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Abstract. Side-channel-analysis (SCA) resistance with cost optimization in AES
hardware implementations remains a significant challenge. While traditional masking-
based schemes offer provable security, they often incur substantial resource overheads
(latency, area, randomness, performance, power consumption). Alternatively, the
RAMBAM scheme [BBA+22] introduced a redundancy-based approach to control
the signal-to-noise ratio, and achieves exponential leakage reduction as redundancy
increases. This method results in only a slight increase in area and in power con-
sumption, and a significant decrease in the amount of randomness needed, without
any increase in latency. However, it lacks a formal security proof.
In this study, we introduce a scheme, denoted STORM, that synergizes RAMBAM’s
methodology with the utilization of look-up-tables (LUTs) in memory (ROM/RAM)
in a redundant domain. STORM, like RAMBAM, is as fast as a typical unprotected
implementation and has the same latency, but has a significantly higher maximal
clock frequency than RAMBAM, and consumes less than half the power. RAMBAM
and STORM are code-based schemes in the sense that their set of representations is
a code in the vector space GF (2)8+d. RAMBAM requires a richer structure of a ring
on GF (2)8+d and a ring homomorphism whereas STORM utilizes a simple vector
space. In code-based-masking (CBM) [WMCS20], as in all masking schemes, non-
interference based notions (t-S/NI) are fundamental for establishing provable security.
RAMBAM and STORM diverge from this approach. While [WMCS20] (Section 6)
employs codes in vector spaces over GF (28) for AES protection, RAMBAM and
STORM use codes over GF (2) without the need for t-S/NI-gadgets, leaving them
both smaller and more efficient.
Independence in security proofs typically means that in each individual computation
(in a clock-cycle), at least one share does not participate. This approach does not
work for RAMBAM where several field multiplications are executed sequentially in
a cycle. However, in STORM no multiplications are performed due to its memory
based tables, leaving only (independent) bitwise-XORs. Therefore, the reasoning
necessary for proving security is different and STORM, unlike RAMBAM, enjoys
provable security. We consider two distinct scenarios, both with provable security:
(1) STORM1 — “leakage-free” memory reads, demonstrating (1,1,0)-robustness for
LUTs with redundancy 2 in the 1-probe model and for LUTs with redundancy 6
in the 2-probe model, and (2) STORM2 — leaky memory reads, where additional
protection mechanisms and a notion of memory-read robustness are introduced.
STORM can be implemented not only in HW, but in SW as well. However, this
paper and the proofs in it relate to STORM’s HW implementations.
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Randomization · RAMBAM · Redundancy · Rings · Side-channel · SCA ·
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1 Introduction
Side-channel analysis attacks (SCAs) [KJJ99] pose a significant challenge to the develop-
ment of secure cryptographic algorithms in real-world, non-black-box scenarios without
sacrificing performance or increasing electronic costs substantially. The cost of implement-
ing protection against these attacks continues to be a major issue, making SCAs a persistent
threat in the industry, particularly for resource-constrained devices. Consequently, efficient
protection against SCAs remains a crucial area of academic research. Most recent protec-
tion schemes proposed in academia come with security proofs, ensuring resistance against
some dth-order side-channel leakage, contingent upon critical assumptions; namely, the in-
dependence of leakage across different sections or shares of an integrated circuit or sufficient
noise. There is abundant literature on the challenges relating to signal ‘glitches’ [MMSS19],
memory-recombination [MPG05, MPO05, CGP+12, BGG+14], and compositional issues.
These can be found and corrected by verification tools, such as FullVerif [CGLS20, CS21],
MaskVerif [BBC+19], and SILVER [KSM20]. At times some of these challenges can be
simulated over circuit-simulation tools and solved before circuit tape-out, as demonstrated
by the PROLEAD tool [MM22]. Moreover, in [DCEM18, LBS19, GGB+22] it was shown
that such assumptions are approximations which hold in most cases, but there are cases
in which (e.g.,) t-tests breach theoretical guarantees. Nevertheless, provable security
provides a valuable guarantee of protection against SCA, albeit up to a certain number
of traces. One common model of d-probe security was suggested in [ISW03]. However,
this model does not account for certain physical effects, such as glitches, transitions, or
couplings. An enhanced version of this model which takes these effects into account,
dubbed (g, t, k)-robust d-probing security [FGDP+18] is used in our work because of its
generality. Despite these advances, the challenge persists, as a result of the growing need
to ‘handle’ all these hurdles in a provably-secure manner, which entails huge electronic
costs and resource utilization.

The Rijndael cipher, which was adopted as the Advanced Encryption Standard (AES)
by NIST in 2001, is one of the most widely employed block ciphers across hardware
and software implementations. While AES exhibits no known cryptographic weaknesses,
its naïve implementations are known to be highly prone to SCA. Therefore, protecting
AES against SCA is an important example of the more general problem of protecting
cryptographic algorithms against SCAs. Several provably-secure schemes of AES protection
have been suggested, such as Threshold Implementations (TI) [NRR06], Domain Oriented
Masking (DOM) [GMK16], Hardware-Private-Circuits (HPC) [CGLS20], Code-Based
Masking (CBM) presented in [WMCS20], and LUT-based Masked Dual-Rail with Pre-
charge Logic (LMDPL) [SBHM20].

However, provably-secure AES comes at a notable price, which counters NIST’s design
goals that date back to the 1997 AES competition. The selection of Rijndael as AES
reflected these design goals, and resulted in fast and compact unprotected AES implemen-
tations. In TI, DOM, HPC and various other schemes, the proofs necessitate the execution
of nonlinear transformations over several clock cycles to limit glitch propagation and
compositional issues. These generally turn into either very high latency or alternatively
high area or energy designs.

In 2022, a new AES protection called RAMBAM was introduced [BBA+22]. RAMBAM
opts for a security parameter (“redundancy”) that controls the signal-to-noise ratio rather
than asserting provable security. It reflects a significant paradigm shift. This parameter
has no impact on latency and performance, only slightly affects gate count, and allows for
a significant reduction of randomness requirements. However, it causes an approximately
exponential decrease in side-channel leakage as redundancy increases. This design explicitly
does not adhere to provable security, typically achieved by restricting building blocks to
be (strongly)-non-interfering (through various t-S/NI or PINI-gadgets), which entails high
costs. The security parameter paradigm proves very practical in such a scenario, as it has in
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the case of RSA. Although there is no proof, and there cannot be a proof, of the impossibility
of factorization for large modulus sizes in RSA, there is a subexponential growth of the
complexity of factorization, which reflects RSA’s strength. Only the polynomial complexity
of Shor’s quantum factorization algorithm makes RSA insecure. RAMBAM proposes
a similar approach: side-channel leakage decreases approximately exponentially with
redundancy. Therefore, even in the face of powerful new attacks, a moderate increase
in the redundancy (and, hence, a moderate increase in area) will uphold the scheme’s
security.

In this paper, we introduce a scheme, denoted STORM, that can be thought of as a
combination of RAMBAM’s methodology with the utilization of look-up-tables (LUTs)
in memory (ROM or RAM) in a redundant domain. RAMBAM and STORM are code-
based schemes in the sense of the definition of “code-based” in CBM, i.e. the set of the
representations is a code in the vector space GF (2)8+d. However, RAMBAM deviates from
CBM in terms of its algebraic-requirements which necessitate both a richer structure of a
ring on GF (2)8+d and a ring homomorphism. Moreover, both STORM and RAMBAM
are significantly different from CBM — not in the general sense of being code-based, but
with respect to the primitives utilized: in CBM, as in all masking schemes, the t-NI and
t-SNI notions are crucial, since otherwise there cannot be provable security. CBM applied
to AES [WMCS20, Section 6] uses codes in vector spaces over GF (28), and the size of
a masked representation is an integer number of bytes. In contrast, in RAMBAM and
STORM the code is in a ring of dimension 8 + d over GF (2), and the redundant-byte1

consists of 8 + d bits, without using t-S/NI-gadgets. As a practical consequence of the
underlying schemes, RAMBAM is much faster and requires substantially fewer random
bits than code-based masking. The source of this efficiency stems from the fact that
independence in security-proofs typically involves separation such that in each individual
computation (in a clock-cycle), at least one share does not participate, or some form of
randomness-refreshing takes place. However, this approach does not work for RAMBAM
where various field multipliers can be executed sequentially in a clock cycle. This could
be extremely counter-intuitive to practitioners. The security of RAMBAM is based not
on probing but on a security parameter that affects the Signal-to-Noise Ratio (SNR).
This approach results in an approximately exponential decrease in side-channel leakage as
redundancy increases. Therefore, the security indication is not a binary True/False-leakage
result in a dth-order t-test, as is typical in probing security.

Two recent papers have discussed RAMBAM — [LMMS23] and [LK24]. In [LMMS23]
the authors have analyzed RAMBAM and completed the picture by evaluating RAMBAM
in a theoretical (probing security based) tool (PROLEAD) for the first time. They
indeed found that RAMBAM is not provably-secure. Inherently, RAMBAM’s construction
provides asymptotic security, i.e., exponential reduction of leakage as the security parameter
grows, with no probing security. In [LK24] the authors show that RAMBAM can be
considerably expanded and generalized to a far broader range of encodings, can employ
field isomorphisms, and can use simpler multiplication gadgets. This opens up new avenues
and room for further research.

However, the main difference between RAMBAM and STORM is that STORM indeed
has provable security stemming from the utilization of memory-based LUTs, which
in turn implies that all non-linear operations are performed via memory reads, and no
multiplications are done in logic, leaving only (independent) bitwise XORs. Therefore,
proofs are possible, although the reasoning differs from that used for conventional NI-
gadgets. STORM, unlike RAMBAM, provides provable security, as discussed below.
Furthermore, STORM achieves the same latency as RAMBAM and is low-power compared

1Throughout the paper, in both RAMBAM and STORM, redundant-byte means a data chunk of 8 + d
bits which represents a regular 8-bit byte in the redundant domain.
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to RAMBAM. In the next sections, we consider two distinct scenarios, both with provable
security:

1. STORM1 — “leakage-free” memory reads: demonstrating (1,1,0)-robustness
for LUTs with redundancy 2 in the 1-probe model and for LUTs with redundancy 6
in the 2-probe robust model.

2. STORM2 — leaky memory reads: where additional protection mechanisms
that preserve the scheme’s efficiency in comparison to conventional paradigms, and a
notion of memory-read robustness are introduced.

The theoretical security proofs are complemented by experimental data validating the
effectiveness of the scheme.

STORM can be implemented not only in HW, but in SW as well. However, this paper
and the proofs in it relate to the HW implementations.

1.1 Our Contributions
In this paper, we present STORM, a novel AES protection scheme which innovates in several
ways: it combines a distinctive algebraic structure underpinning a code-based approach
with a redundancy-based security-parameter embedded with tailored use of memory-based
lookup tables (LUTs) similar to [GLZ12], but harnessing an algebraic-structure as discussed.
The contributions provided by the scheme are:

• A new SCA-protection scheme for AES promoting a redundancy security-parameter
that combines the redundant representations with LUT randomization in memory.

• Provably-secure schemes in the following two settings:
1. STORM1. No leakage from memory reads exists (leakage-free), i.e., constant

power consumption of memory reads or an otherwise protected memory is
utilized.2 For the digital logic in this variant of STORM, we prove (1,1,0)-
robustness in the 1-probing model (starting from redundancy 2) and in the
2-probing model (starting from redundancy 6) as defined in [FGDP+18]. To
the best of our knowledge, this is the first validation of d-probe security for a
scheme that is not share-based.

2. STORM2. Leaky memory reads. To protect against leakage from memory
reads, we present two additional protections: LUT randomization and dummy
reads. We introduce a notion of memory-read robustness and prove the existence
of an instance of STORM2 with redundancy 6 which is both (1,1,0)-robust in
the 2-probe model and memory-read robust. The number of random bits needed
for LUT randomization is negligible (less than one bit per AES encryption).
8+d random bits per dummy read (= per S-box) are used to generate a random

2Side-channel attacks on SRAM memory exploit physical leakages to infer sensitive data from the
memory. The prior art in side-channel secured SRAM design has focused on techniques such as embedded
data masking, randomized compute-in-memory (CIM) SRAMs and logic encryption [SKM+23, AMZ+24,
HJP+21, RDV12], power randomization and balancing [SNS24, GSNP24, HCKG19, GVL+18, CO19,
GKF18, NMS23, ZWW16, WGC+21]. These methods primarily aim to protect the stored data by
obfuscating the relationship between the actual data values and the observed side-channel leakage. Not
all solutions may be effective in blocking address leakage from memory access patterns, which can reveal
information about the addresses being accessed, or in preventing leakage which combines different address
bits, different addresses or different data sections. However, this extremely active field is very new, and
recent state-of-the-art research has only begun to address these limitations by exploring access-based
countermeasures or expanding on previous solutions. These include randomized address mapping, dummy
accesses, differential-privacy tools [LGD24], in addition to more traditional balancing and masking of the
decoding logic. We believe that as part of the “leveled implementation” paradigm for SCA-security typically
observed in NIST candidates for authenticated encryption schemes, such assumptions and primitives may
have great value and reduce the efforts needed to SCA-protect other parts of the system. In its second
setting (see below), STORM does not rely on leakage-free memory. However, if a leakage-free memory is
available, it improves the parameters and most importantly, (1) no random bits are used beyond the initial
randomization, (2) ROM can be used instead of RAM, (3) the amount of required memory decreases.
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address, which is significantly lower than in most other protection schemes.
There are two flavors of dummy reads, providing a tradeoff between performance
(one round per clock cycle, as in unprotected implementations) and the compact
LUTs.

• The providing of theoretical analysis, various examples and experimental analysis
with measurement results.

• More versatility in primitive sets. Since the digital logic layer in STORM is very thin,
the power consumption and the maximal clock frequency are determined mostly by
memory reads. As a result, compared to alternative schemes, the power consumption
is much lower, and the maximal frequency is much higher, at the cost of utilizing
memory.

• STORM preserves inherent protection against statistical ineffective fault attacks
SIFA-1 [DEK+18] from RAMBAM. At redundancy 4 (each byte is represented
by 12 bits), STORM achieves protection against two simultaneous faults, and at
redundancy 5 (each byte is represented by 13 bits), it achieves protection against
three simultaneous faults. In contrast to share-based schemes, 3 shares (each byte is
represented by 24 bits) are needed to protect against two simultaneous faults, and
4 shares (each byte is represented by 32 bits) are needed to protect against three
faults.

In summary, STORM, like RAMBAM, is a non-share-based scheme with a security
parameter (redundancy). It effectively solves the long-standing challenge of combining
high security against SCA with high performance, low gate count, low latency, low power
consumption, and low randomness utilization by offering a different tradeoff (memory
utilization) that may be preferable to RAMBAM in many real-world cases. Unlike
RAMBAM, for which it was experimentally shown in [BBA+22] that leakage rapidly
decreases as redundancy grows, and the intuition behind it is explained, but without a
security proof, we prove the lack of leakage from both digital logic and memory reads for
STORM and show that the scheme is provably secure.

1.2 Organization of this Paper
The remainder of this paper is organized as follows:

• In Section 2, we provide an overview of previous algorithms, including plain AES,
LUT-based AES, and RAMBAM. We also briefly introduce the d-probe security
notions according to [ISW03] and [FGDP+18].

• Section 3 presents the STORM algorithm, including implementation notes. We
establish the need of redundancy 4 or more for 2-probe security, even in the classic
model from [ISW03]. Additionally, we introduce notation used throughout the paper
and outline the requirements for the LUTs essential to the security proof. We also
show how the level of protection against SIFA-1 depends on the redundancy d and
compare it against RAMBAM and against share-based schemes.

• Section 4 presents the security proof of STORM1 (in the absence of side-channel
leakage from memory reads), assuming that the LUTs comply with the requirements
outlined in Section 3.

• In Section 5 we prove that redundancy 2 is enough for (1,1,0)-robustness of STORM1
in the 1-probe security model, and redundancy 6 is enough in the 2-probe security
model, by building LUT suites that comply with the requirements from Section 3.

• In Section 6, we define a notion of memory-read robustness and present the additional
protections and a security proof for STORM2 (leaky memory reads).

• Section 7 presents the experimental results in the STORM2 model.
• Section 8 promotes a discussion and draws conclusions.
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2 Background
Basic notations: The following notations are used in this section:

• Algebraic structures: F = GF (2)[x]/(P0) denotes the finite field GF (28). When
clear from the context, we refer to F as the vector space Z8

2 . R denotes the vector
space Z8+d

2 , and F̂ denotes a subspace of R which is isomorphic to F and thus can
be regarded as a finite field.

• Array indexing: indicated by a subscript. For example, cj denotes byte j of the
ciphertext.

• Expanded key indexing: kj denotes byte (redundant-byte) j of the expanded key.
• ∥ denotes the concatenation operator.
• [·] denotes the size of an array (in elements).
• f(x) represents either a function operating on input x, or the result of a memory-based

Look-Up Table (LUT) access in address x.

In Section 3 we introduce additional notations used thereafter.

2.1 Plain AES
The AES cipher is defined in [Nat01]. In this paper, we will use an equivalent definition
for the standard AES presented below in Algorithm 1.

Remarks regarding Algorithm 1:

Algorithm 1: Plain AES encryption
1 Function AesEnc(Nr, k[16(Nr + 1)], p[16])

Input : Nr ∈ N — the number of rounds
k[16(Nr + 1)] ∈ F 16(Nr+1) — the expanded key
p[16] ∈ F 16 — the plaintext

Output : c[16] ∈ F 16 — the ciphertext
2 /* First AddRoundKey */

3

 x0
...

x15

 =

 p0
...

p15

 +

 k0
...

k15


4 /* Regular rounds */
5 for r = 1 to Nr − 1 do
6 x = ShiftRows(x) /* Permutation of bytes */
7 for i = 0 to 3 do

8


x4i+0
x4i+1
x4i+2
x4i+3

 = M


A(x254

4i+0)
A(x254

4i+1)
A(x254

4i+2)
A(x254

4i+3)

 +


k16r+4i+0
k16r+4i+1
k16r+4i+2
k16r+4i+3


9 end for

10 end for
11 /* Final round */
12 x = ShiftRows(x)

13

 c0
...

c15

 =

A(x254
0 )
...

A(x254
15 )

 +

 k16·Nr+0
...

k16·Nr+15


14 end
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• We assume that the key has already been expanded, and therefore the only difference
between AES128, AES192, and AES256 is in the number of rounds Nr and the size
of the expanded key (16(Nr + 1) bytes).

• Following [Nat01], we see each byte as an element of the Galois field GF (28) repre-
sented as a polynomial in F = GF (2)[x]/(P0), where P0 = x8 + x4 + x3 + x + 1.

• Byte additions and multiplications in Algorithm 1 below are the Galois field additions
(XORs) and multiplications.

• We represent Sbox(x) as A(x254), where A is a specific affine transformation in the
field seen as a vector space over GF (2).

• We denote the MixColumns transformation matrix by: M =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

.

Note that the following set of byte functions is sufficient to implement the AES encryption:

• Field addition (XOR)
• Field multiplication (in the calculation of x254 and multiplications by constants in

the matrix multiplication in line 8 of Algorithm 1)
• The affine transformation A

2.2 AES Protected with RAMBAM
The RAMBAM algorithm is described in [BBA+22] and is intended to protect AES
implementations against SCA. Here, we sketch the general idea behind the RAMBAM
algorithm:

• Define a redundant domain R larger than F and a homomorphism H : R → F . We
call the elements of the redundant domain redundant-bytes.

• Replace each byte of the plaintext and of the expanded key with its randomly
chosen preimage under H.

• Perform the AES algorithm in the redundant domain R, with proper adjustments of
the transformations used in it.

• After the last round, apply H to each redundant-byte of the result.

More concretely, since the transformations used in Algorithm 1 involve field addition
and multiplication, the redundant domain must be a ring. Specifically, in RAMBAM the
ring R = GF (2)[x]/(PQ) is used, where P is an irreducible polynomial of degree 8 over
GF (2) (not necessarily P0), and Q is a polynomial of degree d (called redundancy). The
homomorphism H : R → F is defined as H(x) = L−1(x mod P ), where L : F → R is an
invertible linear transformation that maps the standard AES representation of any byte
to the redundant representation of the same byte in the basis ⟨1, t, . . . , t7⟩ with d leading
zeros prepended, where t is one of the roots of the polynomial P . Algorithm 2 below
represents the RAMBAM algorithm, with the following remarks:

• P, Q, d, L are the parameters of the algorithm.
• Addition and multiplication are in the sense of R rather than in the sense of F .
• The algorithm AesEnc∗ is identical to AesEnc (Algorithm 1), with the following

changes:
– It is executed in R instead of F .

– Instead of M =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 , M∗ =


L(2) L(3) 1 1

1 L(2) L(3) 1
1 1 L(2) L(3)

L(3) 1 1 L(2)

 is used.

– Instead of A, A∗ is used such that (∀x ∈ R)(H(A∗(x)) = A(H(x)).
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• π ∈ R16 (line 2), κ ∈ R16(Nr+1) (line 3) and σ ∈ R16 (line 4) are arrays of redundant
bytes representing the plaintext, expanded key, and ciphertext, respectively.

The RAMBAM algorithm, as detailed in [BBA+22], includes additional intricacies, such
as the re-randomization of intermediate results during exponentiation. However, for the
scope of this paper, these details are not essential.

Algorithm 2: RAMBAM Protected AES Encryption
1 Function ProtectedAesEnc(Nr, k[16(Nr + 1)], p[16], rk[16(Nr + 1)], rp[16])

Input : Nr ∈ N — the number of rounds
k[16(Nr + 1)] ∈ F 16(Nr+1) — the expanded key
p[16] ∈ F 16 — the plaintext
rk[16(Nr + 1)] ∈ (Zd

2)16(Nr+1) — 16(Nr + 1) d-bit random numbers
for key randomization, seen as elements of GF (2)[x]

rp[16] ∈ (Zd
2)16 — 16 d-bit random numbers for data randomization,

seen as elements of GF (2)[x]
Output : c[16] ∈ F 16 — the ciphertext

2

 π0
...

π15

 =

 L(p0)
...

L(p15)

 +

 rp
0P
...

rp
15P


3

 κ0
...

κ16·Nr+15

 =

 L(k0)
...

L(k16·Nr+15)

 +

 rk
0 P
...

rk
16·Nr+15P


4 σ = AesEnc∗(Nr, κ, π)

5

 c0
...

c15

 =

 H(σ0)
...

H(σ15)


6 end

2.3 LUT-based AES Encryption
Algorithm 3 is a LUT-based algorithm of AES encryption. Such algorithms were widely
used for fast SW implementations of AES encryption before AES accelerating instructions
(e.g., Intel’s AES-NI) were introduced (see, for example, in [GLZ12]). This algorithm as
such has nothing to do with protection against SCA. It only replaces the calculations
related to SubBytes and MixColumns with accessing a memory-based LUT T with 256
entries. Each 16-bit entry T [x] is S(x)∥DS(x), where

S(x) = Sbox(x) (1)

D(x) = 2 · x (2)

DS(x) = D ◦ S(x) = 2 · Sbox(x) (3)

Besides LUT accesses, the only byte operations in this algorithm are XORs.
Note that although the matrix M used for MixColumns contains three different entries

(1, 2 and 3), it is enough to keep in the LUT only S(x) and DS(x) because of the identity

3 · Sbox(x) = (1 + 2)Sbox(x) = S(x) + DS(x) (4)

Algorithm 3 below represents the LUT-based AES encryption algorithm, with the
following remarks:
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• Unlike Algorithms 1 and 2, here all four AES transformations, including ShiftRows,
are merged into a one per-round operation.

• The addition of the indices of array x is modulo 16.

Algorithm 3: LUT-based AES Encryption
1 Function AesEncLUT (Nr, k[16(Nr + 1)], p[16])

Input : Nr ∈ N — the number of rounds
k[16(Nr + 1)] ∈ F 16(Nr+1) — the expanded key
p[16] ∈ F 16 — the plaintext

Output : c[16] ∈ F 16 — the ciphertext
2 /* First AddRoundKey */

3

 x0
...

x15

 =

 p0
...

p15

 +

 k0
...

k15


4 /* Regular rounds */
5 for r = 1 to Nr − 1 do
6 for i = 0 to 3 do

7


x4i+0
x4i+1
x4i+2
x4i+3

 =


DS(x4i) + DS(x4i+5) + S(x4i+5) + S(x4i+10) + S(x4i+15) + k16r+4i

DS(x4i+5) + DS(x4i+10) + S(x4i+10) + S(x4i+15) + S(x4i) + k16r+4i+1
DS(x4i+10) + DS(x4i+15) + S(x4i+15) + S(x4i) + S(x4i+5) + k16r+4i+2

DS(x4i+15) + DS(x4i) + S(x4i) + S(x4i+5) + S(x4i+10) + k16r+4i+3


8 end for
9 end for

10 /* Final round */

11

 c0
...

c15

 =

 S(x5·0) + k16·Nr+0
...

S(x5·15) + k16·Nr+15


12 end

2.4 Probing Models
In this paper, we will prove the security of STORM protection using the robust n-probing
model introduced in [FGDP+18]. In this section, we describe the classic n-probing model
introduced in [ISW03] and the robust n-probing model.

Although it is customary to denote the order of the probing model as d, in this paper
we use n instead, since d is reserved for redundancy.

2.4.1 The Original (“Classic”) Probing Model

According to the classic n-probing model introduced in [ISW03], a circuit is called n-secure
if every n-tuple of its intermediate variables is independent of any sensitive variable. Here
“intermediate variables” mean stable values of some wires, each at one clock cycle. This
model does not take into account transitions and glitches.

2.4.2 The Robust n-probing Model

The robust n-probing model introduced in [FGDP+18] suggests extensions of the classic
n-probing model, in order to take into account glitches, transitions, and couplings, by
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replacing probes with extended probes.
For the transition extension, each probe on a wire W at the clock cycle t is extended

by implicitly adding another probe on the same wire W at the clock cycle t + 1.
For the glitch extension, each probe on a wire W at the clock cycle t in a combinational

circuit is extended by implicitly adding probes at the same clock cycle t on all wires that
affect, directly or indirectly, the value at W .

In this paper, we do not deal with couplings and do not describe the coupling extension.
A combinational circuit is called secure in the (g, t, 0)-robust n-probing model if for

any set of n probes, after the transition extension if t = 1 and after the glitch extension
if g = 1, the set of values on the extended set of probes is independent of any sensitive
variable. The (0, 0, 0)-robust n-probing model is therefore the classic n-probing model.

3 STORM Description
The STORM algorithm combines the redundant domain approach of RAMBAM with
the use of LUTs. The primary goal of using LUTs in STORM is the replacement of all
non-linear operations (which are the key sources of side-channel leakage) with memory
accesses. At the same time, since the only remaining operations are memory accesses and
XORs, there is an additional advantage of low power consumption and a high maximal
clock frequency compared to other protection schemes.

In the following subsections, we describe the algorithm, prove a necessary condition for
its security against classic probing attacks, formulate requirements to the LUT that must
hold for the security proofs to work, and discuss STORM’s immunity against statistical
ineffective fault attacks.

Starting from this section, we make use of the following notations (all variables below
are redundant-bytes, i.e., elements of R):

• pj — redundant-byte j of the plaintext (after the initial randomization).
• rkj — redundant-byte j of the round key of round r (the first round key used in the

initial AddRoundKey has r = 0).
• rxj — redundant-byte j of the internal state before round r.
• cj — redundant-byte j of the ciphertext (before the final de-randomization).

For bit indices in redundant-bytes we will use right upper indices, e.g., rxi
j is bit i of

redundant-byte j of the internal state before round r.

3.1 The Algorithm
A LUT-based implementation eliminates the need for multiplication over a finite field.
That is, the redundant domain does not need to support multiplication, and the vector
space R = Z8+d

2 , rather than a ring, can be used as the redundant domain. Its elements
are represented by (8 + d)-bit redundant-bytes.

We denote by F̂ the set of all x ∈ R such that the d leading bits of x are zeros,
and denote by J : F → F̂ the natural isomorphism between F and F̂ : J(s) = 0d∥s
for any s ∈ F . Due to this isomorphism, we will regard F̂ as another representation of
GF (28). For example, the multiplication of two elements in x1, x2 ∈ F̂ is conducted as
x1 · x2 = J(J−1(x1) · J−1(x2)).

A linear map H : R → F̂ is defined. Unlike the original RAMBAM scheme, where
there were reasons for using P ̸= P0, here we require H to be a projection (i.e., H2 = H).
It is easy to see that the function G(x) = x − H(x) is a projection of R onto Ker(H),
and we can see R as a direct sum of its subspaces F̂ and Ker(H). Each x ∈ R can be
uniquely represented as x = H(x) + G(x), where H(x) ∈ F̂ is the clear component of x,
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and G(x) ∈ Ker(H) is its random component. A XOR with a randomly chosen element of
Ker(H) is used for the randomization of the input data and of the key.

If two elements x1, x2 ∈ Ker(H) have the same d most significant bits, they must be
equal, since x1 + x2 ∈ Ker(H) ∩ F̂ = {0}. Therefore the most significant d bits of the
2d elements of Ker(H) assume all 2d possible values. We sort all elements of Ker(H) in
lexicographic order and then remove the d most significant bits from each element. We
denote the resulting array by K. K consists of 2d 8-bit records. It is easy to see that the
image of the function V : Zd

2 → R, defined as V (s) = s∥K[s], is Ker(H). We use this
array, typically implemented in gates rather than in the memory, to randomly choose an
element of Ker(H).

Algorithm 4 shown below implements STORM, with the following remarks:

• The redundancy d, the projection H, and the array K used to generate elements of
Ker(H) as described above are the parameters of the algorithm.

• Addition is in the sense of R rather than of F .
• The algorithm AesEncLUT ∗ is identical to AesEncLUT (Algorithm 3), with the

following changes:
– It is executed in R rather than in F .
– Instead of functions S : F → F and DS : F → F and table T , functions

S∗ : R → R and DS∗ : R → R and table T ∗ are used, where the table contains
the values of S∗(x) and of DS∗(x). The requirements for these functions are
listed in Section 3.3.

• π ∈ R16 (line 2), κ ∈ R16(Nr+1) (line 3) and σ ∈ R16 (line 4) are arrays of redundant
bytes representing the plaintext, expanded key, and ciphertext, respectively.

Note that, unlike the original RAMBAM algorithm, there is no re-randomization during
the execution.

Algorithm 4: STORM — LUT-based Protected AES Encryption
1 Function ProtectedAesEncLUT (Nr, k[16(Nr + 1)], p[16], rk[16(Nr + 1)], rp[16])

Input : Nr ∈ N — the number of rounds
k[16(Nr + 1)] ∈ R16(Nr+1) — the expanded key
p[16] ∈ R16 — the plaintext
rk[16(Nr + 1)] ∈ (Zd

2)16(Nr+1) — 16(Nr + 1) d-bit random numbers
for key randomization

rp[16] ∈ (Zd
2)16 — 16 d-bit random numbers for data randomization

Output : c[16] — the ciphertext

2

 π0
...

π15

 =

 J(p0)
...

J(p15)

 +

 (rp
0∥K[rp

0 ])
...

(rp
15∥K[rp

15])


3

 κ0
...

κ16·Nr+15

 =

 J(k0)
...

J(k16·Nr+15)

 +

 (rk
0 ∥K[rk

0 ])
...

(rk
16·Nr+15∥K[rk

16·Nr+15])


4

 σ0
...

σ15

 = AesEncLUT ∗(Nr, κ, π)

5

 c0
...

c15

 =

 J−1 ◦ H(σ0)
...

J−1 ◦ H(σ15)


6 end
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columns

...

rows
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3.2 A Necessary Condition on Linear Map H for its Security Against
Classic Probing Attacks

In Section 4 we will prove, under certain assumptions, the security of the scheme against
SCA in (1,1,0)-robust 1-probing and 2-probing models introduced in [FGDP+18]. As an
initial step toward this objective, we examine the necessary (but not necessarily sufficient)
conditions for the linear map H to ensure the security within the classic n-probing model,
as introduced in [ISW03].

Definition 1. If N = ⟨i0, . . . , in−1⟩ is an n-tuple of bit positions, then P N is the n×(8+d)
matrix in which only n bits P N

t,it
(0 ≤ t < n, 0 ≤ it < 8 + d) are 1, and all other bits are 0.

It is easy to see that P N represents the linear transformation that maps a vector x ∈ R
to a vector in Zn

2 consisting of only the bits of x that are in the bit positions from N .

Definition 2. If F0 : Zt
2 → Zu0

2 and F1 : Zt
2 → Zu1

2 (where t, u0, u1 are arbitrary
natural numbers) are linear maps, then the direct sum F0 ⊕ F1 : Zt

2 → Zu0+u1
2 is defined

as F0 ⊕ F1(x) = ⟨F0(x), F1(x)⟩, where we represent any vector from Zu0+u1
2 as a pair

consisting of a vector from Zu0
2 and a vector from Zu1

2 .

Let {v0, . . . , vd−1} be an arbitrary basis of Ker(H), and let W be the (8+d)×d matrix
columns of which are the vectors of the basis. For an arbitrary n-tuple N of bit positions
(n ≤ d), let W N be the n × d matrix formed by the rows of W corresponding to the bit
positions in N .

Example 1. Figure 1 illustrates matrices W and W N for d = 4 and |N | = 2.

Definition 3. A linear map H : R → F is called n-uniform if for any n-tuple N of bit
indices P N (Ker(H)) = Zn

2 .

Lemma 1. Let N be an n-tuple of bit positions where n ≤ d. Then H is n-uniform if
and only if rank(W N ) = n.

Proof. It is easy to see that the columns of W N are the vectors P N (v0), . . . , P N (vd−1),
and the dimension of the space spanned by these vectors (which is P N (Ker(H))) equals
rank(W N ).

Lemma 2. n-uniformity of H is a necessary condition for n-probing security of algorithm
AesEncLUT ∗ in the classic model.

Proof. If H is not n-uniform, then for some n-tuple N = ⟨i0, . . . , in−1⟩ of bit indices
P N (Ker(H)) ̸= Zn

2 . Let X = ⟨x0, . . . , xn−1⟩ be any vector from Zn
2 \ P N (Ker(H)). If the

probes are set at the inputs to bits i0, . . . , in−1 of any redundant-byte x of the state, and



Yaacov Belenky et al. 13

the vector of values measured on their probes is X, then the clear component H(x) of the
redundant-byte cannot be 0, so the measurements provide information regarding a byte of
the state.

The following two lemmas are rather trivial, but are convenient to refer to.

Lemma 3. H is 1-uniform if and only if there are no all-zero rows in matrix W .

Proof. If |N | = 1, then W N is one row of W . Clearly, its rank is less than 1 if and only if
it is all-zeros.

Lemma 4. H is 2-uniform if and only if there are no all-zero rows and no matching rows
in matrix W .

Proof. If |N | = 2, then W N is a matrix with two rows out of W . It has rank less than 2 if
and only if at least one of the rows is all-zeros, or the rows are identical — otherwise, the
rows are linearly independent, and the rank is 2.

Theorem 1. If d < 4, then the algorithm AesEncLUT ∗ using H cannot be robust in the
classic 2-probing model.

Proof. The matrix W has 8+d rows, d bits in each. There are 2d possible bit combinations
in each row. If d < 4, then 2d < 8 + d, and there exists a pair of identical rows, therefore
by Lemma 4 H is not 2-uniform, and by Lemma 2 the algorithm AesEncLUT ∗ using H
cannot be robust in the classic 2-probing model.

3.3 LUT functions: Definitions, Requirements for Entropy Preservation
and Uniformity

Two functions of AesEncLUT ∗ are implemented by LUTs, S∗ and DS∗. The requirements
for these functions are classified into two categories:

• Requirements that guarantee correctness and entropy preservation
• Requirements that guarantee certain uniformity properties

These groups of requirements, along with some definitions, lemmas and notes, are listed
in the following subsections.

3.3.1 Requirements Related to Correctness and Entropy Preservation

Requirement 1. S∗(x) can be represented as

S∗(x) = Sbox(H(x)) + ∆S(H(x)) + ΛS(G(x)) (5)

where ∆S : F̂ → Ker(H) is an arbitrary function and ΛS : Ker(H) → Ker(H) is an
invertible linear function.

Note that the clear component of S∗(x) is

H(S∗(x)) = Sbox(H(x)) ∈ F̂ (6)

and its random component is

G(S∗(x)) = ∆S(H(x)) + ΛS(G(x)) ∈ Ker(H) (7)

Requirement 2. DS∗ can be represented as D∗ ◦ S∗, where

D∗(x) = 2 · H(x) + ∆D(H(x)) + ΛD(G(x)) (8)

where ∆D : F → Ker(H) is an arbitrary function and ΛD : Ker(H) → Ker(H) is an
invertible linear function.
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Denoting
∆DS = ∆D ◦ Sbox + ΛD ◦ ∆S (9)

ΛDS = ΛD ◦ ΛS (10)
we have

DS∗(x) = 2 · Sbox(H(x)) + ∆D(Sbox(H(x))) + ΛD(∆S(H(x))) + ΛD(ΛS(G(x)))
= 2 · Sbox(H(x)) + ∆DS(H(x)) + ΛDS(G(x)) (11)

and therefore the clear component of DS∗(x) is

H(DS∗(x)) = 2 · Sbox(H(x)) ∈ F̂ (12)

and its random component is

G(DS∗(x)) = ∆DS(H(x)) + ΛDS(G(x)) ∈ Ker(H) (13)

Note that in each coset of H the first two addends in equations (5), (8) and (11) are
constant, so the functions S∗, D∗, DS∗ are affine on any coset of H, where the linear part
is the same for all cosets, and only the free term varies.
Lemma 5. If Requirements 1 and 2 hold, then AesEncLUT ∗ correctly performs AES
encryption.
Proof. Taking into account (6) and (12), it is easy to prove by induction on the rounds
that the clear part of the redundant-bytes of the state in AesEncLUT ∗ is identical up to
the isomorphism J to the corresponding bytes in AesEncLUT .

Lemma 6. Assuming that Requirements 1 and 2 hold, for any fixed values of the expanded
key rkj and of the clear components of the plaintext H(pj) in algorithm AesEncLUT ∗,
the correspondence between the values of the plaintext pj and of the state at any round r
rxj is one-to-one (where 0 ≤ r ≤ Nr, 0 ≤ j < 16).
Proof. The transformation in the inner loop of the regular rounds limited to the random
component of the redundant-bytes can be represented as

G(r+1x4i)
G(r+1x4i+1)
G(r+1x4i+2)
G(r+1x4i+3)

 = Z


ΛS(G(rx4i))

ΛS(G(rx4i+5))
ΛS(G(rx4i+10))
ΛS(G(rx4i+15))

 +


G(rk4i)

G(rk4i+1)
G(rk4i+2)
G(rk4i+3)

 + rCi (14)

where

Z =


ΛD ΛD + I I I
I ΛD ΛD + I I
I I ΛD ΛD + I

ΛD + I I I ΛD

 (15)

I is the (8 + d) × (8 + d) identity matrix, and rCi ∈ Ker(H) is a constant vector depending
on the clear parts of rx4i+5, rx4i+5, rx4i+10, rx4i+15.

ΛS is invertible by Requirement 1, and the invertibility of Z is proven in Lemma 17
(Appendix A). Therefore transformation (14) is bijective, and by induction on the round
index, the correspondence is one-to-one for all regular rounds. For the last round, we have

G(cj) = ΛS(G(Nrx5·j)) + G(Nrkj) (16)

Due to the invertibility of ΛS , the transformation in the last round is also bijective.

Lemma 7. If the random parts of the plaintext redundant-bytes G(pj) are distributed
independently and uniformly in Ker(H), then so are the random parts of the redundant-
bytes of the state G(rxj) for any round index r, regardless of the expanded key.
Proof. Trivially follows from Lemma 6.
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...
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3.3.2 Requirements Related to the Uniformity

According to Requirements 1 and 2, the functions S∗, D∗ and DS∗ are fully defined by
the quintuple ⟨H, ΛS , ∆S , ΛD, ∆D⟩. We will call such a quintuple a LUT suite.
Definition 4. Let ⟨H, ΛS , ∆S , ΛD, ∆D⟩ be a LUT suite with redundancy d. Let’s consider
an arbitrary M = {⟨t0, i0⟩, . . . , ⟨t|M |−1, i|M |−1⟩} ⊆ {0, 1, 2} × {0, . . . , 7 + d}. Denoting
F0 = I (the identity function), F1 = S∗, F2 = DS∗, we define EM (x) : R → Z|M |

2 as the
function that maps any vector x ∈ R to the vector with coordinates (Ft(x)i : ⟨t, i⟩ ∈ M).

In other words, EM maps any redundant-byte x ∈ R to a subset of bits of x, S∗(x),
DS∗(x), where each pair ⟨t, i⟩ ∈ M defines one bit out of this subset. Namely, t defines
from which redundant-byte (x, S∗(x), DS∗(x)) the bit is taken, and i defines its index in
the redundant-byte.

Note that since both S∗ and DS∗ are affine at each coset of H, with the same linear
part (ΛS and ΛDS , respectively) and different free terms, the same applies to EM .

For M = {⟨t0, i0⟩, . . . , ⟨tk, ik⟩}, we’ll denote the set of all bit indices represented in M

N(M) = {i | ∃t : ⟨t, i⟩ ∈ M} = {i0, . . . , i|N(M)|−1} (17)

where the indices in N(M) are numbered in any predefined order, e.g., in ascending order.
We’ll also denote

M j = {t | ⟨t, ij⟩ ∈ M} ≠ ∅ (18)
for i < |N(M)|.
Example 2. (Illustrating the M , N(M) and M j)

In Figure 2, M = {⟨0, i0⟩, ⟨1, i1⟩, ⟨2, i0⟩, ⟨2, i1⟩}, N(M) = {i0, i1}, M0 = {0, 2}, M1 =
{1, 2}. The bits of EM (x) are b0 = xi0 , b1 = (S∗(x))i1 , b2 = (DS∗(x))i0 , b3 = (DS∗(x))i1 .

Definition 5. EM is called uniform if EM (C1) = EM (C2) for any cosets C1, C2 of H.
Requirement 3. For (1,1,0)-robustness in the 1-probing model, the linear map H must be
1-uniform, and EM must be uniform for any M such that |N(M)| = 1 and {0, 1} ⊈ M0.

(The requirement {0, 1} ⊈ M0 means that the xi and (S∗(x))i are never present in M
together.)
Requirement 4. For (1,1,0)-robustness in the 2-probing model, the linear map H must
be 2-uniform, and EM must be M -uniform for any M such that |N(M)| = 2, {0, 1} ⊈ M0,
and {0, 1} ⊈ M1, and for any M such that |N(M)| = 1.

In other words, the sets M that contain two different bit indices are restricted to those
in which the bit from x and from S∗(x) are not present together for any of the indices.
For the sets that contain only one bit index, there is no such restriction.
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Figure 3: db versus the redundancy d for RAMBAM, STORM, and (conventional) Boolean
Masking

3.4 Additional metrics and protection against SIFA-1

In [LMMS23] the authors build a bijection between RAMBAM with d = 8 and a repre-
sentation in two shares and state that this bijection proves the equivalence between these
two schemes. However, while this bijection is instrumental for analyzing RAMBAM with
probing-theory related tools (such as PROLEAD) which requires a representation in shares
as its input, it cannot be seen as an equivalence as suggested in [LMMS23]. For such an
equivalence to be meaningful, it must preserve security metrics. As an example, it must
preserve bit-level security order db which is defined as the maximal number such that
the simultaneous probing of any set of db bits provides no information regarding clear
values (see for example [BCC+14, KP21]). This security metric is not preserved under the
above-mentioned bijection, as illustrated in Figure 3 which shows the dependency of db

on the number d of additional bits in the representation of one byte for RAMBAM, for
STORM, and for conventional Boolean masking.

Protection against SIFA-1 follows naturally; In SIFA-1, the attacker provides random
plaintexts, and for each plaintext performs two AES encryptions — one without faults,
the other with simultaneous faults (e.g., force to 0) into several bits of the internal state
after the 8-th round (for AES128). Then, he deduces the last round key by analyzing the
subset of ciphertexts that are identical, with and without faults (the “ineffective faults”
which occur when the bits forced to 0 are already 0). If the set of bits in which the faults
are injected bears no information regarding sensitive values, clearly such a deduction is
impossible. Therefore, if the number of bits that the attacker can simultaneously force
to 0 is ≤ db, SIFA-1 is impossible. For masking over GF (28) with the minimal possible
number of shares, 2, the codeword size is 16 bits, and db = 1. On the other hand, for
RAMBAM with redundancy 7 (a 15-bit codeword) and for STORM with redundancy 5 (a
13-bit codeword) with a carefully chosen ring or vector space db = 3, and with redundancy
8 for RAMBAM or STORM (a 16-bit codeword) db = 4, so RAMBAM and STORM are
significantly more protected against SIFA-1 than masking schemes with an equal codeword
size.
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4 Proof of Security of STORM1
Since STORM uses memory, its total power consumption is the sum of the power con-
sumption in the gates and the power consumption in the memory. In this section, we will
prove STORM’s security in the (1, 1, 0)-robust 1-probing and 2-probing models assuming
that the power consumption of memory accesses does not reveal the accessed address and
data, and therefore can be disregarded (which is the setting for STORM1).

For the purpose of the proof, we represent the data path by a combinational circuit
that consists of many instances of a circuit functionally equivalent to the circuit shown
in Figure 4 using the notation introduced in Section 3.3. Each such instance calculates a
single bit xi

j of the internal state at all rounds r.
We assume a parallel implementation with 16 instances of the table T ∗, each one

in its own memory, so that it is possible to calculate a round per clock cycle. In this
implementation, no data-containing registers are needed. At each clock cycle the data
from the data buses is processed, and the resulting data is sent to the address buses. The
inputs of the combinational part of the scheme are the data buses and the input lines
(randomized plaintext and key). Its outputs are the address buses and the output lines
(ciphertext). The clock cycles are numbered as follows:

• Clock cycle 0 — the initial AddRoundKey (the “zeroth round”)

• Clock cycles 1 − (Nr − 1) — the regular rounds

• Clock cycle Nr — the last round

The functions f0, f1, f2, f3, f4 represent the relationships between the redundant-byte
indices of the inputs and of the output. f0, f1, f2, f3 are consistent with Algorithm 3.

Note that according to the definition of f4, after the last round the ciphertext is rotated
by one redundant-byte. This tweak is crucial for Lemma 8 below (which is necessary for
our security proof) to hold.

Lemma 8. For u ∈ {1, 2, 3, 4}, fu(j) ̸= j.

Proof. Trivially follows from the table definition of the functions (Table 1).

To define a probe in the (g, t, 0)-robust n-probing model, we need to define both the
wire and the clock cycle (= round).
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Table 1: Relationships between Redundant-byte Indices in the Round Transformation
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f0 0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11
f1 5 10 15 0 9 14 3 4 13 2 7 8 1 6 11 12
f2 10 15 0 5 14 3 4 9 2 7 8 13 6 11 12 1
f3 15 0 5 10 3 4 9 14 7 8 13 2 11 12 1 6
f4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0

When g = 1 (which is the case in our proof), when choosing the basic probe set, it is
enough to take into account only the output wires r+1xi

j (r ≥ 0) for the basic probe set,
because they provide maximal extended sets of probes.

For the transition-extension, for each probe r+1xi
j in the basic probe set we add another

probe r+2xi
j at the same wire, one clock cycle later.

According to the definition of the glitch-extension in [FGDP+18], for each probe r+1xi
j

from the basic or transition-extended probe set we need to add probes at all wires which
affect r+1xi

j . Instead, we replace it with probes on all the input wires in Figure 4, namely:

• If r > 0, then we replace r+1xi
j with rki

j , DS∗(rxf0(j))i, DS∗(rxf1(j))i, S∗(rxf1(j))i,
S∗(rxf2(j))i, S∗(rxf3(j))i, S∗(rxf4(j))i. (We do not need to list pi

j , as these input
lines contain zeros at all clock cycles except 0.)

• If r = 0, then we replace r+1xi
j with rki

j and pi
j . (The inputs at the data bus are

irrelevant when r = 0, as there were no memory accesses yet.)

We will denote the basic set of probes (consisting of one or two probes) as Q, the
same set after the transition extension as Qt, and the same set after both the transition
extension and the glitch replacement as Qtg.

Note. In the following, notations rxi
j , S∗(rxj)i, DS∗(rxj)i, rki

j are used in two different
senses. When we write, e.g., rxi

j ∈ Qt, or S∗(rxj)i ∈ Qtg, we mean that a specific wire
at a specific round is in the set of probes or extended probes, regardless of the specific
instance of the AES encryption. In other cases, rxi

j and S∗(rxj)i mean the values (0 or 1)
at these wires in a specific instance of AES encryption. The meaning in each case should
be clear from the context. We preferred this ambiguity to a further complication of the
notation.

We prove that the joint distribution of the values at these probes is independent of
the clear components of the plaintext and of the extended key. This implies that they
bear no information regarding the sensitive values. For any output of the synthesizer, the
tree of the wires which affect r+1xi

j is functionally equivalent to Figure 4 and the values
at all wires of this tree are logical functions of the input lines in Figure 4. Therefore, if
the values at the input lines jointly bear no information regarding the sensitive values, it
applies to all wires of the tree as well.

Lemma 9. Suppose that:
1. For all round indices r and for all redundant-byte indices j, the clear components

H(pj) and H(rkj) have arbitrary fixed values, and the random components G(pj)
and G(rkj) are distributed independently and uniformly.

2. The values of all probes from Qtg up to round r0 are arbitrarily fixed, where r0 is an
arbitrary fixed round index.

We denote N t
j = {i : r0+1xi

j ∈ Qt} for any redundant-byte index j. Then:

• The distribution of r0+1xj is uniform over some coset of the linear map H ⊕ P Nt
j .

• The distributions of the random components G(r0+1xj) (0 ≤ j < 16) are independent.
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Proof. Let us arbitrarily fix, in any way consistent with the fixed values of the probes from
Qtg, the following random components:

• G(pj) for 0 ≤ j < 16
• G(rkj) for 0 ≤ j < 16 and r < r0

Each redundant-byte r0+1xj is a sum of several redundant-bytes related to round r0,
namely:

• r0kj + pj for r0 = 0 (the initial AddRoundKey)
• r0kj + DS∗(r0xf0(j)) + DS∗(r0xf1(j)) + S∗(r0xf1(j)) + S∗(r0xf2(j)) + S∗(r0xf3(j)) for

the regular rounds
• r0kj + S∗(r0xf4(j)) for the last round

Clearly, fixing the clear components of the plaintext and of the expanded key fixes the
clear components of all state redundant-bytes H(rxj) at all rounds up to r0 as well, so in
all cases, all addends except for the first one (r0kj) are fixed. Since for any bit index i
the only instance of Figure 4 in which r0ki

j appears is the instance with output r0+1xi
j ,

we have N t
j = {i : r0ki

j ∈ Qtg}, so the value of r0kj is uniformly distributed in a coset
of H ⊕ P Nt

j . Since there are probes from Qt at the bits r0+1xi
j with bit indices from the

same set N t
j , their values are fixed, and the set of the possible values of r0+1xj is limited

by a coset of H ⊕ P Nt
j . The sum of the variable r0kj uniformly distributed in a coset of

H ⊕ P Nt
j with a constant, is also a variable uniformly distributed in a coset of H ⊕ P Nt

j ,
which is the set of all the possible values of r0+1xj .

The random component G(r0+1xj) of each redundant-byte r0+1xj depends on the
random component G(r0+1kj) of only one redundant-byte of the expanded key, and these
random components are distributed independently. Therefore, the random components
G(r0+1xj) of the redundant-bytes are distributed independently as well.

Lemma 10. In the (1, 1, 0)-robust 1-probing model (|Q| = 1), it cannot happen that
rxi

j ∈ Qt and S∗(rxi
j) ∈ Qtg.

Proof. From |Q| = 1 it follows that |Qt| = 2, and the two probes in Qt differ only by the
round index, but have the same redundant-byte and bit indices.

Suppose that rxi
j ∈ Qt and S∗(rxi

j) ∈ Qtg. It means that S∗(rxi
j) ∈ Qtg is one of the

input lines in some instance of Figure 4 with the output line r+1xi
j′ ∈ Qt, i.e., for some

u ∈ {1, 2, 3, 4} and for some 0 ≤ j′ < 16, j = fu(j′). By Lemma 8, j′ ̸= j, and rxi
j and

r+1xi
j′ are two probes from Qt with different redundant-byte indices, a contradiction.

Lemma 11. In the (1, 1, 0)-robust 2-probing model (|Q| = 2), if the bit indices of the two
probes in Q differ, then it cannot happen that rxi

j ∈ Qt and S∗(rxi
j) ∈ Qtg.

Proof. If |Q| = 2 and the bit indices i0, i1 of the two probes in Q are different, then in Qt

there are two probes with bit index i0 and two probes with bit index i1, and in each pair
of probes both probes have the same redundant-byte index. Therefore, it cannot happen
that two probes from Qt have the same bit index, but different redundant-byte indices.

Similarly to Lemma 10, suppose that rxi
j ∈ Qt and S∗(rxi

j) ∈ Qtg. It means that
S∗(rxi

j) ∈ Qtg is one of the input lines in some instance of Figure 4 with the output
line r+1xi

j′ ∈ Qt, i.e., for some u ∈ {1, 2, 3, 4} and for some 0 ≤ j′ < 16, j = fu(j′).
By Lemma 8, j′ ̸= j, and rxi

j and r+1xi
j′ are two probes from Qt with different redundant-

byte indices, a contradiction.

Theorem 2. Assuming that all requirements from Section 3.3 are met, except for Require-
ment 4, STORM1 is secure in the (1,1,0)-robust 1-probing model. If Requirement 4 is also
met, then STORM1 is secure in the multivariate (1,1,0)-robust 2-probing model.
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Proof. We denote the number of probes in the basic set as n. Note that the number of
different bit indices in the extended probe set Qtg is at most n.

Due to the initial randomization, the random components G(pj) and G(rkj) are
distributed independently and uniformly. We prove that the distribution of the values
at the probes in the extended set Qtg does not depend on the clear components of the
plaintext and of the expanded key. The proof is by induction by the round index.

At round 0, let’s consider the probes from Qtg. They are of the form pi
j and 0ki

j for some
redundant-byte indices j and bit indices i. We split these bits into groups according to their
sources, i.e., to the redundant-bytes to which they pertain. Since all these redundant-bytes
are distributed independently, the distributions of the bits from different groups are also
independent of each other. Let’s further consider a single group consisting of nj ≤ n bits
at the set N tg

j of bit positions. Note that the value of the source redundant-byte given the
values at these probes is uniformly distributed in a coset of H ⊕ N tg

j . H is by assumption
n-uniform, and therefore nj-uniform as well. By Lemma 1, P Nj (Ker(H)) = Znj

2 , therefore
2nj cosets of H ⊕ P Nj cover Ker(H), so 2nj cosets of H ⊕ P Nj cover any coset of H as
well. Since all cosets of H ⊕ P Nj have the same size, all 2nj combinations of the values of
the probes in the group have the same probability.

At round r0 + 1 > 0, we assume that at all the earlier rounds the values at the probes
from Qtg are fixed, and we will prove that the joint distribution of the values at the probes
from Qtg at round r0 + 1 does not depend on the clear components.

We denote:

• F0 = I, F1 = S∗, F2 = DS∗ as in Definition 4
• N t

j = {i : r0+1xi
j ∈ Qt} as in Lemma 9

• Mj = {⟨0, i⟩ : r0+1xi
j ∈ Qt} ∪ {⟨t, i⟩ : t ∈ {1, 2}, Ft(r0+1xj)i ∈ Qtg}

Clearly, N t
j ⊆ N(Mj), therefore |N t

j | ≤ |N(Mj)| ≤ n.
We split the probes from Qtg at round r0 + 1 into groups according to their sources,

where r0+1xj is regarded as the source of S∗(r0+1xj)i and of DS∗(r0+1xj)i. Since each
group of bits is a function of a different source, and since by Lemma 9 the sources are
distributed independently, what is left to prove is that the distribution of the bit values
inside each group is jointly uniform and does not depend on the clear components.

EMj (r0+1xj) represents the values at all probes from Qt which pertain to r0+1xj and
all probes from Qtg whose source is r0+1xj .

In the (1, 1, 0)-robust 1-probing model, according to Lemma 10 it cannot happen that
r0+1xi

j ∈ Qt and S∗(r0+1xi
j) ∈ Qtg, therefore {0, 1} ⊈ M0

j , and by Requirement 3 EMj

must be uniform.
In the (1, 1, 0)-robust 2-probing model, there are two cases.
If the two probes of Q have the same bit index i, then all probes of Qtg have the same

bit index i, |N(Mj)|= 1, and by Requirement 4 EMj must be uniform.
If the two probes have different bit indices i0, i1, then by Lemma 11 for each one of

them it cannot happen that rxi
j ∈ Qt and S∗(rxi

j) ∈ Qtg, therefore {0, 1} ⊈ M0
j and

{0, 1} ⊈ M1
j , and by Requirement 4 EMj must be uniform.

Summarizing, EMj is uniform in all cases. Due to this uniformity, for any coset C of
H, Y = EMj (C) does not depend on the choice of the coset, i.e., on the clear components.
According to Lemma 9, given the values at the probes from Qtg up to round r0, r0+1xj

is distributed uniformly in a coset C ′ ⊆ C of H ⊕ P Nt
j . Y ′ = EMj (C ′) ⊆ Y is the subset

of Y with fixed values of bits r0+1xi
j for i ∈ N t

j , and this subset does not depend on
the clear components as well. Due to the affinity of EMj , and to the uniformity of the
distribution of r0+1xj in C ′, the distribution in Y ′ (i.e., the distribution of bits from N tg

j )
is also uniform.

Example 3. (Illustrating the last paragraph of the proof)
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Let Figure 2 represent the case with Mj = {⟨0, i0⟩, ⟨1, i1⟩, ⟨2, i0⟩, ⟨2, i1⟩}. In this case,
if r0+1xj ∈ Ker(H), then Y is the set of all combinations of the four bits xi0 , S∗(x)i1 ,
DS∗(x)i0 , DS∗(x)i1 for x ∈ Ker(H), and due to the uniformity of EMj , the same set of
combinations corresponds to any coset of H. In this case, N t

j = {i0}, and Y ′ is the set
of all possible combinations of bits S∗(x)i1 , DS∗(x)i0 , DS∗(x)i1 consistent with a specific
value of xi0 . Naturally, this set does not depend on the clear component (the coset of H
from which r0+1xj is chosen) as well.

5 Construction of LUT Suites which are (1,1,0)-Robust in
1-Probing and 2-Probing Models in STORM1

In Section 4 we prove the security of STORM1, assuming that the requirements listed
in Section 3.3.1 hold. In this section we describe how to construct LUT suites of redundancy
2 for security in the (1,1,0)-robust 1-probing model, and of redundancy 6 in the (1,1,0)-
robust 2-probing model.

In the following, we assume an arbitrary LUT suite ⟨H, ΛS , ∆S , ΛD, ∆D⟩ and an
arbitrary fixed basis {v0, . . . vd−1} of Ker(H).

Definition 6. ΞM (x) : Ker(H) → Z|M |
2 is the function that maps any vector x ∈ Ker(H)

to the vector with coordinates (Φt(x)i : ⟨t, i⟩ ∈ M), where Φ0 = I (the identity function),
Φ1 = ΛS , Φ2 = ΛDS .

Lemma 12. ΞM is linear, and at any coset of H, EM (x) = ΞM (G(x)) + const.

Proof. Trivially follows from the formulae for S∗ (5) and for DS∗ (11), and from the
definition of EM (Definition 4) and of ΞM (Definition 6).

Definition 7. ΞM is called degenerate if dim(ΞM (Ker(H))) < |M |, and non-degenerate
otherwise.

Lemma 13. If ΞM is non-degenerate, then EM is uniform.

Proof. If ΞM is non-degenerate, then dim(ΞM (Ker(H))) = |M |, and therefore ΞM (Ker(H)) =
Z|M |

2 , i.e., ΞM assumes all possible values, therefore at any coset of H, EM (x) =
ΞM (x) + const assumes all possible values as well.

Definition 8. ΞM is called minimal degenerate if it is degenerate, but for any proper
subset M ′ ⊂ M , ΞM ′ is non-degenerate.

Definition 9. For any K ⊆ {0, 1, 2}, the (8 + d) × d matrix W K is defined as follows:
W K

ij = (
∑

k∈K Φk(vj))i, where Φ0 = I (the identity function), Φ1 = ΛS , Φ2 = ΛDS .

Note that for K = {0}, K = {1} and K = {2}, the columns of W K are vj , ΛS(vj)
and ΛDS(vj), respectively, and matrix W introduced in Section 3.2 is W {0} as defined
by Definition 9, so Lemmas 3 and 4 are applicable to W {0}.

In the following, to specify a LUT suite including a basis of Ker(H), we provide
matrices W {0}, W {1}, W {2} and functions ∆S , ∆DS . Indeed, W {0} defines Ker(H) and
thus H, W {0} and W {1} together define ΛS , and W {0} and W {2} together define ΛDS .

Lemma 14. For any K ⊆ {0, 1, 2}, W K =
∑

t∈K W {t}.

Proof. Trivially follows from Definition 9.
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Lemma 15. If ΞM is minimal degenerate, then∑
⟨t,i⟩∈M

W
{t}
i =

∑
j<|N(M)|

W Mj

ij
= 0 (19)

where W K
i is, of course, the ith row of the matrix W K .

Proof. We’ll prove that
∑

⟨t,n⟩∈M W
{t}
i = 0; then

∑
j<|N(M)| W Mj

ij
= 0 will follow

by Lemma 14.
Let’s define V M as the |M | × d matrix with {W

{t}
i |⟨t, i⟩ ∈ M} as its rows.

Clearly, column i of V M is ΞM (vi). Since the vectors vi span Ker(H), it is easy to
see that ΞM (Ker(H)) = V M (Ker(H)), and dim(ΞM (Ker(H))) = rank(V M ), so for a
degenerate ΞM the rank is lower than the number of rows |M |, and there must be a linear
dependency between the rows of V M . On the other hand, since for any proper subset
M ′ ⊂ M the function ΞM ′ is not degenerate, any subset of the rows of V M must be
linearly independent. Therefore, the coefficients of all rows in the linear dependency must
be non-zero, i.e., 1 — which means that the sum of all rows of V M must be 0.

Example 4. Figure 5 illustrates W K , V M and the two equal sums from (19).

In the following subsections we will describe how to build a LUT suite which is
(1,1,0)-robust in the n-probing model (with n ∈ {1, 2}).

5.1 1-Probing Model
In this section we show that for (1,1,0)-robustness in the 1-probing model, redundancy 2
is sufficient, and provide an example of such a LUT suite.

5.1.1 Sufficient Condition for (1,1,0)-Robustness of STORM1 in the 1-Probing Model

Lemma 16. If there are no all-zero rows in W {0}, there are no all-zero rows in W {1}

and W {2} as well.
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Proof. W {1}, W {2} are bases of Ker(H), like W {0}, due to the invertibility of ΛS and
ΛDS . If there is an all-zero row in W {1} or in W {2}, it means that one of the coordinates
of all vectors from Ker(H) is zero — in contradiction to the assumption that there are no
all-zero rows in W {0}.

Theorem 3. If there are no all-zero rows in W {0} and for each bit index 0 ≤ i < 8 + d,
W

{0}
i ̸= W

{2}
i and W

{1}
i ̸= W

{2}
i , then the LUT suite is (1,1,0)-robust in the 1-probing

model, regardless of ∆S and ∆DS.

Proof. Since there are no all-zero rows in W {0}, by Lemma 3 H is 1-uniform.
Suppose |N(M)| = 1 and {0, 1} ⊈ M (see Requirement 3). If |M | = 1, then the matrix

V M has one row, which by assumption cannot be all-zeros, so dim(Ξm(Ker(H))) = 1 =
|M |, ΞM is non-degenerate and by Lemma 13 uniform. If |M | ≥ 2, then M = {0, 2} or
M = {1, 2}, and the two rows of the matrix V M are either W

{0}
i and W

{2}
i , or W

{1}
i and

W
{2}
i . In both cases, the rows by assumption do not match, so dim(Ξm(Ker(H))) = 2 =

|M |, ΞM is non-degenerate and by Lemma 13 EM is uniform.
We have shown that in all cases Requirement 3 holds, therefore by Theorem 2 the LUT

suite is (1,1,0)-robust in the 1-probing model.

5.1.2 Construction of a LUT Suite with Redundancy 2 that Guarantees the (1,1,0)-
Robustness of STORM1 in the 1-Probing Model

Matrix W {0} must have no all-zero rows, and each of the matrices which define ΛD :
Ker(H) → Ker(H) and ΛDS : Ker(H) → Ker(H) in the basis ⟨v0, v1⟩ must be either
L0 =

(
0 1
1 1

)
or L1 =

(
1 1
1 0

)
, with ΛS = Λ−1

D ◦ ΛDS (see (10)). Both ∆S : F → Ker(H) and
∆D : F → Ker(H) can be chosen arbitrarily.

Indeed, in a pair of rows ⟨W {0}
i , W

{2}
i ⟩ or ⟨W {1}

i , W
{2}
i ⟩ the second row can be produced

from the first row by application of L0 or L1. It is easy to check that both L0 or L1 have
no non-zero fixed points, so the assumptions of Theorem 3 hold, and the LUT-suite is
(1,1,0)-robust in the 1-probing model.

5.1.3 Example of a LUT Suite with Redundancy 2 that Guarantees the (1,1,0)-
Robustness of STORM1 in the 1-Probing Model

The matrices W {0} = W {1} and W {2} are defined by (20). Functions ∆S : F → Ker(H)
and ∆DS : F → Ker(H) can be chosen arbitrarily. It is easy to check that there are no
all-zero rows and the rows with the same index are different between W {0} = W {1} and
W {2}.

W {0} = W {1} =



1 1
1 0
1 0
0 1
1 1
0 1
1 1
1 0
1 0
0 1


W {2} =



1 0
0 1
0 1
1 1
1 0
1 1
1 0
0 1
0 1
1 1


(20)

By presenting this LUT suite, we have proven the following

Theorem 4. There exists a LUT suite with redundancy 2 that guarantees the (1,1,0)-
robustness of STORM1 in the 1-probing model.
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5.2 2-Probing Model
In this section, we first describe how to build a LUT suite that guarantees the (1,1,0)-
robustness of STORM1 in the 2-probing model with redundancy 7 (Section 5.2.1), but do
not present a specific LUT suite. Instead, we proceed to redundancy 6. In Section 5.2.2,
we describe more intricate techniques which are necessary to build a protected LUT suite
with redundancy 6 and at the same time make it possible to shrink the table record size
from 28 to 17 bits. In this paper, this is the only case in which the choice of functions ∆S

and ∆DS is essential.

5.2.1 Sufficient Condition for the (1,1,0)-Robustness of STORM1 in the 2-Probing
Model, and Redundancy 7

Theorem 5. If in the five matrices W {0}, W {1}, W {2}, W {0,2}, W {1,2} there are no
all-zero rows and no matching rows, then the LUT suite defined by matrices W {0}, W {1},
W {2} guarantees the (1,1,0)-robustness of STORM1 in the 2-probing model.

Proof. 2-uniformity of H follows from Lemma 4.
We are going to prove that all functions ΞM with either |N(M)| = 2 and {0, 1} ⊈ M0

and {0, 1} ⊈ M1, or |N(M)| = 1 (see Requirement 4), are non-degenerate.
Suppose that some of these functions are degenerate. Then a minimal degenerate

function ΞM must exist among them.
If |M | = 1, it means that the only row of V M is all-zeros, which cannot happen by

assumption. Therefore, |M | ≥ 2.
If for this function |N(M)| = 2, then by Lemma 15∑

j<|N(M)|

W Mj

ij
= 0 (21)

or equivalently
W M0

i0
= W M1

i1
(22)

Since M0 is non-empty and {0, 1} ⊈ M0, it is easy to see that M0 can be one of the
following: {0}, {1}, {2}, {0, 2}, {1, 2}. The same applies to M1, so there is at least one
pair of matching rows in the five matrices W {0}, W {1}, W {2}, W {0,2}, W {1,2}.

If |N(M)| = 1, then |M0| = |M |. Since |M | ≥ 2, we can represent (not necessarily
uniquely) M0 = M0

0 ∪ M0
1 , where M0

0 and M0
1 are disjoint non-empty sets, neither of

which is a superset of {0, 1}, which means that

W
M0

0
i0

= W
M0

1
i0

(23)

so in this case we also have a pair of matching rows in five matrices W {0}, W {1}, W {2},
W {0,2}, W {1,2}.

In other words, if all rows in the five matrices are not all-zeros and are different, then
functions ΞM for all sets M listed in Requirement 4 are non-degenerate and therefore
the corresponding functions EM are uniform; additionally, by Theorem 1 H is 2-uniform,
and by Theorem 2 the LUT suite guarantees the (1,1,0)-robustness of STORM1 in the
2-probing model.

Using Theorem 5, it is easy to find a (1,1,0)-secure LUT suite in the 2-probing model
with redundancy 7, since there are 5(8 + 7) = 75 rows in the five matrices, and the set of
non-zero values of a row is 27 − 1 = 127. We will not present an example of such a LUT
suite, since, in fact, redundancy 6 suffices, as we will explain in Section 5.2.2, including a
specific example of such a LUT suite.
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5.2.2 Construction of LUT Suites for Redundancy 6

With redundancy 6 there are 5(8 + 6) = 70 rows in the five matrices, and only 26 − 1 = 63
different possible values, so there are at least 7 matching pairs of rows, and the functions
ΞM corresponding to these pairs of rows are degenerate. Still, assuming that there are no
pairs of matching rows within each one of the tables W {0}, W {1}, W {2} (as it would violate
the 2-uniformity of H), it may be possible to ensure that they are uniform despite being
degenerate, with an appropriate choice of the free term Sbox(H(x))+∆S(H(x)) of function
S∗, and the free term 2 · Sbox(H(x)) + ∆DS(H(x)) of function DS∗, in order to ensure
that the free term of EM assumes the same value, (say, 0) in all cosets of H, and therefore
EM (C) is the same in any coset C of H, i.e, EM is uniform. Of course, Sbox(H(x)) and
2 · Sbox(H(x)) are fixed for any coset of H, but ∆S(H(x)) and ∆DS(H(x)) can be chosen
arbitrarily. For any coset of H, each pair of matching rows imposes a linear equation
on the values of ∆S(H(x)) and ∆DS(H(x)). The coefficients in these linear equations
are the same for all cosets, but the free terms differ. Since the values of both ∆S(H(x))
and ∆DS(H(x)) are in a 6-dimensional space Ker(H), the matrix M corresponding to
this system of equations may (or may not) be invertible up to 12 equations, i.e., up to 12
matching pairs of rows. LUT suites with redundancy 6, at most 12 matching pairs of rows
in the five matrices, and an invertible matrix M are extremely rare, but we found some.

There is an additional consideration when choosing a specific LUT suite. Suppose there
is a matching pair of rows between table W {1} and W {2}. It means that a bit of S∗(x)
always matches a bit of DS∗(x), i.e., there are two identical bits at fixed positions in every
record, and it is possible to compress the table by dropping one of these identical bits.
Moreover, if there is a matching pair of rows between table W {0} and W {1} (or W {0} and
W 2}, it means that a bit of x always matches a bit of S∗(x) (or DS∗(x)). In this case, it
is possible to copy some bits of the address to a register, and at the next clock cycle read
them from this register rather than from the table, thus also shrinking the record size.
On the other hand, if at least one of the rows in a matching pair is from table W {0,2} or
W {1,2}, although functionally it would work out correctly to drop one of the bits involved
in the linear dependency and calculate it as the sum of all other involved bits, it would
invalidate our security proof. Therefore, if there are n ≤ 12 pairs of matching rows and
each pair comes from the three distinct tables W {0}, W {1}, W {2} (where each of the two
rows of the pair comes from a separate table), then the table record is compressible from
28 bits to 28 − n bits.

We searched for LUT suites with at most 12 matching pairs of rows in the five matrices
aiming for the highest possible level of compression. We found more than 44K such LUT
suites compressible to 17-bit records, but not a single LUT suite compressible to 16-bit
records. Our hypothesis is that they do not exist, but presently we cannot prove it.

5.2.3 Example of a LUT Suite with Redundancy 6 which Guarantees the (1,1,0)-
Robustness of STORM1 in the 2-Probing Model

A LUT suite with redundancy 6 and 12 matching pairs, 11 of them among matrices W {0},
W {1}, W {2}, is represented below by W {0}, W {1}, W {2} (24). The rows that appear twice
are highlighted. Matrices W {0,2}, W {1,2} (25) are also shown, with the only matching
rows in this pair of matrices highlighted in both. With ∆S(x) and ∆DS(x) appropriately
chosen for each x ∈ F , the functions EM corresponding to these rows are uniform although
ΞM are degenerate.
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W {0} =



1 1 1 0 1 1
0 1 0 0 1 1
0 0 0 1 1 1
0 0 1 1 1 0
0 1 0 1 0 1
1 1 0 1 1 1
0 1 0 1 1 0
1 0 1 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



W {1} =



0 0 1 1 1 0
1 0 1 1 1 1
1 0 0 0 0 0
1 0 0 1 1 0
1 1 0 1 1 1
0 1 1 0 1 0
1 1 1 1 0 1
0 0 1 0 1 1
0 1 1 1 1 1
1 0 0 1 0 1
1 1 1 1 1 0
1 0 1 0 1 0
1 1 0 0 1 0
1 1 1 0 0 0



W {2} =



0 1 1 0 0 1
0 0 0 0 0 1
1 0 0 0 1 1
1 0 1 0 0 1
0 1 1 1 0 0
0 1 1 1 1 1
0 0 1 1 0 1
1 0 1 0 1 0
1 0 1 1 0 0
0 1 0 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 0 1 1 1 1
1 1 1 1 1 0



(24)

W {0,2} =



1 0 0 0 1 0
0 1 0 0 1 0
1 0 0 1 0 0
1 0 0 1 1 1
0 0 1 0 0 1
1 0 1 0 0 0
0 1 1 0 1 1
0 0 0 1 1 0
0 0 1 1 0 0
0 0 0 0 0 0
1 1 1 1 0 0
1 1 0 1 1 0
1 0 1 1 0 1
1 1 1 1 1 1



W {1,2} =



0 1 0 1 1 1
1 0 1 1 1 0
0 0 0 0 1 1
0 0 1 1 1 1
1 0 1 0 1 1
0 0 0 1 0 1
1 1 0 0 0 0
1 0 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
0 0 1 0 1 0
0 1 1 0 0 0
0 1 1 1 0 1
0 0 0 1 1 0



(25)

The system of linear equations for any x ∈ F̂ which has to be solved to find ∆S and
∆DS is



1 0 1 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0
1 0 1 1 1 1 1 0 1 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 1 1
0 1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 0
1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 1 0 1 1 0 0 1 0
0 1 0 1 0 0 1 1 1 0 0 0





d0

d1

d2

d3

d4

d5

s0

s1

s2

s3

s4

s5



=



x7

0
(2 · Sbox(x))1

(Sbox(x))0 + x3

(Sbox(x))1

(Sbox(x))2

(Sbox(x))4 + x5

(2 · Sbox(x))5

0
(2 · Sbox(x))7

0
(2 · Sbox(x))7 + x7



(26)

After these equations are solved, it is possible to calculate the free terms ∆S(x),
∆DS(x):
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∆S(x) = W {1}


s0

s1

s2

s3

s4

s5

 ∆DS(x) = W {2}


d0

d1

d2

d3

d4

d5

 (27)

The solution of (26) is

d0

d1

d2

d3

d4

d5

s0

s1

s2

s3

s4

s5



=



1 0 0 0 0 1 0 0 0 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 1 0 0 1
1 1 1 1 0 0 1 1 1 1 1 0
0 0 0 1 1 1 0 1 1 1 1 1
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 1 0 0 1 0 1 1 1
0 1 1 1 1 1 1 0 1 0 0 0
0 1 1 1 1 0 1 0 0 1 0 1
0 0 0 1 0 1 0 0 1 1 0 1
1 0 1 0 0 0 0 1 1 1 1 1





x7

0
(2 · Sbox(x))1

(Sbox(x))0 + x3

(Sbox(x))1

(Sbox(x))2

(Sbox(x))4 + x5

(2 · Sbox(x))5

0
(2 · Sbox(x))7

0
(2 · Sbox(x))7 + x7



(28)

or equivalently 

d0

d1

d2

d3

d4

d5

s0

s1

s2

s3

s4

s5



=



0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 1 1 1 1
1 1 1 1 0 0 1 1 1 1
1 0 1 1 1 1 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1 0
1 1 0 1 1 1 1 1 0 0
1 1 1 1 1 0 1 1 0 0
1 0 1 1 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0





x3

x5

x7

Sbox(x))0

Sbox(x))1

Sbox(x))2

Sbox(x))4

(2 · Sbox(x))1

(2 · Sbox(x))5

(2 · Sbox(x))7


(29)

Combining (29) with (27) and (24), the direct calculation of ∆S(x) and ∆DS(x) is

∆S(x) =



1 0 0 1 0 0 0 0 0
1 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 0 0
0 1 0 0 1 0 1 1 0
0 1 0 0 0 0 1 0 0
0 1 1 0 0 0 1 1 1
0 0 1 0 1 0 0 1 0
0 1 1 0 1 0 1 0 1
1 0 0 1 1 0 0 1 0
1 1 1 1 1 1 1 0 1
1 0 0 1 1 1 0 0 1
0 1 1 0 1 1 1 1 0
1 0 1 1 1 0 0 0 1
1 1 0 1 0 0 1 1 1





x3

x5

x7

Sbox(x))0

Sbox(x))1

Sbox(x))2

Sbox(x))4

(2 · Sbox(x))1

(2 · Sbox(x))5


(30)
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∆DS(x) =



1 1 0 1 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0
1 0 1 1 1 0 0 1 1 0
1 1 0 1 0 0 1 0 1 1
0 0 1 0 0 1 0 0 0 0
1 0 0 1 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 0
0 1 1 0 1 1 1 1 0 1
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 1 1
1 0 1 1 1 0 0 0 1 0
1 0 0 1 1 1 0 1 1 0
1 0 0 1 1 1 0 0 1 0





x3

x5

x7

Sbox(x))0

Sbox(x))1

Sbox(x))2

Sbox(x))4

(2 · Sbox(x))1

(2 · Sbox(x))5

(2 · Sbox(x))7


(31)

It is possible to directly verify that Requirement 4 holds for this LUT suite. Such a
verification completes the proof of the following

Theorem 6. There exists a LUT suite with redundancy 6 that guarantees the (1,1,0)-
robustness of STORM1 in the 2-probing model.

6 Additional Protections and Security Proof for STORM2
In the previous sections, we assumed the independence of the power consumption related
to memory accesses from the address and data (STORM1). In this section, we make
no assumptions regarding memory-read related leakage (STORM2). In Section 6.1, we
describe two additional protections to be used in STORM2, on top of the proper choice of
the LUT suite as described above. In Section 6.2, we introduce a probing model applicable
to memory reads. In Section 6.3, we prove the security of STORM2 in this probing model
with redundancy 6 by presenting a specific LUT suite.

6.1 STORM2 Specific Protections
6.1.1 Address and Data Randomization (LUT Randomization)

The LUT T ∗ described above consists of records T ∗[x] such that T ∗[x], or T ∗[x]∥x if the
compression described in Section 5.2.2 is used, contains all bits of S∗(x) and of DS∗(x).
Let’s apply to T ∗ a classical data and address randomization, and transform T ∗ into T ∗′

as follows:
T ∗′

[x] = T ∗[x + δa] + δd (32)
where δa (the address offset) and δd (the data offset) are chosen at random. (Here, as
elsewhere in this document, addition denotes the XOR operation.) For now, let’s assume
that there are two slots for the LUT, and after each AES encryption the entire LUT
is copied from one slot to the other with fresh δa and δd. Then at the address bus we
will send x + δa instead of x, and on the data bus we will read T ∗[x] + δd instead of
T ∗[x], and subsequently apply the appropriate corrections. Clearly, if both δa and δd
are distributed uniformly, then both x + δa and T ∗[x] + δd are distributed uniformly and
bear no information regarding the clear components. However, this protection may not
be enough, as it does not take transitions into account. Indeed, a XOR between two
subsequent values on the address bus or the data bus is not masked with the address/data
offset anymore, and does bear information regarding the clear components.

In practice, if we rewrite the entire LUT after each AES encryption, the performance
drops drastically, which is unacceptable in many cases. It is possible to rewrite the LUT
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gradually, several records or even one record at a time, and switch to the other slot once the
rewriting is completed. The impact of rewriting one record at a time on the performance
is negligible, and it does not affect the protection as long as the leakage from 28+d AES
encryptions (214 = 16, 384 for d = 6) performed with the same offsets is too weak to be
exploitable. In our experiments, this is the case.

6.1.2 Random (Dummy) Reads

Additionally, we add reads from random addresses between any two consecutive real reads.
There are two ways to add these reads:

• The fast option. Use three rather than two LUT slots. One slot is the target of the
LUT rewriting in progress. Each one of the remaining two slots is used for real reads
and dummy reads alternately, so that at any two consecutive clock cycles one of the
reads is dummy.

• The compact option. Instead of adding a third slot, execute dummy reads during
every alternate clock cycle from the only slot in use.

6.2 Probing Model for Memory Reads
In STORM2, to analyze robustness against leakage from memory reads, we suggest the
following

Definition 10. A scheme is called memory-read robust if:
1. The knowledge of all bits at the address bus for two consecutive clock cycles provides

no information regarding sensitive values.
2. The knowledge of all bits at the data bus for two consecutive clock cycles provides

no information regarding sensitive values.

Two consecutive clock cycles are mentioned in this definition in order to take transitions
into account.

6.3 Existence of LUT Suites which are Memory-Read Robust and
(1,1,0)-Robust in the 2-Probing Model

Theorem 7. There exist LUT suites which are memory-read robust and (1,1,0)-robust
in the 2-probing model, provided that the address and data are randomized as described
in Section 6.1.1, and dummy reads are performed as described in Section 6.1.2.

Proof. We will prove that the LUT suite presented in Section 5.2.3 with LUT randomization
and dummy reads is memory-read robust and (1,1,0)-robust in the 2-probing model. Its
(1,1,0)-robustness in the 2-probing model was already proven in Theorem 6, and clearly
the LUT randomization and dummy reads do not adversely affect the proof, so what is
left to prove is the memory-read robustness.

For the address bus, the theorem holds for any LUT suite. Indeed, the address is
distributed uniformly for both real and dummy reads; besides, the addresses for any two
consecutive clock cycles are clearly independent, since one of the reads is random, so there
is no information regarding the clear components at the address bus, even when transitions
are taken into account.

The situation with the data bus is different, since it is wider than the address bus, so
that not all of the possible values appear in the records, and the set of values present in
the table depends on the data offset. Therefore, although a value at the data bus can
correspond to any clear component, the probability distribution of the read dummy values
may differ depending on the clear components. However, for the LUT suite presented
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in Section 5.2.3, it is possible to directly verify that the following relationship between
S∗(x) and DS∗(x) holds for any x:

DS∗(x) =



0 0 0 0 1 0 1 1 0 0 0 1 1 0
1 0 0 0 1 0 0 1 1 0 1 1 0 1
0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 1 1 0 0 0 1 1 1 1 0 1 0 0
0 1 0 1 1 0 0 1 0 1 1 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 1 0 0 1 0 0 0 1 1 0 0 1 0
0 0 0 0 0 0 1 0 0 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0



· S∗(x) (33)

Therefore, the set of the record values in the table before randomization is a linear
space L. With randomization, the value read from the table is distributed uniformly
regardless of the clear component. If the read value is x, the set of all values in the table
is the affine space L + x, and the value read at the dummy read clock cycle is uniformly
distributed in this affine space, regardless of the clear component.

7 Experimental Section
7.1 Setup
Our experiments were performed at CW305 Artix FPGA target board by NewAE Tech-
nology [OC14]. The traces were collected using the NewAE Technology
ChipWhisperer-Lite kit at the rate of four samples per clock cycle. The power signal
was obtained by measuring the current via a shunt resistor connected serially to the FPGA
supply line.

For the experimental evaluation, we used two RTL implementations of AES128, with
redundancies 2 (LUT suite as described in Section 5.1.3) and 6 (LUT suite as described
in Section 5.2.3), with the same hardwired pre-expanded key K = 2B 7E 15 16 28 AE
D2 A6 AB F7 15 88 09 CF 4F 3C. The LUTs were implemented in the FPGA’s BRAM.
As this BRAM is leaky, the RTL supports both STORM2 additional protections described
in Section 6. The dummy reads are supported in the fast option (three slots, one for real
reads, one for dummy reads, and one in which the next randomized version of the LUTs is
being built). To enable a sanity check, the RTL supports disabling the randomization —
when this option is turned on, all random bits are zeros.

To diminish the internal noise, in our RTL one real read (and one dummy read) is
performed at each clock cycle, and each round takes 16 clock cycles. Before each AES
encryption, a single record is read from the active table, modified for a different address
offset and data offset, and written to the slot where the next LUT is being built (total of
2 clock cycles per AES encryption), so the randomized version of LUT is changed every
28+2 = 1, 024 AES encryptions for redundancy 2 and every 28+6 = 16, 384 AES encryptions
for redundancy 6.

The RTL supports execution of a long sequence of AES encryptions, in which approxi-
mately half of the encryptions have a fixed plaintext FP = 73 7A A9 06 C2 B3 F8 AF 45
16 FC 97 7C 4C D1 93 and the other half have a pseudorandom plaintext. The order in
which the two kinds of the plaintext are interspersed is defined at random, using a separate
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Figure 6: Warmup Experiment: Redundancy 2 with dummy reads and LUT randomization
(a) 1st-Order T-test (b) 2nd-Order T-test (TOP - vs. Time Samples, BOTTOM - vs.
#Traces)

source of randomness which cannot be disabled. The fixed plaintext is chosen so that the
input to all S-boxes at the fifth round is all-zeros. To eliminate possible false-positives
from the plaintext in the clear, the RTL works according to the following pseudocode:

Algorithm 5: STORM measurement Loop Iteration
1 Function EncLoop(S, κ, r)

Input : S[2] — two randomized plaintexts
κ — randomized expanded key K
r — a single random bit

2 res = AesEncLUT ∗(10, κ, S[0]) + ∆ /* 10 is the number of rounds */
3 if r=0 then
4 S[0], S[1] = res, S[1]
5 else
6 S[0], S[1] = S[1], res
7 end if
8 end

where:

• S — two slots for randomized plaintext. Initially one of them contains the fixed
plaintext FP , and the second one an externally supplied plaintext

• ∆ = AESK(FP ) + FP — the XOR of the fixed plaintext and the corresponding
ciphertext
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Figure 7: 2nd-Order Security: Redundancy 6 with dummy reads and LUT randomization
(a) 1st-Order T-test (b) 2nd-Order T-test (TOP - vs. Time Samples, BOTTOM - vs.
#Traces)

7.2 Security Evaluation
In this section we present the results of experiments in three configurations:

1. Warmup Experiment (1st-Order Security): Redundancy 2 with dummy reads and
LUT randomization (15.3M traces)

2. 2nd-Order Security: Redundancy 6 with dummy reads and LUT randomization
(15.3M traces)

3. LUT Randomization Disabled: Redundancy 6 with dummy reads, but without LUT
randomization (5.95M traces). We stopped this experiment prematurely as the
leakage in the first order became apparent.

We will denote the ith sample of the jth trace as xj
i . Let S0 and S1 be the sets of trace

indices with the fixed and random clear plaintexts, respectively.
In each configuration, we stored the acquired traces in files, 34K traces in each file.

Iteratively, merging these files one-by-one into the current subset of traces, we calculated
the following values, denoting the set indices of the traces in the current subset as M :

• First-order t-tests — for each sample index i, the t-test between {xj
i | j ∈ M ∩ S0}

and {xj
i | j ∈ M ∩ S1}

• Second-order t-tests (Univariate and Multivariate)— for each pair of sample
indices i0 and i1 such that i0 ≤ i1 ≤ i0 + 4, the t-test between

{(xj
i0

− xj
i0

)(xj
i1

− xj
i1

) | j ∈ M ∩ S0})
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Figure 8: LUT Randomization Disabled: Redundancy 6 with dummy reads, but without
LUT randomization (a) 1st-Order T-test (b) 2nd-Order T-test (TOP - vs. Time Samples,
BOTTOM - vs. #Traces)

and
{(xj

i0
− xj

i0
)(xj

i1
− xj

i1
) | j ∈ M ∩ S1})

Figures 6, 7 and 8 depict the results of these experiments for configurations item 1, item 2
and item 3, respectively. At each figure there are four plots. The upper row of plots shows
the t-test as a function of the sample index, for the first and second orders. For the second
order, five graphs are shown at the same plot, corresponding to i1 − i0 (between 0 and
4). I.e., a value of 0 implies a univariate 2nd-order test, and values of 1 to 4 imply a
multivariate 2nd-order test. In the lower row, each one of the two plots (for the first and
second order t-tests) consists of multiple graphs, where each graph represents the t-test of
a sample or a pair of samples as a function of the number of tests.

Our conclusions from these graphs:

• For redundancy 2 with dummy reads and LUT randomization:
– No first-order leakage is observed at 15.3M, confirming Theorem 3.
– There is a very significant leakage in the second order (starting from ≈ 2.5K

traces) which illustrates Theorem 1.
– The leakage in the second order at the same time serves as a sanity check for

our measurements with redundancy 2.
– The highest absolute values of the second order t-test are observed at the fifth

round at which all inputs to the S-box are zeros, which serves as an additional
sanity check.
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Table 2: Tradeoff between security level, RAM size, and latency
Configuration Clock cycles

per LUT read
# of LUT
slots

First-order leak-
age

Second-order
leakage

With LUT random-
ization (fast)

1 3 No No

With LUT random-
ization (compact)

2 2 No No

Without LUT ran-
domization (fast)

1 2 At ≈ 5M traces No

Without LUT
randomization
(compact)

2 1 At ≈ 5M traces No

• For redundancy 6 with dummy reads and LUT randomization:
– Neither first nor second order leakage is observed at 15.3M, confirming Theo-

rem 5.
• For redundancy 6 with dummy reads, but without LUT randomization:

– There is a slight leakage in the first order (starting at ≈ 5M traces) which
proves that the BRAM is leaky and the STORM2 protections are relevant.

– The same leakage in the first order at the same time serves as a sanity check
for our measurements with redundancy 6.

– No second-order leakage is observed at 5.95M. Together with only the very
slight first-order leakage mentioned above, this configuration provides a tradeoff
shown in Table 2.

7.3 Area and Performance Evaluation
In this section we investigate the implementation costs of RAMBAM and STORM1/2, and
compare them to state-of-the-art schemes [DMRB18, DCRB+16, GMK16, WM18, Sug19].
All area measurements were obtained with the Cadence Genus 21.14-s082_1, using the Open
Cell Nangate 45nm library [NAN] and are expressed in 2-input NAND gate equivalents
(GEs). For the evaluation of the maximum clock frequencies of STORM1/2 we assume
the following timing constraints on the memory block: an input setup of ≈ 0.5 ns and an
output delay of ≈ 0.1 ns.

In [BBA+22] (Tables 2 and 3), the area and performance of RAMBAM are compared
against the area and performance of other protected AES schemes suggested in literature,
with 16 S-boxes (Table 2) and 1 S-box (Table 3). In this section, we expand these tables
to include STORM1 (which assumes memory without leakage) and STORM2 (with leaky
memory). For STORM2, we consider the compact configuration STORM2C (two LUT
slots per S-box computation; each dummy read takes an extra clock cycle) and the fast
configuration STORM2F (three LUT slots per clock cycle; dummy reads are performed in
parallel with real reads).

In Table 3, besides STORM1 and STORM2, we added Code Based Masking (CBM)
[WMCS20]. Although CBM assumes SW implementation, so there is no gate count for
comparison, we include it to illustrate the huge difference in the amount of randomness.
Regarding the latency per round, although we could not estimate how many clock cycles
one round would take in a HW implementation of CBM; it is clear that it would take
significantly more than one clock cycle, due to the SNI limitations.

Like other schemes, where the initial randomization is not amortized in the amount of
randomness per round or per S-box, we did not count it for RAMBAM and STORM in
Tables 3 and 4.
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For the estimated maximal clock frequency, we provide data only for STORM and
RAMBAM, as we have no data for other schemes.

In Table 5, we compare the number of bits per byte for the initial randomization for
STORM against all share-based schemes.

Table 3: AES-128 realization area and performance comparison for schemes with 16 S-boxes
Area Memory Randomness Round latency Max.freq.

Scheme [KB] [kGE]1 [Bytes/round] [cycles] [MHz]
STORM1 (d = 6) 9.0 557 0 1 833
STORM2C (d = 6) 12.2 1,049 28 2 700
STORM2F (d = 6) 13.7 1,671 28 1 700
RAMBAM (d = 8) 78.92 N/A 1122 12 212
CBM ([WMCS20]) N/A N/A ≥ 4, 320 > 1 N/A
[SBHM20] 123.1 N/A 72 1

Table 4: AES-128 realization area and performance comparison for schemes with one S-box
Area Memory Randomness AES latency Max.freq.

Order Scheme [kGE]1 [KB] [bits/S-box] [cycles] [MHz]
Second STORM1 (d = 6) 8.8 34 0 168 840

STORM2C (d = 6) 9.1 64 14 333 860
STORM2F (d = 6) 9.2 102 14 168 860
RAMBAM (d = 8) 12.13 N/A 563 2333 217
[DMRB18] 10.93 N/A 533 2563

[DCRB+16] 12.63 N/A 1623 2763

[GMK16] 12.03 N/A 543 4923

First STORM1 (d = 2) 5.3 2 0 168 800
STORM2C (d = 2) 5.7 4 10 333 800
STORM2F (d = 2) 5.7 6 10 168 800
[DMRB18] 6.63 N/A 193 2563

[DCRB+16] 7.73 N/A 543 2763

[GMK16] 7.33 N/A 183 2463

[WM18] 7.63 N/A 03 28043

[Sug19] 17.13 N/A 03 2663

1 1 GE = 0.798 µm2
2 Based on [BBA+22, Table 2]
3 Based on [BBA+22, Table 3]

Table 5: # of random bits per byte for the initial randomization
First order Second order

STORM 2 6
Share-based schemes 8 16

8 Discussion and Conclusion
In this study we proposed STORM, a non-share-based scheme that synergies the unique
algebraic structure proposed in RAMBAM and the security-parameter it provides (the
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Table 6: High abstraction level comparison of the main characteristics of CBM, RAMBAM
and STORM variants.

CBM for AES RAMBAM STORM1 (d =
6)

STORM2 (d =
6)

Key idea Packing multi-
ple secret bytes
in a single
codeword over
GF (28)

Embedding
of GF (28)
into a poly-
nomial ring
over GF (2)
(dimension
8 + d)

Embedding of
GF (28) into a
vector space
over GF (2)
(dimension
8 + d) + LUTs

Embedding of
GF (28) into a
vector space
over GF (2)
(dimension
8 + d) + LUTs

Algebraic
structure

Vector space
over GF (28)

Binary polyno-
mial ring

Vector space
over GF (2)

Vector space
over GF (2)

Relies on
the algebraic
structure of
the S-box
transformation

Yes Yes No No

Latency HW > 1 clock cycle
per round

1 clock cycle
per round

1 clock cycle
per round

1 clock cycle
per round

Multiplication
complexity in
the code space
(n — code size)

≥ 4n2 multi-
pliers over
GF (28)
(≥ 256n2

AND gates)
per round

16n2 multipli-
ers over GF (2)
(AND gates)
per round

N/A N/A

Security provable asymptotic provable provable
Provable Secu-
rity

Based on
symbol-level
SNI

N/A Based on
jointly in-
dependent
distributions

Based on
jointly in-
dependent
distributions
and LUT
randomization

Assumptions of
the proof

SNI N/A Leakage-free
memory, re-
quirements to
LUTs

LUT random-
ization, require-
ments to LUTs

Number of ran-
dom bits per
one round

1920 · d · (d +
k)/k bytes (at
least 960·d·(d+
16) bits for the
maximal possi-
ble value k =
16)

112 · d 0 16(d + 8)

redundancy, d), with the utilization of look-up-tables (LUTs) in memory. STORM is
proposed with two variants, STORM1 which achieves provable security while assuming a
leakage-free memory, and STORM2 which does not hold such assumptions and randomizes
the memory LUTs to achieve provable security.

Like code-based-masking (CBM) [WMCS20], RAMBAM and STORM are code-based
schemes in the sense that their set of representations is a code in the vector space GF (2)8+d
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as listed in Table 6. RAMBAM however requires a richer structure, specifically a ring
on GF (2)8+d and a ring-homomorphism. However, as discussed above, RAMBAM and
STORM are significantly different from code-based-masking (CBM), where the main idea is
that multiple secret bytes are packed in a single codeword over GF (28) and non-interference
based notions (t-S/NI) are essential to achieving provable security. RAMBAM and STORM
take a different approach and use codes over GF (2) without t-S/NI-gadgets, leading to
their efficiency and compactness. Namely, in RAMBAM the key idea is the embedding of
GF (28) into a polynomial ring over GF (2) (dimension 8 + d), whereas in STORM the key
idea is the embedding of GF (28) into a vector space over GF (2) (dimension 8 + d) plus
the important utilization of LUTs which enables efficient randomization. Whereas both
CBM and RAMBAM rely on the algebraic structure of the AES, STORM, because of its
utilization of LUTs, has no such limitation (making it more general in some sense).

The main added value of RAMBAM over CBM is the reduced multiplication complexity
in the code space, where CBM requires expensive field multipliers, and RAMBAM only
requires multipliers over GF (2) which are far less expensive, albeit with no security
proof but with a security parameter, i.e., security is asymptotic in RAMBAM. On the
other hand, STORM is quite different. While it does utilize the redundancy d just like
RAMBAM, all the non-linear operations are performed via memory access. This in turn
relaxes the mathematical requirement from a ring to a vector space, enables easy and
cheap randomization, and most importantly, allows provability. As discussed, whereas
the provable security of CBM is based on symbol-level strong non-interference properties,
STORM’s provable security is based on jointly independent distributions. For STORM1, a
leakage-free memory is assumed, and the basic security proofs from Sections 5.1.3 and 5.2.3
are sufficient. In STORM2 no assumptions are made regarding leakage from memory, and
the LUT randomization mechanism on-top of the vector space allows provability.

In addition to other features, perhaps one of the main savings in the STORM variants
is its randomness requirements (or the number of random bits per round) as listed in the
table: STORM2 requires ≈ 4 times less randomness as compared to RAMBAM, whereas
RAMBAM requires more than an order-of-magnitude less randomness as compared to
CBM. This reflects direct savings both in randomness-generation electronic cost (or
expansion), and in the electronic cost associated with scheme-internal computations with
this randomness (e.g., refreshes).

Table 6 summarizes the differences between CBM (for AES), RAMBAM, STORM1,
and STORM2.

Thus overall, STORM effectively solves the long-standing challenge of combining high
security against SCA with low gate count and high performance for AES implementations
by offering a different tradeoff (memory utilization) that may be preferable to RAMBAM
in many practical cases. Unlike RAMBAM for which it is experimentally shown that the
leakage rapidly decreases as redundancy grows, but lacks a security proof (though the
intuition behind this is explained), STORM has proven security. For applications with
limited resources (e.g., IoT devices) STORM2 can be configured with a relatively small
amount of SRAM, starting from 4 KB (redundancy 2 which provides proven protection
against first-order attacks). For applications that require high performance (e.g., servers
with intensive encrypted communications) the SRAM size is typically not a limiting factor,
and the various advantages of STORM2 compared to other solutions are quite significant.
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A Proof of the Invertibility of Matrix Z in Lemma 6
Lemma 17. Let Λ be an arbitrary (not necessarily invertible) n × n matrix over an
arbitrary field F of characteristic 2. Then the 4n × 4n matrix

Z =


Λ Λ + I I I
I Λ Λ + I I
I I Λ Λ + I

Λ + I I I Λ

 (34)

is invertible, where I is the n × n identity matrix.

Proof. 3 First, we represent
Z = B + AD (35)

where

B =


0 I I I
I 0 I I
I I 0 I
I I I 0

 (36)

A =


I I 0 0
0 I I 0
0 0 I I
I 0 0 I

 (37)

D =


Λ 0 0 0
0 Λ 0 0
0 0 Λ 0
0 0 0 Λ

 (38)

It is easy to directly verify that
A4 = 0 (39)

AD = DA =


Λ Λ 0 0
0 Λ Λ 0
0 0 Λ Λ
Λ 0 0 Λ

 (40)

(B + I)A = 0 (41)
(here, of course, I is the 4n × 4n identity matrix), and therefore

BA = A (42)

and
Z = B + AD = B + BAD = B(I + AD) (43)

After these observations, we can explicitly find Z−1:

Z−1 = (I + AD + (AD)2 + (AD)3)B−1 (44)

Indeed,

Z−1 · Z = (I + AD + (AD)2 + (AD)3)B−1B(I + AD) =
(I + AD + (AD)2 + (AD)3)(I + AD) = I + (AD)4 = I + A4D4 = I (45)

3We are grateful to Victor Halperin who suggested this proof
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