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Abstract

Many efficient custom protocols have been developed for two-party private set intersection
(PSI), that allow the parties to learn the intersection of their private sets. However, these
approaches do not yield efficient solutions in the dynamic setting when the parties’ sets evolve
and the intersection has to be computed repeatedly. In this work we propose a new framework
for this problem of updatable PSI — with elements being inserted and deleted — in the semi-
honest model based on structured encryption. The framework reduces the problem of updatable
PSI to a new variant of structured encryption (StE) for an updatable set datatype, which may
be of independent interest. Our final construction is a constant round protocol with worst-case
communication and computation complexity that grows linearly in the size of the updates and
only poly-logarithmically with the size of the accumulated sets. Our protocol is the first to
support arbitrary inserts and deletes for updatable PSI.

1 Introduction

Private set intersection (PSI) protocols allow two parties with input sets A and B respectively, to
learn the intersection A∩B, while hiding each input set from the other party. Efficient custom pro-
tocols have been developed for two party PSI based on public-key primitives [DT10, JL10, RT21],
oblivious transfer extension [PSSZ15, KKRT16, RR17, PRTY19, PRTY20, CM20, GPR+21, RS21]
and vector oblivious linear evaluation [RS21, CILO22], where both the communication and the
computation complexity of the protocol scale linearly or almost linearly with the size of the
input sets. Protocols for PSI and related private set operations have been used in a number
of privacy-preserving applications, including online advertisement [IKN+20], contact discovery
[DRRT18, KRS+19, HSW23], and public-key authentication for SSH [RLJR22].

Updatable PSI. For a number of applications of PSI including online advertisement [IKN+20]
and password breach monitoring [MIC], the set intersection is computed multiple times as the sets
grow or shrink over time. This notion of Updatable PSI was first formalized by Badrinarayanan et
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al. [BMX22]. The authors proposed two protocols based on the Decisional Diffie-Hellman (DDH)
assumption, where the complexity of successive PSI computations is linearly dependent on only
the size of the updates and not the size of the entire input sets. Their first protocol only supports
inserts, and the second protocol supports inserts along with a weak notion of deletes — inserted
elements can only be deleted after a certain number of epochs.

Arbitrary deletions. A protocol for updatable PSI that supports arbitrary deletions is not
known to date; but it would be a valuable tool for privacy-preserving applications. Consider for
example, the application of measuring online ad statistics [IKN+20]. In this setting, we have two
parties: a merchant running an online ad campaign, and an online ad agency offering a platform
where users can interact with the merchant’s ads. The merchant is interested in measuring the
effectiveness of their ad campaign over a period of time. This would involve computing some
statistics (including functions of the set intersection) over the user data of both the merchant and
the ad agency. These aggregate statistics would have to be computed repeatedly over a period
of time. In order for both the merchant and the ad agency to stay compliant with privacy laws
(like GDPR), they must be able to update their data, including inserting or deleting user records.
Hence, a key building block for such a privacy-preserving application would be an efficient protocol
for computing private set intersection and related functionalities (like union or cardinality of the
intersection) with the ability to update sets arbitrarily over time.

This leads to the following natural question, which we affirmatively answer in this work:

Can we design updatable PSI protocols that support arbitrary insertions and deletions in
constant rounds and with communication and computation complexity that is sublinear
in the size of the accumulated sets?

1.1 Our Contributions

In this paper we construct such an updatable PSI protocol, where either party can insert or delete
elements. Our protocol scales with the sizes of the parties’ updates, and only poly-logarithmically
with the size of their accumulated sets. Our construction stems from a general framework that
builds updatable PSI (with arbitrary deletions) generically from a flavor of dynamic structured
encryption (StE) [CGKO06, CK10] for the set data structure. Dynamic StE is a cryptographic
primitive that allows a client to create, query, and update an encrypted data structure stored on
an untrusted server.

A framework for UPSI. Our framework requires the underlying StE scheme to support updates
from the client as well as membership queries from the (untrusted) server.1 At a high level, our
framework generalizes the Elgamal encryption based updatable PSI construction of Badrinarayanan
et al. [BMX22] that supports only insertions and weak deletions.

Each party (as an untrusted server) holds an encrypted data structure that represents the other
party’s (client’s) current set. First, both parties use the underlying StE scheme to update their
own sets. This is followed by invocations of the “server-side” query of the StE scheme as well
as a generic private set union (PSU) protocol to reveal the new intersection. Our framework is
general, in that it can use any dynamic StE for sets that supports server-side querying to generate
an updatable PSI protocol. However, the leakage of the resulting protocol will vary depending on
the leakage of the underlying StE scheme and PSU protocol. In order to enable its general use, we
formalize the exact leakage of our updatable PSI protocol in terms of the leakage of StE and PSU.

1In contrast to traditional dynamic StE, which only requires a scheme to support updates and queries from a
trusted client.
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Our approach generalizes prior work, but in implementing it we must confront two difficulties,
one algorithmic and the other definitional: First, the needed StE does not exist in the literature, and
there are technical challenges in realizing it while maintaining minimal leakage in the updatable PSI
framework, where only the sizes of the update sets are revealed in each epoch to both the parties.
Second, this notion of minimal leakage is difficult to capture with standard 2pc definitions [Lin17].

ESX: A dynamic StE for sets. After our framework, our main technical contribution is the de-
sign of a dynamic StE scheme ESX that can be used with the framework and may be of independent
interest. We start by designing a traditional StE scheme that only supports queries and updates
from the client. This scheme leaks the query equality to the server for membership queries, but has
minimal leakage for updates. Its protocols are constant round and it scales poly-logarithmically
with the size of the set. As we discuss in our technical overview, this requires new insights for
ORAM-like tree data structures that can change size over time.

ESX with server-side querying. In order to use ESX in our framework for updatable PSI,
we require the novel functionality of server-side querying. In particular, the party holding the
encrypted set structure (representing the other party’s set) has to be able to execute membership
queries over the encrypted set. We then modify ESX to support server-side querying with similar
asymptotic complexity and minimal leakage for both updates and server-side queries. We note
that server-side querying has not been considered in the prior StE literature, and might be of
independent interest.

Our updatable PSI: Instantiating the framework. Our construction of ESX with server-
side querying can be instantiated with an OPRF protocol based on alternating-moduli PRFs due to
Alamati et. al [APRR24] and a generic 2pc protocol like garbled circuits due to Rosuelek and Roy
[RR21]. This construction, along with the PSU protocol of Zhang et al. [ZCL+23] or Bienstock
et al. [BPSY23] can be used to instantiate our framework; resulting in an updatable PSI protocol
that supports arbitrary inserts and deletes with minimal leakage - i.e., the protocol leaks only the
size of the update sets in each epoch. Further, for each epoch, our protocol takes constant rounds,
and has worst-case communication and computation complexity that scales linearly with the size
of the update sets up to poly-logarithmic factors.

2pc with leakage. In order to accurately describe the security of our updatable PSI framework
and protocol, we also introduce general definitions of 2pc with leakage. A typical definition of
2pc security requires, informally, that “nothing is revealed to either party, beyond what they can
compute from their own input and output”. The precise meaning of this security guarantee can
be hard to interpret. Specifically, when a 2pc protocol (and its target functionality) assume that
inputs are of a certain size, or fit a given format, then arguably this size/format information is being
revealed. For example, Badrinarayanan et al. assume that each party wishes to add a fixed number
of elements in each epoch, or is willing to pad their additions up to that fixed number. In practice,
larger additions would require multiple runs of the protocol, effectively leaking information on the
size of the updates.

In this paper we take a generalized view of 2pc, where we allow for functionalities that accept
inputs of any size or type. As a result, we must also allow explicit leakage that is given to the
simulator, in order to express the information revealed about the size and type of the inputs. In
particular, in the case of an updatable PSI protocol, our functionality allows sets of any size to be
input, and the corresponding leakage explicitly states the information that will be revealed to the
parties.2 This approach has some downsides, like added complexity (especially to composition),

2This definitional approach also results in our minimal leakage being the size of the updates during the protocol.
The alternative would be to assume that the functionality only accepts updates of a fixed size which is known to
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but we argue that this approach can be used for giving security theorems that more closely match
applications.

1.2 Technical Overview

We now highlight the key technical ideas and challenges in our work. Section 2 presents our security
definitions and other preliminaries. Section 3 describes our general framework for updatable PSI
based on dynamic StE, Section 4 describes our construction of the dynamic StE scheme ESX, and
Section 5 describes our final instantiation of the updatable PSI protocol.

Our framework: UPSI from dynamic StE. Our framwork requires a dynamic StE scheme
with server-side querying which is used to create, update, and server-side query the encrypted sets.
Let our parties be PX and PY with input sets X and Y . Let X+ and X− be the elements that
PX wants to add and delete from set X, and similarly Y+ and Y− for PY . Given the existing
intersection I0 = X ∩ Y , for one epoch of updates, notice that the updated intersection

I1 = (I0 \W ) ∪ U,

where W = (X− ∩ I0) ∪ (Y− ∩ I0), U = (Y+ ∩ X1) ∪ (X+ ∩ Y1), and X1 and Y1 are the updated
sets X and Y . Our framework computes the sets U and W , and the parties can then compute the
updated intersection locally. In our framework, each party holds an encrypted data structure that
represents the other party’s current set, and proceeds as follows:

• Set U : elements to be added to the current intersection. PX first updates the encrypted set
X to X1 (held by PY ). After the updates, PY runs the server-side membership query protocol
on the encrypted set X1 to compute (Y+ ∩ X1). By the symmetric process, PX computes
(X+ ∩ Y1). The parties then use a PSU protocol to compute the set U .

• Set W : elements to be removed from the current intersection. PX computes (X−∩I0) locally,
and similarly PY computes (Y− ∩ I0). They then use a PSU protocol to compute the set W .

Our framework is depicted in Figure 6, and the security of the resulting updatable PSI protocol is
proved as Theorem 3.1. From our security theorem, in order to obtain an updatable PSI protocol
with minimal leakage, we have to design a dynamic StE scheme for minimal leakage. Since our
framework uses only client updates and server-side queries, our main goal will be to unlink updates
and queries in the StE scheme.

Our dynamic StE: Client-side query. As a first step, we give a traditional StE version of
the construction, where the client inputs both the updates and queries. Our construction utilizes
an “ORAM-like” tree with log-size buckets but without a recursive position map. Querying for
elements of the sets simply involves evaluating a PRF to determine a path, requesting that path
from the server and checking it for the relevant element. Hence, querying the same element fetches
the same path from the tree — leaking query equality to the server, unlike a typical tree ORAM.

Updates are more technically involved. The main challenge is that the underlying set is growing
and shrinking, while we would like updates (adds or deletes) and queries to not reveal information
about each other. To unlink updates and queries, we use the ORAM approach of adding elements
to the root of the tree and letting oblivious evictions eventually move them down the tree. Further,
we perform deletions lazily, meaning that to delete x, we add a flag indicating that x should be

both parties.
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deleted.3 While deletes temporarily consume more space, they will eventually be cleaned up during
evictions.

The main technical novelty in our construction is the management of the size of the tree with
minimal leakage. As data is added and deleted, we gradually add and delete leaves of the tree to
change its overall capacity. This is a delicate process because of how it interacts with our lazy
deletions: Since those deletions consume more space temporarily, it is not the size of the set, but
the number of “slots” used in the tree that should determine the capacity. This number will vary
depending on how many deletes are cleaned up during evictions.

However, the decision to grow or shrink the tree is visible to the server, and a naive approach
will result in unintended leakage. For example, if evictions opportunistically lower the size of the
tree too early and cause us to start deleting leaves, then the server can infer that is it more likely
we were adding and deleting the same element multiple times. We resolve this by growing and
shrinking based on leaked information, namely only the total number of adds and deletes (but not
what was added and deleted).

Our dynamic StE: Server-side query. To perform membership queries in this StE scheme,
the server must be able to identify the path corresponding to an element, decrypt the path, and
test for membership, all with minimal leakage. In order to fetch the correct path, the server and
the client can run any oblivious PRF protocol. Decryption and membership testing can be done
in secure 2pc to reveal only the final output to the server. We show that the resulting StE scheme
has no leakage beyond the size of the update and query sets. Finally, we use this StE scheme with
server-side querying to instantiate our updatable PSI protocol with minimal leakage.

1.3 Related Work

Conventional PSI. Over the last decade, the design of two-party and multi-party PSI protocols
has been an active area of research, where the focus has been on developing concretely efficient
solutions for different network settings and practical set sizes. There are several protocol paradigms
for PSI, including circuit-based [HEK12, PSWW18], key agreement [DT10, JL10], oblivious transfer
extension [PSSZ15, KKRT16, RR17, PRTY20, CM20, GPR+21, RS21, BPSY23] and vector OLE
[RS21, CILO22], to name a few. Most of these conventional protocols have computation and
communication complexity that scale linearly with the size of the input sets. All these constructions
leak the size of both input sets, along with the expected output (which is either one-sided or two-
sided).

Sublinear Communication PSI. In the case where the input sets have asymmetric sizes, it is
possible to construct two-party PSI solutions where the communication scales with the size of the
smaller set. These solutions include those based on RSA accumulators [ADT11], pairing based accu-
mulators [ALOS22], leveled fully homomorphic encryption [CLR17, CHLR18] and Computational
Diffie-Hellman [ABD+21]. All these protocols use expensive cryptographic operations (public-key
operations), and they have linear computation overhead in the size of the larger set, making them
not ideal for the updatable setting even when considering asymmetric set sizes.

For the asymmetric case, a number of works have also designed PSI solutions in the offline-online
model, where in the offline phase the parties do some pre-processing given as input the larger set
[RA18, KRS+19]. In these constructions the online phase has computation and communication
complexity that scales linearly with the size of the smaller set. However, these solutions have not

3In the actual construction, we just add x again to delete it. At query time, we check if x appears an even or odd
number of times and determine if it is still in the set. Since both adds and deletes are now essentially the same, lazy
deletion also helps us reduce the leakage of the resulting construction.
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been explored in the updatable setting with one exception. Kiss et al. [KLS+17] extend their
offline-online PSI framework to support insert and delete updates as well. However, their protocol
has leakage beyond the size of the input and update sets. Particularly, when an element is output
from their PSI protocol, both parties learn in which epoch the same element was previously inserted
in the other party’s set. In our updatable PSI framework we will avoid this ‘historical’ leakage using
our novel StE construction, while paying a poly-logarithmic overhead in complexity.

Another new direction in PSI literature is to consider settings where one party’s input set has a
publicly known structure, allowing for more efficient PSI solutions where the communication scales
with the description size of the structured set instead of its cardinality [GRS22, GRS23, GGM24].
This structure-aware PSI construction is based on oblivious transfer (OT) and some variant of
function secret sharing (FSS). These protocols are especially useful to compute fuzzy PSI — where
the two parties have elements in the intersection even if their points are ϵ close in some metric space.
For this application the publicly known structure is a union of constant radius ℓ−infinity balls.
These solutions are only known for special types of structured sets, and they are not comparable
to our updatable PSI solution for arbitrary sets.

Private Set Operations with updates. The reactive functionality of updatable PSI was first
formulated by Badrinarayanan et al. [BMX22]. They developed two solutions based on the DDH
assumption for updatable PSI, one that supports arbitrary inserts, and one for arbitrary inserts
along with “weak deletion”. Here weak deletion implies that elements inserted before the latest t
epochs are deleted (where t is a parameter). Their constructions only leak the size of the update sets
in each epoch, unlike the updatable PSI construction due to Kiss et al. [KLS+17]. Their solutions
are also asymptotically optimal - with their communication and computation scaling linearly with
the size of the update sets. Our new framework for updatable PSI improves on [BMX22] by
allowing for arbitrary deletes and inserts in each epoch, at the cost of a poly-logarithmic overhead
in computation and communication complexity. All our stated complexities are also worst-case,
whereas [BMX22] costs are amortized over a larger number of epochs for weak deletions.

Dittmer et al. [DIL+22] study a weighted variant of asymmetric and updatable PSI in which the
output is the sum of the weights of keywords in the intersection. Their approach avoids expensive
public key cryptography, and instead uses symmetric key based FSS for point functions as the key
building block. The communication complexity of each update and weighted-sum PSI computation
scales linearly with the size of the updates, however the computation complexity of their protocol
still scales with the size of the entire set. Their work is also limited to the three-party setting,
where the client inputs the smaller set, and the larger input set is available with two non-colluding
servers - making their model incompatible with ours.

Structured Encryption. Structured encryption (StE) was introduced by Chase and Ka-
mara [CK10] as a generalization of index-based searchable symmetric encryption (SSE) [SWP00,
CGKO06]. The most common and important type of StE schemes are multi-map encryption
schemes which are a basic building block in the design of efficient SSE schemes [CGKO06, KPR12,
CJJ+14], expressive SSE schemes [CJJ+13, FJK+15, KM17, KM18] and encrypted databases
[KM18, CNR21]. StE and encrypted multi-maps have been studied along several dimensions includ-
ing dynamism [KPR12, KP13, CJJ+14, HK14], I/O efficiency [CJJ+14, CT14, ANSS16, MM16,
DP17, ASS21, DPP18], and for different security notions [Bos16, GMP16a, KKL+17, BMO17,
EKPE18, SDY+18, AKM21].

The key building block in our updatable PSI construction is a dynamic StE scheme with server-
side querying. To the best of our knowledge there is no prior work on structured encryption—except
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for [KM22]4—that focuses on server-side querying. Our StE construction is based on “ORAM-like”
trees, which are resizable and have no position map. Our StE design choices ensure that the con-
struction allows for updatable sets, and that it has constant round and worst-case polylogarithmic
update/query complexity. We next describe some standard ORAM constructions, and discuss why
they were not a good fit for our setting.

Oblivious RAM. ORAM allows a client to hide its data access patterns from an untrusted server
that it uses for outsourcing data. This notion was first introduced by Goldreich and Ostrovsky
[GO96], but it has since been heavily optimized for a number of applications [PR10, SDS+18,
WCS15, Ds17]. Our newly proposed dynamic StE construction follows the tree-based ORAM
paradigm [SDS+18, WCS15, DvDF+16] and specifically our eviction algorithm closely follows the
eviction algorithm in Onion ORAM [DvDF+16]. All standard tree-based ORAM constructions
support fixed array size and have logarithmic round complexity, and hence they cannot be directly
used to design our StE construction. TWORAM [GMP16b] does avoid the logarithmic round
complexity using server-side computation and by employing garbled circuit based gadgets to offload
most of the computation to the server. However by default this construction does not support
dynamic arrays — which is critical for our updatable setting.

The only known resizable tree-based ORAM construction is due to Moataz et al. [MMBC15].
However, this construction along with other tree-based ORAM constructions have logarithmic
round complexity due to the need for recursively storing the position map in a smaller ORAM.
Our StE construction avoids the need for a position map altogether, making our query and update
protocols constant round.

2 Preliminaries

Basic terminology and notation. In this paper, efficient means probabilistic polynomial-time
(in the input size). The security parameter will always be denoted k. We denote the empty string as

ε. The symbol ∥ denotes string concatenation. For a randomized algorithm A, we write y
$← A(x)

to denote running A on input x and letting y be a random variable representing its output.

Basic primitives. We will use CPA-secure symmetric encryption, pseudorandom functions (PRFs),
and collision-resistant hash functions. As our theorems won’t depend on the finer details of the
definitions, we omit them. We refer the reader to, e.g., Katz and Lindell [KL20] for these definitions.

2.1 Two-Party Computation Definitions

Our treatment of two-party protocols is agnostic to details of how they are formally defined. We
will consider stateful protocols where both parties accept inputs as well as some (possibly empty)
previous state, and emit local outputs and some updated state. (This state refers to information
saved between runs of the protocol, and not the information privately held by the parties during a
run of the protocol.) When Π is a stateful two-party protocol, we write

(out1, st1; out2, st2|V1,V2)
$← Π(in1, st1; in2, st2)

to denote running Π where party i gets input ini and state input sti, and emits output outi and
an updated state, and has view Vi (consisting of its random tape and all incoming messages). We

4[KM22] supports a limited form of server-side querying and is designed for a weaker adversarial model than the
one considered in our work.
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Functionality FUPSI(in1, in2, st)

1 Parse (X,Y )← st
2 Parse (X+, X−)← in1, (Y+, Y−)← in2
3 X+ ← X+ \ (X− ∪X); X− ← X− ∩X
4 Y+ ← Y+ \ (Y− ∪ Y ); Y− ← Y− ∩ Y
5 X ← (X \X−) ∪X+

6 Y ← (Y \ Y−) ∪ Y+

7 st← (X,Y )
8 (out1, out2)← (X ∩ Y,X ∩ Y )
9 Return (out1, out2, st)

Functionality FPSU(in1, in2)

1 Parse X ← in1;Y ← in2
2 Return (X ∪ Y,X ∪ Y )

Figure 1: Updatable set intersection functionality FUPSI and private set union functionality FPSU . In both
functionalities, if any input is not the prescribed form, the functionality returns (⊥,⊥,⊥).

will also consider stateless (i.e., one-time) protocols, where we omit the state inputs and outputs.
When they are not relevant, we omit the V1,V2 outputs from the notation.

A (deterministic) two party reactive functionality is, formally, any function F : ({0, 1}∗ ∪
{⊥})3 → ({0, 1}∗ ∪ {⊥})3. Following our emphasis on the full leakage profile of two-party pro-
tocols, we do not allow functionalities to be “partial”; they must be total functions (e.g. they
must explicitly return errors if their input is not of the expected form). We also do not consider
randomized functionalities in this paper. We will usually write the evaluation of a functionality
F as (out1, out2, stF ) ← F(in1, in2, stF ); Intuitively, the first two inputs to F correspond to the
parties’ inputs, and the third input the state of the functionality. The functionality outputs the
parties’ local outputs and an updated state.

We also define (non-reactive, deterministic) functionalities to be functions of the form F :
({0, 1}∗ ∪ {⊥})2 → ({0, 1}∗ ∪ {⊥})2. These can be interpreted similarly to the above definition,
except that they do not have state inputs or outputs.

Figure 1 defines the reactive functionality FUPSI updateable private set intersection and the
non-reactive functionality FPSU for private set union. In contrast to prior work, our version of
FUPSI allows for set updates to vary in size, and even be malformed (e.g. deleting an element that
is not already present). Similarly, FPSU allows for the sets X,Y to be of any size (though when they
are chosen by a poly-time adversary, X and Y must be written down explicitly, which effectively
limits their size when working with the functionality in security definitions). Compared to prior
work, these definitions are more general in allowing flexibility for the users, but necessitate modified
definitions (presented next) to be achievable in some cases.

Security of two-party computation for reactive functionalities. The following defi-
nition captures secure two-party computation of a reactive or non-reactive functionality against a
passive, non-adaptive adversary.

Our definition notably departs from standard two-party computation definitions (see, e.g., [Lin17])
in that it explicitly models the leakage of a protocol in the style of structured encryption. This
appears as a leakage profile L = (L1,L2), a pair of of algorithms where Li computes the information
required for simulation for party i. Traditionally this leakage is expressed as a “parameter” of a
functionality, but our protocols will involve non-trivial leakage that is more properly expressed this
way.

In our definitions, the adversary is allowed several invocations of the protocol from the point of
view of one party, each of which mutate the state of the parties. For technical reasons, we consider
a version of this definition where the adversary is allowed to ask for several sequential runs of the
protocol with “resets” in between them. In traditional definitions, standard hybrid arguments can
show that a single execution is equivalent to several with resets. However, in our setting with
leakage profiles, this will no longer be the case. That is, it may be possible that a protocol has
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some non-trivial leakage that is not noticeable in a single run but shows up as correlations between
several runs.

Definition 2.1. Let Π be a two-party protocol, let F be a two-party reactive functionality, and let
L = (L1,L2) be a pair of deterministic algorithms. We say that Π is a secure two-party protocol for
F with respect to leakage L, or L-secure, if for i = 1, 2 and all efficient A there exists an efficient S
such that

Pr[2pcRealAΠ,i(1
k) = 1]− Pr[2pcIdealAF ,L,S,i(1

k) = 1]

is a negligible function of k, where 2pcRealAΠ,i and 2pcIdealAF ,L,S,i are defined in Figure 2.

We now explain the meaning of the games, starting with 2pcRealAΠ,i. This game starts with

A choosing a sequence
−→
in , where each entry consists of either a pair of inputs for the parties or a

special symbol reset. Intuitively, entries of this vector indicate either that A would like the protocol
run on these inputs, or to have the parties’ private states set to empty, effectively restarting their

interaction from scratch. The game then processes this vector to product
−→
out,
−→
V for A. Each such

entry is produced by running Π on the chosen inputs, using state st1, st2 that are maintained in the
game. When a reset symbol is encountered, the game simply returns st1, st2 to their initial empty
states.

The ideal game 2pcIdealAF ,L,S,i starts by initializing states stF , stL, stS . When A provides
−→
in ,

the game produces the individual views by invoking the functionality F , and then the appropriate
leakage function (either L1 or L2), and finally runs the simulator S on the input and output of the
party, and the output λ of the leakage function to produce the view. Each of F ,L,S maintains its
own state, which are updated on each run. We note that, crucially, the outputs in

−→
out are chosen

by the functionality and not the simulator. Reset symbols are now processed by resetting only
the state of the functionality (but not the simulator or leakage profile). The leakage profile and
simulator are however notified of a reset on lines 6 and 7, where they are allowed to update their
state.

Simplifications for stateless F . When F is non-reactive, the definition simplifies considerably.
In the real game, we can omit the states st1, st2, as the protocol is “one-shot”. This means that
resets become meaningless, and we can assume they are not submitted. In the ideal game, we now
omit the functionality state stF , but (importantly) keep the leakage and simulator states stL, stS
so that they can correlate the simulated views, if required. We can similarly assume that resets are
not submitted (as L,S know that there is no state to reset).

A smaller detail is that on line 1 of NextVi of the ideal game, we can omit the out1, out2 inputs
to L, since it can compute these itself. (With a stateful F this might not the be the case, since L
does not have access to stF .) We also note that our definitions apply a form of correctness in that
the adversary can test if the output value it receives is correct according to F .
Reverses of protocols. We will sometimes take two-party protocols and swap the roles of the
parties. Formally, we define the reverse of a protocol Π, denoted Πr, to the protocol resulting from
switching the roles of the parties (include who speaks first). It is trivial that if Π is a L-secure
protocol for F , then its reverse Πr is Lr secure for Fr, where Lr and Fr interchange their inputs
and outputs from F and L in the obvious way.

2.2 Structured Encryption Definitions

We use two notions of dynamic structured encryption (StE) in this paper. Both model a set data
structure, where a client can add and delete elements from a set, and then issue (batch) membership
queries on the current set. Our first notion (Definition 2.2) is the standard one, where the client
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Games 2pcRealAΠ,i(1
k),

1 (
−→
in , stA)

$← A(1k)
2 st1, st2 ← ⊥; −→out,

−→
V ← ε

3 For j = 1, . . . , |−→in |:
4 If

−→
in [j] = reset:

5 st1, st2 ← ⊥
6 Else:

7 (in1, in2)←
−→
in [j]

8 (out,V)← NextVi(in1, in2)

9
−→
out← −→out∥out;

−→
V ←

−→
V ∥V

10 b
$← A(−→out,

−→
V , stA)

11 Return b

NextVi(in1, in2, st1, st2)

1 (out1, st1; out2, st2|V1,V2)
$← Π(in1, st1; in2, st2)

2 Return outi,Vi

Game 2pcIdealAF,L,S,i(1
k)

1 (
−→
in , stA)

$← A(1k)
2 stF , stS , stL ← ⊥;−→out,

−→
V ← ε

3 For j = 1, . . . , |−→in |:
4 If

−→
in [j] = reset:

5 stF ← ⊥
6 stL ← L(reset, stL)
7 stS ← S(reset, stS)
8 Else:

9 (in1, in2)←
−→
in [j]

10 (out,V)← NextVi(in1, in2)

11
−→
out← −→out∥out;

−→
V ←

−→
V ∥V

12 b
$← A(−→out,

−→
V , stA)

13 Return b

NextVi(in1, in2)

1 (out1, out2, stF )← F(in1, in2, stF )

2 (λ, stL)
$← Li(in1, in2, out1, out2, stL)

3 (V, stS)
$← S(ini, outi, λ, stS)

4 Return outi,V

Figure 2: Games 2pcRealAΠ,i and 2pcIdealAF,L,S,i used in Definition 2.1.

issues queries, and follows works like [CK10]. Intuitively, security is only guaranteed for the client,
as the server has no private inputs. We only use this definition for presenting our construction ESX
for standalone purposes.

Our second notion (Definition 2.5) is new, and will be used in our general framework. This
notion, which we call StE with server-side querying, allows the server to make queries instead of
the client. The server’s input is considered private, so the security definition includes conditions for
both parties, in the style of two-party computation. Our approach will be to construct a standard
StE scheme and then modify it (using standard tools) to support server-side querying.

Our security and correctness definitions for both types of StE will be with respect to non-
adaptive adversaries who declare all of the parties’ inputs up-front. This is because the notion of
two-party computation we target for updatable PSI only requires these weaker definitions.

The next definitions introduce both types of StE.

Definition 2.2. A dynamic structured encryption (StE) scheme for the set datatype is a pair of
two-party protocols Σ = (Qry,Upd) with the following syntax.

• Qry is a protocol where the first party (i.e. the client) accepts as input a state st and a set
Xqry ⊆ {0, 1}∗, and the second party (i.e. the server) accepts as input an encrypted set ES.
The first party outputs a set Xout ⊆ {0, 1}∗ and the second party has no output. We will
usually denote this via

(Xout;⊥|V1,V2)
$← Qry(st, Xqry;ES).

• Upd is a protocol where the first party inputs a state st and sets (X+, X−), and the second
party inputs an encrypted set ES. The first party outputs an updated state st and second
party outputs an updated ES. We will usually denote this via

(st;ES|V1,V2)
$← Upd(st, (X+, X−);ES).

A dynamic structured encryption (StE) scheme with server-side querying for the set datatype
is a pair of two protocols Σ = (SQry,Upd) where Upd has the same syntax above, and SQry has

10



Game CorAΣ (1k)

1
−→op $← A(1k)

2 X ← ∅; Win← 0, st← ⊥
3 For j = 1, . . . ,−→op:
4 If (X+, X−)← −→op[j]: Upd(X+, X−)
5 Else If Xqry ← −→op[j]: Qry(Xqry)
6 Return Win

Upd(X+, X−)

1 (st;ES)
$← Upd(st, (X+, X−);ES)

2 X ← (X \X−) ∪X+

Qry(Xqry)

1 (Xout;⊥)
$← Qry(st, Xqry;ES)

2 (⊥;Xout)
$← SQry(st;Xqry,ES)

3 If Xout ̸= X ∩Xqry : Win← 1

Figure 3: Game CorAΣ used in Definition 2.3. When Σ is a standard StE scheme, the game uses the boxed
code. When Σ supports server-side querying, the shaded code is used instead.

similar syntax to Qry above, except that the server inputs Xqry and receives the output Xout, and
the client receives no output. We usually denote this via

(⊥;Xout|V1,V2)
$← SQry(st;Xqry,ES).

We next define correctness for both types of StE. We cannot use a simpler definition (e.g. where
answers are correct with probability one) since constructions will typically err with negligible (but
non-zero) probability, for example when hash collisions occur.

Definition 2.3. Let Σ be a dynamic StE scheme (with or without server-side querying) for the set
datatype. We say that Σ is correct if for all efficient A, Pr[CorAΣ(1

k) = 1] is a negligible function
in k, where CorAΣ is defined in Figure 3.

StE security. We next recall a standard non-adaptive real/ideal definition of security of tradi-
tional StE (without server-side querying) with respect to a leakage profile L [CK10]. This definition
intuitively requires that whatever is learned by the server is limited to the output λ of L.
Definition 2.4. Let Σ = (Qry,Upd) be an StE scheme for the set datatype and let L be an
algorithm. We say that Σ is a L-secure against passive persistent attacks, or simply L-secure, if for
all efficient A there exists an efficient S such that

Pr[StE-RealAΠ(1
k) = 1]− Pr[StE-IdealAL,S(1

k) = 1]

is a negligible function of k, where StE-RealAΠ and StE-IdealAL,S are defined in Figure 4.

We next define security for StE with server-side querying. As mentioned above, this requires
defining security for both parties, since now updates should be private from the server and queries
should be private from the client. In the following, we use the subscript i = 1 to denote security
for the server’s queries, and i = 2 to denote security for the client’s updates.

Definition 2.5. Let Σ = (SQry,Upd) be an StE scheme with server-side querying for the set
datatype and let L = (L1,L2) be a pair of algorithms. We say that Σ is a L-secure against passive
persistent attacks, or simply L-secure, if for i = 1, 2 and all efficient A there exists an efficient S
such that

Pr[SQStE-RealAΠ,i(1
k) = 1]− Pr[SQStE-IdealALi,S,i(1

k) = 1]

is a negligible function of k, where SQStE-RealAΠ,i and SQStE-IdealALi,S,i are defined in Figure 5.

We draw attention to some details in the ideal game used to define security. In the case i = 1,
where S is simulating the client’s view, S is given inputs X+, X− during updates but is not given
Xqry during queries. This represents that the client knows its own inputs, but does not know the
server query. We need to give X+, X− to the leakage profile to allow it to update its state for future
leakage computation. We made a similar choice in the i = 2 case (i.e. security for the client), where
Xqry is now given to the simulator during queries, but X+, X− are not given to the simulator during
updates.
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Game StE-RealAΠ(1k)

1 (−→op, stA)
$← A(1k)

2 st,ES← ⊥;
−→
V ← ε

3 For j = 1, . . . , |−→op|:
4 If (X+, X−)← −→op[j]
5 V← Upd(X+, X−)
6 Else If Xqry ← −→op[j]
7 V← Qry(Xqry)

8
−→
V ←

−→
V ∥V

9 b
$← A(

−→
V , stA)

10 Return b

Qry(Xqry)

1 (⊥;Xout|V1,V2)
$← Qry(st, Xqry;ES)

2 Return V2

Upd(X+, X−)

1 (st;ES|V1,V2)
$← Upd(st, (X+, X−);ES)

2 Return V2

Game StE-IdealAL,S(1
k)

1 (−→op, stA)
$← A(1k)

2 st,ES, stL, stS ← ⊥;
−→
V ← ε

3 For j = 1, . . . , |−→op|:
4 If (X+, X−)← −→op[j]
5 V← Upd(X+, X−)
6 Else If Xqry ← −→op[j]
7 V← Qry(Xqry)

8
−→
V ←

−→
V ∥V

9 b
$← A(

−→
V , stA)

10 Return b

Qry(Xqry)

1 (λ, stL)
$← L(Xqry, stL)

2 (V, stS)
$← S(λ, stS)

3 Return V

Upd(X+, X−)

1 (λ, stL)
$← L(X+, X−, stL)

2 (V, stS)
$← S(λ, stS)

3 Return V

Figure 4: Games StE-RealAΠ , StE-IdealAL,S used in Definition 2.4.

Game SQStE-RealAΠ,i(1
k) (i = 1, 2)

1 (−→op, stA)
$← A(1k)

2 st,ES← ⊥;
−→
V ← ε

3 For j = 1, . . . , |−→op|:
4 If (X+, X−)← −→op[j]:
5 V← Upd(X+, X−)
6 Else If Xqry ← −→op[j]:
7 V← SQry(Xqry)

8
−→
V ←

−→
V ∥V

9 b
$← A(

−→
V , stA)

10 Return b

SQry(Xqry)

1 (⊥;Xout|V1,V2)
$← SQry(st;Xqry,ES)

2 Return Vi

Upd(X+, X−)

1 (st;ES|V1,V2)
$← Upd(st, (X+, X−);ES)

2 Return Vi

Game SQStE-IdealAL,S,i(1
k)

1 (−→op, stA)
$← A(1k)

2 stL, stS ← ⊥;
−→
V ← ε

3 For j = 1, . . . , |−→op|:
4 If (X+, X−)← −→op[j]:
5 V← Upd(X+, X−)
6 Else If Xqry ← −→op[j]:
7 V← SQry(Xqry)

8
−→
V ←

−→
V ∥V

9 b
$← A(

−→
V , stA)

10 Return b

SQry(Xqry) (i = 1)

1 (λ, stL)
$← L1(Xqry, stL)

2 (V, stS)
$← S(λ, stS)

3 Return V

Upd(X+, X−) (i = 1)

1 (λ, stL)
$← L1(X+, X−, stL)

2 (V, stS)
$← S(X+, X−, λ, stS)

3 Return V

SQry(Xqry) (i = 2)

1 (λ, stL)
$← L2(Xqry, stL)

2 (V, stS)
$← S(Xqry, λ, stS)

3 Return V

Upd(X+, X−) (i = 2)

1 (λ, stL)
$← L2(X+, X−, stL)

2 (V, stS)
$← S(λ, stS)

3 Return V

Figure 5: Games SQStE-RealAΠ,i and SQStE-IdealAL,S,i (i = 1, 2) used in Definition 2.5.
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2.3 Private Set Union

As a building block in our framework, we will also assume a non-reactive private set union (PSU)
functionality (presented in Figure 1). It takes as input two sets X,Y from two parties respectively,
and it outputs X ∪ Y to both parties. A number of concretely efficient solutions for 2 party PSU
have been developed based based on OT and some form of oblivious shuffling protocol including
[KRTW19, GMR+21, JSZ+22, ZCL+23, BPSY23]. All these constructions leak the size of the input
sets to both parties, i.e. L1(X,Y ) = |Y | and L2(X,Y ) = |X|.

3 Updatable PSI from Dynamic Structured Encryption

In this section we describe a general updatable PSI protocol supporting arbitrary inserts and
deletes from any dynamic StE Σ with server-side querying and any PSU protocol ΠPSU. We prove
the security of the protocol with respect to a leakage profile that is derived from the underlying
leakage profiles of Σ and ΠPSU. We emphasize that while the framework is general, the instantiation
of the underlying protocols must be done carefully to preserve the overall security and efficiency
of the resulting updatable PSI protocol. Looking ahead, in Section 4 we will carefully construct
a dynamic StE scheme with server-side querying and use our framework to construct our final
updatable PSI protocol with minimal leakage, i.e., only the size of the updates.

Framework: Outline. Our framework is presented in Figure 6. At a high level, each party
uses Σ to update their own encrypted set (held by the other party), and to server-side query the
other party’s set. Both parties use the ΠPSU protocol to compute the elements that must be added
or removed from the intersection. We denote the parties PX and PY with input sets X and Y ,
and refer to them as the left or the right party, respectively. We assume that each party already
holds an encrypted set representing the other party’s (previous) set, and that each party knows
the intersection of the (previous) sets – denoted as I1, I2, where I1 = I2. In the first epoch of the
protocol, these encrypted sets as well as the intersection can be considered empty. The framework
now shows how to incorporate each party’s inserts and deletes X+, X− and Y+, Y−, and compute
the updated intersection.

Framework: Update and server query. To begin, both parties ensure that their inputs are
well-formed (e.g., only deleting elements if they are in the sets). In the first stage of the framework,
the left party acts as the client and runs the update protocol from Σ to perform the updates X+, X−
on ESX , held by the right party. The right party then uses the server-side query of Σ to query the
updated ESX with its additions Y+. The second stage is symmetric, with the roles reversed. At the
conclusion of the first and second stages the left and right parties receive sets S1, S2 respectively,
which together consist of the elements that must be added to the intersection.5

Framework: PSU. Next, the parties run ΠPSU on the sets S1, S2 to learn their union (expressed
as U1, U2, where U1 = U2 = S1 ∪ S2). Next, the parties must compute the elements that must be
removed from the current intersection. These elements are exactly the elements of the previous
intersection that were deleted by one or both parties. In order to compute this, the parties run
ΠPSU with the inputs X− ∩ I1 and Y− ∩ I2. The union of these sets (expressed as W1,W2) must be
removed from the previous intersection.

Framework: Output. Finally, each party locally updates the previous intersection to compute
the updated intersection.

5Recall that S1 consists of elements that the left party added that are present in the updated set of the right
party, and vice versa.
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PX(in1, st1) PY (in2, st2)

(X+, X−)← in1
(stX ,ESY , X, I1)← st1
X+ ← X+ \ (X− ∪X)
X− ← X− ∩X

(Y+, Y−)← in2
(stY ,ESX , Y, I2)← st2
Y+ ← Y+ \ (Y− ∪ Y )
Y− ← Y− ∩ Y

Upd

stX , X+, X− ESX

ESXstX

SQry

stX Y+,ESX

S2

Updr

ESY stY , Y+, Y−

ESY stY

SQryr

X+,ESY stY

S1

ΠPSU

S1 S2

U1 U2

ΠPSU

X− ∩ I1 Y− ∩ I2

W1 W2

X ← (X \X−) ∪X+

I1 ← (I1 \W1) ∪ U1

st1 ← (stX ,ESY , X, I1)
Output (I1, st1)

Y ← (Y \ Y−) ∪ Y+
I2 ← (I2 \W2) ∪ U2

st2 ← (stY ,ESX , Y, I2)
Output (I2, st2)

Figure 6: Our UPSI protocol ΩUPSI.

L1(in1, in2, out1, out2, stL)

1 (X,Y, stLΣ
1
, stLΣ

2
)← stL

2 (X+, X−)← in1; (Y+, Y−)← in2
3 Iprev ← X ∩ Y
4 X ← (X ∪X+) \X−
5 Y ← (Y ∪ Y+) \ Y−
6 Icur ← X ∩ Y
7 S1 ← Icur ∩X+; S2 ← X ∩ Y+

8 R1 ← Iprev ∩X−; R2 ← Iprev ∩ Y−

9 (λ1, stLΣ
1
)

$← LΣ
1 (X+, X−, stLΣ

1
)

10 (λ2, stLΣ
1
)

$← LΣ
1 (Y+, stLΣ

1
)

11 (λ3, stLΣ
2
)

$← LΣ
2 (Y+, Y−, stLΣ

2
)

12 (λ4, stLΣ
2
)

$← LΣ
2 (X+, stLΣ

2
)

13 λ5 $← LΠPSU
1 (S1, S2)

14 λ6 $← LΠPSU
1 (R1, R2)

15 stL ← (X,Y, stLΣ
1
, stLΣ

2
)

16 Output ((λj)6j=1, stL)

S1(in1, out1, λ, stS)
1 (Iprev, stSΣ

1
, stSΣ

2
)← stS

2 (λj)
6
j=1 ← λ

3 (X+, X−)← in1; Icur ← out1
4 S1 ← Icur ∩X+

5 U ← Icur \ Iprev
6 R1 ← X− ∩ Iprev
7 W ← Iprev \ Icur

8 (V1
1, stSΣ

1
)

$← SΣ
1 ((X+, X−), λ

1, stSΣ
1
)

9 (V2
1, stSΣ

1
)

$← SΣ
1 (λ2, stSΣ

1
)

10 (V3
1, stSΣ

2
)

$← SΣ
2 (λ3, stSΣ

2
)

11 (V4
1, stSΣ

2
)

$← SΣ
2 (X+, λ

4, stSΣ
2
)

12 V5
1

$← SΠPSU
1 (S1, U, λ

5)

13 V6
1

$← SΠPSU
1 (R1,W, λ6)

14 stS ← (Icur, stSΣ
1
, stSΣ

2
)

15 Output ((Vj
1)

6
j=1, stS)

Figure 7: Leakage profile and simulator for Theorem 3.1.
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Security and leakage. We now state the formal security theorem for our framework and defer
the proof to Appendix A.

Theorem 3.1. Suppose that Σ = (SQry,Upd) is a dynamic StE scheme with server-side querying
for the set data type that is LΣ = (LΣ1 ,LΣ2 )-secure, and that ΠPSU is a stateless secure two-party
protocol for the functionality FPSU (defined in Figure 1) with respect to leakage LΠPSU .

Then the construction ΩUPSI given in Figure 6 is a secure protocol for the functionality FUPSI

with respect to the leakage profile L = (L1,L2), where L1 is given on the left side of Figure 7 and
L2 is the symmetric version of L1.

We now explain the resulting leakage profile L1 (the case of L2 is symmetric) in our framework.
Lines 1 – 8 represent bookkeeping by the leakage profile to remember the parties’ sets X,Y , the new
and previous intersection, and the values S1, S2 (representing the elements in the new intersection
that were newly added by each party) and R1, R2 (representing the elements from the previous
intersection that were deleted by each party). Lines 9 – 14 compute the actual leakage. Lines 9 and
10 describe what the left party learns about Y+, the additions from the right party, which would
typically be only |Y+|. Then lines 11 and 12 describe what this party learns about Y+, Y− during
the other party’s update and query stage. Once again, this would typically be only |Y+| and |Y−|,
but could be more or less information depending on the leakage of the underlying scheme Σ.

Next, lines 13 and 14 compute leakage on the intermediate values. A natural choice may be
to let the left party learn |S2| and |R2|, but this should be done with the awareness that this is
non-trivial leakage about the other party’s input that is conceivably harmful in applications. We
note that prior work [BMX22] addressed this issue by assuming that the party’s input sets (X+, Y+)
were bounded by some publicly-known size, and padded smaller sets to this size before running the
PSU protocol.

From our security analysis, in order to design an updatable PSI protocol with minimal leakage
we would need to construct a dynamic StE scheme with server-side querying with minimal leakage
as well, where the update and server-side query protocols of the StE scheme leak nothing more
than the size of the update/query sets, and this will be our focus in the next section.

4 A Dynamic Encrypted Set Construction: ESX

In this section we construct an StE scheme for the set datatype that is compatible with our frame-
work. We approach this by first building a construction that we call ESX that supports client-
side querying in Subsection 4.1, which may be of independent interest. We construct ESX using
symmetric-key primitives and it has only “query equality” leakage i.e. the server learns which client
queries match across different query calls. For both update and query operations, our construction
takes constant rounds, and both parties perform work that is polylogarithmic in the size of the
accumulated set.

In Subsection 4.2 we show how to modify this ESX construction into one that supports server-
side querying using some standard cryptographic protocols: Oblivious PRF and generic two-party
computation. Most importantly, we show that this server-side querying StE has minimal leakage
while it has the same asymptotic complexity as ESX.

4.1 Client-Side Querying Version

Our construction, ESX, is given in Figure 8 which protocols Qry and Upd along with routines
Evict,ProcDels,WrtPth, and WrtBkt which are used by Upd.

15



Notation. These protocols perform operations on binary trees, which are not assumed to be
complete. We implicitly assume that children of nodes are labeled as left or right. Given a bitstring
y ∈ {0, 1}∗ and a tree T, we write Path(T, y) for the path that chooses the left or right child at
each step according to the bits of y until it reaches a leaf. If y is longer than this path is deep, the
remaining bits are ignored. In this path, we still assume that the children are labeled left or right.
We similarly refer to the “node at y” (which may be undefined if y is too long). Unions of paths
(such as the union on line 8 of Qry) will construct (non-full) binary trees. We write |Path(T, y)| for
the number of nodes on the path Path(T, y).

ESX Construction: Data layout. As with all tree-based ORAMs, the server will maintain an
encrypted binary tree, and each node of the tree will hold a bucket of some number of “slots” which
may be either real or padding. In our construction, however, the size of the tree will gradually grow
or shrink over time in epochs. We define an “epoch ending” to be when line 21 of Upd evaluates
to true. During one epoch, the tree will either grow a new level (adding two leaves per operation),
shrink one level (removing one leaf per operation), or stay the same. Also during an epoch, the
size of each bucket can grow, shrink, or stay the same.

The decision to grow the tree and buckets is visible to the server and thus may leak information.
We cannot simply track the number of real slots used in the tree and use this count, because whether
or not deletions have been cleaned depends on the actual operations. Instead, to limit leakage, the
decision to grow or shrink is determined by a simulated load, which is a pessimistic upper bound of
the number of non-padding items (representing additions and deletions) in the tree at the end of
an epoch. We insure that this upper bound depends only on the number of additions and deletions
performed during each update, and can thus be simulated from a leakage profile that provides these.

ESX Construction: Ingredients. We use a standard CPA-secure encryption scheme (Enc,Dec)
with k-bit keys. We abuse notation and feed trees to these algorithms to mean running encryption
or decryption on every slot in a tree. We also use a variable-input-length PRF F that takes a k-bit
key and produces a k-bit output.

The construction uses a routine binrev(k, t) that takes an positive integer k and an integer
0 ≤ t < 2k. It computes the standard k-bit representation of t and reverses it.

Finally the construction uses a padding pad(k,T′). On input positive integers k and a (partial)
binary tree T′, it pads all of the buckets in T′ with plaintext dummy slots to some fixed size that
depends on k. The theorem will specify our requirements on this operation.

ESX Construction: Querying. The query protocol is given on the left side of Figure 8. The
client starts by initializing its state if this is the first time it has run: The routine InitSt(k) chooses

KF ,KE ,KH
$← {0, 1}k, sets X ← ∅, and sets tep, sLoad,Dels, curDels all to zero. The client takes

hashes of each element in its input set Xqry, applies the PRF F to the hashes, and sends the set of
outputs τ to the server. By our assumption on F , the outputs are all k bits long.

Next, for each string y ∈ τ the server looks up the path in its tree Tc using y. Since y is k
bits long, these paths will extend to a leaf of the tree (for sufficiently large values of the security
parameter k; since the adversary is polynomial-time in k, the tree can be assumed to have depth at
most k). The server forms a subtree T′c of Tc as the union of these paths and send it to the client.

The client computes its output by decrypting the subtree T′c to T′. For each element x of its
input, it checks if (the hash of) x is present on its corresponding path an odd number of times,
keeping it for the output if it is.

ESX Construction: Updating. The update protocol is given on the right side of Figure 8, with
associate routines given lower in the figure. The client begins the protocol by initializing its state
if necessary, and then lines 3–5 ensure that X+, X− have the appropriate form and update the
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local copy of X. The client then simply tells the server total number of elements being added and
deleted.

The server computes the next n = |X+| + |X−| deterministic paths in this tree as determined
by its state counter t, and let T′c be their union and sends it to the client. The client decrypts T′c
to T and it removes the padding slots. Then for each element x to be added or deleted, it appends
HKH

(x) to the root of T′c and calls Evict on the next deterministic path; We comment below on
how eviction works.

After eviction, it then checks if the current epoch has ended. The scheme maintains an invariant
that at the end of each epoch the server’s tree Tc is a complete binary tree with 2h leaves, and at
this point the client decides if the next epoch should add a level to the tree, remove a level, or leave
the depth unchanged.

This decision is made according to sLoad, the “simulated load” on the tree, which is updated at
the end of each epoch as follows: The client pessimistically assumes that tep new data items have
been added to the tree (i.e. no delete operations were cleaned up), so it adds tep to sLoad. But we
also know that the previous epoch’s delete operations were cleaned up, so it subtracts 2 ·Dels. The
client then adjusts h, the new tree height, using the updated sLoad on lines 26–27.

Finally, the client pads the tree T′ using pad(k,T′), which adds extra padding slots to nodes of
T′. Here, the nodes may grow or shrink in response to a change in sLoad. The client then encrypts
T′ and sends the result to the server, which overwrites the corresponding portion of its encrypted
tree (including appending new nodes or deleting nodes, according to the T′c that it receives).

ESX Construction: Eviction. An eviction operation is called using a string y that specifies a
path to leaf in T′, along with a target height h. It starts by emptying the path into a multiset S
and calling ProcDels(S). After this call, all items in S appear exactly one or zero times. It then
checks the target height h and compares to the length of Path(T′, y). If the path is too short, then
it adds two leaves, and if it is too long, it deletes the final leaf. It then calls WrtPth, which calls
WrtBkt on each node of the path (plus possibly the two new leaves), and WrtBkt packs every item
from S into a bucket if the path determined by the PRF goes through that bucket.

Security. We now analyze our construction as an StE scheme. Intuitively, updates will leak
only the number of additions and deletions in each, as the size of the tree (and all of its slots and
buckets) can be inferred from these values alone. Queries will leakage an equality pattern because
if x is queried multiple times, then the same leaf will be requested multiple times.

To express this formally, for a tuple qrys of n sets and an element x, define the membership
equality pattern meq(qrys, x) ∈ {0, 1}n with i-th bit indicating if x is a member of the i-th set of
qrys.

Theorem 4.1. Let ESX be the construction given in Figure 8. Assume that (Enc,Dec) is CPA
secure, that F is a secure PRF, and that H is collision-resistant. Assume the function pad(k,T)
pads the nodes of T up to ω(k) slots. Then ESX is LESX-secure, where LESX is the leakage profile
is as follows:
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Protocol Qry(st, Xqry;ES)

Client:
1 If st = ⊥: st← InitSt(k)
2 Parse st
3 τ ← ∅
4 For x ∈ Xqry: τ ← τ ∪ {FKF

(HKH
(x))}

5 Send τ

Server:
6 If ES = ⊥: ES← (∅, 0)
7 (Tc, t)← ES
8 T′

c ← ∅
9 For y ∈ τ : T′

c ← T′
c ∪ Path(Tc, y)

10 Send T′
c

Client:
11 out← ∅
12 T′ ← Dec(KE ,T′

c)
13 For x ∈ Xqry:
14 y ← FKF

(HKH
(x))

15 (B1, . . . , Bh′ )← Path(T′, y)
16 d← 0
17 For i = 1, . . . , h′:
18 If HKH

(x) ∈ Bi: d← d+ 1
19 If d is odd: out← out ∪ {x}
20 Output out

Routine ProcDels(S)

1 For z ∈ S:
2 If mult(z, S) even:
3 Remove all z from S
4 Else:
5 Remove all but one z from S
6 Return S

Routine WrtPth(KF ,T′, S, y, h)

1 If h = |y|+ 1:
2 (S,T′)←WrtBkt(KF ,T′, S, y1:h∥0)
3 (S,T′)←WrtBkt(KF ,T′, S, y1:h∥1)
4 For i = h, . . . , 0:
5 (S,T′)←WrtBkt(KF ,T′, S, y1:i)
6 return T′

Routine WrtBkt(KF ,T′, S, y′)

1 For z ∈ S:
2 If F (KF , z)1:|y′| = y′:
3 Write z into node at y′ in T′

4 S ← S \ {z}
5 return (S,T′)

Protocol Upd(st, (X+, X−);ES)

Client:
1 If st = ⊥: st← InitSt(k)
2 Parse st
3 X+ ← X+ \ (X− ∪X)
4 X− ← X− ∩X
5 X ← (X \X−) ∪X+

6 n← |X+|+ |X−|
7 Send n

Server:
8 (Tc, t)← ES; T′

c ← ∅
9 Repeat n times:
10 T′

c ← T′
c ∪ Path(Tc, binrev(k, t))

11 t← t+ 1
12 Send T′

c

Client:
13 T′ ← Dec(KE ,T′

c);T
′ ← unpad(T′)

14 For each x ∈ X+ and then for each x ∈ X−:
15 If x ∈ X− : curDels← curDels+ 1
16 Append HKH

(x) to the root of T′

17 Repeat 8 times:
18 tep ← tep + 1
19 y ← binrev(k, t); t← t+ 1
20 T′ ← Evict(KF ,T′, y, h)
21 If tep = 2h/8: // Epoch is over
22 If sLoad < 2h/8: h← h− 1
23 If sLoad ≥ 2h/4: h← h+ 1
24 sLoad = sLoad− 2 · Dels+ tep
25 Dels← curDels
26 curDels← 0
27 tep ← 0
28 T′ ← pad(k,T′)
29 T′

c ← Enc(KE ,T′)
30 Update st
31 Send T′

c; Output st

Server:
32 Write T′

c into Tc

33 ES← (Tc, t)
34 Output ES

Routine Evict(KF ,T′, y, h)

1 Empty nodes on Path(T′, y) into S
2 S ← ProcDels(S)
3 If |Path(T′, y)| = h− 1:
4 // extend path with new leaves
5 Add node at y1:(h−1)∥0 to T′

6 Add node at y1:(h−1)∥1 to T′

7 Else If |Path(T′, y)| = h+ 1:
8 // shrink path by one node
9 Delete node at y1:(h+1) from T′

10 P ←WrtPth(KF ,T′, S, y, h)
11 Return T′

Figure 8: Our ESX construction Ω = (Qry,Upd). Protocol Upd uses routines Evict,ProcDels,WrtPth,
and WrtBkt. InitSt() samples the three keys KF , KE , and KH , sets X as ∅, and initializes
t, tep, h, sLoad,Dels, curDels, all to 0. Line 2 in both protocols means to unpack the state, which contains
(KF ,KE ,KH , X, t, tep, h, sLoad,Dels, curDels).
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LESX(in, stL)

1 (X, qrys)← stL
2 X+ ← X+ \ (X− ∪X)
3 X− ← X− ∩X
4 If (X+, X−)← in: // Update
5 λ← (|X+|, |X−|)
6 Else If Xqry ← in: // Query
7 λ← [ ] // empty multiset
8 For x ∈ Xqry:
9 l← meq(qrys, x)
10 λ← λ ∪ [l] // multiset union
11 X ← (X ∪X+) \X−
12 Output (λ, stL)

Proof. LetA be an efficient adversary. We must give an efficient simulator S satisfying definition 2.4
with leakage profile LESX. The majority of this proof follows from standard techniques, so we only
sketch them, and focus on the novel portion dealing with the overflow probability.

Via easy reductions, we can assume that all evaluations of the hash function H emit unique
outputs, and we can also replace all evaluations of F with random k-bit strings. In this version of
the game, a simulator can use the leakage profile to simulate the server’s view during Qry protocol
executions, which consists of τ . It receives as input a multiset λ indicating how elements intersected
with past queries, and from this infers the size of Xqry. It simulates τ by selecting |Xqry| random
strings, reusing past strings as indicated.

For updates, the server’s view is the first message n (which is easy to simulate) and T′c. It is
easy to simulate n from the leakage λ in the case of updates. For T′c we observe that it consists of
a tree data structure filled with freshly-encrypted ciphertexts, each computed on a k-bit plaintext.
By the security of the encryption scheme, these can be encryptions of a fixed k-bit string instead.

To complete the proof, we must argue that the simulator can calculate the shape of T′c, and
then show that overflows happen with negligible probability. We start with the former. Given
the update leakage |X+|, |X−|, the simulator can simulate the client logic the determines h in the
update protocol: It starts with sLoad = h = 0 and tracks curDels,Dels, tep mimicking the protocol,
except that uses the size of X+ and X− to determine how these variables change rather than the
actual sets. Then using sLoad and h, the simulator can determine the shape of T′c.

For the overflow analysis, we adapt the proof of Gentry et al. [GGH+13]. We will show that
for any efficient adversary A, and at any time during the execution of the protocol, any particular
bucket overflows with negligible probability. A union bound over the polynomial number of time
steps and buckets give the asymptotic bound.

We start by proving three invariants about our construction that control the “load” of the tree,
meaning the number of real items in the tree, relative to its height.

Lemma 4.2. The following invariants hold for our construction:

1. At the end of every epoch, the load on tree is at most sLoad.

2. At every step, the load on the tree is at most 2min{h0,h1}, where h0 and h1 are the heights of
the tree at the beginning and end of the epoch.

3. At the end of every epoch, the load on the tree is at most 2h−1, where h is the height of tree
at that time.

A formal proof of the above lemma is presented in Appendix B. In our overflow analysis, we next
fix an adversary that requests a total t update operations, and fix any bucket B of the final tree
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after the adversary halts. It will be sufficient to prove that B overflows with negligible probability,
as a union bound over all times and buckets shows that any overflow happens with negligible
probability.

Let X be a random variable representing the number of items stored in B at the end. Then we
can write X =

∑t
i=1Xi, where Xi is an indicator the event that the item written at time i is in B

at the end of the execution. Due to our lazy deletes, the Xi are not the sum of i.i.d. 0/1 random
variables (because a delete operation will inject an item with the same leaf as a previous operation).
However, this dependence only helps our analysis since the same item cannot exist twice in any
bucket. This is because we immediately “clean up” paths to remove duplicates in ProcDels, and in
particular the same item will never be placed in the same bucket twice. In terms of our Xi, this
means that they are dependent, but only in the sense that for some i, j, Xi = 1 implies Xj = 0
(and similar relationships when one item is repeatedly added and deleted several times).

Thus we can writeX = X ′, whereX ′ =
∑t′

i=1X
′
i is a sum of t′ ≤ t independent random variables

indicating if the i-th unique item appears in B. We calculate the expectation of X then apply a
relative-error Chernoff bound, which does not require knowing t′, and obtain a concentration bound
for the number of items in B.

We proceed with the expectation calculation. Consider an epoch with starting and ending
heights h0, h1, and let d be the depth of bucket B (here and below, length of paths refers to number
of edges). Let c the length of the shortest path from B to one of its leaf ancestors (so d+c ∈ {h0, h1},
and d or c may be zero). We now claim that

Lemma 4.3. E [X] ≤ 2.

Proof. We handle the cases c < 2 and c ≥ 2 separately. In the first case, we observe that an item
can be in B only if that item’s leaf passes through B. By the second invariant, there are at most
2min{h0,h1} items in total, and each of these has a path through B with probability 2−d. Therefore
the expectation is at most

2min{h0,h1} · 2−d ≤ 2c+d · 2−d ≤ 2,

where the final step uses that c < 2.
Now assume instead that c ≥ 2. Since there is path of this length at least 2 below B, this is

not the first visit to the node. The previous visit occurred 2d steps ago, and after that visit there
was at least one node below B, since the length of paths changes by at most one on each visit. The
visits pass through two the distinct children below B, say u (on the last visit) and v (on the current
visit). Any item assigned to B before the previous visit would have been flushed to either u or v or
deeper. Any item assigned to B and through v will be flushed on the final visit. Therefore the only
items in B after the final visit must be items assigned through u in the last 2d operations. Since
each of these has a leaf passing through u with probability 2−(d+1), the expectation is at most

2d · 2−(d+1) = 1/2,

which completes the proof of the lemma.

To complete the overflow analysis, we use our observation above that X = X ′, where X ′ is a
sum of independent random variables. By a Chernoff bound and the lemma showing E [X] ≤ 2, we
have for every δ > 0 that

Pr[X ′ ≥ 4(1 + δ)] ≤ e−4δ
2/(2+δ).

For any Z ≥ 8, setting δ = (Z − 4)/4 gives

Pr[X ′ ≥ Z] ≤ e(Z−4)
2/(Z+4) ≤ e−Z/6.

20



Functionality Fclnt(KE ; z, P )

1 Parse P as a list of ciphertexts
2 d← 0
3 For C ∈ P :
4 If Dec(KE , C) = z: d← d+ 1
5 out1 ← ⊥; out2 ← (d mod 2)
6 Return (out1, out2)

Protocol SQry(st;Xqry,ES) (Server computation)

1 If ES = ⊥: ES← (∅, 0,KH)
2 For x ∈ Xqry:

3 Initiate (⊥; y) $← ΠF (KF ;H(KH , x))

4 P ← Path(Tc, y)

5 Initiate (⊥; b) $← Πclnt(KE ;H(KH , x), P )
6 If b = 1: out← out ∪ {x}
7 Output out

Figure 9: On the left is functionality Fclnt(KE ; z, P ) which is evaluated by Πclnt as part of SQry. On the
right is the server computation for protocol SQry used in the version of ESX with server-side querying. The
client simply participates in the protocols ΠF ,Πclnt using KF and KE from its state.

Thus the overflow probability will be negligible when pad sets the bucket size to be ω(k) (which
will be negligible in k for one bucket and also large enough to absorb the polynomial factors from
the union bound).

4.2 Server-Side Querying Version

We now describe how to convert ESX which has query equality leakage into a server-side querying
StE with minimal leakage. The update protocol remains exactly the same, and we must only modify
the query protocol. At a high level, the conversion is simple: We replace the client’s evaluation of
the PRF F with an oblivious PRF, and then we replace the client’s computation in the latter part
of Qry with a two-party protocol for determining which x appears an odd number of times in the
appropriate paths. Key to this approach is that the server can learn the intermediate PRF outputs
and select the path from the tree it holds for the second part; This means that the second protocol
only needs an input that scales with log |X| rather than the entire set.

SQry sub-protocols. We assume two protocols ΠF ,Πclnt have been constructed. The first proto-
col evaluates the functionality F(KF ; z) that outputs (⊥;F (KF , z)), i.e. provides the right party
with the PRF output and the left party with no output. The second performs the client computa-
tion from Qry where it determines if a given value appears in an even or odd number of ciphertexts.
We formalize this functionality as Fclnt on the left side of Figure 9. We remark that, for simplicity,
we have this protocol operate on a single path P instead of a subtree (as was the case in Qry). It
is possible to consider a batched version that works on the subtree, but the added complexity did
not seem to bring any advantages.

SQry construction. We describe the protocol on the right side of Figure 9. The code in that
figure only gives the server computation; The client only needs to participate in the sub-protocols
ΠF and Πclnt. The protocol works by iterating over the inputs in Xqry, evaluating the PRF on each
and then feeding the resulting path into Πclnt. The server can then compute its results (and the
client has no output).

SQry security. The client view can be simulated given just the size of Xqry - which matches
exactly the leakage due to Lclnt. The server view for each update invocation can be simulated given
just the sizes of sets X+, X− - which is the leakage for the client-query variant. For each query
invocation this protocol has no leakage. That’s because the server view containing correlated tree
paths can be simulated given just the server input set Xqry - as the corresponding ESX protocol’s
server view can be simulated given just the query equality leakage. We encapsulate this leakage
profile more formally in the following theorem.

Theorem 4.4. Suppose that ΠF is a stateless secure two-party protocol for the functionality F
with respect to leakage LF that only leaks the parties’ input lengths, and that Πclnt is a stateless
secure two-party protocol for the functionality Fclnt with respect to leakage Lclnt that also only
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leaks . Further assume the same conditions as in Theorem 4.1. Then esx-sqry is Lesx-sqry-secure,
where Lesx-sqry = (Lesx-sqry,1,Lesx-sqry,2) is the leakage profile is as follows:

Lesx-sqry,1(in)

1 If (X+, X−)← in: // Update
2 λ← ⊥
3 Else If Xqry ← in: // Query
4 λ← |Xqry|
5 X ← (X ∪X+) \X−
6 Output (λ, stL)

Lesx-sqry,2(in, stL)

1 X ← stL
2 X+ ← X+ \ (X− ∪X)
3 X− ← X− ∩X
4 If (X+, X−)← in: // Update
5 λ← (|X+|, |X−|)
6 Else If Xqry ← in: // Query
7 λ← ⊥
8 stL ← (X ∪X+) \X−
9 Output (λ, stL)

The leakage to client is stateless and only leaks the size of Xqry, while the leakage to the server
consists of the number of valid additions and deletions. We recall that in the case of updates for the
client, the leakage consists of extra information beyond its input X+, X−, and similarly for queries
for the server with Xqry.

Instantiation. One very simple, yet efficient way to construct ΠF and Πclnt is to use an Oblivious
PRF protocol [FIPR05, JL09, APRR24] and generic 2PC based on garbled circuits [Yao86, LP09]
respectively.

The OPRF protocol due to Alamati et. al [APRR24] based on OT and alternating-moduli PRF
implements the functionality ΠF in 2 rounds, where the computation cost of both parties is O(k)
bit operations and the communication cost is O(k) bits.

Garbled circuits can be used to implement a non-reactive functionality where both parties input
(C, x) and (C ′, y) respectively. Further the functionality parses the two inputs C,C ′ as circuits in
some canonical representation, and the first party outputs C(x, y) if C = C ′ and otherwise it
outputs ⊥. The output of the second party is ⊥. Hence, note that the Πclnt functionality can
be implemeted by garbled circuits functionality, where the code of Πclnt can be translated into
a simple circuit implementing decryptions and counting modulo 2. The state of the art garbled
circuit instantiation due to Rosulek and Roy [RR21] have communication cost of 1.5k per AND
gate, and ≤ 6 calls to a circular correlation robust (CCR) hash function per AND gate for both
parties.

Hence, the computation complexity of SQry of both parties is dominated by ω(|Xqry|k2 log |X|)
CCR hashes and the communication cost is dominated by the size of the garbled circuit: ω(|Xqry|k3 log |X|).

5 Putting it all Together - Our Updatable PSI Protocol

We can now plug in our new ESX construction (from Section 4.2) with server side querying and
the PSU protocol due to Zhang et al. [ZCL+23] or Bienstock et al. [BPSY23] into the updat-
able PSI framework from Section 3 to get an updatable PSI protocol. Our ESX with server side
querying has minimum leakage. We can ensure that in each epoch, the PSU invocations only leak
|X+|, |X−|, |Y+|, |Y−| by padding the input sets S1, S2, (X−∩I1), (Y−∩I2) in stage 3 of the protocol
with dummy elements, so each of these input sets contain |X+|, |X−|, |Y+|, |Y−| elements respec-
tively. Hence, our updatable PSI protocol also has minimal leakage in each epoch - leaking nothing
more than the size of the insert and delete sets.

Complexity Let η+ = |X+| + |Y+| and η− = |X−| + |Y−|. Then asymptotic communication
complexity in any epoch of our updatable PSI is ω(k log(|X||Y |)(k2η+ + η−)). The computation
complexity of the first party is dominated by O(k(log(|X||Y |) (kη1+η2)) hashes. The computation
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cost of party PY can be similarly obtained (by just reversing the sets X in Y in the complexity of
PX). A more fine grained breakdown of the complexity per stage of the protocol is listed next:

• Stage 1: The communication cost of Upd invocation is ω(log |X|k(|X+| + |X−|)) and SQry
invocation is ω(log |Y |k3|Y+|). The computation cost of PX is dominated by O(log |Y |k2|Y+|)
hashes.

• Stage 2: The communication cost of Updr invocation is ω(log |Y |k(|Y+|+ |Y−|)) and SQryr in-
vocation is ω(log |X|k3|X+|). The computation cost of PX is dominated by O(log |X|k2|X+|)
hashes.

• Stage 3: The communication cost of the first and the second PSU invocation are O(kη+) and
O(kη−) respectively. The computation cost of both parties is dominated by the O(η+ + η−)
hashes.

6 Limitations and Open Problems

Improving Concrete Efficiency. We present our StE construction as a proof of concept —
showing how constant round and poly-logarithmic complexity could be achived for updatable PSI
with minimal leakage. We leave it as future work to instantiate our updatable PSI framework with
a concretely efficient StE and to benchmark it against standard PSI protocols for practical set sizes.

In particular, one could hope to implement the Fclnt functionality (which has the dominant cost
in our StE construction) in a more concretely efficient manner than using garbled circuits or any
other generic 2PC protocol.

Improving Security. Our updatable PSI framework is limited to semi-honest security and it
can only achieve two-sided output i.e., both parties receive the desired output. Extending this
structured encryption based framework to stronger malicious security and allowing for only one-
sided output is left as future work. It should also be noted that our ESX construction is insecure
even if we allow the adversary to adaptively pick elements to insert and delete, since this could cause
overflow in the ESX tree with non-negligible probability. Hence, even extending our construction
to the model with a passive adversary but adaptively chosen inputs is non-trivial.

Improving ESX construction. Our construction requires ω(k ·log |X|) bandwidth and computa-
tion because the buckets have size ω(k) and the depth of the tree is Ω(log |X|). Modern ORAMs like
Path ORAM [SDS+18] and Onion ORAM [DvDF+16] have complexity on the order O(log |X|+k)
as they work with constant-size buckets and a stash instead. Unfortunately, adapting these tech-
niques to our setting appears difficult. The issue is that ESX inserts many items with the same
assigned leaf (if x is added and deleted repeatedly). The repeated additions cannot coexist in the
same internal node, but there can be one addition ‘item’ per internal node on the assigned path
from the root to the leaf. In our setting this was not an issue, as the technique we applied focused
on one bucket and showed that it did not overflow. In the setting with constant-size buckets, how-
ever, the analysis cannot avoid the dependence between the added items so easily. A more careful
analysis might show that this approach is sound, but it is currently unclear how we can achieve
this.

General StE and the UPSI framework. Although we design a custom StE scheme to generate
our minimal leakage updatable PSI protocol, one could also consider instantiating our framework
with more leaky but efficient StE constructions to derive updatable PSI protocols with varied
security guarantees. These protocols could be used in applications where the security requirements
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are not as stringent as minimal leakage. The main challenge would be to introduce server-side
querying functionality for existing StE schemes. In Appendix C, we discuss an example instantiation
of our framework with a dynamic StE based on the Πdyn

bas scheme from Cash et al [CJJ+14]. We
show that we recover a simple but efficient OPRF-based updatable PSI protocol similar to existing
protocols by Hazay and Lindell [HL08], with “historical” leakage similar to the protocol from Kiss
et. al [KLS+17].

Updatable private set operations beyond PSI. For most PSI related privacy-preserving
applications, the parties are interested in learning some function of the intersection (like cardinality
and weighted sum) instead of the explicit intersection. The general version of the problem is called
private computation on set intersection (PCSI). To the best of our knowledge, there is no known
solution for updatable PCSI where both the computation and communication complexity of the
protocol scale with the size of the updates instead of the entire set.
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A Updatable PSI Security Proof (Theorem 3.1)

Proof. Let i = 1, 2 and let A be an efficient adversary; We must construct a simulator S such that

Pr[RealAΩUPSI,i
(1k) = 1]− Pr[IdealAF ,L,S,i(1

k) = 1] = negl(k).

We will prove this for i = 1; the case of i = 2 is symmetric. By the assumed security of Σ and
ΠPSU, there exist efficient simulators SΣ1 ,SΣ2 satisfying the conditions in Definition 2.5 and SΠPSU

satisfying the condition in Definition 2.1. Since the FPSU is stateless, we omit the state arguments
in that definition, and assume SΠPSU is stateless as well.

We will use the games G0 – G10 in Figures 10, 11, 12, and 13.

Game G0. The first game, G0, which is given on the left side of Figure 10 computes the same
function as RealAΠ,1(1

k) but performs some extra computation. The game consists of a main loop
common to all the games (given at the top) and an implementation of the NextV1 routine (given
below). The main loop starts by initializing persistent variables on lines 1 – 2 that are used in
NextV1 (these include some not in the original game, but they are not used yet). In the NextV1

subroutine, lines 1–10 compute “ideal” values that are not used in this game, but will be used in
future games. The line 16, 17, 20, and 21 perform some extra computation and set flags bad0, bad1,
but these are not used elsewhere in the game. The rest of the game computes the view of party 1
by performing the computation of each party and executing the appropriate protocols.

Writing Gj for the event that Gj outputs 1, we have

Pr[RealAΠ,1(1
k) = 1] = Pr[G0]. (1)

Game G1. The next game G1 adds the shaded code on lines 16, and 20. Since G0 and G1 are
“identical-until-bad”, we have

Pr[G0]− Pr[G1] ≤ Pr[B1], (2)

where B1 is the event that G0 sets the variable bad0. We claim that since ΠPSU is secure (for any
leakage profile),

Pr[B1] = negl(k). (3)

We use a straightforward reduction to the LΠPSU-security of ΠPSU for the first party. The reduction
runs A to get its input vector

−→
in and state. The reduction then simulates the computation of the

game until line 16 or 19, at which point it can compute a pair of inputs for it’s own game (which will
be either 2pcRealΠPSU,1

or 2pcIdealFPSU,L
ΠPSU
1 ,SΠPSU

1 ,1
). It then continues the simulation assume

that bad0 was not set, i.e. that U ′1 = S′1 ∪ S′2 or W ′ = R′1 ∪ R′2. It then submits its input vector

to its own game and receives
−→
V ,
−→
out. It ignores

−→
V and checks if the sets in

−→
out are indeed equal to

the appropriate values. If one is incorrect, it outputs 1, and otherwise it outputs 0.
In the game 2pcRealΠPSU,1

, we have that this reduction perfectly simulates G0 until the bad0
is set, and outputs 1 in this case (note that the simulation may be incorrect afterwards). On the
other hand, in 2pcIdealFPSU,L

ΠPSU
1 ,SΠPSU

1 ,1
, this reduction outputs 1 with probability 0. This implies

the reduction has advantage exactly equal to Pr[B0] and hence this probability is negligible. This
establishes (3).

Game G2. The next game adds the boxed code on lines 17 and 21. By a nearly identical argument
as the previous transition, we have

Pr[G1]− Pr[G2] = negl(k). (4)
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The only difference is that we reduce to the security of ΠPSU for the second party instead of the
first.

Game G3. The next game G3 is given on the right of Figure 10; The line numbers are consistent
between G3 and G2. There are two types of changes in this game: First, lines 16, 17, 20, and 21
have been collapsed to always compute the corresponding values, which does not change the logic
of the code.

More substantially, lines 15 and 19 replace protocol runs with the computation of ideal func-
tionalities, leakage, and simulators. We claim that, by the LΠPSU

1 -security of ΠPSU,

Pr[G2]− Pr[G3] = negl(k). (5)

This is proved via a straightforward reduction. One runs A to get its input vector
−→
in , the reduction

creates its own input vector by simulating the game directly as in the reduction above, obtaining
V5
1 and V6

1 from its own game. We note that the previous transitions to G2 were necessary for the
correctness of this reduction, since it must assume that U ′1, U

′
2,W

′
1,W

′
2 were computed itself (which

the reduction can do, following lines 16, 17, 20 and 21) and not by the protocols (which must be
computed by the game and not itself). This gives (6).

Game G4. The next game G4 on the left of Figure 11 does not included any of the boxed or
highlighted code (the line numbers are also not consistent with the previous game). Compared
to G3, it reorders code within the “paragraphs” separated by blank lines without affecting the
computation. It also adds conditional statements on lines 13 and 16, but these only set flags bad4
and bad5 and do not change the function computed by the game. Thus G4 is exactly the same
random variable as G3 and

Pr[G4] = Pr[G3]. (6)

Game G5. Next, G5 adds the shaded code on line 16. Since G4 and G5 are “identical-until-bad”,

Pr[G4]− Pr[G5] ≤ Pr[B4], (7)

where B4 is the event that bad4 is set to true in G4. We claim that, by the correctness of Σ,

Pr[B4] = negl(k). (8)

To prove this, we can construct an efficient adversary A4 such that Pr[CorA4
Σ (1k) = 1] = Pr[B4].

This adversary runs A(1k) to obtain
−→
in , and then computes its output −→op via

−→op← ε

For j = 1, . . . , |−→in |:
((X+, X−), (Y+, Y−)←

−→
in [j]

−→op← −→op∥(Y+, Y−)∥(X+)

In other words, for each pair of inputs ((X+, X−), (Y+, Y−)), it creates an update operation with
(Y+, Y−) followed by a query operation with X+. By construction, CorA4

Σ (1k) = 1 with probability
Pr[B4], showing this value is negligible. Once again, the simulation is only correct until the first
bad event, but the claim still holds.

Game G6. The next game G6 adds a similar reassignment after bad5 is set to true on line 13, and
similar to before we have

Pr[G5]− Pr[G6] ≤ Pr[B5], (9)
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where B5 is the event that bad5 is set to true in G5. A similar argument to the previous transition
shows that

Pr[B5] = negl(k). (10)

Game G7. We now consider G7, on the right side of Figure 11 (without the shaded code). This
game consolidates some code but computes the same random variable as G7. In particular, it does
the following:

• Lines 13 is removed, and later references to S′2 are replaced references to S2.

• Lines 16 is removed, and later references to S′1 instead use S1.

• Line 17 is deleted, and later usage of U ′1 and U ′2 is replaced by U . These values were always
equal since S′1 = S1 and S′2 = S2.

After these changes, G7 adds a new (inconsequential) check on its line 18 that does not include the
shaded code. We have

Pr[G7] = Pr[G6]. (11)

Game G8. The next game reassigns the values of R′1, R
′
2 on line 18. As before, we have

Pr[G7]− Pr[G8] ≤ Pr[B7], (12)

where B7 is the event that G7 sets bad7. We claim that

Pr[B7] = 0. (13)

We prove this by induction on the number of iterations of the main loop (i.e. the “for” loop on
line 5 of the main procedure in upper left of Figure 10). The inductive claim is that, in just before
the start of each iteration of NextV1, we have I ′1 = I ′2 = X ∩ Y . This implies the claim that
Pr[B7] = 0, since if the inductive claim holds clearly R′1 = R1 and R′2 = R2 in the iteration.

For the base of the induction, before the first iteration we have that I ′1 = I ′2 = ∅ = X ∩Y based
on the variables set in the main procedure before the loop starts.

For the inductive step, the claim holds for one iteration; we will show that it holds for the next
iteration as well.

The current iteration updatesX toXnew = (X∪X+)\X− and Y to Ynew = (Y ∪Y+)\Y−. By the
inductive hypothesis, it also updates I ′1 and I ′2 to I ′1 = (X ∩Y )\W ′1∪U and I ′2 = (X ∩Y )\W ′2∪U .
Thus we must show that

(X ∩ Y ) \W ′i ∪ U = Xnew ∩ Ynew

for i = 1, 2. This follows by elementary set algebra:

(X ∩ Y ) \W ′i ∪ U = (X ∩ Y ) \ (R′1 ∪R′2) ∪ U

= (X ∩ Y ) \ ((X− ∩ (X ∩ Y ) ∪ (Y− ∩ (X ∩ Y )) ∪ U

= (X ∩ Y ) \ ((X− ∪ Y−) ∩ (X ∩ Y )) ∪ U

= (X ∩ Y ) \ (X− ∪ Y−) ∪ U

= (Xnew ∩ Ynew) \ (X+ ∪ Y+) ∪ U

= (Xnew ∩ Ynew) \ (X+ ∪ Y+) ∪ (Xnew ∩ Y+) ∪ (Ynew ∩X+)

= Xnew ∩ Ynew.
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The second equality uses the inductive hypothesis to replace R′1, R
′
2, the sixth equality uses the

assumption that X+ ∩X− = Y+ ∩ Y− = ∅, and the fifth equality uses the identity

(X ∩ Y ) \ (X− ∪ Y−) = (Xnew ∩ Ynew) \ (X+ ∪ Y+)

which can be seen via

Xnew ∩ Ynew \ (X+ ∪ Y+) = ((X \X−) ∪X+) ∩ ((Y \ Y−) ∪ Y+)) \ (X+ ∪ Y+)

= (X \X−) ∩ (Y \ Y−)

= (X ∩ Y ) \ (X− ∪ Y−).

This completes the proof of (13).

Game G9. The next game removes lines 19 – 21 and replaces all usage of R′1, R
′
2 with R1, R2

respectively, usage of W ′1,W
′
2 with W and usage of. In the resulting game, I ′1, I

′
2 are no longer used,

so lines 24 – 25 are also removed.
The game also changes the three shaded lines to compute S1, U , and W in a way that will

enable simulation. We claim that these always result in the same values, so

Pr[G9] = Pr[G8]. (14)

We consider S1, U and W individually in order. Previously, S1 was set to Y ∩X+, and now it is
set to Icur ∩X+ = (X ∩Y )∩X+; These are equal because at this point in the code we always have
X+ ⊆ X (this again relies on X+ and X− being disjoint).

Next, U is now computed as Icur \ Iprev instead of S1 ∪S2. To see that these are equal, take the
values X,Y at the start of the loop and write Xnew = ((X ∪X+) \X−) and Ynew = ((Y ∪Y+) \Y−).
Then the following hold:

S1 ∪ S2 = (Ynew ∩X+) ∪ (Xnew ∩ Y+)

Icur \ Iprev = Xnew ∩ Ynew \ (X ∩ Y ).

An elementary argument shows these are equal: For one direction, suppose a ∈ Xnew∩Ynew\(X∩Y ).
Then a ∈ X+ ∪ Y+, so a ∈ Ynew ∩X+ or a ∈ Xnew ∩ Y+. For the other direction, suppose without
loss of generality that a ∈ Ynew ∩ X+. Since a ∈ X+, a /∈ X and a ∈ Xnew, and we have
a ∈ (Xnew ∩ Ynew) \ (X ∩ Y ) as desired.

Finally, W is computed as Iprev \ Icur instead of R1 ∪R2. This are seen to be equal by yet more
elementary set theory: We have

R1 ∪R2 = (X− ∩ (X ∩ Y )) ∪ (Y− ∩ (X ∩ Y ))

= (X ∩ Y ) ∩ (X− ∪ Y−)

and

Iprev \ Icur = (X ∩ Y ) \ (((X ∪X+) \X−) ∩ ((Y ∪ Y+) \ Y−)).

By assumption, X+ is disjoint from X and Y+ is disjoint from Y , so this is equal to

(X ∩ Y ) \ ((X \X−) ∩ (Y \ Y−)),

which is equal to (X ∩ Y ) ∩ (X− ∪ Y−), as desired.

34



This establishes (14).

Game G10. This game only changes lines 11 and 12 (line numbers are consistent with the previous
game). On line 11, instead of running the Updr protocol to generate an updated ESY and V3

1, it
uses the leakage function and simulator. A similar change is made on line 12. We claim that by
the LΣ-security of Σ,

Pr[G9]− Pr[G10] = negl(k). (15)

This is proved via a straightforward reduction to the server’s security guaranteed by Σ. The
adversary can simulate the entire game except for lines 11 and 12. Since the output values ESX , S′2
are not used anywhere else, there is no correctness issue with the non-adaptive adversary computing
all of the input values up front.

Game G11. This game makes a transition similar to the previous one, on lines 13 and 14. Once
again the reduction is straightforward (this time to the client’s security). We have

Pr[G10]− Pr[G11] = negl(k). (16)

We complete the game hopping by observing that

Pr[G11] = Pr[IdealAFUPSI,L,S,1(1
k) = 1]. (17)

This can be seen by pasting in the code of FUPSI along with L and S from the theorem statement
into Ideal, which produces a game equivalent to G11. The only differences are that some values
are computed by more than algorithm (but in the same way), and the values are computed in a
different, ultimately equivalent, order.

The theorem now follow by collecting (1) – (17) and observing that the sum of a constant
number of negligible functions is negligible.
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Game Gi(1
k) G0 – G10

1 X,Y, I′1, I
′
2 ← ∅

2 ESX ,ESY , stX , stY ← ⊥
3 stLΣ

1
, stLΣ

2
, stSΣ

1
, stSΣ

2
← ⊥

4 (
−→
in , stA)

$← A(1k)
5 For v = 1, . . . , |

−→
in |:

6 ((X+, X−), (Y+, Y−))←
−→
in [v]

7 X+ ← X+ \ (X− ∪X); X− ← X− ∩X
8 Y+ ← Y+ \ (Y− ∪ Y ); Y− ← Y− ∩ Y
9 V← NextV1((X+, X−), (Y+, Y−))

10
−→
V ←

−→
V ∥V

11 b
$← A(

−→
V , stA)

12 Return b

Oracle NextV1((X+, X−), (Y+, Y−)) G0, G1 , G2

1 Iprev ← X ∩ Y
2 X ← (X ∪X+) \X−
3 Y ← (Y ∪ Y+) \ Y−
4 Icur ← X ∩ Y
5 S1 ← Y ∩X+

6 S2 ← X ∩ Y+

7 U ← S1 ∪ S2

8 R1 ← X− ∩ Iprev
9 R2 ← Y− ∩ Iprev
10 W ← R1 ∪R2

11 (stX ;ESX |V1
1,V

1
2)

$← Upd(stX , X+, X−;ESX)

12 (⊥;S′
2|V2

1,V
2
2)

$← SQry(stX ;Y+,ESX)

13 (ESY ; stY |V3
1,V

3
2)

$← Updr(ESY ; stY , Y+, Y−)

14 (S′
1;⊥|V4

1,V
4
2)

$← SQryr(X+,ESY ; stY )

15 (U ′
1;U

′
2|V5

1,V
5
2)

$← ΠPSU(S
′
1;S

′
2)

16 If U ′
1 ̸= S′

1 ∪ S′
2: bad0 ← True U ′

1 ← S′
1 ∪ S′

2

17 If U ′
2 ̸= S′

1 ∪ S′
2: bad1 ← True U ′

2 ← S′
1 ∪ S′

2

18 R′
1 ← X− ∩ I′1;R

′
2 ← Y− ∩ I′2

19 (W ′
1;W

′
2|V6

1,V
6
2)

$← ΠPSU(R
′
1;R

′
2)

20 If W ′
1 ̸= R′

1 ∪R′
2: bad0 ← True W ′

1 ← R′
1 ∪R′

2

21 If W ′
2 ̸= R′

1 ∪R′
2: bad1 ← True W ′

2 ← R′
1 ∪R′

2

22 I′1 ← (I′1 \W ′
1) ∪ U ′

1
23 I′2 ← (I′2 \W ′

2) ∪ U ′
2

24 Return (Vj
1)

6
j=1

Oracle NextV1((X+, X−), (Y+, Y−)) G3

1 Iprev ← X ∩ Y
2 X ← (X ∪X+) \X−
3 Y ← (Y ∪ Y+) \ Y−
4 Icur ← X ∩ Y
5 S1 ← Y ∩X+

6 S2 ← X ∩ Y+

7 U ← S1 ∪ S2

8 R1 ← X− ∩ Iprev
9 R2 ← Y− ∩ Iprev
10 W ← R1 ∪R2

11 (stX ;ESX |V1
1,V

1
2)

$← Upd(stX , X+, X−;ESX)

12 (⊥;S′
2|V2

1,V
2
2)

$← SQry(stX ;Y+,ESX)

13 (ESY ; stY |V3
1,V

3
2)

$← Updr(ESY ; stY , Y+, Y−)

14 (S′
1;⊥|V4

1,V
4
2)

$← SQryr(X+,ESY ; stY )

15 U ′
1 ← S′

1 ∪ S′
2

λ5 $← LΠPSU
1 (S′

1, S
′
2)

V5
1

$← SΠPSU
1 (S′

1, U
′
1, λ

5)

16 U ′
1 ← S′

1 ∪ S′
2

17 U ′
2 ← S′

1 ∪ S′
2

18 R′
1 ← X− ∩ I′1;R

′
2 ← Y− ∩ I′2

19 W ′
1 ← R′

1 ∪R′
2 ;

λ6 $← LΠPSU
1 (R′

1, R
′
2)

V6
1

$← SΠPSU
1 (R′

1,W
′
1, λ

6)

20 W ′
1 ← R′

1 ∪R′
2

21 W ′
2 ← R′

1 ∪R′
2

22 I′1 ← (I′1 \W ′
1) ∪ U ′

1
23 I′2 ← (I′2 \W ′

2) ∪ U ′
2

24 Return (Vj
1)

6
j=1

Figure 10: The main code for all games G0 – G11 used in the proof of Theorem 3.1 is given in the upper
left; The procedure NextV1 changes between each game, and the implementation for games G0, G1,and G2

is given on the left and G3 is given on the right. On the left side, G0 includes neither the shaded code nor
the boxed code; G1 adds the shaded code, and G2 adds the boxed code to G1. On the right, G3 contains
the shaded code, which highlights the changes from G2.
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Oracle NextV1((X+, X−), (Y+, Y−)) G4, G5 , G6

1 Iprev ← X ∩ Y
2 X ← (X ∪X+) \X−
3 Y ← (Y ∪ Y+) \ Y−
4 Icur ← X ∩ Y
5 S1 ← Y ∩X+

6 S2 ← X ∩ Y+

7 U ← S1 ∪ S2

8 R1 ← X− ∩ Iprev
9 R2 ← Y− ∩ Iprev
10 W ← R1 ∪R2

11 (stX ;ESX |V1
1,V

1
2)

$← Upd(stX , X+, X−;ESX)

12 (⊥;S′
2|V2

1,V
2
2)

$← SQry(stX ;Y+,ESX)

13 If S′
2 ̸= S2: bad5 ← True; S′

2 ← S2

14 (ESY ; stY |V3
1,V

3
2)

$← Updr(ESY ; stY , Y+, Y−)

15 (S′
1;⊥|V4

1,V
4
2)

$← SQryr(X+,ESY ; stY )

16 If S′
1 ̸= S1: bad4 ← True; S′

1 ← S1

17 U ′
1 ← S′

1 ∪ S′
2;U

′
2 ← S′

1 ∪ S′
2

18 λ5 $← LΠPSU
1 (S′

1, S
′
2)

19 V5
1

$← SΠPSU
1 (S′

1, U
′
1, λ

7)

20 R′
1 ← X− ∩ I′1;R

′
2 ← Y− ∩ I′2

21 W ′
1 ← R′

1 ∪R′
2;W

′
2 ← R′

1 ∪R′
2

22 λ6 $← LΠPSU
1 (R′

1, R
′
2)

23 V6
1

$← SΠPSU
1 (R′

1,W
′
1, λ

6)

24 I′1 ← (I′1 \W ′
1) ∪ U ′

1
25 I′2 ← (I′2 \W ′

2) ∪ U ′
2

26 Return (Vj
1)

6
j=1

Oracle NextV1((X+, X−), (Y+, Y−)) G7, G8

1 Iprev ← X ∩ Y
2 X ← (X ∪X+) \X−
3 Y ← (Y ∪ Y+) \ Y−
4 Icur ← X ∩ Y
5 S1 ← Y ∩X+

6 S2 ← X ∩ Y+

7 U ← S1 ∪ S2

8 R1 ← X− ∩ Iprev
9 R2 ← Y− ∩ Iprev
10 W ← R1 ∪R2

11 (stX ;ESX |V1
1,V

1
2)

$← Upd(stX , X+, X−;ESX)

12 (⊥;S′
2|V2

1,V
2
2)

$← SQry(stX ;Y+,ESX)

13 (ESY ; stY |V3
1,V

3
2)

$← Updr(ESY ; stY , Y+, Y−)

14 (S′
1;⊥|V4

1,V
4
2)

$← SQryr(X+,ESY ; stY )

15 λ5 $← LΠPSU
1 (S1, S2)

16 V5
1

$← SΠPSU
1 (S1, U, λ7)

17 R′
1 ← X− ∩ I′1;R

′
2 ← Y− ∩ I′2

18 If R′
1 ̸= R1 or R′

2 ̸= R2:

bad7 ← True; R′
1 ← R1; R′

2 ← R2

19 W ′
1 ← R′

1 ∪R′
2;W

′
2 ← R′

1 ∪R′
2

20 λ6 $← LΠPSU
1 (R′

1, R
′
2)

21 V6
1

$← SΠPSU
1 (R′

1,W
′
1, λ

6)

22 I′1 ← (I′1 \W ′
1) ∪ U

23 I′2 ← (I′2 \W ′
2) ∪ U

24 Return (Vj
1)

6
j=1

Figure 11: Implementation of NextV1 for games G4 – G6 (on the left) and games G7, G8 (on the right),
used in the proof of Theorem 3.1. Game G4 contains neither the shaded nor the boxed code; G4 adds the
shaded code and G5 adds the boxed code. On the right-hand side, game G7 does not contain the shaded
code; It is added to form G8.
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Oracle NextV1((X+, X−), (Y+, Y−)) G9

1 Iprev ← X ∩ Y
2 X ← (X ∪X+) \X−
3 Y ← (Y ∪ Y+) \ Y−
4 Icur ← X ∩ Y
5 S1 ← Icur ∩X+

6 S2 ← X ∩ Y+

7 U ← Icur \ Iprev
8 R1 ← X− ∩ Iprev
9 R2 ← Y− ∩ Iprev
10 W ← Iprev \ Icur

11 (stX ;ESX |V1
1,V

1
2)

$← Upd(stX , X+, X−;ESX)

12 (⊥;S′
2|V2

1,V
2
2)

$← SQry(stX ;Y+,ESX)

13 (ESY ; stY |V3
1,V

3
2)

$← Updr(ESY ; stY , Y+, Y−)

14 (S′
1;⊥|V4

1,V
4
2)

$← SQryr(X+,ESY ; stY )

15 λ5 $← LΠPSU
1 (S1, S2)

16 V5
1

$← SΠPSU
1 (S1, U, λ5)

17 λ6 $← LΠPSU
1 (R1, R2)

18 V6
1

$← SΠPSU
1 (R1,W, λ6)

19 Return (Vj
1)

6
j=1

Oracle NextV1((X+, X−), (Y+, Y−)) G10

1 Iprev ← X ∩ Y
2 X ← (X ∪X+) \X−
3 Y ← (Y ∪ Y+) \ Y−
4 Icur ← X ∩ Y
5 S1 ← Icur ∩X+

6 S2 ← X ∩ Y+

7 U ← Icur \ Iprev
8 R1 ← X− ∩ Iprev
9 R2 ← Y− ∩ Iprev
10 W ← Iprev \ Icur

11 (λ1, stLΣ
1
)

$← LΣ1 (X+, X−, stLΣ
1
)

(V1
1, stSΣ

1
)

$← SΣ1 ((X+, X−), λ1, stSΣ
1
)

12 (λ2, stLΣ
1
)

$← LΣ1 (Y+, stLΣ
1
)

(V2
1, stSΣ

1
)

$← SΣ1 (λ2, stSΣ
1
)

13 (ESY ; stY |V3
1,V

3
2)

$← Updr(ESY ; stY , Y+, Y−)

14 (S′
1;⊥|V4

1,V
4
2)

$← SQryr(X+,ESY ; stY )

15 λ5 $← LΠPSU
1 (S1, S2)

16 V5
1

$← SΠPSU
1 (S1, U, λ5)

17 λ6 $← LΠPSU
1 (R1, R2)

18 V6
1

$← SΠPSU
1 (R1,W, λ6)

19 Return (Vj
1)

6
j=1

Figure 12: Implementation of NextV1 for games G9 (on the left) and G10 (on the right). Both games
included the shaded code, which highlights the difference from the preceding game.

B ESX Proof (Lemma 4.2)

Proof. For the first invariant, we observe that during an epoch, each operation adds one item to
the tree, and possibly deletes some previous ones. While we cannot control the exact time at which
the previous items are deleted, we know that all deletes from the previous epoch will be deleted by
the end of the epoch, and each such delete will remove two items from the tree. Thus each epoch,
in the worst case, increases the number of elements by the length of the current epoch divided by
8 and decreases by double the number of deletes in the previous epoch. The claim then follows.

We prove the second invariant and third invariant together by induction. They both clearly
hold at the start, when the first epoch has h0 = h1 = 0 and there are no items stored in the tree.
Now suppose the invariants hold at the end of some epoch with a tree of height h. During the next
epoch, there are three possibilities: h is either increased, decreased, or unchanged. We consider
these separately:

1. If h is decreased, then h0 = h, h1 = h − 1 during this epoch. Since this epoch will decrease
h, the number of items in the tree is at most 2h/8 at the start of the epoch. The next epoch
will have length 2h−1/8 = 2h/16, and hence add that many items to tree.

To establish the second invariant, we must show that the load never exceeds 2min{h0,h1} =
2h/2, and to establish the third, we must show that the load is at most 2h1−1 = 2h/4 at the
end of the epoch. But the load on the tree never exceeds

2h/8 + 2h/16 < 2h/4,

which shows that both invariants hold for the case of a decreasing epoch.
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Oracle NextV1((X+, X−), (Y+, Y−)) G11

1 Iprev ← X ∩ Y
2 X ← (X ∪X+) \X−
3 Y ← (Y ∪ Y+) \ Y−
4 Icur ← X ∩ Y
5 S1 ← Icur ∩X+

6 S2 ← X ∩ Y+

7 U ← Icur \ Iprev
8 R1 ← X− ∩ Iprev
9 R2 ← Y− ∩ Iprev
10 W ← Iprev \ Icur

11 (λ1, stLΣ
1
)

$← LΣ1 (X+, X−, stLΣ
1
)

(V1
1, stSΣ

1
)

$← SΣ1 ((X+, X−), λ1, stSΣ
1
)

12 (λ2, stLΣ
1
)

$← LΣ1 (Y+, stLΣ
1
)

(V2
1, stSΣ

1
)

$← SΣ1 (λ2, stSΣ
1
)

13 (λ3, stLΣ
2
)

$← LΣ2 (Y+, Y−, stLΣ
2
)

(V3
1, stSΣ

2
)

$← SΣ2 (λ3, stSΣ
2
)

14 (λ4, stLΣ
2
)

$← LΣ2 (X+, stLΣ
2
)

(V4
1, stSΣ

2
)

$← SΣ2 (X+, λ4, stSΣ
2
)

15 λ5 $← LΠPSU
1 (S1, S2)

16 V5
1

$← SΠPSU
1 (S1, U, λ5)

17 λ6 $← LΠPSU
1 (R1, R2)

18 V6
1

$← SΠPSU
1 (R1,W, λ6)

19 Return (Vj
1)

6
j=1

Figure 13: Implementation of NextV1 for game G11. The shaded code highlights the changes from the
previous game.
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2. If h stays the same, then h0 = h1 = h, and the tree holds fewer than 2h/4 items. The next
epoch will, in the worst case, add 2h/8 items. We must show that the load never exceeds
2min{h0,h1} = 2h and that at the end of the epoch the load is no greater than 2h/2. Since the
epoch is not increasing the height of the tree, we know that the load is less than 2h/8, and
during the epoch the

2h/4 + 2h/8 < 2h/4,

which establishes both invariants.

3. If h increases, then h0 = h, h1 = h+1. To establish the invariants we must show that during
this epoch the load does not exceed 2min{h0,h1} = 2h, and that at the end of the epoch the
load is less than 2h1/2 = 2h, i.e. prove the same bound.

By the third invariant for the previous epoch, we know that the load on this tree is at most
2h/2. The next epoch will add 2h/8 items to the tree, in the worst case. Thus the load never
exceeds

2h/2 + 2h/8 < 2h,

as desired.

C An Example Instantiation of the Framework

As an example of how our framework can generate different updatable PSI protocols, we instantiate
our general framework with a simple dynamic StE scheme with server-side querying, to recover an
OPRF-based UPSI protocol.

Example: A dynamic StE scheme. Our dynamic StE scheme for encrypted sets is inspired by
the Πdyn

bas scheme of Cash et al [CJJ+14]. The pseudocode for the construction is given in Figure 14.
We use the following building blocks: a variable length PRF F that takes a k-bit key and produces
a k-bit output, and a protocol ΠF that implements the oblivious PRF functionality for F . We also
use a collision-resistant hash function H.

Outline. In brief, the encrypted set is a collection of pseudorandom tags for the elements.
To update, the client initializes its state if necessary. The routine InitSt(k) chooses the keys

(KF ,KH)
$← {0, 1}k. Lines 3-5 ensure that X+, X− are well-formed, and update the local copy of

X. The client then computes hashes of all the elements of X+ and applies the PRF to the hashes
to generate a set of tags τ+. Similarly, it generates set τ− for X−, and sends both τ+ and τ− to the
server. The server simply adds all the elements of τ+ to ES and removes all the elements of τ−.

The server-side query protocol begins with the server initializing the encrypted set and the hash
key if needed. The server hashes each element in its input set Xqry, and invokes the protocol ΠF

with the client to get the output y. ΠF evaluates the oblivious PRF functionality, F(KF ; z) that
outputs (⊥;F (KF , z)). Next, for each pseudorandom tag y of element x, the server checks if it is
present in the set ES. If it is, the server adds x to the output set.

Security. For server queries, the client only sees the number of invocations of ΠF , which corre-
sponds to the number of queries the server makes, or the size of the set Xqry. For client updates,
since the elements map deterministically to pseudorandom tags, the server learns the full add/delete
history of any element, even if it does not know the elements themselves. Additionally, since the
server queries for some elements and learns the corresponding pseudorandom tags during server-side
query, the server also learns the element to tag mapping for the elements of Xqry.
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Protocol Upd(st, (X+, X−);ES)

Client:
1 If st = ⊥: st← InitSt(k)
2 Parse st as (KF ,KH , X)
3 X+ ← X+ \ (X− ∪X)
4 X− ← X− ∩X
5 X ← (X \X−) ∪X+

6 τ+ ← ∅
7 For x ∈ X+: τ+ ← τ+ ∪ {FKF

(HKH
(x))}

8 τ− ← ∅
9 For x ∈ X−: τ− ← τ− ∪ {FKF

(HKH
(x))}

10 Send τ+, τ−

Server:
11 ES← ES ∪ τ+
12 ES← ES \ τ−
13 Output ES

Protocol SQry(st;Xqry,ES) (Server computation)

1 If ES = ⊥: ES← (∅,KH)
2 For x ∈ Xqry:

3 Initiate (⊥; y) $← ΠF (KF ;HKH
(x))

4 If y ∈ ES: out← out ∪ {x}
5 Output out

Figure 14: An example construction Σ = (Upd,SQry).

UPSI Protocol. When we instantiate our framework with our construction, we recover an
updatable PSI protocol that reveals the add/delete history of every element to the party holding
the encrypted set. However, the protocol is efficient in both computation and communication.
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