideal world experiment.

Corrupted Receiver We show how to extract the receiver’s choice bit by
observing the random oracle transcript in Fig. 6 and states its correctness in
Lemma 3.

Lemma 3. The extractor in Fig. 6 satisfies the requirement of Definition 6 if
OT satisfies input privacy.

Proof. Let i ∈ [ℓ] be the index. Since the honest sender does not aborts, the
corrupted receiver R∗ must have sent back a valid answer ansi. By the property
of the random oracle, the probability of R∗ outputting a correct answer without
querying the RO is negligible. Moreover, input privacy ensures that the proba-
bility of the adversary getting both output is negligible. Therefore, by following
the extraction strategy in Fig. 6, we can extract the effective input of R∗.

Arguing for input privacy is a trickier task. This is because the information
reconciliation data c0, c1 is related to the sender’s local secret s and cannot be
simulated by the reduction process in the Mod-LWR game. Our first idea is to
view the reconciliation data as leakage on the secret s. By Corollary 5.13 of [32],
the Mod-LWR problem with a leaky secret can be reduced to the Mod-LWE
problem with shorter secret dimensions. Namely, we have the following result.

Lemma 4. Assuming Mod-LWE, the protocol ΠSF−rOT satisfies the security re-
quirement for a corrupted sender in Definition 6.

Proof (sketch). By Definition 6, input privacy requires that for any PPT adver-
sary A the probability of outputting both messages is negligible. We argue this
using a two-step process.
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Sim for S∗

Choose: Sim runs the honest receiver’s algorithm with random xi ∈ {0, 1} for
i ∈ [ℓ].
Transfer: S∗ sends ({bi}i∈[ℓ], Chall, γ).
Response:

– Message Decryption: Sim extracts and sender’s messages as follows:
1. Sim computes ki,xi following the honest receiver’s program.
2. Sim extracts candidate ki,x̄i values for each i ∈ [λ] by observing the queries

made to FRO3 for computing challi = FRO3(ki,0)⊕FRO3(ki,1).
– Challenge Verification and Response Computation: Sim extracts values by ob-

serving RO queries as follows:
1. Sim extracts β s.t. FRO3(β) = γ. Set Ans = β by observing FRO3. Sim

observes FRO4 to extract y = {yi}i∈[ℓ], s.t. FRO4(y) = Ans.
2. For i ∈ [ℓ], Sim extracts y′

i s.t. FRO3(y′
i) = yi for each i ∈ [ℓ]. If Sim either

finds two or more matching queries, or he finds no matching query then
he invokes FSF−rOT with input messages ki,0 = ki,1 = ⊥ and aborts. For
i ∈ [ℓ], Sim performs the following steps.

3. If y′
i = ki,0 then set x′

i = 0. Else, if FRO3(ki,0)⊕challi = y′
i then set x′

i = 1.
Invoke FSF−rOT with input (Guess, Sim, sid, x′

i).
4. Else, Sim aborts in the simulated execution.

– For i ∈ [ℓ], Sim computes Ans′ following the honest receiver algorithm using
input {xi}i∈[ℓ] and sends it to S∗ .

– Sim sends (Transfer∗,Sim, sid, (ki,0, ki,1)) for i ∈ [ℓ] to FSF-rOT.

Fig. 5. Simulation against a statically corrupt sender S∗

Ext for R∗

Choose: Ext invokes R∗ and receives the messages b′
i,0 for i ∈ [ℓ].

Transfer: Ext follows the honest sender’s algorithm and send back the messages
to R∗.
Response and Verification: Ext receives ansi from R∗.

– If there exists i ∈ [ℓ] s.t. ansi is invalid according to the sender’s algorithm
then Ext outputs ⊥.

– For i ∈ [ℓ]:
• If R∗ queried FRO2 with input (⌊vi,0⌋p→2) then Ext sets xi = 0;
• If R∗ queried FRO2 with input (⌊vi,1⌋p→2) then Ext sets xi = 1;
• Otherwise, Ext sets xi = ⊥.

– Ext outputs {xi}i∈[ℓ].

Fig. 6. Extractor for a corrupted receiver R∗.
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1. First we show Mod-LWR with leaky secret implies input privacy. Firstly, we
can use a similar trick as in [19] to lift r ∈ Zn

p into Zn
q . Let

(A′, y) =
([

A
rT

]
,
⌊ [

A
rT

]
· si

⌉
q→p

)
aux = (b′

i,0)T · si

be the Mod-LWR samples and leakage on si respectively. The Mod-LWR
problem with leakage states that conditioned on (A′, aux), y′ is computa-
tionally indistinguishable from uniformly random vector over Zn+1

p .
Now we show how to reduce the input privacy of ΠSF−rOT to the Mod-LWR
problem with leakage. Instead of generating vi,1 = ⌊(r− b′

i,0)T · si⌉q→p, we
compute vi,1 = aux−y where y denotes the last coordinate of y. Notice that
this step will introduce an error e ∈ {−1, 0, 1} on each polynomial coefficient.
But the error will be eliminated by subsequent rounding operations when
generating ki,0 and ki,1.
When y follows the uniformly random distribution, the sum of vi,0 and vi,1
is uniformly random in the view of the adversary. By the property of the
random oracle the adversary cannot output both ki,0 and ki,1.

2. Moreover, by Corollary 5.13 of [32], the Mod-LWR problem with leakage can
be reduced to the Mod-LWE problem without leakage, albeit with shorter
keys.

Another idea is to abolish the information reconciliation data altogether and
let the two parties perform rounding locally. This approach appeared in the lit-
erature in LWR reduction [5] and lattice-based homomorphic secret sharing [13].
We state the result as follows.

Lemma 5. Suppose µ
p = negl(λ) then we can modify the protocol ΠSF−rOT to

satisfy the input privacy of Definition 6 as follows. The sender does not send
ci,0, ci,1 for i ∈ [ℓ] while the receiver derives ki,xi

= FRO2(⌊v′
i + h2⌋p→2).

Proof (sketch). By Lemma 1 of [13], when µ
p = negl(λ) the correctness of the

modified protocol still holds with overwhelming probability. Therefore, we can
apply the first step in the proof of Lemma 4 to argue that under the Mod-LWR
assumption, any PPT receiver cannot query the pre-images of both ki,0, ki,1 for
any i ∈ [ℓ].

5 SoftSpoken OT Extension with Weakened Base OT

In [47], a flaw in the security proof of KOS OT extension [28] is discovered. There-
fore, in this section, we adapt the security argument in [17] (which applies to
the flawed KOS OT extension) to the state-of-the-art SoftSpoken OT extension
protocol. In particular, we argue that with a base OT protocol ΠSF−rOT satisfy-
ing the weakened FSF−rOT functionality, the SoftSpoken OT extension protocol
can still be argued UC-secure.
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We recall the composed SoftSpoken OT protocol in Fig. 8 and Fig. 9 and
prove their security in Theorem 2. Since the composed protocol and the proof
techniques follows from a straightforward adaptation of the techniques in [17],
we defer the protocol description and the security proof to Appendix A.

Theorem 2. In ΠSoftSpoken, assuming PRGs are secure pseudorandom gener-
ator, R is an ϵ-universal hash family, FRO is a hash function satisfying the
functionality of observable random oracle and Πk

SF−rOT implements k instances
of FSF−rOT, then ΠSoftSpoken UC-securely implements N = poly(λ) instances of
extended OT functionality.

6 Implementation

Parameters. We use the concrete parameters from Saber [19], where Rq =
Zq[x]/(x256 +1), q = 213, Rp = Zp[x]/(x256 +1), q = 210, βµ is binomial distribu-
tion with µ = 5, 4, 3, k is the rank of module, k = 2, 3, 4. In our implementation,
we choose the parameters of Saber where k = 3, which achieves 192-bit security.

Remark 1 There was an error in Saber’s security estimates in the round 2
documents and the paper. Still, it has been confirmed by several parties that “the
correct security levels are lower than those stated in the round 2 documents, but
do not affect the NIST levels as such” [39].

We implement our protocol using emp-toolkit [49]. We adapted emp-ot’s base
OT test and Saber’s reference implementation of IND-CPA KEM. We instantiate
the random oracle using the SHA256 hash function. We perform experiments on
an Intel processor at 2.90GHz (Intel(R) Core(TM) i7-10700F CPU @ 2.90GHz),
with 8 cores, 16GB of RAM and Linux OS. Each party is given one single thread
to execute on. The parties communicate over local loopback.

We compare our protocols with several other implementations, including
the Chou-Orlandi OT [18], Naor-Pinkas OT [37], and the Kyber version of
Masny-Rindal OT [33]. The first three adapt implementations in emp-ot, and
the last one uses the libOTe [43]. Both the parameters in our protocol and
Kyber are chosen to achieve 192-bit security, and the two DH-based OT pro-
tocols can achieve classic 128-bit security. Our code is publicly available at
https://github.com/RabbitCabbage/Saber-OT.git The experimental result
is shown in Table 1, where the communication size is computed according to one
single base OT while the execution time is the total running time of a batch of
128 OT executions (capturing the common use case in OT extension).

Our results show that our OT protocol outperforms Kyber-based Masny-
Rindal OT in terms of both computation and communication costs. Furthermore,
in terms of computation, our OT protocol is faster than the current CDH-based
OT, making it competitive to replace CDH-based OT in the high-bandwidth net-
work setting (LAN). The fast running time is due to our protocol construction
and Saber’s design choice. In particular, the receiver in our OT construction has
fewer hash function calls, and deterministic noise introduced by high-speed shift
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Table 1. Experiment results of the comparison between our protocol and protocols in
the literature with classical and post-quantum security.

Protocol Assumption Execution Time
(Sender/Receiver)

Communication
Size

Post
Quantum

Security
Level

Chou-Orlandi [18] CDH 8ms/9ms 64B No 128 bit
Naor-Pinkas [37] CDH 9ms/9ms 80B No 128 bit

Masny-Rindal [33] Mod-LWE 16ms/23ms 4.5KB Yes 192 bit
This work Mod-LWR 5ms/6ms 2.2KB Yes 192 bit

operations makes Saber’s C implementation faster than Kyber. Like Kyber, our
protocol needs more communication, a common disadvantage of lattice-based
cryptosystems, but in a LAN setting, this additional communication has little
impact. Additionally, we still have spaces for optimization. On the one hand,
we implement our protocol without AVX instruction set, but Kyber’s imple-
mentation in libOTe has this optimization; on the other hand, similar to the
Naor-Pinkas OT based on CDH assumption, the Mod-LWR samples of each
party can be computed in a preprocessing phase, saving online time.
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A SoftSpoken OT Extension with Relaxed OT
Functionality

A.1 Preliminaries and Notations

SoftSpokenOT [47] is a generalization of the classic oblivious transfer extensions
of IKNP [25], which can be viewed based on F2-VOLE by using a PRG to extend(2

1
)
-OT to message size N . SoftSpoken instead bases the OT extension on a F2k -

VOLE. Instead of
(2

1
)
-OT, base OTs for this construction are

( 2k

2k−1
)
-OTs. Using

SoftSpoken, we now only need λ/k of these F2k -VOLEs to perform OT extension
from base OTs with λ-bit messages. The technical overviews are as follows.

We follow the notations of [47] to use λ as the security parameter of Soft-
Spoken OT extension. We denote the sender of the base OT with PS and the
receiver with PR. For

( 2k

2k−1
)
-OT we define a random function F : F2k → Fλ

2
which is known to PS , while PR has a random point ∆ and the restriction F ∗

of F with F2k . Therefore, the sender PS can compute the function on all 2k

elements in field F2k , but the receiver can only compute all except F (∆). This
fits in the functionality of

( 2k

2k−1
)
-OT. The base OT sender PS computes two

vectors u, v as follows:
u =

⊕
y∈F2k

F (y)

v =
⊕

y∈F2k

yF (y)

And the receiver computes a vector w from restricted F ∗:

w =
⊕

y∈F2k

(y ⊕∆)F ∗(y)

Therefore, the vectors mentioned above satisfies a F2k -VOLE, i.e. w ⊕ v =⊕
y ∆F (y) = ∆ · u. In the following protocol description, we denote the i-th

column of a matrix A with Ai, and the j-th row of a column with Aj . Diagonal

matrices are noted diag(x = {x0, . . . , xn−1}) =

x0
. . .

xn−1

.

A.2 SoftSpoken OT Extension Protocol from ΠSF−rOT

In this section we instantiate the SoftSpoken OT extension using λ invocations
of

( 2k

2k−1
)
-OT functionality, each of which comes from the relaxed

(2
1
)
-OT func-

tionality FSF−rOT in Fig. 3. To do this, we need to change
(2

1
)
-OT functionalities
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FSF−rOT’s to a
( 2k

2k−1
)

one using a punctured PRF, which is given as a intermedi-
ate step in [47]. The details are unfolded in the Seed OT Phase I of ΠSoftSpoken
in Fig. 8.

Our goal is to implement N extended random OT. We assume that there
exists an arbitrary

(2
1
)
-OT protocol ΠSF−rOT to implement λ instances of

( 2k

2k−1
)
-

OT functionalities (e.g. we can use a punctured PRF to transfer Saber-based(2
1
)
-OT in Fig. 4 to a valid instantiation). This construction needs λ/k instances

of
( 2k

2k−1
)
-OTs, thus λ instances of

(2
1
)
-OTs in total.

Let PRG : {0, 1}λ → {0, 1}2λ be a length-doubling pseudorandom generator. We
use PRG0 and PRG1 to denote the functions that output the first and second halves
of PRG. Let k ∈ N be the GGM-tree depth. We define the punctured GGM tree
algorithms as follows.

– pGGM.Gen: Given input seed s ∈ {0, 1}λ the generation algorithm runs as
follows(we use z as intermediate results of punctured PRF):
1. Denote r0,0 = s, for i ∈ [k], j ∈ [2i], generate ri+1,2j = PRG0(ri,j) and

ri+1,2j+1 = PRG1(ri,j).
2. Define F : F2k → {0, 1}λ such that F (i) = rk,i.
3. For i ∈ [k], define ti

0 = ⊕j∈[2i−1]r
i,2j and ti

1 = ⊕j∈2i−1 ri,2j+1.
4. Return F, t = {ti

0, ti
1}i∈[k].

– pGGM.Eval: Given the punctured key t = {ti
xi
} for i ∈ [k] and the path

x = (x̄1, ..., x̄k) the evaluation algorithm runs as follows.
1. Define r1

x1 = t1
x1 . For i ∈ [2, k], j ∈ [2i−1] and j ̸= x1∥ . . . ∥xi−1, eval-

uate ri
2j = PRG0(ri−1

j ) and ri
2j+1 = PRG1(ri−1

j ) ⊕ ri−1
j and defines

ri
x1∥...∥xi−1∥x̄i

= ti
x̄i
⊕⊕j∈[2i−1],j ̸=x1∥...∥xi−1 ri

2j+x̄i
.

2. Outputs F ∗ such that F ∗(j) = rk
j for j ̸= ∆.

Fig. 7. The Punctured GGM Tree Constructions.

We denote a batch of k ΠSF−rOT’s with Πk
SF−rOT, and there are λ/k different

batches. We denote the all-but-one OT protocols with using the technique in [47].
The sender of OT extension is denoted by S, invoking each of the base

( 2k

2k−1
)
-

OTs as receiver; while the receiver of the OT extension R invokes base OTs as
sender. From these all-but-one OT, we can get λ/k different F2k -VOLE corre-
lations. Then we use the technique of repetition code to make u monochrome
and combine the small field VOLE correlations into a VOLE correlation over the
large field F2λ . The details of this part is shown in the OT Extension Phase
I of ΠSoftSpoken in Fig. 9.
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Protocol ΠSoftSpoken from ΠSF−rOT, (Part I)

Parameters: N, k, λ ∈ N.
Sub-procedures: The pseudorandom generator PRG, base-OT functionality
FSF−rOT, and random oracle functionality FRO.
Inputs: The parties does not have private input.
Outputs: S outputs N pairs of random messages {ai,0, ai,1}i∈[N ] while R outputs
N choice bits u ∈ FN

2 and the chosen messages {ai,ui}i∈[N ].

Seed
( 2k

2k−1

)
base OTs: The parties run λ/k instance of all-but-one OT from

FSF−rOT. In the following we describe the i-th instance for i ∈ [λ/k].

1. For j ∈ [k], R invokes the j-th batch Πk,i
SF−rOT with message

(Transfer, sen, sid) to obtain random messages mi,j,0, mi,j,1 ∈ {0, 1}λ.
2. R samples si ← {0, 1}λ and computes (Fi, {(ti,j

0 , ti,j
1 )})← pGGM.Gen(si).

3. S invokes the j-th batch Πk,i
SF−rOT with message (Choose, rec, sid) to obtain its

choice bit xi,j and {mi,j,xi,j}. S computes its choice point ∆i =
∑

j∈[k] x̄i,j ·
Xj ∈ F2k .

4. If S receives any Cheat-Detected messages from Πk,i
SF−rOT, then he aborts.

5. R sends {FRO(mi,j,0)⊕ ti,j
0 ,FRO(mi,j,1)⊕ ti,j

1 } to S, who then recovers {tj
xi,j
}.

6. R computes F ∗
i = pGGM.Eval({tj

xi,j
}, ∆i).

Consistency Check Phase I:

1. For each i ∈ [λ/k], R computes challenge αi,y := FRO(Fi(y)) for each y ∈ [2k],
αi = FRO(αi,0∥ . . . ∥αi,2k−1), βi :=

⊕
y∈[2k] αi,y,and sends {αi, βi}i∈[λ/k] to S.

2. For each i ∈ [λ/k], S computes α∗
i,y := FRO(F ∗

i (y)) for each y ∈ [2k] \ {∆i},
then computes the one at ∆i using the P i

S ’s challenge i.e. α∗
i,∆i

= βi ⊕⊕
y∈[2k]\{∆i} α∗

i,y, at last computes α∗
i = FRO(α∗

i,0∥ . . . ∥α∗
i,2k−1). P i

R checks
whether αi = α∗

i holds, and he aborts if the check fails.

Fig. 8. SoftSpoken OT Extension with ΠSF−rOT

A.3 Security Proof

We prove UC-security of our OT extension protocol ΠSoftSpoken by relying on
the security properties of ΠSF−rOT and the security of cryptographic primi-
tives e.g. PRG and RO in Theorem 2.

Theorem 3 (Theorem 2, restated). In ΠSoftSpoken, assuming PRGs are secure
pseudorandom generator, R is an ϵ-universal hash family, FRO is a hash function
satisfying the functionality of observable random oracle and Πk

SF−rOT implements
k instances of FSF−rOT, then ΠSoftSpoken UC-securely implements N = poly(λ)
instances of extended OT functionality.

Proof. We will first argue security against a corrupt sender S∗ by constructing
a simulator Sim in Fig. 10. The simulator Sim for a statically corrupt sender S∗
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Protocol ΠSoftSpoken from ΠSF−rOT, (Part II)

OT Extension Phase I:

1. R forms two matrices U ∈ FN×(λ/k)
2 and V ∈ F

N×(λ/k)
F2k

, where for i ∈ [λ/k]
the i-th columns are U i =

⊕
y∈F2k

PRG(Fi(y)), V i =
⊕

y∈F2k
y · PRG(Fi(y))

2. S forms a matrix W ∈ FN×(λ/k)
2k , where for the i-th column Wi =⊕

y∈F2k
(y⊕∆i) ·PRG(F ∗

i (y)). It also computes a diagonal matrix diag(∆) =

diag({∆1, . . . , ∆λ/k}) ∈ F(λ/k)×(λ/k)
2k .

3. To make U monochrome, R uses the first column of U as chosen bits i.e. u =
U1 and computes a difference matrix D = (u ⊕ U2, . . . , u ⊕ Uλ/k) and send
it to S, who computes W := W⊕ (0∥D) · diag(∆).

Consistency Check Phase II:

1. S samples a universal hash function R and sends to R. R computes {ΓU :=
Rũ, ΓV := RV } and sends it to S.

2. S checks that ΓV = RW ′−ΓU (1, . . . , 1) ·diag(∆) and aborts if the check fails.

OT Extension Phase II:

1. For every i ∈ [N ], S outputs ai,0 = FRO(Wi) and ai,1 = FRO(Wi ⊕∆).
2. For every i ∈ [N ], R outputs ui and ai,ui = FRO(Vi).

Fig. 9. SoftSpoken OT Extension with ΠSF−rOT, continued

constructs the U and V as the honest receiver does. Since the base OT ΠSF−rOT
securely implements FSF−rOT, S∗ cannot get both of the messages, thus the all-
but-one OTs’ message indexed by ∆i remains hidden. Sim invokes Ext to extract
base OTs’ choice bits {x}i∈[λ/k] and computes S∗’s messages.

We argue indistinguishability between real world and ideal world simulated
by Sim in Fig. 10 by providing the following hybrid experiments.

Hybrid 1 This is real-world experiment.
Hybrid 2 In this hybrid, the simulator sends a uniformly random matrix D in OT

Extension Phase I. By the input privacy of the ΠSF−rOT, this step does
not change the output of the experiment.

Hybrid 3 In this hybrid, the simulator Sim extracts the input bits {xi}i∈[λ/k] of Πk,i
SF−rOT

for every i ∈ [λ/k] using Ext in Fig. 6. Indistinguishability follows due to the
correctness of Ext. Ext ensures that the receivers of base OTs does not dis-
tinguish this simulation and thus will not abort, so that S∗ of OT extension
will not abort, either.

Hybrid 4 In this hybrid, Sim computes the matrix W and {ai,0, ai,1}i∈[N ] using the
input bits extracted. This hybrid is identical to the last one because of the
correctness of the OT extension protocol.
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Sim for S∗

Seed
( 2k

2k−1

)
base OTs:

1. Sim invokes batched Πk
SF−rOT for λ/k times as sender with messages

(Transfer, sen, sid) trying to obtain the random functions Fi : F2k → Fλ
2 for

every i ∈ [λ/k], and reveals parts of the GGM tree as the honest receiver does.
2. If Sim gets Abort message from any of the ΠSF−rOT, then he aborts.
3. Sim invokes the Ext algorithm 6 for the S∗’s base OT receivers and gets the S∗’s

input bits {xi}i∈[λ/k] for the base OT receivers. Thus Sim reconstructs the chosen
elements ∆ for the

( 2k

2k−1

)
-OTs.

4. Sim computes W i =
⊕

y∈F2k \{∆i} y · PRG2(Fi(y)), then he updates to W ′i =
W i ⊕ ((ũ, . . . , ũ)⊕ U) · diag(∆),

Consistency Check Phase I: Sim changes the challenge {αi, βi}i∈[λ/k] to ran-
dom bits {α′

i, β′
i}i∈[λ/k]

$← {0, 1}k×2λ and programs the observable RO modeled by
FRO s.t. FRO(αi,0∥ . . . ∥αi,2k−1) = α′

i when S∗ access FRO, and sends them to S∗.
OT Extension Phase I: Sim sends a uniformly random D matrix to S∗.
Consistency Check Phase II: Sim receives the hash function R ∈ R from S∗ changes
the challenge ΓU and ΓV from the honest receiver to Γ ′

U
$← {0, 1}ℓ(ϵ), Γ ′

V = RW ′ −
Γ ′

U (1, . . . , 1) · diag(∆) and sends them to S∗.
OT Extension Phase II:

1. Sim has obtained W ′ using the extractor, so that it can extract S∗’s random
messages {an,0, an,1}n∈[N ] from every row of W ′.

2. Sim invokes the n-th ideal functionality FOT for N times with inputs
{an,0, an,1}n∈[N ].

Fig. 10. Simulation against a statically corrupt sender S∗

Hybrid 5 In this hybrid, Sim uses uniformly random vectors {α′
i, β′

i}i∈[λ/k] to simulate
the consistency check of the all-but-one base OTs. Indistinguishability comes
from the security properties of observable random oracle H, and S∗ verifies
correctly and does not abort.

Hybrid 6 In this hybrid, the simulator uses uniformly random matrices ΓU , ΓV to
simulate the consistency check. By the hiding property of the universal hash
function, this does not change the output of the experiment. This is the ideal
world interaction.

The security against a corrupted receiver is easier to argue, since in OT
extension the receiver acts as the sender in the base OT, and the weakened
security of FSF−rOT ensures simulation-based security against a corrupted sender.
Therefore, the simulation strategy is a combination of the respective simulation
strategies of the base OT and the OT extension protocols.
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