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Abstract. Deduplication is a vital preprocessing step that enhances machine learning model perfor-
mance and saves training time and energy. However, enhancing federated learning through deduplication
poses challenges, especially regarding scalability and potential privacy violations if deduplication in-
volves sharing all clients’ data. In this paper, we address the problem of deduplication in a federated
setup by introducing a pioneering protocol, Efficient Privacy-Preserving Multi-Party Deduplication
(EP-MPD). It efficiently removes duplicates from multiple clients’ datasets without compromising data
privacy. EP-MPD is constructed in a modular fashion, utilizing two novel variants of the Private Set
Intersection protocol. Our extensive experiments demonstrate the significant benefits of deduplication
in federated learning of large language models. For instance, we observe up to 19.61% improvement
in perplexity and up to 27.95% reduction in running time. EP-MPD effectively balances privacy and
performance in federated learning, making it a valuable solution for large-scale applications.

1 Introduction

The application of machine learning (ML) has experienced rapid growth, becoming widely embraced by
businesses due to its various benefits. As ML relies heavily on data, there is an inherent risk of privacy
breaches associated with this process. Federated learning (FL) is one of the main steps towards privacy-
preserving ML that allows training across multiple decentralized devices without exchanging data. In FL,
devices compute local models based on their data and then share the local model updates with a central
server. This server aggregates the updates to derive a global model that encapsulates the features of all the
local data held by the individual devices [38].

The quality of the training data significantly influences the accuracy of an ML model. Data generated
from real-world applications often lacks organization, leading to issues such as missing values, typos, format
mismatches, outliers, or duplicated entries within the raw dataset. To ensure meaningful learning, the col-
lected data must undergo a thorough data cleaning process [23]. Duplicated sequences are prevalent in text
datasets. They can adversely affect the training process of Language Models (LMs). Lee et al. [31] inves-
tigated the Colossal Clean Crawled Corpus (C4) [44] dataset. They discovered a 61-word sequence within
C4 that was repeated 61,036 times verbatim in the training dataset and 61 times in the validation set. As
a result, the trained model generalized poorly on the dataset, and over 1% of the unprompted model out-
puts were memorized and copied verbatim from the training dataset. Upon deduplicating the dataset, they
reduced memorization by up to 10× and, in certain cases, even improved perplexity by up to 10%.

Additionally, memorization negatively affects the privacy and fairness of LMs [13]. Memorization makes
language models vulnerable to membership inference attacks [48,37], data extraction attacks [39,14], and
can lead to copyright violations as LMs can regurgitate training data sequences from copyrighted sources
[28]. Carlini et al. [13] conclude that bigger LMs memorize more and more duplicates increase memorization.
Kandpal et al. [27] show that the success of most privacy attacks on LMs is largely due to the duplication in
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the training datasets. Furthermore, in the FL setting, malicious clients can exploit the memorization of LMs
to extract sensitive information from honest clients’ datasets [46]. Therefore, we must adopt data-cleaning
practices to improve model utility and reduce the risks of privacy attacks.

While deduplication can improve model performance and reduce memorization, it also enhances training
efficiency in various aspects [31]. Removing duplicates reduces GPU time and minimizes training costs in
terms of time, money, and carbon footprint. This streamlined process optimizes resource utilization and
contributes to more sustainable ML practices [8,47,42]. Sustainable development is a global priority, and
aligning ML practices with this theme is crucial.

Based on the discussions thus far, it is evident that the deduplication of training data offers numerous
benefits. Several real-world applications involve training with FL such as healthcare [4], smart city [25],
and edge computing [51]. Some of these applications pose a risk of duplicates in the local training data
across multiple devices. For example, Google Keyboard suggestions from a user’s text query rely on FL
[22]. Local models are trained in situ on Android phones with user data. In this setting, many text queries
typed by the users across multiple phones are the same. Therefore, for a FL process to be efficient and
effective, participating devices must perform deduplication. When a data owner solely intends to remove
duplicates from their dataset, the privacy risk is minimal since the data is entirely under the owner’s control.
In the context of FL, the scenario shifts significantly when deduplication is introduced. Multiple devices
participating in FL may possess overlapping data, even after deduplicating their datasets. If they aim to
deduplicate the combined dataset, one approach could involve sharing their raw data with each other and
checking for intersections. However, this approach compromises privacy.

Hence, there is a necessity for privacy-preserving deduplication in FL, where participating devices would
collaboratively deduplicate the combined datasets in a privacy-preserving fashion. This paper demonstrates
how deduplication can be executed in FL without compromising the privacy of the data belonging to the
individual devices.

1.1 Overview of Privacy-Preserving Deduplication in FL

Consider nodes D1, . . . , Dn are involved in FL, where each Di has a dataset Si. Effectively, the training in

FL is conducted on the union of these datasets, i.e.,
n⋃

i=1

Si. If intersections exist among the datasets, FL will

incorporate duplicates, leading to the drawbacks discussed earlier.
Consider nodesD1 andD2, each with datasets S1 and S2, respectively implying that FL training occurs on

S1∪S2. If the intersection S1∩S2 is nonempty, training individually on S1 and S2 would mean training twice
on the duplicate S1 ∩ S2. Thus, one of D1 and D2 should remove the duplicate S1 ∩ S2. This should be done
without harming each other’s data privacy. Our solution applies private set intersection (PSI) which securely
finds the intersection of S1 and S2 without revealing any other elements. Once D1 and D2 learn S1 ∩ S2

through PSI, D1 will train on S′
1 = S1 \S1∩S2 and D2 will train on S2. According to set theory, it holds that

S′
1 ∪S2 = S1 ∪S2. Hence, the resulting FL model remains as intended, while the training process is devoid of

duplicates, avoiding the associated drawbacks. The scenario with two nodes seems straightforward. However,
when more than two nodes participate, it becomes complicated. We now consider n nodes D1, . . . , Dn, where
each node Di has a set Si, ∀i, 1 ≤ i ≤ n, and n > 2.

Following the approach used in the two-node case, one might be tempted to (i) apply multi-party PSI to n
nodes, (ii) find their intersection In, and (iii) let node D1 train on S′

1 = S1 \In, and rest of the nodes train on
their own dataset Si. This method removes the duplicates that exist across all the nodes. However, this does
not detect and remove the duplicates that exist among a subset of nodes. For instance, if there is a subset

of k nodes (k < n) with a large intersection Ik, then Ik will remain in the full training dataset S′
1

⋃
(

n⋃
i=2

Si)

as duplicates. A generic multi-party PSI does not help in this case. Therefore, we need to consider each pair
of nodes and remove the duplicates accordingly.
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1.2 Our Contributions

In this paper, our end goal is to develop a scheme such that allows multiple clients to benefit from dedu-
plication while training on their data in a federated learning setup. The first requirement is an efficient
deduplication of sets belonging to multiple clients. To address this, we introduce the notion of Privacy-
Preserving Multi-Party Deduplication (P-MPD) in Section 4. This essentially describes a functionality that
takes input datasets S1, . . . , Sm (potentially containing duplicates) from m clients and outputs the datasets

S′
1, . . . , S

′
m such that

m⋃
i=1

S′
i =

m⋃
i=1

Si, where S′
i ∩ S′

j = ∅, i ̸= j. We realize that an efficient construction of

P-MPD requires a substantially improved PSI protocol that supports scalability. This leads us to introduce
a new notion for PSI which we call Group PSI (G-PSI) in Section 3. The functionality of G-PSI takes sets
from a group of clients and returns each client the intersection of their sets with all the other clients’ sets.
We provide constructions of Efficient Group PSI (EG-PSI) that efficiently realizes G-PSI, namely EG-PSI(I)

and EG-PSI(II) in Figures 1 and 2, respectively. EG-PSI(I) is based on symmetric key primitives such as
pseudorandom permutation, while EG-PSI(II) is developed using an oblivious pseudorandom function, which
is a well-known public key primitive. With the building block EG-PSI, we build Efficient Privacy-Preserving
Multi-Party Deduplication (EP-MPD) that realizes P-MPD as shown in Figure 4. We prove the security of
EP-MPD, EG-PSI(I), and EG-PSI(II) within the simulation-based paradigm. Our construction of EP-MPD
allows for efficient duplicate removal without compromising clients’ data privacy, resulting in an improved
model after running federated learning on the deduplicated datasets, as outlined in Figure 5.

We perform an extensive experimental evaluation to benchmark EP-MPD and the effect of the resulting
deduplication on FL. The overall running time for EP-MPD(I), which employs EG-PSI(I) (symmetric key
primitives based), is much less than EP-MPD(II), which utilizes EG-PSI(II) (public key primitives based).
Overall, clients enjoy relatively less computation time in EP-MPD(II). Our protocols can scale to large
datasets and client counts. For example, when 50 clients have 219 data points in their datasets comprising
of 30% duplicates, then EP-MPD(I) takes 1160 seconds and EP-MPD(II) takes 7653 seconds; client running
time is 641 and 111 seconds in EP-MPD(I) and EP-MPD(II) respectively. We experiment with 7 datasets, 2
language models, and 10 clients in FL. We achieve an improvement of up to 19.61% in perplexity and up to
27.95% improvement in GPU training time.

2 Preliminaries

2.1 Notations and Assumptions

We define a wrapper function Update(S, Ŝ) → S which takes two sets, S and Ŝ. It updates S by removing

from it the elements in set Ŝ and returns the updated set S. In this paper, by the sum of sets (e.g.,
n∑

i=1

Si)

we mean the concatenation of the sets which may result in a multi-set. We denote an empty set by ∅. We
denote a size of vector v with |v|. We assume that the server and all the users have access to secure channels

among them. By the notation, X c≡ Y, we mean that the two distributions X and Y are computationally
indistinguishable.

2.2 Federated Learning (FL)

The concept of FL was proposed by McMahan et al. [38] as a framework for training an ML model where
the training data are distributed across multiple devices. In FL, a server orchestrates the training of a
global model by aggregating models locally computed by the clients on their local devices. Suppose there
are n clients, and each client Di has a dataset Si. The server has the initial model θ. It sends θ to the
clients, and each client performs gradient descent computation on their local dataset Si as Ji(Si,θ) =
1
di

∑
(x,y)∈Si

C(θ, (x, y)), where C is the cost function and di = |Si|. The client Di computes the local models
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as θi ← θ − η∇J(Si,θ), where η is the learning rate. After receiving the local models from the clients, the
server performs an aggregated averaging on the local models to derive the global model as:

Θ =
1

d

(
d1θ1 + . . .+ dnθn

)
(1)

where d =
n∑

i=1

di is the total size of the dataset S =
n∑

i=1

Si, and θi is the locally trained model on the dataset

Si. This computation is repeated until the model converges.
While this framework achieves a basic level of privacy in which each user’s data is not directly sent to the

server, it is susceptible to advanced privacy attacks such as membership inference attacks [48,37] and data
extraction attacks [14,46,18,5] as the client models θi are aggregated in a non-private fashion on the server
side. Some privacy-preserving FL protocols have attempted to mitigate these attacks by securely aggregating
the client models. These protocols rely on cryptographic techniques like homomorphic encryption [15,16],
functional encryption [52], or secure aggregation [6,10]. Additionally, differentially private training techniques
[3] can be used to ensure differential privacy guarantees on the global model Θ. We emphasize that in this
paper, our proposed schemes are agnostic to the type of FL mechanism used.

2.3 Causal Language Modeling (CLM)

Causal Language Modeling (CLM) is a natural language processing task where the goal of the language
model is to predict the next word or token given a sequence of tokens. The language model autoregressively
generates the next token until a pre-determined sequence length is reached or a special STOP token is
generated. Given a sequence of n tokens Y = {y1, y2 . . . , yn−1, yn}, the language model Θ is trained to learn
the following probability distribution:

P (Y) =

n∏
i=1

P (yi|y1, . . . , yi−1) (2)

The CLM training objective is to minimize the negative log-likelihood loss given by:

L(Θ,Y) = −
n∑

i=1

log(Θ(yi|y1, . . . , yi−1)) (3)

After training is complete, the text is autoregressively sampled from the language model i.e., ŷt<n ∼
Θ(yt|y1, . . . , yt−1).

The perplexity metric is commonly used to evaluate the performance of the language model to determine
how well it has learned the probability distribution in Equation 2. The perplexity PP of a sequence y is
defined as:

PP (Y) = exp

(
− 1

n

n∑
i=1

log(Θ(yi|y1, . . . , yi−1))

)
(4)

A lower perplexity score implies that model Θ has been trained well to estimate the real-world probability
distribution. Informally, a sequence with a low perplexity score implies that the model is less “surprised” by
a sequence of tokens.

2.4 Security Model

In this paper, we use the simulation-based paradigm of secure multi-party computation [21] to define and
prove the proposed protocol. Since we focus on the static passive (semi-honest) adversarial model, we will
restate the security definition within this context.
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Two-party Computation. A two-party protocol Γ is captured by specifying a random process that maps
a pair of input to a pair of outputs (one output for each party). Such process is referred to as a functionality
denoted by f : {0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗, where f := (f1, f2). For every input pair (x, y), the output
pair is a random variable (f1(x, y), f2(x, y)), such that the party with input x wishes to obtain f1(x, y) while
the party with input y wishes to receive f2(x, y). The above functionality can be easily extended to more
than two parties.

Security in the Presence of Passive Adversaries. In the passive adversarial model, the party corrupted
by such an adversary correctly follows the protocol specification. Nonetheless, the adversary obtains the
internal state of the corrupted party, including the transcript of all the messages received, and tries to use
this to learn information that should remain private. Loosely speaking, a protocol is secure if whatever can
be computed by a corrupt party in the protocol can be computed using its input and output only.

In the simulation-based model, it is required that a party’s view in a protocol’s execution can be simulated
given only its input and output. This implies that the parties learn nothing from the protocol’s execution.
Formally, in two-party case, party i’s view (during the execution of Γ ) on input pair (x, y) is denoted by
ViewΓ

i (x, y) and equals (w, ri,m
i
1, ...,m

i
t), where w ∈ {x, y} is the input of ith party, ri is the outcome of this

party’s internal random coin tosses, and mi
j represents the jth message this party receives. The output of

the ith party during the execution of Γ on (x, y) is denoted by OutputΓi (x, y) and can be generated from its
own view of the execution.

Definition 1. Let f be the deterministic functionality defined above. Protocol Γ securely computes f in the
presence of a static passive probabilistic polynomial-time (PPT) adversary A, if for every A in the real model,
there exist PPT algorithms (Sim1,Sim2) such that:

{Sim1(x, f1(x, y))}x,y

c≡ {ViewA,Γ

1 (x, y)}x,y

{Sim2(y, f2(x, y))}x,y

c≡ {ViewA,Γ

2 (x, y)}x,y

Definition 1 can be easily extended to m > 2 parties.

2.5 Pseudorandom Function and Permutation

Informally, a pseudorandom function PRF(.) is a deterministic function that takes a key of length λ and
an input of length u; and outputs a value of length v indistinguishable from an output of a truly random
function. More formally, a pseudorandom function can be defined as PRF : {0, 1}λ×{0, 1}u → {0, 1}v, where
λ is the security parameter.

The definition of a pseudorandom permutation, PRP : {0, 1}λ × {0, 1}u → {0, 1}u, is very similar to that
of a pseudorandom function, with a difference; namely, it is required the keyed function PRP(k, ·) to be
indistinguishable from a uniform permutation, instead of a uniform function. In cryptographic schemes that
involve PRP, sometimes honest parties may be required to compute the inverse of pseudorandom permutation,
i.e., PRP−1(k, ·), as well. In this case, it would require that PRP(k, ·) be indistinguishable from a uniform
permutation even if the distinguisher is additionally given oracle access to the inverse of the permutation.

2.6 Oblivious Pseudorandom Function

An Oblivious Pseudorandom Function (OPRF) is a protocol that involves a client and a server. OPRF
enables the client with input x ∈ {0, 1}u, and the server with key k ∈ {0, 1}λ to execute an instance of PRF.
Informally, the security of an OPRF asserts that, by the completion of OPRF, the client only learns the
output of PRF is evaluated on inputs k and x, i.e., PRF(k, x) while the server gains no information, e.g., about
the input of the client and the output of PRF.
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2.7 Trusted Execution Environments

Trusted Execution Environment (T EE), also known as a secure enclave, constitutes a secure processing en-
vironment comprising processing, memory, and storage hardware units [41,54]. Within this environment, the
code and data residing in them remain isolated from other layers in the software stack, including the operat-
ing system. An ideal T EE guarantees the preservation of data integrity and confidentiality. Moreover, T EE
can provide remote attestation capabilities, allowing a party to remotely verify the execution of an enclave
on a genuine T EE hardware platform. Given the assumption that the physical CPU remains uncompromised,
enclaves are shielded from attackers with physical access to the machine, including the memory and system
bus. Side-channel attacks on different deployments of T EEs have been demonstrated in the literature [49].
These attacks pose a threat as they could enable attackers to extract secrets from T EEs. Nevertheless, T EEs
technologies have been evolving to address and mitigate side-channel attacks.

Our security, trust, and system assumptions regarding T EEs are conservative. Specifically, as detailed in
Sections 4.2 and 3.2, our solution (i) avoids disclosing any plaintext messages or private keys to T EE and
(ii) does not expect T EE to maintain an extensive storage and memory space or possess strong processing
resources. Instead, we establish a formal model and construction under the assumption that T EE guarantees
execution integrity (and authenticity), and ensures minimal confidentiality. Specifically, we formally demon-
strate that T EE at the most only learns the size of the encrypted computation result (i.e., the intersections’
cardinality). In our work, T EE can be seamlessly substituted with any semi-honest server that does not
collude with other entities.

3 Group PSI (G-PSI)

3.1 Formal Definition of G-PSI

In this section, we present the concept of Group PSI (G-PSI). In G-PSI, there are two groups of clients, G0

and G1, where each group contains m clients, Gj : {Cj,1, . . . , Cj,m}, 0 ≤ j ≤ 1. Each client Cj,1 has a set Sj,1,
such that no pair of clients’ sets in the same group share a common element.

Informally, G-PSI allows every client in one group to (efficiently) find the intersection that their set has
with the set of every client of the other group, without allowing them to learn anything beyond that about
other clients’ set elements. To achieve a high level of computational efficiency in G-PSI, we will involve a
third-party T P that assists the clients with computing the intersection. The functionality fG-PSI that G-PSI
computes takes a set Sj,i from every client Cj,i and no input from T P. It returns (i) to every client Cj,i a
vector vj,i which contains the intersection that Cj,i’s set has with every other client’s set in the other group
and (ii) to T P an empty set ∅. Hence, functionality fG-PSI can be formally defined as follows,

fG-PSI

(
(S0,1, . . . , S0,m︸ ︷︷ ︸

G0

), (S1,1, . . . , S1,m︸ ︷︷ ︸
G1

), ∅
)
→
(
(v0,1, . . . ,v0,m︸ ︷︷ ︸

G0

), (v1,1, . . . ,v1,m︸ ︷︷ ︸
G1

), ∅
)

(5)

where, vj,i =
[
[Sj,i ∩ S1−j,1], . . . , [Sj,i ∩ S1−j,m]

]
, 0 ≤ j ≤ 1, and 1 ≤ i ≤ m.

In the case where clients of only one of the groups, e.g., G0, receives the result, then the above functionality
simply returns ∅ to the clients in the other group, e.g., v1,1 = . . . = v1,m = ∅.

Since T P performs computation on all clients’ encrypted sets, there is a possibility of leakage to T P.
Depending on the protocol that realizes fG-PSI this leakage could contain different types of information;
for instance, it could contain (i) the size of the intersection of any two clients’ sets, or (ii) the size of the
intersection of all clients’ sets, or (iii) nothing at all. Often such leakage is defined by a leakage function L
that takes all parties (encoded) inputs and returns the amount of leakage.

We assert that a protocol securely realizes fG-PSI if (1) it reveals nothing beyond a predefined leakage
to T P and (2) whatever can be computed by a client in the protocol can be obtained from its input and
output. This is formalized under the simulation paradigm. We require a client’s view during an execution of
G-PSI to be simulatable given its input and output. We require that the view of T P can be simulated given
the leakage.
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Definition 2 (Security of G-PSI). Let G0 and G1 be two groups of clients, where each group contains m
clients, Gj : {Cj,1, . . . , Cj,m}, 0 ≤ j ≤ 1. Let L denote a leakage function, fG-PSI be the functionality defined
above (in Relation 5 on page 6), S = {S0,1, . . . , S0,m, S1,1, . . . , S1,m}, and Sj,i represent a set belonging to
client Cj,i. Then, a protocol Γ securely realizes fG-PSI in the presence of a static semi-honest PPT adversary
A, if for every A in the real model, there exists a PPT adversary (simulator) Sim in the ideal model, such
that for every Cj,i ∈ {C0,1, . . . , C0,m, C1,1, . . . , C1,m} and T P, Relations 6 and 7 hold respectively.

{SimCj,i
(Sj,i,vj,i)}S

c≡ {ViewA,Γ

Cj,i
(S, ∅)}S (6)

{SimL
T P(∅, ∅)}S

c≡ {ViewA,Γ

T P (S, ∅)}S (7)

where vj,i =
[
[Sj,i ∩ S1−j,1], . . . , [Sj,i ∩ S1−j,m]

]
, 0 ≤ j ≤ 1, 1 ≤ i ≤ m, and T P’s input is ∅.

3.2 Efficient Constructions of G-PSI

In this section, we introduce two efficient protocols that realize G-PSI. The first one, called EG-PSI(I), is
highly efficient and based on symmetric key cryptography. The second one, called EG-PSI(II), is based on
OPRF (in turn depends on public key cryptography) and discloses less information to T EE than the former
does. Thus, these two protocols trade-off between performance and leakage amount.

EG-PSI(I). At a high level, EG-PSI(I) operates as follows. Initially, each client in group G0 agrees with every
client in group G1 on a secret key. Every client encrypts its set elements using every key it has agreed on
with other clients (in a different group). Each client, for every encrypted set element, temporally stores a
triple that includes (i) the encrypted element, (ii) the key used to encrypt that element, and (iii) the index
of the client with whom the key was shared. These triples will enable the client to efficiently (a) retrieve the
correct key and (b) identify the client with whom it has the element in common when presented with an
encrypted element. Once all elements are encrypted using the corresponding keys, each client transmits only
its encrypted elements to T EE .

Given the sets of encrypted elements from all clients, T EE aggregates these sets and identifies the en-
crypted elements that appear more than once. Subsequently, T EE forwards to a client those encrypted
elements that (1) appear more than once and (2) are among the messages that the client initially sent to
T EE . Upon receiving each encrypted element from T EE , a client searches its local list of triples to locate
the corresponding key and the index l representing a specific client. Utilizing the key, the client decrypts the
element and regards the resultant element as one of the elements within the intersection it shares with the
l-th client. For a comprehensive description of EG-PSI(I), refer to Figure 1.

The only information that T EE learns in EG-PSI is the size of the intersection of any two clients’ sets,
called pair-wise intersection cardinality. Below, we formally define it.

Definition 3 (pair-wise intersection cardinality). Let (S′
0,1, . . . , S

′
0,m︸ ︷︷ ︸

G0

), (S′
1,1, . . . , S

′
1,m︸ ︷︷ ︸

G1

) be two groups G0

and G1 of (encrypted) sets. Then, vector s represents the pair-wise intersection cardinality: s = [s0,1, . . . ,

s0,m, s1,1, . . . , s1,m], where sj,i =
[∣∣[Sj,i ∩ S1−j,1]

∣∣, . . . , ∣∣[Sj,i ∩ S1−j,m]
∣∣], 0 ≤ j ≤ 1, and 1 ≤ i ≤ m.

Definition 4. Let s be a pair-wise intersection cardinality of two groups G0 and G1 of encrypted sets:
(S′

0,1, . . . , S
′
0,m︸ ︷︷ ︸

G0

), (S′
1,1, . . . , S

′
1,m︸ ︷︷ ︸

G1

), with respect to Definition 3. Then, leakage function L is defined as follows:

L
(
(S′

0,1, . . . , S
′
0,m), (S

′
1,1, . . . , S

′
1,m)

)
→ s.

Theorem 1. Let fG-PSI be the functionality defined in Relation 5. Also, let L be the leakage function presented
in Definition 4. If PRP is a secure pseudorandom permutation, then EG-PSI(I) (presented in Figure 1) securely
realizes fG-PSI, with respect to Definition 2.
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– Parties. Trusted execution environment T EE , clients in group G0 : {C0,1, . . . , C0,m}, and clients in
group G1 : {C1,1, . . . , C1,m}.

– Inputs. Sets S0,1, . . . , S0,m, S1,1, . . . , S1,m, where each Si,j belongs to client Ci,j, 0 ≤ j ≤ 1 and 1 ≤ i ≤
m.

– Outputs. vj,i to Cj,i, where vj,i =
[
[Sj,i ∩ S1−j,1], . . . , [Sj,i ∩ S1−j,m]

]
.

1. Setup.
(a) each client C0,i in G0 agrees with every client C1,l in G1 on a secret key ki,l, by picking a random

key ki,l and sending it to C1,l. Client C0,i stores this key as ki,l while C1,l stores this key as kl,i.
(b) each Cj,i takes the following steps:

i. encrypts its set elements under keys ki,l (∀l, 1 ≤ l ≤ m) as follows, ∀e ∈ Sj,i : PRP(ki,l, e) →
e′i,l. Let set S

′
j,i contain the encrypted set elements of Cj,i and let set Tj,i contains all triples

of the form (e′i,l, ki,l, l).
ii. sends S′

j,i to T EE and locally keeps Tj,i.

2. Finding Encrypted Intersection. T EE takes the following steps for each Cj,i.
(a) appends to an empty set, Rj,i, every ciphertext that satisfy the following conditions hold:

– it appears more than once in the set S =
1∑

j=0

m∑
i=1

S′
j,i.

– it appears in set S′
j,i.

(b) sends Rj,i to Cj,i.
3. Extracting Plaintext Intersection. Each Cj,i takes the following steps.

(a) constructs a vector vj,i = [vj,i,1, . . . ,vj,i,m], where each vector in vj,i is initially empty.
(b) decrypts each element of Rj,i as follows. ∀e′ ∈ Rj,i :

i. retrieves decryption key ki,l and index l from Tj,i using e′.
ii. calls PRP−1(ki,l, e

′)→ e and appends e to l-th vector in vj,i.

(c) considers vj,i as the result.

Fig. 1: First Variant of Efficient Group PSI (EG-PSI(I)).

3.3 Security Proof of EG-PSI(I)

In this section, we prove the security of EG-PSI(I), i.e., Theorem 1.

Proof. We consider a set of cases where in each case a party is corrupt.

Corrupt Client. In this case, for the sake of simplicity, we focus on the view of a client C1,i in G1. Because
the clients of both groups behave the same way, with the main difference being that a client in G0 generates
a key and sends it to each client of G1. Thus, the proof asserting the protocol is secure regarding a corrupt
client in G1 will imply the security of the same protocol concerning a client in G0.

In the real execution of the protocol, the view of a client, C1,i, is defined as follows:

{ViewA,EG-PSI(I)

C1,i
(S, ∅)}S = {S1,i, r1,i,k, R1,i,v1,i}

where S is the set containing all clients’ sets, r1,i is the outcome of internal random coins of C1,i, k =
[ki,1, . . . , ki,m] is a vector of m keys received from the clients of G0, R1,i is the encrypted intersection C1,i
received from T EE , and vj,i equals [vj,i,1, . . . ,vj,i,m], each l-th vector in vj,i contains the elements that are
common between C1,i’s set and the set that belongs to the l-th client in the other group.

We proceed to construct a simulator, SimC1,i
, in the ideal model. The simulator, receiving the client’s

input S1,i and output v1,i, operates as follows.

1. initiates an empty view. It appends to it S1,i and uniformly random coins r′1,i.
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2. constructs an empty vector k′ and then chooses m keys for PRP. It appends the keys to k′ and adds k′

to the view.
3. constructs an empty set R′. It encrypts the elements of every l-th vector v1,i,l ∈ v1,i using l-th key kl in

k′ and PRP. It inserts the ciphertexts into R′.
4. appends R′ and v1,i to the view. It outputs the view.

Now, we are prepared to discuss that the two views are computationally indistinguishable. The input set
S1,i has identical distribution in both models, as their elements are identical. Furthermore, since we are in the
semi-honest model, in the real execution of the protocol, the client picks its random coins r1,i according to
the protocol description. In the ideal model, coins r′1,i have been selected uniformly at random. Therefore r1,i

and r′1,i have identical distributions. Vectors k and k′ have identical distributions too because their elements
have been chosen uniformly at random. In the real model, R1,i contains the encrypted elements of v1,i, where
the keys in k are used for the encryption by applying the PRP. Similarly, in the ideal model, each element
of R′ is the encryption of an element in v1,i where a key in k′ is used for the encryption with the same
PRP. Thus, R and R′ have identical distributions. Furthermore, elements of v1,i are identical in both models;
therefore, they have identical distributions in the real and ideal models.

We conclude that the views in the real and ideal models are indistinguishable.

Corrupt T EE. In the real model, the view of T EE is as follows:

{ViewA,Γ

T P (S, ∅)}S = {(S′
0,1, . . . , S

′
0,m), (S

′
1,1, . . . , S

′
1,m)}

where each S′
j,i contains the encrypted set elements of client Cj,i. Next, we construct a simulator SimL

T EE
that receives the output s of leakage function L (as defined in Definition 4).

1. initiates an empty view.
2. initiates m empty sets for each G0 and G1 as: (S′′

0,1, . . . , S
′′
0,m︸ ︷︷ ︸

G0

), (S′′
1,1, . . . , S

′′
1,m︸ ︷︷ ︸

G1

).

3. fills each set S′′
j,i as follows, given that s = [s0,1, . . . , s0,m, s1,1, . . . , s1,m], where sj,i =

[∣∣[Sj,i∩S1−j,1]
∣∣, . . . ,∣∣[Sj,i ∩ S1−j,m]

∣∣], as defined in Definition 3.

(a) for every y-th element of each s0,i (where 1 ≤ i, y ≤ m) picks s0,i[y] random values (from the range
of PRP). It appends these random values to both sets S′′

0,i and S′′
1,y.

(b) pads every set S′′
j,i with some random values (from the range of PRP) such that the size of each S′′

j,i

after padding equals the size of S′
j,i.

4. appends sets (S′′
0,1, . . . , S

′′
0,m), (S′′

1,1, . . . , S
′′
1,m) to the view and outputs the view.

We proceed to demonstrate that the views in the real and ideal models are computationally indistin-
guishable. In the real model, each elements of a set S′

j,i is an output of PRP. However, in the ideal model,
each element of a set S′′

j,i has been picked uniformly at random (from the range of PRP). By the security of
PRP (i.e., an output of PRP is computationally indistinguishable from a random value), sets’ elements in the
real and ideal model are computationally indistinguishable.

Moreover, the size of the intersection between each set S′
0,i and each set S′

1,l (in the real model) equals
the size of the intersection between each set S′′

0,i and each set S′′
1,l (in the ideal model). Furthermore,

the size of each S′
j,i in the real model equals the size of the corresponding set S′′

j,i in the ideal model.
Hence, sets S′

0,1, . . . , S
′
0,m, S

′
1,1, . . . , S

′
1,m in the real model are computationally indistinguishable from sets

S′′
0,1, . . . , S

′′
0,m, S

′′
1,1, . . . , S

′′
1,m in the ideal model.

Thus, the views in the real and ideal models are computationally indistinguishable. □
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EG-PSI(II). Next, we present EG-PSI(II) which is the second variant of EG-PSI. Note that T EE in EG-PSI(I)

is able to learn the cardinality of the intersection of each pair of clients’ sets. We aim to reduce this leakage in
EG-PSI(II). However, EG-PSI(II) is no longer based on symmetric key cryptography as it depends on OPRF.
To the best of our knowledge, all the constructions of OPRFs are based on public key cryptography whose
security depends on some hard problem assumptions. The same holds for EG-PSI(II).

A brief overview of the construction of EG-PSI(II) is as follows. We have two groups of clients G0 and
G1 having their own set that they want to find the pairwise intersection. There is a T EE that has a key k
for a PRF. During the setup, each client interacts with T EE to encrypt their set using PRF(k, ·) through an
OPRF call. Then, each client of group G1 will send their encrypted set to every client of G0. Upon receiving
an encrypted set from a client of G1, each client of G0 determines the intersection with their encrypted set.
Once the client finds the intersection, it marks the index of the elements in the intersection and consider the
elements with the same index in the unencrypted set as elements in the intersection. Similarly, each client
of G0 shares their encrypted set with each client of G1 and follows the same steps. Ultimately, every client of
G0 knows the intersection between their set and all the sets belonging to the clients of G1, and the other way
around. We give a detailed description of EG-PSI(II) in Figure 2.

– Parties. Trusted execution environment T EE , clients in group G0 : {C0,1, . . . , C0,m}, and clients in
group G1 : {C1,1, . . . , C1,m}.

– Inputs. Sets S0,1, . . . , S0,m, S1,1, . . . , S1,m, where each Si,j belongs to client Ci,j, 0 ≤ j ≤ 1 and 1 ≤ i ≤
m.

– Outputs. vj,i to Cj,i, where vj,i =
[
[Sj,i ∩ S1−j,1], . . . , [Sj,i ∩ S1−j,m]

]
.

1. Setup.
T EE generates a secret key k for PRF that will be used for an OPRF evaluation.

2. Encryption of each client’s set.
Each client Cj,i and T EE run an OPRF protocol and obtains the encrypted set PRF(k, Sj,i), where
0 ≤ j ≤ 1 and 1 ≤ i ≤ m.

3. Finding Encrypted Intersections.
(a) Each client Cj,i sends each PRF(k, Sj,i) to every client C1−j,i (in the other group), where 0 ≤ j ≤ 1

and 1 ≤ i ≤ m.
(b) Each client Cj,i, takes the following steps.

i. Creates an empty set Rj,i,t for all 1 ≤ t ≤ m.
ii. Let eℓ represents an element of PRF(k, Sj,i), where 1 ≤ ℓ ≤ |PRF(k, Sj,i)|.

Performs Rj,i,t ← Rj,i,t ∪ {ℓ} if eℓ appears both in PRF(k, Sj,i) and PRF(k, Sj−1,i).

4. Extracting Plaintext Intersection.
Each Cj,i for j = 0, 1, and 1 ≤ i ≤ m does the following.

(a) Constructs a vector vj,i = [vj,i,1, . . . ,vj,i,m], where each vector in vj,i is initially empty.
(b) Appends the ℓ-th element of Sj,i to vj,i,t for all ℓ ∈ Rj,i,t.
(c) Returns vj,i.

Fig. 2: Second Variant of Efficient Group PSI (EG-PSI(II)).

In EG-PSI(II), T EE does not participate in the protocol except the OPRF evaluation and that is also
a one-time activity. As a result, T EE does not learn anything about the set intersection, it only learns the
cardinality of each client’s set.
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Theorem 2. Let fG-PSI be the functionality defined in Relation 5 (on page 6). Also, let L be the leakage
function presented in Definition 4 with the empty output. If OPRF is secure, then EG-PSI(II) securely realizes
fG-PSI, w.r.t. Definition 2.

3.4 Security Proof of EG-PSI(II)

Proof (sketch). It is not hard to simulate parties’ views. T EE ’s view in the real model can be easily simulated
given that the main information it learns within the protocol execution includes its view during the invocation
of the OPRF instances (but not the outputs of OPRF). If OPRF is secure, then the views of T EE within
the real and ideal model will be computationally indistinguishable in this protocol.

Each client’s view (in the real execution of the protocol) mainly includes the outputs of OPRF received
from its counterparts and the exchanged messages during OPRF’s execution with T EE . Due to the security
of OPRF, an output of OPRF is computationally indistinguishable from a value picked uniformly at random
from the output range of OPRF. Also, the messages each client receives during the execution of OPRF can
be simulated, due to the security of OPRF. □

Note that both variants remain secure in the presence of semi-honest adversaries. However, if T EE or
a client is a malicious (or active) adversary, then it can affect the correctness of the result, without being
detected.

4 Privacy-Preserving Multi-Party Deduplication (P-MPD)

4.1 Formal Definition of P-MPD

P-MPD considers the setting where there are n clients C = {C1, . . . , Cm} and each Ci ∈ C has a set Si. P-MPD
enables the clients to (efficiently) remove duplicates from their local sets such that after the deduplication
the concatenation of all clients’ local sets equals the union of their initial sets. The functionality fP-MPD that
P-MPD computes takes a set Si from each Ci. It returns an updated (i.e., deduplicated) set S′

i to each Ci.
Formerly, fP-MPD can be defined as follows:

fP-MPD(S1, . . . , Sm)→ (S′
1, . . . , S

′
m) (8)

where
m∑

i=1

S′
i =

m⋃
i=1

Si = S∪ and S∪ denotes the union of all initial sets and contains only unique elements.

To maintain generality, we define a leakage function, denoted as W. The output of this function relies
on the protocol implementing fP-MPD. We assert that a protocol securely realizes fP-MPD if whatever can be
computed by a party in the protocol can be derived solely from its individual input and output, given the
output of W. Below, we formally state it.

Definition 5 (Security of P-MPD). Let S = {S1, . . . , Sm}, and Si represent a set belonging to client Ci.
Let W denote a leakage function and fP-MPD be the functionality defined in Relation 8. Then, a protocol Ψ
securely realizes fP-MPD in the presence of a static semi-honest PPT adversary A, if for every A in the real
model, there exists a PPT Sim in the ideal model, such that for every Ci ∈ {C1, . . . , Cm}, Relation 9 holds.

{SimW
Ci
(Si, S

′
i)}S

c≡ {ViewA,Ψ

Ci
(S)}S (9)

4.2 Constructions of P-MPD

Construction Based on EG-PSI. We introduce a pioneering protocol called Efficient Privacy-Preserving
Multi-Party Deduplication (EP-MPD) that realizes P-MPD efficiently. The idea behind EP-MPD’s design
involves constructing a binary tree with leaf nodes representing the clients’ indices. At each level, each cluster
is formed with two different groups of clients, namely G0 and G1. Subsequently, EG-PSI is recursively applied
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to the sets of clients sharing the same cluster until the tree’s root is reached. After each invocation of EG-PSI,
the clients of G0 update their sets by removing the intersections, returned by EG-PSI, from their local sets.
These updated sets are then used as input in the subsequent EG-PSI invocation.

Next, we delve into further detail. We begin by sorting the clients’ indices in ascending order. Next, we
construct a binary tree such that the leaf nodes represent the clients’ indices. At level d = 1, commencing
from the left-hand side, every two clients form a cluster. Within each cluster, the first client is assigned to
group G0 and the second client to group G1. Then, the clients within the same cluster engage in an instance
of EG-PSI. Upon the return of the sets’ intersection by EG-PSI, only the client situated on the left-hand
side, specifically the one with the smaller index, modifies its local set by eliminating the elements of the
intersection from its sets. This process is outlined in Figure 3a.

<latexit sha1_base64="IVG7nB2V5Hb+YlL41FSU+7iV1Zw="></latexit>C1

<latexit sha1_base64="/JMLJRuuWPyBxi/Y0zXhjSeO3T0="></latexit>C2

<latexit sha1_base64="wn9BSz5QQTcWg95z1Uq1VpFJUa4="></latexit>C3

<latexit sha1_base64="jtIJV+vQ2siiB5voOV4QJi2BV1g="></latexit>C4
<latexit sha1_base64="Ts9/nTW11HGb05/1XP0OBO4ly08="></latexit>G0

<latexit sha1_base64="NLmkODoZK+02pKoKSIIlN9Ukank="></latexit>G1

<latexit sha1_base64="PfM3gAOlc+avVfTLDGvtqgaHTYM=">AAACNHicbVDLSgNBEJz1GddX1IMHL4sh4CnsCj6OYi4eIxgjJIvMTjpxyDyWmd5IWPIRXvU//BfBm3j1G5wke9BowTRFVTdDVZIKbjEM37yFxaXlldXSmr++sbm1Xd7ZvbU6MwyaTAtt7hJqQXAFTeQo4C41QGUioJUM6hO/NQRjuVY3OEohlrSveI8zik5q1UVmEcx9uRLWwimCvyQqSIUUaNzvePudrmaZBIVMUGvbUZhinFODnAkY+9U5Wxs+BBbnQihmx34ns5BSNqB9aDuqqAQb59M446DqlG7Q08Y9hcFU/XmRU2ntSCZuU1J8sPPeRPzPa2fYO49zrtIMQbHZR71MBKiDSTdBlxtgKEaOUGa4ixKwB2oocxVZ3+8oeGRaSqq6ecfi2A23lWIxcTQJ7qqM5ov7S26Pa9Fp7eT6uHJxWZRaIgfkkByRiJyRC3JFGqRJGBmQJ/JMXrxX79378D5nqwtecbNHfsH7+gaDiawm</latexit>

Cluster

<latexit sha1_base64="Z+ENiJdEasw+ZzD8/ki0+YcUCP0="></latexit>C5

<latexit sha1_base64="AXgqZsgbmkLvcIH0QYj6TERw3bU="></latexit>C6

<latexit sha1_base64="jHr4kyfL0QTLgiDMvYWPnORfaBs="></latexit>C7

<latexit sha1_base64="nE1BOpOR6SPIffXhqPpRxkboQIE="></latexit>C8

<latexit sha1_base64="PfM3gAOlc+avVfTLDGvtqgaHTYM=">AAACNHicbVDLSgNBEJz1GddX1IMHL4sh4CnsCj6OYi4eIxgjJIvMTjpxyDyWmd5IWPIRXvU//BfBm3j1G5wke9BowTRFVTdDVZIKbjEM37yFxaXlldXSmr++sbm1Xd7ZvbU6MwyaTAtt7hJqQXAFTeQo4C41QGUioJUM6hO/NQRjuVY3OEohlrSveI8zik5q1UVmEcx9uRLWwimCvyQqSIUUaNzvePudrmaZBIVMUGvbUZhinFODnAkY+9U5Wxs+BBbnQihmx34ns5BSNqB9aDuqqAQb59M446DqlG7Q08Y9hcFU/XmRU2ntSCZuU1J8sPPeRPzPa2fYO49zrtIMQbHZR71MBKiDSTdBlxtgKEaOUGa4ixKwB2oocxVZ3+8oeGRaSqq6ecfi2A23lWIxcTQJ7qqM5ov7S26Pa9Fp7eT6uHJxWZRaIgfkkByRiJyRC3JFGqRJGBmQJ/JMXrxX79378D5nqwtecbNHfsH7+gaDiawm</latexit>

Cluster
<latexit sha1_base64="PfM3gAOlc+avVfTLDGvtqgaHTYM=">AAACNHicbVDLSgNBEJz1GddX1IMHL4sh4CnsCj6OYi4eIxgjJIvMTjpxyDyWmd5IWPIRXvU//BfBm3j1G5wke9BowTRFVTdDVZIKbjEM37yFxaXlldXSmr++sbm1Xd7ZvbU6MwyaTAtt7hJqQXAFTeQo4C41QGUioJUM6hO/NQRjuVY3OEohlrSveI8zik5q1UVmEcx9uRLWwimCvyQqSIUUaNzvePudrmaZBIVMUGvbUZhinFODnAkY+9U5Wxs+BBbnQihmx34ns5BSNqB9aDuqqAQb59M446DqlG7Q08Y9hcFU/XmRU2ntSCZuU1J8sPPeRPzPa2fYO49zrtIMQbHZR71MBKiDSTdBlxtgKEaOUGa4ixKwB2oocxVZ3+8oeGRaSqq6ecfi2A23lWIxcTQJ7qqM5ov7S26Pa9Fp7eT6uHJxWZRaIgfkkByRiJyRC3JFGqRJGBmQJ/JMXrxX79378D5nqwtecbNHfsH7+gaDiawm</latexit>

Cluster
<latexit sha1_base64="PfM3gAOlc+avVfTLDGvtqgaHTYM=">AAACNHicbVDLSgNBEJz1GddX1IMHL4sh4CnsCj6OYi4eIxgjJIvMTjpxyDyWmd5IWPIRXvU//BfBm3j1G5wke9BowTRFVTdDVZIKbjEM37yFxaXlldXSmr++sbm1Xd7ZvbU6MwyaTAtt7hJqQXAFTeQo4C41QGUioJUM6hO/NQRjuVY3OEohlrSveI8zik5q1UVmEcx9uRLWwimCvyQqSIUUaNzvePudrmaZBIVMUGvbUZhinFODnAkY+9U5Wxs+BBbnQihmx34ns5BSNqB9aDuqqAQb59M446DqlG7Q08Y9hcFU/XmRU2ntSCZuU1J8sPPeRPzPa2fYO49zrtIMQbHZR71MBKiDSTdBlxtgKEaOUGa4ixKwB2oocxVZ3+8oeGRaSqq6ecfi2A23lWIxcTQJ7qqM5ov7S26Pa9Fp7eT6uHJxWZRaIgfkkByRiJyRC3JFGqRJGBmQJ/JMXrxX79378D5nqwtecbNHfsH7+gaDiawm</latexit>

Cluster

<latexit sha1_base64="Ts9/nTW11HGb05/1XP0OBO4ly08="></latexit>G0

<latexit sha1_base64="Ts9/nTW11HGb05/1XP0OBO4ly08="></latexit>G0

<latexit sha1_base64="Ts9/nTW11HGb05/1XP0OBO4ly08="></latexit>G0

<latexit sha1_base64="NLmkODoZK+02pKoKSIIlN9Ukank="></latexit>G1

<latexit sha1_base64="NLmkODoZK+02pKoKSIIlN9Ukank="></latexit>G1

<latexit sha1_base64="NLmkODoZK+02pKoKSIIlN9Ukank="></latexit>G1

(a) Demonstration of clients joining various
groups and clusters at level 1.

<latexit sha1_base64="IVG7nB2V5Hb+YlL41FSU+7iV1Zw="></latexit>C1

<latexit sha1_base64="/JMLJRuuWPyBxi/Y0zXhjSeO3T0="></latexit>C2

<latexit sha1_base64="wn9BSz5QQTcWg95z1Uq1VpFJUa4="></latexit>C3

<latexit sha1_base64="jtIJV+vQ2siiB5voOV4QJi2BV1g="></latexit>C4
<latexit sha1_base64="Ts9/nTW11HGb05/1XP0OBO4ly08="></latexit>G0

<latexit sha1_base64="PfM3gAOlc+avVfTLDGvtqgaHTYM=">AAACNHicbVDLSgNBEJz1GddX1IMHL4sh4CnsCj6OYi4eIxgjJIvMTjpxyDyWmd5IWPIRXvU//BfBm3j1G5wke9BowTRFVTdDVZIKbjEM37yFxaXlldXSmr++sbm1Xd7ZvbU6MwyaTAtt7hJqQXAFTeQo4C41QGUioJUM6hO/NQRjuVY3OEohlrSveI8zik5q1UVmEcx9uRLWwimCvyQqSIUUaNzvePudrmaZBIVMUGvbUZhinFODnAkY+9U5Wxs+BBbnQihmx34ns5BSNqB9aDuqqAQb59M446DqlG7Q08Y9hcFU/XmRU2ntSCZuU1J8sPPeRPzPa2fYO49zrtIMQbHZR71MBKiDSTdBlxtgKEaOUGa4ixKwB2oocxVZ3+8oeGRaSqq6ecfi2A23lWIxcTQJ7qqM5ov7S26Pa9Fp7eT6uHJxWZRaIgfkkByRiJyRC3JFGqRJGBmQJ/JMXrxX79378D5nqwtecbNHfsH7+gaDiawm</latexit>

Cluster

<latexit sha1_base64="Z+ENiJdEasw+ZzD8/ki0+YcUCP0="></latexit>C5

<latexit sha1_base64="AXgqZsgbmkLvcIH0QYj6TERw3bU="></latexit>C6

<latexit sha1_base64="jHr4kyfL0QTLgiDMvYWPnORfaBs=">AAACQnicbVDLShxBFK3W+MhEzWhwlU2RUXA1dAtGl6KbLA1kVJhuhuo7d7SwHk3VbWVo+mPcmt/IT/gL7kK2Lqwee5GMOVCXwzn3UpyTF0p6iuPHaGHx3dLyyur7zoe19Y2P3c2tc29LBzgAq6y7zIVHJQ0OSJLCy8Kh0LnCi/zmtPEvbtF5ac0PmhaYaXFl5ESCoCCNuts7qRZ0DUJVp/WoSj3xw3pn1O3F/XgG/pYkLemxFmejzWg7HVsoNRoCJbwfJnFBWSUcSVBYd3bnbOvkLUJWKWXA15209FgIuBFXOAzUCI0+q2bxar4blDGfWBeeIT5T/76ohPZ+qvOw2WTx814j/s8bljQ5yippipLQwOtHk1Jxsrzpio+lQyA1DUSAkyEKh2vhBFBotJMavAOrtTDjprc6jLBUUDtpGnKHIpP52t6S8/1+8rV/8H2/d3zSVrrKPrMvbI8l7JAds2/sjA0YsIrdswf2M/oVPUW/oz+vqwtRe/OJ/YPo+QWl0rGL</latexit>C7

<latexit sha1_base64="nE1BOpOR6SPIffXhqPpRxkboQIE="></latexit>C8

<latexit sha1_base64="PfM3gAOlc+avVfTLDGvtqgaHTYM=">AAACNHicbVDLSgNBEJz1GddX1IMHL4sh4CnsCj6OYi4eIxgjJIvMTjpxyDyWmd5IWPIRXvU//BfBm3j1G5wke9BowTRFVTdDVZIKbjEM37yFxaXlldXSmr++sbm1Xd7ZvbU6MwyaTAtt7hJqQXAFTeQo4C41QGUioJUM6hO/NQRjuVY3OEohlrSveI8zik5q1UVmEcx9uRLWwimCvyQqSIUUaNzvePudrmaZBIVMUGvbUZhinFODnAkY+9U5Wxs+BBbnQihmx34ns5BSNqB9aDuqqAQb59M446DqlG7Q08Y9hcFU/XmRU2ntSCZuU1J8sPPeRPzPa2fYO49zrtIMQbHZR71MBKiDSTdBlxtgKEaOUGa4ixKwB2oocxVZ3+8oeGRaSqq6ecfi2A23lWIxcTQJ7qqM5ov7S26Pa9Fp7eT6uHJxWZRaIgfkkByRiJyRC3JFGqRJGBmQJ/JMXrxX79378D5nqwtecbNHfsH7+gaDiawm</latexit>

Cluster

<latexit sha1_base64="Ts9/nTW11HGb05/1XP0OBO4ly08="></latexit>G0

<latexit sha1_base64="NLmkODoZK+02pKoKSIIlN9Ukank="></latexit>G1

<latexit sha1_base64="NLmkODoZK+02pKoKSIIlN9Ukank="></latexit>G1

(b) Illustration of clients joining various groups
and clusters at level 2.

<latexit sha1_base64="IVG7nB2V5Hb+YlL41FSU+7iV1Zw="></latexit>C1

<latexit sha1_base64="/JMLJRuuWPyBxi/Y0zXhjSeO3T0="></latexit>C2

<latexit sha1_base64="wn9BSz5QQTcWg95z1Uq1VpFJUa4="></latexit>C3

<latexit sha1_base64="jtIJV+vQ2siiB5voOV4QJi2BV1g="></latexit>C4
<latexit sha1_base64="Ts9/nTW11HGb05/1XP0OBO4ly08="></latexit>G0

<latexit sha1_base64="PfM3gAOlc+avVfTLDGvtqgaHTYM=">AAACNHicbVDLSgNBEJz1GddX1IMHL4sh4CnsCj6OYi4eIxgjJIvMTjpxyDyWmd5IWPIRXvU//BfBm3j1G5wke9BowTRFVTdDVZIKbjEM37yFxaXlldXSmr++sbm1Xd7ZvbU6MwyaTAtt7hJqQXAFTeQo4C41QGUioJUM6hO/NQRjuVY3OEohlrSveI8zik5q1UVmEcx9uRLWwimCvyQqSIUUaNzvePudrmaZBIVMUGvbUZhinFODnAkY+9U5Wxs+BBbnQihmx34ns5BSNqB9aDuqqAQb59M446DqlG7Q08Y9hcFU/XmRU2ntSCZuU1J8sPPeRPzPa2fYO49zrtIMQbHZR71MBKiDSTdBlxtgKEaOUGa4ixKwB2oocxVZ3+8oeGRaSqq6ecfi2A23lWIxcTQJ7qqM5ov7S26Pa9Fp7eT6uHJxWZRaIgfkkByRiJyRC3JFGqRJGBmQJ/JMXrxX79378D5nqwtecbNHfsH7+gaDiawm</latexit>

Cluster

<latexit sha1_base64="Z+ENiJdEasw+ZzD8/ki0+YcUCP0=">AAACQnicbVDLahtBEJx1XorysJzgUy5DZEFOYlfgxEcTXXK0wbIN2kXMtlrSoHksM70OYtmP8TX5jfxEfiG3kGsOmZX3kMgpmKao6maoygslPcXx92jvwcNHj590nnafPX/xcr938OrS29IBTsAq665z4VFJgxOSpPC6cCh0rvAqX48b/+oGnZfWXNCmwEyLpZELCYKCNOsdHqVa0AqEqsb1rEo98eP6aNbrx8N4C36fJC3psxZns4PoMJ1bKDUaAiW8nyZxQVklHElQWHcHO7Z18gYhq5Qy4OtuWnosBKzFEqeBGqHRZ9U2Xs0HQZnzhXXhGeJb9e+LSmjvNzoPm00Wv+s14v+8aUmLk6ySpigJDdx9tCgVJ8ubrvhcOgRSm0AEOBmicFgJJ4BCo93U4GewWgszb3qrwwhLBbWTNiF3KDLZre0+uRwNk/fD4/NR//RjW2mHvWFv2TuWsA/slH1iZ2zCgFXsln1hX6Nv0Y/oZ/TrbnUvam9es38Q/f4Doj6xiQ==</latexit>C5

<latexit sha1_base64="AXgqZsgbmkLvcIH0QYj6TERw3bU="></latexit>C6

<latexit sha1_base64="jHr4kyfL0QTLgiDMvYWPnORfaBs="></latexit>C7

<latexit sha1_base64="nE1BOpOR6SPIffXhqPpRxkboQIE="></latexit>C8
<latexit sha1_base64="NLmkODoZK+02pKoKSIIlN9Ukank="></latexit>G1

(c) Depiction of how clients become part of di-
verse groups and clusters at level 3.

Fig. 3: The process of eight clients forming clusters and groups at various levels of a binary tree. At each
level, clients belonging to groups G0 and G1 within the same cluster initiate EG-PSI, followed by the updating
of their respective local sets.

At level d = 2, starting from the left-hand side, every set of 2d clients forms a cluster. Within each cluster,

the initial 2d

2 = 2 clients enter group G0 and the remainder (i.e., the remaining 2 clients) enter group G1.
Subsequently, the clients within the same cluster engage in an instance of EG-PSI. Once again, upon the
return of their sets’ intersection by EG-PSI, the clients possessing the smaller indices update their local sets.
This procedure is illustrated in Figure 3b. The process continues until level d = log2 m is reached. At this

point, all m clients collectively engage in an instance of EG-PSI. Each 2d

2 = m
2 clients enter group G0 and the

remaining m
2 clients enter group G1. These m clients jointly participate in an instance of EG-PSI. Similarly

to previous steps, the clients with the smaller indices update their local sets based on the output of EG-PSI.
This procedure is outlined in Figure 3c.
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– Parties. A set of clients {C1, . . . , Cm}.
– Inputs. Sets S1, . . . , Sm, where each Si belongs to client Ci, 1 ≤ i ≤ m, and m is a power of 2.

– Outputs. Updated sets S′
1, . . . , S

′
m, where each S′

i belongs to client Ci, and
m∑

i=1

S′
i =

m⋃
i=1

Si.

The clients take the following steps ∀d, 1 ≤ d ≤ log2(m) :

1. Forming Clusters. Every distinct 2d clients enter the same cluster. Thus, for every level d, there will be
m
2d

cluster(s). For instance, when d = 1, then there are the following clusters: (C1, C2), . . . , (Cm−1, Cm).
2. Forming Group. In each cluster, the first 2d

2 clients enter group 0, G0, and the rest of the clients enter
group 1, G1.

3. Finding Intersection. In each cluster, the clients of G0 and G1 together engage an instance of EG-PSI.
Each client Cj receives a vector vj from EG-PSI, where vj specifies the elements that Cj has in
common with each client of the other group in the same cluster. It would be sufficient if only clients
of G0 in each cluster were aware of the intersection result.

4. Removing Duplication. For every element e ∈ vj, each Cj in G0 calls Update(Sj, {e}) → Sj, where
Sj ← Sj \ {e}.

Fig. 4: Efficient Privacy-Preserving Multi-Party Deduplication (EP-MPD): the construction of P-MPD.

Figure 4 presents a detailed description of EP-MPD. For the sake of simplicity, we assume that m is a
power of 2 in EP-MPD’s description. However, we do not impose on the number of clients. Non-powers of
2 will result in incomplete sub-trees in the formation of clusters in the DE protocol where each group may
have an unequal number of clients. This does not affect the EP-MPD protocol execution.

4.3 Naive Approaches

Running a Two-Party PSI Multiple Times. One might be tempted to allow each client to invoke
an existing two-party PSI with every other client. However, this approach in total requires

(
m
2

)
= O(m2)

invocations of the two-party PSI. Whereas EP-MPD requires only
log2(m)∑

i=1

(m2i ) = m − 1 invocations of our

efficient tailor-made PSI, EG-PSI. To provide concrete values, when m = 256, the naive scheme requires
32,640 invocations of a standard two-party PSI, whereas our scheme requires only 255 invocations of EG-PSI.

Running Multi-Party PSI Once. One might be tempted to execute an existing multi-party PSI protocol
only once on all clients’ sets, hoping to identify and subsequently remove duplicated elements. Nevertheless,
this approach falls short of identifying all duplications. The limitation arises from the fact that a multi-party
PSI can uncover elements common to all clients, making it incapable of detecting elements shared among
only a subset of clients.

Deduplicating all Sets at Once. There is a simplified version of EP-MPD. In this variant, each client
reaches an agreement with the others on a secret key. Subsequently, each client encrypts its set elements
using every key agreed upon with the other clients. Finally, all clients transmit their encrypted set elements
to T EE . Upon receiving the encrypted sets from all clients, T EE identifies all duplicated elements. It then
transmits to each client: (1) the duplicated elements found in the original elements that the respective client
sent to T EE , and (2) the index of the client with which it shares the same element. Based on T EE ’s response,
the clients with smaller indices update their local sets accordingly.

However, this approach requires that T EE maintains a local storage or memory space equal to the size of
the concatenation of all encrypted sets. In contrast, EP-MPD with the underlying EG-PSI building block,
allows T EE to have a substantially smaller storage or memory space. This is achieved because, before T EE
receives all clients’ encrypted sets at level d = log2(m), clients apply updates to their sets multiple times.
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This iterative process progressively reduces the size of the clients’ sets, and the reduction can be particularly
significant when the number of duplications is substantial.

4.4 Security Proof of EP-MPD

In any secure (multi-party) deduplication protocol, a participating client will learn the exact redundant
elements within its set upon the protocol’s completion. However, in EP-MPD, a client gains slightly more
information. To be specific, upon the completion of EP-MPD, each client acquires the knowledge of the index
(or identity) of the client that shares the redundant element. This additional information gained by a client
during the execution of EP-MPD is formally defined as the output of a leakage function W which we define
below.
W takes as input (i) sets S1, . . . , Sm, where each set Si belongs to client Ci, and (ii) sets R1, . . . , Rm,

where each Ri contains the redundancy (or intersection) that a set Si has with every other set.W outputs to
the i-th client a set Qi of triples, where each triple is of the form (ri,l, i, l), ri,l ∈ Ri is a redundancy between
sets Si and Sl.

Definition 6. Let S = {S1, . . . , Sm} be a set of sets, where each set Si belongs to client Ci. Also, let R =
{R1, . . . , Rm} be a set of sets, where each set Ri comprises the redundancy that Si has with every other j-th
set, for all j, 1 ≤ j ≤ m and i ̸= j. Then, leakage function W is defined as follows: W(S,R)→ (Q1, . . . , Qm),
where each Qi is a set of triples of the form (ri,l, i, l), ri,l ∈ Ri is a redundancy between sets Si and Sl.

Theorem 3. Let fP-MPD be the functionality defined in Relation 8 and W be the leakage function presented
in Definition 6. If EG-PSI is secure (w.r.t. Definition 2), then EP-MPD (presented in Figure 4) securely
realizes fP-MPD, w.r.t. Definition 5.

We proceed to prove the security of EP-MPD, i.e., Theorem 3. For the sake of concreteness and because
we have provided a detailed proof for EG-PSI(I), we will prove Theorem 3 when EP-MPD relies on EG-PSI(I).
The proof for EG-PSI(I)-based EP-MPD will easily follow.

Proof. In the real execution of the protocol, the view of a client, Ci, is defined as follows:

{ViewA,EP-MPD

Ci
(S)}S = {Si,ViewCi

,vi}

where S = {S1, . . . , Sm}, Si represents a set belonging to Ci, ViewCi
= [ViewA,EG-PSI(I)

Ci,1
, . . . ,ViewA,EG-PSI(I)

Ci,z
]

contains z = log2(m) views of Ci such that each view ViewA,EG-PSI(I)

Ci,d
corresponds to Ci’s view when it invokes

EG-PSI(I) at level d, where 1 ≤ d ≤ z. Moreover, vi contains z vectors, where each vector vi,d in vi is the
output of EG-PSI(I) that client Ci receives at level d. We proceed to construct a simulator, SimCi

, in the ideal
model. The simulator, receives the output Qi of leakage function W (as defined in Definition 6), the client’s
input Si and output vi. SimCi

operates as follows.

1. initiates an empty view.
2. for each level d (where 1 ≤ d ≤ z) constructs the following set for each client Cl in the other group, using

(i) the result vi,d that Ci receives at level d and (ii) the leakage function’s output Qi (hence in total, in

level d, the simulator will generate 2d

2 sets on behalf of the clients in the other group).

(a) constructs an empty set Sl.
(b) finds every triple (x, a, b) in Qi, such that a = i and b = l. It adds the first element x of each triple

that meets the above conditions to Sl. This ensures that Sl contains all the elements in common with
Si.

(c) pads every set Sl with some random values (from the set universe) such that the size of each Sl, in
the ideal model, after padding equals the size of Sl in the real model.

3. generates 2d

2 − 1 empty sets for the group to which Si belongs. It appends to these empty sets values
picked uniformly at random from the set universe. It ensures the size of each of these sets in the ideal
model equals to that of in the real model.
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4. for every level d:
(a) invokes an instance of EG-PSI(I) using the following sets: (i) Si and sets generated in step 3, that are

placed in one group and (ii) sets generated in step 2, placed in another group. As a result, it receives
output vi,d.

(b) extracts Ci’s view ViewA,EG-PSI(I)

Ci,d
after the execution of EG-PSI(I).

(c) appends every ViewA,EG-PSI(I)

Ci,d
and vi,d to its view.

(d) outputs the view.

Now, we are prepared to show that the two views (in the real and ideal models) are computationally
indistinguishable. The input Si in both models are identical, therefore they will have identical distribution.

Due to the security of EG-PSI(I), for every level d, ViewA,EG-PSI(I)

Ci,d
in the real and ideal models are compu-

tationally indistinguishable, as demonstrated in the proof of Theorem 1. Furthermore, the intersection vi,d

that A learns at every level d in the real and ideal model are identical, thus they are indistinguishable.
Hence, the views of A in the real and ideal models are computationally indistinguishable. □

5 Enhanced FL: Applying EP-MPD to FL

With all essential building blocks in place, we are prepared to elucidate the complete functionality of the
system. There are clients C1, . . . , Cm having the sets S1, . . . , Sm, where each Si belongs to client Ci respec-
tively. Phase 1 involves each client conducting local deduplication. Since the local deduplication is a private
computation there is no privacy requirement. The data owners can apply deduplication techniques as illus-
trated in [31] which results in having a set S′

i free of duplicates by each client Ci. Subsequently, in Phase 2
they employ EP-MPD to eliminate duplicates across all clients. At the end of this phase, client Ci gets an

updated set S′′
i , such that

m∑
i=1

S′′
i =

m⋃
i=1

S′
i. Moving to Phase 3, they adopt a FL protocol (outlined in Section

2.2) to train the model. Further details of this procedure are provided in Figure 5.

– Parties. A set of clients {C1, . . . , Cm}.
– Server. Holds the initial model θ.
– Inputs. Sets S1, . . . , Sm, where each Si belongs to client Ci, 1 ≤ i ≤ m, and m is a power of two.
– Outputs. A global updated model Θ.

1. Local Deduplication. Each client runs a deduplication algorithm on their local dataset. At the end,
client Ci receives an updated dataset S′

i.
2. Global Deduplication.

(a) All the clients participate in the EP-MPD as described in Figure 4.
(b) Each client Ci gets updated set S′′

i , such that

m∑
i=1

S′′
i =

m⋃
i=1

S′
i.

3. Federated learning.
(a) The server and clients agree upon an FL protocol for training.
(b) The server initiates the learning by sharing the initial model θ with each client.
(c) Each client Ci trains on their local dataset S′′

i and updates θ to θi.
(d) The clients and server aggregate the local models θi trained by the clients.
(e) The server outputs the global updated model Θ for the next training round.

Fig. 5: Federated learning with deduplication.
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6 Experiments

6.1 Implementation Details

We implement the EP-MPD protocol in python=3.10. We use AES with a 128-bit key in CBC mode from the
cryptography library as a PRP in EG-PSI(I). To realize an OPRF in EG-PSI(II), we use the OPRF algorithm
proposed in [12] from the oprf library. All EP-MPD experiments are conducted on a batch computing
facility with a Dual Intel Xeon E5-2660 v3 @ 2.6 GHz CPU and 60 GB RAM. For the FL experiments,
we implement a FL setting for CLMs using python=3.10 with the transformers=4.40.1 and torch=2.3

libraries. We implement the FedAvg [38] algorithm for FL training to analyze the effect of EP-MPD on FL’s
performance. However, in practice, we recommend combining EP-MPD with privacy-preserving FL protocols
for end-to-end privacy guarantees. All FL experiments are conducted on a server with an Intel(R) Xeon(R)
Gold 6336Y CPU @ 2.40GHz CPU and NVIDIA RTX A6000 GPU.

We run all clients sequentially on a machine for both experiments. However, to emulate a real-world setting
where clients run on different devices at the same time, we first compute the individual client running times
and then estimate the real-world distributed running time by assuming the clients have run simultaneously.
We open-source our implementations4.

While implementing EP-MPD, we have two options for the EG-PSI module: EG-PSI(I) and EG-PSI(II).
We observe that EG-PSI(II)-based EP-MPD calls an OPRF function for every client in the leaf nodes of the
EP-MPD tree, returning an encryption of the clients’ sets. As clients move to upper levels, their set elements
remain unchanged, with only the cardinality potentially changing. Therefore, except at the bottom level,
OPRF calls are unnecessary for encryption, allowing the same encrypted set or their subsets to be reused
at other levels. Thus, we have slightly adjusted the implementation. This significantly reduces time without
compromising security properties, as reflected in our experiments.

6.2 EP-MPD Benchmarks

Experimental Setup. We designed three experiment settings to benchmark the performance of EP-MPD.
The three settings analyze the effect of the number of clients, dataset size, and duplication percentage on
the runtime of EP-MPD. All experiments were performed with both EG-PSI(I) and EG-PSI(II) as building
blocks. The duplication percentage refers to the percentage of samples in a client’s dataset present in another
client’s dataset. The three experiment settings are:

a. The dataset size is fixed at |Si| = 219, the duplication percentage at 30%, while the number of clients m
is varied. Specifically, m is set to each value in {10, 20, 30, 40, 50}.

b. The number of clients is fixed at 50 and the duplication percentage at 30%, while the dataset size |Si| is
varied. Specifically, |Si| is set to each value in {210, 211, 213, 215, 217, 219}.

c. The database size |Si| is fixed at 219, the number of clients at 50, while the duplication percentage is
varied. Specifically, it is set to each value in {10%, 30%, 50%, 70%, 90%}.

We create pairwise duplicates between clients such that every client has a unique duplicate element with
every other client. All set elements are 32-bit integers. We assume that T EE can receive data in parallel from
the clients. All other interactions that require computation between T EE and clients occur sequentially. In
the remainder of this section, by EP-MPD(I) and EP-MPD(II) we mean the EP-MPD that uses EG-PSI(I)

and EG-PSI(II) respectively.

Effect of Client Count. Figure 6 depicts the effect of the number of clients on (a) EP-MPD running
time, (b) the average running time of clients, and (c) T EE running time. Figure 6a demonstrates that the
EP-MPD running time increases linearly with the number of clients for both EP-MPD(I) and EP-MPD(II).
The increase in the client count increases the number of PRP and OPRF evaluations as the total number of
elements across all clients grows. We observe that EP-MPD(I) is about 7–10× faster than EP-MPD(II).

4 https://github.com/vdasu/deduplication
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(a) EP-MPD running time.
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(b) Client running time.
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(c) T EE running time.

Fig. 6: Effect of client count with 219 dataset size and 30% duplication percentage on running time (logarithmic
scale).

The average running time of the client however shows a different trend. The client running time in
EP-MPD(I) increases linearly with the client count and is always greater than – up to 6× – the running
time of EP-MPD(II). The running time of EP-MPD(II) is constant as the number of clients increases. In
EP-MPD(I), the client-side running time increases with the number of clients, because each client has to
perform more PRP evaluations. However, in EP-MPD(II), the number of OPRF evaluations is equal to the
number of elements in each client’s set. Additionally, in EP-MPD(I), the clients perform the PRP evaluations
at every level of the tree. However, in EP-MPD(II) the OPRF evaluations are only performed once when
the clients are at the leaf level. The running time of T EE follows a similar trend to the EP-MPD running
time. The T EE running time in EP-MPD(II) is always higher than EP-MPD(I). Both exhibit linear increases
in running time as the number of clients increases. The running time in EP-MPD(II) is much higher as the
OPRF evaluations are relatively expensive.

Effect of Dataset Size. Figure 7 illustrates the effect of dataset size on EP-MPD running time, the average
running time of clients, and T EE running time. From Figure 7a, it is evident that the EP-MPD running
time grows linearly with increasing the dataset size. EP-MPD(I) is up to 8× faster than EP-MPD(II). As the
dataset size increases, the number of PRP and OPRF evaluations grows, thereby increasing the EP-MPD
running time. Figure 7b shows the effect of dataset size on client running time. Unlike increasing the client
count, increasing the dataset size increases the client running time of both EP-MPD(I) and EP-MPD(II). We
observe this difference because an increase in dataset size increases the number of OPRF evaluations while
any change in the client count does not. The client running time of EP-MPD(II) is up to 7× faster than
EP-MPD(I).

Figure 7c depicts the effect of dataset size on the running time of T EE . The growth of dataset size increases
the OPRF evaluations in EP-MPD(II). In EP-MPD(I), T EE has to identify more overlapping ciphertexts as
the datasets are larger. The running time of T EE increases linearly with the dataset size for both cases. T EE
running time in EP-MPD(I) is up to 5× faster than EP-MPD(II).

Effect of Duplication Percentage. Figure 8 shows the effect of duplication percentage on EP-MPD
running time, the average running time of clients, and T EE running time. Figure 8a highlights the running
time of EP-MPD as the duplication percentage changes. We note that in EP-MPD(II), OPRF evaluations
incur the most overwhelming running time, dominating all other running time costs. Overall, the running
time of EP-MPD(II) is constant while that of EP-MPD(I) linearly decreases as the duplication rate grows.
In EP-MPD(II), the number of OPRF evaluations is independent of the duplication percentage, because the
OPRF is always performed only when the clients are at the leaf level. However, in EP-MPD(I), the number
of PRP invocations decreases as clients move up the tree from the leaf level because a higher duplication
percentage removes more elements in each level of the tree. The total running time of EP-MPD(I) is up to
7× faster than EP-MPD(II).

Furthermore, the client-side running time of EP-MPD(II) is constant while that of EP-MPD(I) linearly
decreases as the duplication percentage increases, as shown in Figure 8b. The reason is identical to the
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(a) EP-MPD running time.
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Fig. 7: Effect of dataset size with 50 clients and 30% duplication percentage on running time (logarithmic
scale).
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Fig. 8: Effect of duplication percentage with 219 dataset size and 50 clients on running time (logarithmic
scale).

observation of the EP-MPD running time. The number of PRP evaluations reduces while the number of
OPRF evaluations does not. Similar to the prior experiment settings, the client time of EP-MPD(I) is higher
than EP-MPD(II) and is up to 7× slower. Figure 8c shows the effect of duplication percentage on the running
time of T EE . The T EE running time in EP-MPD(II) is constant while in EP-MPD(I) linearly decreases.
The T EE running time in EP-MPD(I) is up to 2× faster than EP-MPD(II). The overall running time of the
symmetric key-based EP-MPD(I) is considerably less than the public key-based EP-MPD(II). Nevertheless,
the clients in EP-MPD(I) need to perform more computations compared to those in EP-MPD(II).

6.3 FL with EP-MPD

Experimental Setup. We create an FL setting with varying levels of duplication to analyze the effect of
EP-MPD on the model performance and training efficiency of CLM fine-tuning. We use GPT-2 Medium
and GPT-2 Large CLMs from the GPT-2 [43] family of decoder-only models based on the Transformer [50]
architecture. The GPT-2 Medium has 345 million parameters with 24 decoder blocks, 16 attention heads,
and 1024 hidden sizes while GPT-2 Large has 774 million parameters with 36 decoder blocks, 20 attention
heads, and 1280 hidden sizes. Both models have a sequence length of 1024 tokens.

We create 10 clients and experiment with the following 7 datasets. The Rotten Tomatoes and IMDB
datasets contain movie reviews. The Sonnets and Plays datasets are a collection of works by William Shake-
speare. Poetry is a collection of short poems by a variety of poets. Haiku and Short Jokes are a collection of
short Japanese-style poems and Jokes from Reddit respectively. The language modeling task for each dataset
is to learn how to generate text from the dataset’s distribution. For all datasets, we create a Train and Test
split in an 80:20 ratio. Model perplexity is evaluated on the Test set after training. We follow a two-step
procedure to create the client datasets with x% duplication. Initially, we equally distributed the Train set
among all 10 clients. Next, we sample with replacement x% of the original Train set. This subset is then
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again equally distributed among all clients. We perform 5 rounds of FL training with at most 10 epochs of
local training. The GPT-2 Large models were trained for fewer epochs and with less data because they were
overfitting to the Train set for more epochs and data. Additional details about the datasets and FL training
hyperparameters can be found in Appendix B.

FL Model Performance. We measure the perplexity of the final model on the Test set to assess the
impact of various duplication levels on model performance. Table 1 shows the results of perplexity (PP) and
improvement rate (IR). IR refers to the percentage of improvement in perplexity after deduplication. For
example, the Haiku dataset with GPT-2 Medium and 30% duplication shows an IR of 5.36% from 3.73 to
3.53 after deduplication. The deduplicated client datasets represent the baseline perplexity.

The blue text in the table highlights the largest improvement in perplexity, which is for the Plays dataset
with GPT-2 Medium. We observe an improvement rate of 19.61% from 34.88 to 28.04 for 30% duplication.
The Plays dataset in general has a higher perplexity than other datasets as it is a relatively challenging task
with longer sequences and fewer training samples. The impact of duplicates in such scenarios is aggravated.
We observe a similar trend with the Sonnets dataset with a 13.64% improvement rate, which is also a difficult
task with few samples and relatively long sequences.

The purple text highlights the least improvement in perplexity for the Rotten Tomatoes dataset with
GPT-2 Medium. The 10% duplication results in a 1.7% improvement rate from 3.6 to 3.53. Similarly, the
Haiku and Short Jokes datasets exhibit smaller improvement rates across different levels of duplication, while
maintaining low perplexity. We observe these trends because these datasets are relatively easier to learn with
a greater number of training samples. The impact of duplicates in such cases is not as pronounced.

The red text highlights two scenarios where deduplication results in insignificant changes (< 1%) to
perplexity. The Plays dataset with GPT-2 Medium shows an improvement of 0.28% after deduplication with
10% duplication while the Sonnets dataset with GPT-2 Large worsens by 0.24% after deduplication with
10% duplication. The reason for the “noisy” results for the Plays and Sonnets dataset is that both datasets
have very few training data samples. A 10% duplication percentage merely adds 3−5 duplicated data points
to each client. Both datasets, however, show significant improvements for 20% and 30% duplication.

Table 1: Test set perplexity (PP) and improvement rate (IR) of perplexity after deduplication.

Model Dataset
Duplication Percentage

Deduplicated
30% 20% 10%

PP IR (%) PP IR (%) PP IR (%) PP

GPT-2
Medium

Haiku 3.73 5.36 3.69 4.3 3.6 1.94 3.53
Rotten Tomatoes 2.4 3.75 2.36 2.18 2.35 1.7 2.31

Short Jokes 3.95 5.31 3.89 3.85 3.83 2.34 3.74
Poetry 5.46 8.42 5.59 10.55 5.33 6.19 5.00
IMDB 12.81 4.57 12.71 3.75 12.5 2.0 12.25
Sonnets 15.83 13.64 15.63 12.5 14.22 4.02 13.67
Plays 34.31 18.27 34.88 19.61 28.12 – 28.04

GPT-2
Large

Haiku 3.27 8.86 3.26 8.58 3.23 7.73 2.98
Rotten Tomatoes 2.65 16.98 2.6 15.38 2.53 13.00 2.2

Short Jokes 4.11 7.78 4.02 5.72 3.95 4.05 3.79
Sonnets 8.51 5.53 8.4 4.28 8.02 – 8.04

FL Model Training Efficiency. We analyze the model training efficiency by computing the total GPU
running time of all clients during training. The CPU-bound EP-MPD costs are negligible for 10 clients and
at most 5,000 elements (the size of the largest dataset is 50,000 elements distributed among all clients).
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Table 2 highlights the results for GPU running time. The Time column is the total GPU running time and
IR is the percentage improvement compared to the running time within the deduplicated setting.

The blue text shows the largest improvement in running time of 27.95% from 33.13 minutes to 23.87
minutes in the GPT-2 Medium experiment with the Sonnets dataset. The purple text highlights the smallest
improvement in running time of 7.33% from 11.87 to 11.0 minutes in the Sonnets experiment with GPT-2
Large. We observe a relatively consistent improvement trend of approximately 22%, 16%, and 8% for 30%,
20%, and 10% duplication levels respectively. The GPT-2 Medium experiments show higher running times as
these models were trained longer. We observe that the running time efficiency consistently improves across
all duplication levels and experiments.

Tables 1 and 2 demonstrate the effectiveness of applying EP-MPD to FL of language models. The
experiments show improvements of up to 18% in perplexity and 27% in GPU running time. Deduplication
significantly reduces resource usage while enhancing the quality of FL models. The RTX A6000 GPU used
in our experiments consumes 0.3 kWh of energy. As FL scales to larger datasets and more clients, the energy
savings with EP-MPD become even more significant, contributing to more sustainable and cost-effective FL
implementations, benefiting both the environment and the end-users.

Table 2: Total GPU training time (minutes) of all clients and improvement rate (IR) of time after dedupli-
cation.

Model Dataset
Duplication Percentage

Deduplicated
30% 20% 10%

Time IR (%) Time IR (%) Time IR (%) Time

GPT-2
Medium

Haiku 111.92 22.96 105.03 17.91 95.62 9.83 86.22
Rotten Tomatoes 162.79 21.7 151.54 15.89 138.76 8.14 127.46

Short Jokes 396.62 27.85 338.69 15.51 313.35 8.68 286.15
Poetry 114.28 22.65 105.48 16.2 96.85 8.74 88.39
IMDB 2133.36 22.56 2006.94 17.68 1788.11 7.61 1652.04
Sonnets 33.13 27.95 28.53 16.33 26.14 8.68 23.87
Plays 31.48 22.9 29.38 17.39 26.95 9.94 24.27

GPT-2
Large

Haiku 20.89 22.98 19.28 16.55 17.7 9.1 16.09
Rotten Tomatoes 70.74 23.08 65.26 16.63 59.91 9.18 54.41

Short Jokes 340.75 22.93 313.65 16.27 288.86 9.08 262.63
Sonnets 13.91 20.92 12.89 14.66 11.87 7.33 11.0

7 Asymptotic Costs Analysis

In this section, we analyze the asymptotic costs of our schemes. Table 3 summarizes the result.

7.1 Costs of EG-PSI(I) and EG-PSI(II)

Computation Cost. Initially, we focus on the computation cost of parties in EG-PSI(I). In step 1b, each
client Cj,i encrypts each element of its set using the symmetric key encryption PRP, under each key it agrees
with the clients in the other group. Specifically, it invokes PRP m · |Sj,i| times, where m is the total number of
clients in the other group. In step 3, each client Cj,i invokes PRP m · |Rj,i| times, where Rj,i is the (encrypted)
intersection set. Thus, the computation complexity of each Cj,i is O(m · |Sj,i|). The computation complexity
of T EE in step 2 is O(m · |S|), where |S| represents the maximum cardinality of sets. The only computation
that T EE performs is searching to find duplicated values.
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Table 3: Complexities of our solutions; namely, EG-PSI(I), EG-PSI(II), and EP-MPD. In the table, we have considered
the maximum communication complexity of a client in EP-MPD (without considering the cases where the updates
reduce the clients’ set size). In the table, m is the number of clients in each group, |S| is the maximum cardinality of
sets, and |R| is the maximum cardinality of sets intersection that a client has with clients of the other group.

Protocols
Computation Cost Communication Cost

Client T EE Client T EE
EG-PSI(I) O(m · |Sj,i|) O(m · |S|) O(m · |Sj,i|) O(m · |R|)
EG-PSI(II) O(m · |S|) O(m · |S|) O(m · |Sj,i|) O(m · |S|)
EP-MPD O(m · log2(m) · |S|) O(m · log2(m) · |S|) O(m · log2(m) · |Sj,i|) O(m · log2(m) · |S|)

We proceed to analyze the computation cost of parties in EG-PSI(II). In step 2, each client Cj,i invokes
|Sj,i| times OPRF to encrypt its set elements. In steps 3 and 4, each Cj,i performs a search on m+1 encrypted
sets, which imposes negligible costs compared to the executions of OPRF. Thus, the complexity of each Cj,i
is O(m · |S|), where |S| is the maximum cardinality of sets. T EE invokes an instance of OPRF in step 2 for
every set of elements of each client. Therefore, its computation complexity is O(m · |S|), where |S| is the
maximum cardinality of sets.

Communication Cost. We first concentrate on the communication cost of parties in EG-PSI(I). Each client
C0,i in step 1a transmits m keys to the clients of the other group. Thus, its communication complexity in
this step is O(m). However, the clients in G1 do not transmit any message in this step. In step 1b, each client
Cj,i of each group, transmits m · |Sj,i| messages to T EE , where the size of each message is only about 256
bits. Thus, each client’s communication complexity is O(m · |Sj,i|). On the other hand, T EE sends to each
client Rj,i which contains the intersection the client has with the clients in the other group. Thus, the overall
communication complexity of T EE is O(m · |R|), where |R| is the maximum cardinality of sets intersection
that a client may have with clients of the other group.

We proceed to evaluate the communication complexity of parties in EG-PSI(II). In step 2, each Cj,i
performs OPRF evaluations on Sj,i. This procedure imposes O(|Sj,i|) communication cost to the client. In
step 3, the communication complexity of each Cj,i is O(m · |Sj,i|) because it sends its encrypted set to every
client in the other group. In step 2, T EE performs OPRF evaluations on the elements of each Cj,i using
OPRF. This procedure imposes O(m · |S|) communication cost to T EE .

7.2 Costs of EP-MPD

Computation Cost. In step 3, at each level d, each client Cj,i invokes an instance of EG-PSI. When
EG-PSI(I) or EG-PSI(II) is used, then the computation complexity of Cj,i in this step is O(m · log2(m) · |S|),
where |S| is the maximum cardinality of the clients’ sets. In step 4, Cj,i updates its set. This involves simply
removing items from its local set and the associated cost is negligible compared to other costs. Thus, the
overall computation complexity of Cj,i is O(m · log2(m) · |S|). The computation cost is dominated by the cost
of executing PRP and OPRF if EG-PSI(I) and EG-PSI(II) are used respectively. The computation complexity
of T EE in either case (when EG-PSI(I) or EG-PSI(II) is used) is O(m · log2(m) · |S|).

Communication Cost. In step 3, at each level d, each client C0,i transmits its updated set to an instance

of EG-PSI(I) or EG-PSI(II). Therefore, its overall communication complexity is O
(
m ·

(
|S0,i| +

d∑
u=2

(|S0,i| −
u−1∑
u′=1

|S(u′)
∩ |)

))
where d = log2(m) and |S(u′)

∩ | is the size of the intersection that C0,i has with the clients of

the other group at level u′. On the other hand, at each level d, the communication complexity of each client
C1,i is O(m · log2(m) · |S1,i|). Note that the majority of the clients will eventually become members of group
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0. Thus, their set size eventually reduces when they (i) proceed to a higher level in the tree and (ii) have
intersections with other clients’ sets.

The communication complexity of T EE , when EG-PSI(I) is used, is O(m · log2(m) · |R|), where |R| is
the maximum cardinality of sets intersection that a client may have with clients of the other group. The
communication complexity of T EE , when EG-PSI(II) is used, is O(m · log2(m) · |S|).

8 Related Work

A detailed deduplication method has been proposed in [31] that used existing techniques of finding duplicates
such as suffix array [36] and MinHash [11]. However, there were no privacy requirements in this method as
the data owner is responsible for local deduplication. As we consider the problem of deduplication in a
distributive setting, thus our problem statement is fundamentally different from [31].

In [29], the problem of privacy-preserving deduplication by a centralized service was discussed – there
is a server that stores multiple users’ files after removing duplicates. Their method involves a second server
which helps in setting up keys for each user using an OPRF. Our work is different from [29] in many ways.
First, we apply OPRF for encrypting the dataset elements, which allows efficient deduplication. Second, our
deduplication requirement is more granular – we want entries of users’ datasets to be deduplicated. If the
two datasets have the same elements irrespective of their order, then at the end of our deduplication, one
of the users will receive an empty dataset and the other will receive their dataset unchanged. On the other
hand, since [29] considers a file as a whole (not every set element), so two files M1 and M2 have the same
elements but in a different order will not be removed. Third, our public key-based deduplication protocol is
federated as opposed to [29] which is centralized (all data is stored in a centralized server responsible for the
deduplication). Fourth, [29] is a two-server setting – one server helps in deduplication and the other stores
the deduplicated files. In contrast, in our protocol apart from the users, we only have one third-party.

Another work along the lines of [29] is [33] which proposed Multi-Key Revealing Encryption (MKRE)
that lets a server compress the encrypted files of multiple users by removing ciphertexts related to similar
plaintexts. Their construction is based on message lock encryption, therefore, it is subject to dictionary
attacks [34]. Our scheme is not vulnerable to such attacks and, as a result, provides a stronger security
guarantee.

The work of [9] also has pointed out the need for data processing for ML and applied PSI-type tools.
However, their problem statement is to find a mismatch in the datasets belonging to two participants, whereas
we are considering finding duplicates (matching data) in sets belonging to two or more parties. Additionally,
their application domain is narrow as they only considered labeled data. Their end goal is to find entries
in two different sets where their features match but their corresponding labels do not match. On the other
hand, our protocol supports both labeled and unlabeled data.

9 Conclusion

It was established in [31] that machine learning benefits significantly from deduplication. However, it was not
evident how federated learning (FL) could benefit from deduplication without compromising data privacy.
Our successful and efficient solution to this problem has paved the way for further applications. Our pioneer-
ing protocols, EG-PSI(I) and EG-PSI(II), can be employed in any distributed system to identify and efficiently
remove duplicates. Although this paper considers elements as duplicates only if they are exact copies, there
are scenarios where elements that are not exact matches but are sufficiently similar should also be treated as
duplicates [31]. Our current primitives can easily be extended to address this case. By applying fuzzy hash
functions, which map closely related elements to the same digest, the deduplication of near-match elements
can be reduced to the problem of deduplication of exact-match elements, allowing the use of EG-PSI(I) and
EG-PSI(II) in distributed setups. While our system’s application focuses on text-based learning, it can also
be extended to other areas, such as image processing and speech recognition, thereby broadening its utility
and impact.
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A Related Work in PSI Research

Since their introduction in [19], numerous PSIs have been designed. In general, PSIs fall into two broad
categories traditional and delegated. In traditional PSIs, clients (i.e., data owners) compute the result inter-
actively using their data stored locally. In this research line, researchers in [45] introduced two two-party
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PSIs, one secure against semi-honest and the other against malicious (or active) adversaries. These proto-
cols are the fastest two-party PSIs to date. They use Oblivious Key-Value Stores (OKVS) data structure
and Vector Oblivious Linear Evaluation (VOLE). These solutions’ computation cost is O(c), where c is a
set’s cardinality. They also impose O(c log c2 + κ) and O(c · κ) communication costs in the semi-honest and
malicious models respectively, where κ is a security parameter.

Dorre et al. [17] proposed an efficient two-party PSI that requires each party to locally possess a secure
hardware, a requirement that may not always be possible to meet. The scheme further relies on a hash function
and deterministic symmetric-key encryption. The scheme’s communication complexity is O(poly(κ) + |S|λ)
and its computation complexity is O((2 · |S|) ·poly(κ · l)), where l is a set element’s bit size and λ is a security
parameter. As the authors stated, the protocol cannot directly support multiple more than two parties.

Furthermore, researchers developed PSIs that allow multiple (i.e., more than two) parties to compute the
intersection. The multi-party PSIs in [24,30] are secure against semi-honest adversaries while those proposed
in [7,20,53,30,40] were developed to remain secure against active ones. The protocols in [30] and [40] are the
most efficient multi-party PSIs designed to be secure against passive and active adversaries respectively. The
computation and communication complexities of the PSI in [30] are O(c · m2 + c · m) and O(c · m2). The
PSI in [40] has a parameter t that determines how many parties can collude with each other and must be
set before the protocol’s execution, where t ∈ [2,m). Its computation and communication complexities are
O(c · κ(m+ t2 − t(m+ 1))) and O(c ·m · κ) respectively.

Delegated PSIs use cloud computing for computation and/or storage. These PSIs can be further cate-
gorized into those that allow one-off and repeated delegation of PSI computation. The most efficient one
that supports one-off delegation is [26], designed for the two-party setting, with an overhead of O(c). Re-
searchers also proposed a multi-party PSI that supports repeated delegation and efficient updates [2]. It
imposes O(h · d2 ·m) and O(h · d ·m) computation and communication costs respectively, during the PSI
computation. Furthermore, to incentivize clients to participate in a PSI protocol and share their sensitive
inputs, researchers proposed a PSI that rewards participants [1].

Thus, despite the development of numerous two-party and multiple-party PSIs, none of them to date can
match the features offered by our PSIs.

B Datasets and FL Hyperparameters

We use the following datasets in our study:

1. Haiku5: This dataset contains 15,281 Haikus scraped from “reddit.com/r/haiku”. Haiku is a Japanese
style of short poetry.

2. Rotten Tomatoes6: It contains 10,662 movie reviews from the Rotten Tomatoes movie critic website.
Originally intended for sentiment analysis, the dataset has 5,331 positive and negative reviews each. In
our experiments, we ignore the sentiment of the reviews and train the CLM only on the review.

3. Short Jokes7: It contains 231,657 jokes scraped from Reddit. We randomly sample 50,000 jokes for our
experiments.

4. Poetry8: It contains 573 poems from the Renaissance and Modern eras by various poets.
5. IMDB [35]: This dataset contains 50,000 movie reviews from the IMDB movie critic website. Similar

to the Rotten Tomatoes dataset, the IMDB dataset was originally intended for sentiment analysis. We
ignore the sentiment of each review and only train the CLM on the review.

6. Sonnets9: This dataset contains 460 sonnets (including variations) from William Shakespeare. Sonnets
are 14-line poems with variable rhyme schemes

5 https://www.kaggle.com/datasets/bfbarry/haiku-dataset
6 https://huggingface.co/datasets/cornell-movie-review-data/rotten_tomatoes
7 https://www.kaggle.com/datasets/abhinavmoudgil95/short-jokes
8 https://huggingface.co/datasets/merve/poetry
9 https://huggingface.co/datasets/Lambent/shakespeare_sonnets_diffused
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7. Plays10: It contains 521 plays from William Shakespeare.

We train the GPT-2 Medium and GPT-2 Large models for 5–10 and 1–2 local epochs respectively. Both
models are trained for 5 rounds. The Haiku GPT-2 Large was trained for 1 epoch while the other GPT-2
Large models were trained for 2 epochs. The Poetry and Sonnets GPT-2 Medium models were trained for 10
epochs while the others were trained for 5 epochs. We observe that training GPT-2 Large for more epochs
and data results in overfitting and poor Test set perplexity across all duplication levels.

For all experiments, we use a learning of 5×10−5 with the AdamW [32] optimizer. We use a linear warm-
up schedule with 10% of the training steps as warm-up steps. We use ℓ2-norm clipping for the gradients and
set the threshold to 1.0. We set the sequence length for the datasets as follows:
1. Haiku: 100
2. Rotten Tomatoes: 200
3. Short Jokes: 100
4. Poetry: 1000
5. IMDB: 500
6. Sonnets: 400
7. Plays: 1000

For the Short Jokes dataset, we randomly sample 50,000 elements to ensure the running time is feasible as
we train with 10 clients. We set the batch size to values in the range [4, 32], depending on the sequence length
and model size to ensure that training can be performed on one RTX A6000 GPU. We use a Train/Test split
of 80/20 for all datasets. In the case of datasets like IMDB that have a separate Test set, we combine the
original Train and Test sets into a single dataset, shuffle it, and then create 80:20 splits. We fix the random
seed to 123 for the Numpy, PyTorch, and Python random number generators to ensure the reproducibility
of our results.

10 https://huggingface.co/datasets/Trelis/tiny-shakespeare
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