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Abstract. The rapid evolution of post-quantum cryptography, spurred by standardiza-
tion efforts such as those led by NIST, has highlighted the prominence of lattice-based
cryptography, notably exemplified by CRYSTALS-Kyber. However, concerns persist
regarding the security of cryptographic implementations, particularly in the face of
Side-Channel Attacks (SCA). The usage of operations like the Number Theoretic
Transform (NTT) in CRYSTALS-Kyber introduces vulnerabilities to SCA, especially
single-trace ones, such as soft-analytical side-channel attacks. To address this threat,
Ravi et al. proposed local masking as a countermeasure by randomizing the NTT’s
twiddle factors, but its implementation and security implications require further
investigation. This paper presents a hardware implementation of the NTT with
local masking, evaluating its performance, area utilization, and security impacts.
Additionally, it analyzes the vulnerabilities inherent in local masking and assesses its
practical security effectiveness through non-specific t-tests, showing that there are
configurations of local masking that are more prone to leakage than others.
Keywords: NTT · local masking · hardware implementation · SASCA · Kyber

1 Introduction
The landscape of post-quantum cryptography has been evolving quickly ever since efforts
from government agencies, such as United States’ NIST, proposed standardization processes
for new cryptosystems [Nat]. With such efforts, researchers from all around the globe
intensified the analysis on existing cryptosystems and new proposed ones. One of the most
promising categories in NIST’s contest for post-quantum cryptography was lattice-based
cryptography, for its balance between security and performance. As a matter of fact,
after round 3, the algorithm chosen as a standard for the category of Key-Encapsulation
Mechanism is CRYSTALS-Kyber [ABD+21], which is based on Module-Learning with
Errors [LS15], a problem in the lattice-based cryptography field.

Even though the scientific community is fairly confident on the security of many
propositions in the NIST’s contest and of the chosen standards, the security of the
implementations of such propositions is another problem that is usually not tackled in the
design of the algorithms. As a matter of fact, most of these algorithms assume a black-box
model in which an attacker cannot access intermediate values in the algorithm. However,
with the discovery of Side-Channel Attacks (SCA) [KJJ99], such assumption does not hold,
specially in the case of embedded devices whose power consumption heavily depends on
the execution of the cryptosystem in question.
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SCA are not new, and multiple countermeasures have been proposed in the literature
to reduce their effectiveness. However, with the introduction of new cryptosystems, the
attack surface of these algorithms increased, with the usage of modules that were not
analyzed or used before. Such is the case of the Number Theoretic Transform (NTT).
This operation is used in CRYSTALS-Kyber to accelerate the polynomial multiplication.
The polynomials are transformed to the NTT domain with a complexity of O(nlogn) and
then multiplied, with linear complexity, with the so-called pointwise multiplication. This
operation is the most obvious candidate for a first-order differential power analysis, since
in CRYSTALS-Kyber, the secret key is directly multiplied with part of the ciphertext
[MWK+22, CBVB22]. This type of attack is thwarted easily with arithmetic masking,
since the NTT is a linear operation [RRVV15, BGR+21].

However, single-trace attacks may pose different challenges since they are not par-
ticularly affected by arithmetic masking, apart from a decrease on the signal-to-noise
ratio. In [PPM17], Primas et. al. first proposed one of such attacks against an NTT
implementation. They adapted the Soft-Analytical Side-Channel Attack (SASCA) first
proposed by Veyrat-Charvillon et al. [VCGS14]. This attack first performs a template
matching phase [CRR03] and afterwards it applies the so-called Belief Propagation algo-
rithm to combine the different probability distributions to reduce entropy in the guess of
the secrets. Subsequently, further works increased the effectiveness and resilience of this
type of attack against noise by changing the leakage target and making adaptations to the
Belief Propagation algorithm [PP19], or by using chosen ciphertexts to induce zeros after
the pointwise multiplication to reduce the entropy [HHP+21].

To prevent this type of attacks, Ravi et al. [RPBC20] proposed a suite of counter-
measures, with the goal of randomizing operations or the order of the operations. They
proposed shuffling and local masking, in different configurations each. Shuffling changes the
order of operations, while local masking aims to randomize the multiplication of intermedi-
ates with constants in the NTT, called twiddle factors. Shuffling has been well analyzed in
the literature. A security analysis in [HSST22], notes that this type of countermeasure
does add to the security of an NTT implementation, if implemented correctly. Specially,
they notice that the coarse shuffling version seems to be more resilient to adaptations
of SASCA. Additionally, there are existing hardware implementations of a shuffled NTT
[ZBT19, CMJ22]. However, to our knowledge, the literature does not report neither
hardware implementations nor security analysis of the local masking countermeasure.

Our contributions in this paper are threefold. First, in order to analyze its implications
on performance, area utilization and security, we propose a hardware implementation of
an NTT equipped with the aforementioned countermeasure in a flexible manner. Second,
we make an analysis of the possible vulnerabilities intrinsic to the local masking counter-
measure. Finally, we analyze with a non-specific t-test, the practical security effects of
this countermeasure in our proposed hardware implementation.

The organization of this paper is as follows: In Section 2, we provide all the back-
ground necessary to understand this paper. Then, in Section 3, we describe our proposed
implementation of a local-masked NTT. Next, in Section 4, we present an analysis on
the possible vulnerabilities of this countermeasure. In Section 5, we explore practically a
security analysis of our proposed implementation. Finally, Section 6 draws conclusions.

2 Background
In this section, we provide the essential background required to grasp our contribution.
Initially, we establish the notation employed throughout this article. Subsequently, we
introduce NIST’s standard for key encapsulation mechanism, CRYSTALS-Kyber. Following
this, we explain the operation of one of Kyber’s core modules, the Number Theoretic
Transform. Afterwards, we outline a horizontal, and potentially single trace, attack on this
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module, termed Soft-Analytical Side-Channel Attack (SASCA). Lastly, we describe the
local masking countermeasure proposed by Ravi et al. [RPBC20] to mitigate this attack,
which serves as the focal point of analysis in this paper.

2.1 Notation
The ring of integers modulo q is denoted as Zq. The polynomial ring defined over the
previously mentioned ring, Zq(x)/ϕ(x), is represented as Rq, where ϕ(x) is the reduction
polynomial, of degree n. When a polynomial f is defined as an element of such ring, the
i-th coefficient of such polynomial is denoted as fi. The representation of such polynomial
in the number theoretic transform domain is denoted as f̂ . A polynomial vector is denoted
with bold letters, e.g., a. When referring to a polynomial matrix, uppercase letters will be
used, e.g., A.

2.2 CRYSTALS-Kyber
CRYSTALS-Kyber [ABD+21] is a key encapsulation mechanism (KEM), chosen by NIST to
be one of the first PQC standards. It is composed of two basic parts. First, it comprises an
indistinguishable under chosen-plaintext attack (IND-CPA) public key encryption scheme
(PKE), with its security relying on the hardness of breaking the Module Learning with
Errors problem (M-LWE)[LS15, Reg05]. Then, it executes a Fujisaki-Okamoto transform
[FO99], in order to convert it to an indistinguishable under chosen-ciphertext attack
(IND-CCA) KEM, by re-encrypting in decapsulation and checking if the output is equal to
the sent ciphertext.

CRYSTALS-Kyber uses polynomials in the ring Rq, where q = 3329 and the reduction
polynomial is a cyclotomic polynomial ϕ(x) = xn + 1, where n = 256. The flexible
parameter is k, which is the rank of the module lattice in this cryptosystem and it dictates
the size of vectors and matrices, as well as the value of other subparameters.

In the succeeding portion of this subsection, we will outline a simplified form of the
underlying Public Key Encryption (PKE) within CRYSTALS-Kyber. In Algorithm 1, we
show the procedure of the PKE key generation. First, seeds ρ and σ are chosen. Then,
the public matrix Â ∈ Rk×k

q is generated from the seed ρ, sampling it from a uniform
distribution. This matrix is sampled in the Number-Theoretic Transform (NTT) domain,
which is an operation used to accelerate polynomial multiplication. Next, the vectors s, e
are sampled from a binomial distribution using the seed σ. Afterwards, the secret vector s
is transformed to the NTT domain. Following that, the M-LWE instance t̂ is obtained by
multiplying Â and ŝ and then adding the error e in the NTT domain. Finally, the keys
are returned, with pk = (t̂, ρ) as the public key and sk = ŝ as the secret key.

Algorithm 1 CRYSTALS-Kyber PKE KeyGen (Simplified)
1: Output: Public key pk, secret key sk
2: Draw seeds ρ, σ
3: Â = SampleU (ρ)
4: (s, e) = SampleB(σ)
5: ŝ = NTT(s)
6: t̂ = Â ◦ ŝ + NTT(e)
7: return pk = (t̂, ρ), sk = ŝ

We now show the procedure for the PKE encryption in Algorithm 2. First, the public
matrix Â is regenerated from ρ. Then, the randomizer vector r and the errors e1, e2 are
sampled from a binomial distribution using the seed τ . Next, the vector r is transformed
into the NTT domain. Then, an M-LWE instance û is generated from Â transposed, r̂
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and the error e1. Finally, an encoding of the message in Rq is embedded into another
M-LWE instance, composed of t̂, r̂ and e2. This final operation is the vector v. Finally,
the ciphertext is returned as c = (u, v).

Algorithm 2 CRYSTALS-Kyber PKE Encryption (Simplified)

1: Input: Public key pk = (t̂, ρ), message m, seed τ
2: Output: Ciphertext c = (u, v)
3: Â = SampleU (ρ)
4: (r, e1, e2) = SampleB(τ)
5: r̂ = NTT(r)
6: u = NTT−1(ÂT ◦ r̂) + e1
7: v = NTT−1(t̂ ◦ r̂) + e2 + Encode(m)
8: return c = (u, v)

Finally, in Algorithm 3, we describe the decryption procedure. The vector u is
transformed into the NTT domain and multiplied with the secret key ŝ. Then, v is
subtracted from the result of this multiplication. The result of this subtraction is then
decoded to retrieve the message m.

Algorithm 3 CRYSTALS-Kyber PKE Decryption (Simplified)
1: Input: Secret key sk = ŝ, ciphertext c = (u, v)
2: Output: Message m
3: m = Decode(v − NTT−1(ŝT ◦ NTT(u)))
4: return m

2.3 Number Theoretic Transform
In CRYSTALS-Kyber, in order to reduce complexity for the polynomial multiplications,
the authors choose to use the Number Theoretic Transform (NTT), which works like a
Fast-Fourier Transform over the integer ring. It performs the mapping from Rq to the
vectorial space defined by the factorization of the reduction polynomial ϕ(x). To obtain
only linear factors with degree 0, ϕ(x) must be factorized into n polynomials of degree
1, which can be obtained if the ring of integers modulo q contains 2n-th primitive roots
of unity. However, because of the modulus q chosen in CRYSTALS-Kyber, the ring Zq

contains only n-th primitive roots of unity. This means that the defining polynomial
of CRYSTALS-Kyber cannot be factorized in 256 polynomials of degree 1, but in 128
polynomials of degree 2. Therefore, the NTT mapping of a polynomial f ∈ Rq is a vector
of 128 polynomials of degree two. Then, according to the specification, for ζ = 17, as the
first 256-th primitive root of unity and br7(·) as the 7-bit-reversion operation, NTT is
defined as follows:

f̂2i =
127∑
j=0

f2jζ(2br7(i)+1)j f̂2i+1 =
127∑
j=0

f2j+1ζ(2br7(i)+1)j (1)

Multiplication of two elements f, g ∈ Rq is a polynomial multiplication. This operation,
transformed in the NTT domain, becomes a point-wise multiplication (PWM), f̂ ◦ ĝ = ĥ.
For Kyber’s way of executing NTT, PWM is defined as follows:

ĥ2i = f̂2iĝ2i + f̂2i+1ĝ2i+1 · ζ2br7(i)+1 ĥ2i+1 = f̂2iĝ2i+1 + f̂2i+1ĝ2i (2)
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Figure 1: Example for an execution of the NTT with n = 4.

After the PWM, an inverse NTT (INTT) is performed to retrieve the result in normal
domain.

For memory saving purposes, the NTT is usually implemented as an in-place transform.
In the CRYSTALS-Kyber documentation, when executing NTT, the inputs are in normal
order (NO) and the output is in bit-reversed order (BR). When executing INTT, the input
is in BR and the output is in NO. This suggests the usage of Cooley-Tukey (CT) butterflies
(3) for the NTT and Gentleman-Sande (GS) butterflies (4) for the INTT. In this equations,
ω represents a power of ζ, the first primitive n-th root of unity. This powers are called
twiddle factors in the FFT/NTT literature. A graphical representation of a forward NTT
with 4 coefficients is shown in Figure 1.

c = a + b · ω d = a − b · ω (3)

c = a + b d = (a − b) · ω (4)

2.4 Soft-Analytical Side-Channel Attacks on NTT
Soft-Analytical Side-Channel Attacks (SASCA) are a type of attacks that combine in-
formation from traces and from the algorithm itself. They were proposed for the first
time by Veyrat-Charvillon et. al..[VCGS14]. Such attacks can potentially be single-trace
attacks, and therefore, they can beat masked implementations, since they are able to
recover multiple shares of a secret at a time. They work by representing the attack as a
noisy decoding problem. The first step is to create templates and to perform profiling on
some intermediate values [CRR03]. This yields conditional probabilities on the leakage
trace ℓ, Pr(T = t|ℓ), where T is an intermediate value in the algorithm. Then, the Belief
Propagation (BP) algorithm is used to combine the probabilities obtained for the different
intermediates using a graph representation of the attacked algorithm called a factor graph.

Primas et. al. executed the first SASCA on NTT [PPM17]. In their work, they profiled
the modular multiplication between intermediate coefficients and twiddle factors. Their
work targeted the inverse NTT in the decryption procedure of the LPR scheme [LPR10],
which is a precursor of CRYSTALS-Kyber. For CRYSTALS-Kyber, the analog target
operation would be the inverse NTT in line 3 of Algorithm 3. After this work, Pessl
and Primas [PP19] made some improvements over the previous work, augmenting its
practicality. Their target is the NTT of the randomizer vector r̂ in the encryption of
CRYSTALS-Kyber in line 5 of Algorithm 2, that is drawn from a binomial distribution
with a smaller support compared to a random uniform variable in Zq. Posterior to this,
Hamburg et. al. [HHP+21] performed what they called a k-trace attack on CRYSTALS-
Kyber. They target the INTT in the decryption at line 3 of Algorithm 3, by sending
specially crafted ciphertexts. These chosen ciphertexts induce zeros after the PWM with
the goal of reducing the entropy of the graph. The more sparse these ciphertexts are, the
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more resilient to noise the attack is, albeit requiring more traces. For example, with 64
non-zero coefficients, the attack requires k traces, k ∈ {2, 3, 4} being the security level of
the attacked version of CRYSTALS-Kyber.

Ravi et. al. [RPBC20] proposed two types of countermeasures for these SASCA
attacks on NTT, namely shuffling and local masking. The shuffling countermeasures were
analyzed by Hermelink et. al. [HSST22] where they introduce techniques such as mixing
priors, a shuffling factor node or extraction of permutations with subgraphs to attack this
countermeasure. They show that the shuffling countermeasure is a very valid tool and in
certain instances (specially in the coarse full shuffling), it does increase the security of an
NTT implementation against SASCA, reducing its practicality.

2.5 Local masking countermeasure
In [RPBC20], a masking countermeasure for protecting the NTT against SASCA attacks
was proposed. This local masking scheme works essentially by randomizing the twiddle
factor in a butterfly. For example, take a CT butterfly as the one shown in (3). Let ζx be
the twiddle factor of this butterfly. If the results c and d of this butterfly are multiplied by
a random twiddle factor ζy, then it yields the following:

c′ = c · ζy

= (a + b · ζx) · ζy

= a · ζy + b · ζx+y

d′ = d · ζy

= a · ζy − b · ζx+y
(5)

As it can be observed in (5), this masking requires one extra multiplication compared to
an unmasked CT butterfly, as in (3).

The usage of twiddle factors for local masking is justified from a convenience and
performance point of view. For instance, the sampling of random twiddle factors ζy is done
in the interval [0, n), instead of the whole Zq. Additionally, removing the mask is equal to
multiplying with the twiddle factor that has the power that is the additive inverse of y
mod n, since all the twiddle factors are n-th roots of unity, ζn = 1. Moreover, remasking
an already masked intermediate coefficient, resolves on only adding the powers of ζ of the
masks. For example, if the inputs of a butterfly are a′ = a · ζi and b′ = b · ζi, masking
with ζy is equivalent to:

c′ = (a′ + b′ · ζx) · ζy

= a′ · ζy + b′ · ζx+y

= a · ζi+y + b · ζi+x+y

d′ = a · ζi+y − b · ζi+x+y (6)

This type of butterfly has the same mask for both the inputs and the outputs and
it is denoted as MSISO (mask same input, same output). It has a cost of two modular
multiplications. Likewise, other masking strategies can be employed. For instance, if the
inputs have different masks, as a′ = a · ζi and b′ = b · ζj , the inputs can be unmasked and
masked with the new ζy in a single operation like:

c′ = c · ζy

= (a + b · ζx) · ζy

= (a′ · ζn−i + b′ · ζn−j+x) · ζy

= a′ · ζn−i+y + b′ · ζn−j+x+y

d′ = a′ · ζn−i+y − b′ · ζn−j+x+y (7)
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This type of butterfly is denoted as MDISO (mask different input, same output) and it
has the same cost of two modular multiplications. If the inputs are masked with different
masks and the outputs must be masked in the same way, then it becomes more complex.
Take a′ = a · ζi and b′ = b · ζj , as the inputs that are masked with different masks. If c
must be masked with ζk and d with ζl then the operations are the following:

c′ = c · ζy

= (a + b · ζx) · ζk

= (a′ · ζn−i + b′ · ζn−j+k) · ζy

= a′ · ζn−i+k + b′ · ζn−j+x+k

d′ = a′ · ζn−i+l − b′ · ζn−j+x+l (8)

This type of butterfly is denoted as MDIDO (mask different input, different output) and
it has a cost of four modular multiplications, and it is the costlier butterfly configuration.
A similar type of butterfly can be derived for inputs with the same mask and outputs with
different mask, denoted as MSIDO, with the same complexity as the MDIDO butterfly.

A similar set of equations can be derived for the Gentleman-Sande butterfly, in (4), with
the difference that the cost of the butterflies MSIDO and MDISO are inverted, i.e., two
and four modular multiplications respectively. The cost for each of the masked butterflies
is resumed in Table 1.

Table 1: Cost of masked butterflies in terms of modular multiplications. An unmasked
butterfly requires only one multiplication.

Type of masking Modular multiplications
Cooley-Tukey / Gentleman-Sande

MSISO 2 / 2
MDISO 2 / 4
MDIDO 4 / 4
MSIDO 4 / 2

For a local-masked NTT execution, different configurations are proposed. If one mask
is used per NTT stage, the cheapest butterflies, i.e. MSISOs, can be used. In this way, the
last mask could be the additive inverse of the sum of the powers of the previous masks in
mod n, such that the output is unmasked. This configuration is noted as coarse masking.
Ravi et al. hint that this configuration can be the easiest to attack since an attacker could
brute-force over the masking space or possibly exploit the links between the masks at the
different butterflies.

To avoid this intuition, it is proposed to use n masks per stage, one for each coefficient,
denoting it as fine masking. This configuration uses only the costliest MDIDO butterflies.

As a compromise between both of this versions, generic masking is proposed. In this
version, the number u of masks is variable and possibly random. It is also proposed that u
be limited to powers of 2, such that the control logic is less convoluted. Here, the kind
of masked butterflies to be employed is dependent on the number of masks and in which
stage they are used. An example is shown in Figure 2, where the type of mask per round
is depicted for an NTT with n = 8 and u = 2 for an expanding NTT in (a) and a shrinking
NTT in (b), which in a usual implementation of CRYSTALS-Kyber, they correspond to
forward and inverse NTT respectively. In case (a), the first butterfly is a MSIDO butterfly
for providing different masks for the outputs. The rest of the butterflies are MSISO. In
case (b), all butterflies are MSISO, except the last one, since the inputs have different
masks, necessitating a MDISO butterfly. Generic masking is not constant time, since it
depends on the butterfly complexity which depends in the number u of masks used, but
its runtime is not secret-dependent.
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CT_MSIDO CT_MSISO CT_MSISO GS_MSISO GS_MSISO GS_MDISO

Figure 2: Example for an execution of the NTT with generic masking configuration with
n = 8 and u = 2. Denoted in yellow are the layers that use 4-multiplication butterflies,
whereas in green, the butterflies require 2 multiplications.

3 Implementation of NTT countermeasure
Since the NTT is a critical operation for the performance of an execution of CRYSTALS-
Kyber, hardware accelerators have been proposed throughout the literature to handle
this operation [YMÖS21, BNAMK21, IUH22, LTHW23]. Against SASCA attacks, there
exist two hardware propositions that are equipped with the shuffling countermeasure
[ZBT19, CMJ22]. However, there is no accelerator equipped with the local masking
countermeasure, that we are aware of. In this section we propose an architecture capable
to execute the countermeasure from [RPBC20] in a flexible fashion for the user. Our
objective is to explore trade-offs between area, performance, and security.

We implement the generic masking proposition from [RPBC20], where the user can
choose the number of masks for an execution of the NTT or the INTT, as a trade-off
with performance. Making use of four modular multipliers in our architecture enables
parallelization of modular multiplications, particularly advantageous when using butterflies
requiring fewer than four modular multiplications. Additionally, the user can perform
PWM, making it a full polynomial multiplication unit for CRYSTALS-Kyber.

The description of the architecture follows a top-down approach, explaining first the
overview of the architecture in general, features and parameters of the module, then going
down to each of the composing elements. Moreover, we provide timing and synthesis
results for both FPGA and ASIC targets.

3.1 General overview of the architecture
We show the diagram of the architecture in Figure 3. As an usual NTT implementation,
the main blocks of the architecture are: memory elements storing coefficients and twiddle
factors; the processing element that executes the butterfly operations; the control unit to
orchestrate everything. Our architecture also contains a module called masking unit, that
is in charge of randomizing the twiddle factors and applying the desired countermeasure.

The processing element contains four modular multipliers, such that the most complex
protected butterfly operations can be executed in one single clock cycle, such as CT-MSIDO,
CT-MDIDO, GS-MDISO and GS-MDIDO, as shown in Table 1. It is also flexible, such
that the multipliers can be used to parallelize butterfly operations by a factor of 2, in
the case of the butterflies that are less complex, or by a factor of 4, in the case of an
unprotected execution. The processing element is thoroughly discussed in Section 3.4.

The memories are divided in three sections: primary memory, secondary memory and
twiddle factor (TWF) memory. The primary memory contains the coefficients that are
used for an NTT/INTT operation. It is divided in 8 banks of 32x20 bits, each address
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storing one coefficient and its current mask. The division in 8 banks is done in order to
guarantee collision-free memory access, employing the scheme proposed by [MRW+22].
The secondary memory contains the second polynomial that is used in PWM operations.
The TWF memory is a read-only memory that contains the 256 possible twiddle factor
powers. The layout of the memories and their access schemes are explained in Section 3.5.

Figure 3: Simplified schematic of the proposed architecture for a local-masked NTT. The
control signals from the control unit are omitted.

3.2 NTT/INTT features
The user can perform the NTT of a polynomial in an unprotected or protected fashion
with different levels of security. As explained in Section 2.5, the performance of an
implementation of [RPBC20], depends on the number of masks used per NTT stage, since
it modifies the type of butterflies used. Additionally, the user may leave the output (resp.
input) of an NTT (resp. INTT) execution masked as an additional protection for PWM, as
explained in Section 3.3. Summarizing, the parameters given by the user for an NTT/INTT
execution are:

• Flag use_masking indicates the usage of TWF masking countermeasure. Leaving
this flag not asserted, yields the best performance for NTT/INTT, but without the
countermeasure for the SASCA attack.

• Number u of masks per stage for TWF masking. For simplification of the control
unit, this parameter is limited to powers of 2. Therefore the user provides i = log2(u).
Additionally, i is constrained to be in the range [0, 7], as explained in Section 3.3.

• Flag out_in_unmasked indicates that the output (resp. input) of an NTT (resp.
INTT) is left or taken unmasked. This is for applying an additional protection for
PWM, as explained in Section 3.3.

• Flag pwm to indicate the execution of a pointwise multiplication.
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3.3 Additional protection for PWM
Local masking can be used to implement a blinding countermeasure against DPA/CPA
for the PWM that was originally proposed by [Saa17]. In doing so, single-trace attack
protection could be extended to DPA/CPA protection for the PWM.

Let the output of even and odd coefficients of an NTT in Kyber, masked by powers j
and k, be

f̂ ′
2i = f̂2i · ζj f̂ ′

2i+1 = f̂2i+1 · ζk (9)

Then, executing PWM between a masked polynomial f̂ ′ and a polynomial ĝ, equals to

ĥ′
2i = f̂ ′

2i · ĝ2i + f̂ ′
2i+1 · ĝ2i+1 · ζx

= f̂2i · ĝ2i · ζj + f̂2i+1 · ĝ2i+1 · ζk+x

ĥ′
2i+1 = f̂ ′

2i · ĝ2i+1 + f̂ ′
2i+1 · ĝ2i

= f̂2i · ĝ2i+1 · ζj + f̂2i+1 · ĝ2i · ζk
(10)

If k = j, then ĥ′
2i = ĥ2i · ζj , ĥ′

2i+1 = ĥ2i+1 · ζj . This condition ensures that the real
polynomial can be easily retrieved from the masked polynomial. Ensuring this equality
becomes feasible by restricting the number of masks per stage of the NTT to 128. With
this limitation, the pairs of coefficients that intervene in the PWM will be masked with
the same values. Consequently, the parameter i is confined to the range [0, 7].

After PWM, INTT is executed taking into account the masks of the coefficients incoming
from the PWM.

This blinding countermeasure in the PWM protects against first order DPA/CPA
attacks [KJJ99, BCO04] that target the modular multiplication [MWK+22, CBVB22].
However, it is important to note that writing to and reading from the module do not
benefit from any SCA countermeasure. Therefore, it is expected that first-order leakage
will occur during these operations.

3.4 Processing element
The processing element (PE) is designed to be flexible and be able to handle all of the
different butterfly operations, for masked and unmasked configurations. Additionally, it
can be configured for the execution of the PWM operation. The PE is comprised of two
double butterfly units (DBUs) that can be cascaded to execute the operations for PWM.

A double butterfly unit (DBU) is the basic unit of the processing element. It can carry
out two butterfly operations in the case of unprotected NTT, one butterfly operation in the
case of the simplest protected butterflies or half of a butterfly operation when executing the
most complex butterflies. It can also simply output the result of a modular multiplication,
for the purposes of executing PWM. Its architecture is shown in Figure 4. Such unit is
pipelined and has a latency of 9 clock cycles for executing a butterfly operation and 7
clock cycles for modular multiplication.

A butterfly operation is composed of two basic operations: multiply and combine, where
the intermediate values are added. The order of these operations depends on the executed
butterfly. For example, unprotected Cooley-Tukey, shown in (3) performs multiplication
and then combination, while unprotected Gentleman-Sande, in (4) executes combination
and then multiplication. The DBU has then a configurable combine stage, followed by a
modular multiplication stage and a final configurable combine stage.

Each combine stage is equipped with a modular adder and a modular subtractor. These
modules are merged with modular division by 2, in order to avoid the postscaling step
by n−1 mod q that is required by the INTT operation. In order to merge addition and
subtraction with division by 2, we employ the known strategy proposed by [ZYC+20],
which executes the 1/2 operation with only shifts and one addition: x

2 (mod q) = (x ≫
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Figure 4: Architecture of a Double Butterfly Unit. Control signals of the multiplexers are
omitted.

1) + x[0] · ( q+1
2 ). This operation is easily merged with a modular adder or subtractor, as

shown by [LTHW23]. The latency of a merged modular adder/subtractor is 1 clock cycle.
We implemented the modular multiplier as usual 12 × 12 bit multiplication followed

by a modified Barrett reduction, proposed by [XL21] in their NTT module for Kyber.
Our implementation of this modular multiplication has a latency of 1 clock cycle for the
multiplication and 4 clock cycles for the reduction.

For executing the PWM in hardware architectures, it is common to apply a Karatsuba-
like reduction to this operation [XL21, AMI+23], in order to reduce the number of
multiplications from 5 to 4, as shown in (11).

ĥ2i = f̂2i · ĝ2i + f̂2i+1 · ĝ2i+1 · ω2br(i)+1

ĥ2i+1 = (f̂2i + f̂2i+1) · (ĝ2i + ĝ2i+1) − (f̂2i · ĝ2i + f̂2i+1 · ĝ2i+1) (11)

However, we notice that there are 2 consecutive multiplications. Therefore, there is the
need of cascading the DBUs for performing a pipelined PWM operation, as done by
[AMI+23]. The first DBU executes the multiplications m0 = f̂2i · ĝ2i and m1 = f̂2i+1 · ĝ2i+1.
Then, between the two DBUs, modular adders execute the operations s0 = f̂2i + f̂2i+1, s1 =
ĝ2i + ĝ2i+1 and s2 = −m0 − m1. Finally, the last DBU calculates ĥ2i = m0 + m1 · ω2br(i)+1

and ĥ2i+1 = s2 + s0 · s1.

3.5 Memories and memory access schemes
In the following section, we will provide more details on the memory organization.

Because of the varying parallelism levels of a butterfly execution, we decided to
implement the memory access scheme from [MRW+22]. For a given array of processing
elements with width wP E , they propose the usage of 2 × wP E banks of memory along with
a coefficient index generation algorithm. Their algorithm generates the coefficient indices
in every stage s in two phases with two different arithmetic progressions. In the first one,
the arithmetic progression between coefficients has a common difference of 27−s, whereas
the second phase has a common difference of N/2wP E . The authors formally proof that
such a scheme is collision-free (reading two or more coefficients from a single memory bank)
and free of data-dependency between stages (read-after-write), if cP E ≤ n

2wP E
, where cP E

is the number of clock cycles necessary for calculating a butterfly from the coefficient index
generation until the storage in memory. We refer the reader to [MRW+22] for the full
formal proof.
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Then, the bank and address of each coefficient is calculated with the equations (12),
where idx is the index of the coefficient, b = 2 × wP E is the number of banks and di is
each of the digits of idx in base b representation.

bank =
(

L−1∑
i=0

di

)
mod b, addr =

⌊
idx

b

⌋
(12)

In our accelerator, wP E varies from 1 to 4, depending on the version of the butterflies
executed. If NTT is unprotected, then wP E = 4. Therefore we implement 8 banks of RAM
with depth of 32 addresses each, avoiding memory collision issues in all of the possible
processing element configurations. The mapping of the coefficient indexes to every bank
of memory is shown in Figure 5. Additionally, taking in consideration all the different
cases of parallelization and NTT configurations the worst case for pipeline latency is when
wP E = 4. Therefore, for this architecture the pipeline latency must be cP E ≤ 16, to
guarantee the nonexistence of read-after-write collision issues. We designed the architecture
with cP E = 13.

Figure 5: Mapping of each coefficient index to all banks of memory. The scheme from
[MRW+22] guarantees avoidance of memory collisions.

Finally, the width of the primary memory is expanded from 12 to 20 bits. This
expansion facilitates the storage, within the same memory address, of the current power of
each coefficient’s mask, if local masking is used. In this way, we mutualize read and write
logic for the data of the masking unit and the processing unit.

A second memory is necessary for storing the second polynomial used in the PWM
operation. This memory is a lot simpler since PWM was not designed with a flexible
parallelism like NTT/INTT. The PWM operation requires two coefficients per clock cycle.
Therefore, the secondary memory consists of one single bank of memory, with a width of
24 bits and a depth of 128 addresses, for storing two coefficients at each address. A single
port memory is used, simplifying the logic needed for accessing the data.

For easiness of computation, twiddle factors in embedded accelerators are typically
precalculated and stored in a read-only memory. The powers of the twiddle factors are
often related and grouped within a single address. However, because of the usage of
local masking, the powers of the twiddle factors may not be related at all and therefore
replication of data is needed. In fact, in this accelerator with four multipliers, it is entirely
possible that four unrelated twiddle factors are needed. Consequently, four read-only
memories are employed, each with the 256 possible twiddle factors.

3.6 Masking unit
The masking unit is the module in charge of randomizing the twiddle factors and effectively
applying the local-masking countermeasure. It is equipped with a dual port memory with
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128 addresses of 8 bits that store the randomness for the masked twiddle factors and
four arithmetic units for calculating the new powers, as shown in Figure 6. It requires
one clock cycle for loading per address of randomness The arithmetic units perform the
masking/demasking of the powers of the twiddle factors in mod n, as shown in 2.5 and
according to previous masks and new masks loaded in its internal memory. If no masking
is performed, then the powers of the twiddle factors are untouched.

Figure 6: Diagram of the masking unit.

3.7 Implementation results
In this subsection, we show the implementation results of the proposed architecture. First,
we demonstrate the timing results in terms of clock cycles, which are independent of the
platform used. Then, we showcase the resource utilization for implementations on both a
Xilinx Artix-7 FPGA and an ASIC, using the 22nm FDSOI library from Global Foundries.

3.7.1 Timing

The timing results of the execution of NTT and INTT are shown in Table 2. The latency
depends directly on the number of masks that is desired for the execution and on the
parameter out_in_unmasked for the PWM protection. In general, the latency is composed
of processing time, mask-loading time and pipeline latency, which is 13 clock cycles for
both NTT and INTT. The time needed to write and read the accelerator memories
from the external world is not considered in this analysis. The additional overhead of
the PWM protection mode is due to more requirements of randomness for leaving the
output masked or using more costly butterflies to ensure all values are correctly masked.
For example, executing the PWM-protected NTT necessitates an additional layer of
randomness. Consequently, more time is required to load this additional randomness. Also,
the PWM-protected INTT with u = 128 starts with a MDIDO butterfly, instead of MSISO,
which incurs in additional time penalty.

For PWM, the latency is 148 clock cycles, composed of 128 cycles for processing and
20 cycles for the pipeline latency. This latency is higher in this operation because of the
cascading of the butterfly units, explained in Section 3.4.

The acceleration factor in terms of clock cycles compared to the ARM Cortex M4
microcontroller implementation of the NTT for Kyber in [RPBC20] is reported in Table
3. This comparison is provided for the NTT/INTT without PWM protection and for
the comparable number of masks u reported. As seen, the acceleration factor is between
95x-213x.

3.7.2 Resource utilization

This architecture was implemented for two different hardware targets: FPGA and ASIC.
For the FPGA target, the chosen chip was the Xilinx Artix-7 XC7A100t-3. The

synthesis and implementation was done with Vivado 2021.1 with default synthesis and
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implementation options. The NTT module uses 3651 LUT, 1430 FF, 6 BRAM, 4 DSP for
a maximum frequency of 167.37 MHz. The critical path is between the coefficient index
generated by the control unit through the bank decoding logic, ending at the input of the
memories.

In Table 4, we compare the results of our implementation with FPGA unprotected
NTT designs for Kyber with 4 DSPs in order to have comparable numbers. It must
be noted that the comparison can be unfair since there is not an implementation with
local-masking reported in the state of the art. The metric for comparison is the Area-Time
Product (ATP) which we define here as ATP = (LUTs + FFs) ∗ 1/fmax ∗ CCs, where
fmax is the maximum frequency in MHz of the implementation and CCs is the number of
clock cycles required for performing an unprotected NTT operation. It is evident that the
implementation involves additional overhead compared to those selected in the state of
the art. There are several elements in the architecture that avoid optimizations or add
area utilization. For starters, the configurable level of protection in terms of number of
masks u is achieved with a parallelization flexibility in terms of number of effective PE in
a butterfly calculation. Therefore, we chose a memory scheme that allow for this variable
parallelism [MRW+22]. This incurs in overheads in the memory blocks used, coefficient
index generation and configuration signals coming from the control unit. Additionally, the
masking unit represents a module that is not present in any of the cited implementations,
that contains a memory block and arithmetic units for the calculation of the updated
twiddle factors. Finally, the processing element itself is built to support masked Cooley-
Tukey and Gentleman-Sande butterflies, which adds additional complexity compared to a
PE not equipped with this capabilities.

The design was also synthesized for an ASIC target. The technology node used was
the 22nm FDSOI library from Global Foundries.

Apart from the synthesis of the general logic into standard cells, three different types
of memories were compiled. For the 8 banks of memories for the primary memory, a
register-file-based memory was used, with 20 bits of width and 5 bits of depth. For the
secondary memory, a single-port SRAM memory was generated with a width of 24 bits and
7 bits of depth. Finally, for the memory of the masking unit, a dual-port SRAM memory
was compiled, with 8 bits of depth and 7 bits of width. The total area of the memories is
20045.89 µm2 and this is independent of the target frequency of the general simulation.

For a maximum frequency of 1.199 GHz, the total area of the device is 31793 µm2,
yielding 11147.11 µm2 for the rest of the logic without memories. This corresponds to 159
kGE, using the NAND2 area of the standard cell library as a reference. The critical path
corresponds to the internal generated memories. The standard cells used are of type RVT.

Table 2: Timing results for NTT and INTT. In parenthesis, the percentage of the overhead
in clock cycles compared to the unmasked case (u = 0).

Number of
masks u

Clock cycles without
PWM protection

(NTT/INTT)

Clock cycles with
PWM protection

(NTT/INTT)

0 237/237 –/– –/– –/–
1 467/467 (97.04/97.04) 468/467 (97.47/97.04)
2 537/537 (126.58/126.58) 539/537 (127.43/126.58)
4 613/613 (158.65/158.65) 617/613 (160.34/158.65)
8 701/701 (195.78/195.78) 709/701 (199.16/195.78)
16 813/813 (243.04/243.04) 829/813 (249.79/243.04)
32 973/973 (310.55/310.55) 1005/973 (324.05/310.55)
64 1229/1229 (418.57/418.57) 1293/1229 (445.57/418.57)
128 1613/1613 (580.59/580.59) 1805/1677 (661.60/607.59)
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Table 3: Acceleration of local-masked NTT/INTT for CRYSTALS-Kyber compared to the
software implementation from [RPBC20]

Number of
masks u

Clock cycles of
software implementation

from [RPBC20] for NTT/INTT

Acceleration factor in clock cycles
of this work for NTT/INTT

0 31 × 103 / 50.6 × 103 130.8/213.50
1 44.6 × 103 / 63.9 × 103 95.50/136.83
2 66.5 × 103 / 83.7 × 103 123.84/155.87
4 72.1 × 103 / 87.2 × 103 117.62/142.25

Table 4: FPGA resource comparison with state of the art. PE layout refers to the width
and depth of the butterfly array.

Implementation PE layout LUT FF BRAM DSP fmax CCs ATP
This work 4x1 3651 1430 6 4 167 237 7197
[LTHW23] 4x1 1170 1164 2 4 303 235 1810
[YMÖS21] 4x1 2543 792 9 4 182 232 4251

[BNAMK21] 2x2 801 717 2 4 222 324 2215
[IUH22] 2x2 904 811 2.5 4 216 268 2127

4 Weaknesses in NTT countermeasure
The countermeasure introduced in [RPBC20] is at its essence, a multiplicative masking.
As such, we have identified three main vulnerabilites that may undermine its effectiveness
for SASCA and side-channel attacks in general. Firstly, there is a variability in the
runtime depending on parameters of local masking. Secondly, multiplicative masking is
ineffective when dealing with 0-values. Finally, we identify that this masking scheme lacks
surjectiveness and therefore it may leak information.

4.1 Variable runtime depending of parameters
The numbers of masks determines the type of butterflies that are used, therefore the
algorithm runs in variable time. This in itself does not reveal any secret information to the
attacker through timing. However, the information on the configuration of the algorithm
is essential for the attacker to build the factor graph for the attack.

4.2 The 0-value problem
The 0-value problem is a well known downside of multiplicative masking schemes. Zeros
cannot be masked with multiplications. The first multiplicative masking scheme on AES,
proposed by Akkar and Giraud [AG01], was shown by Golić and Tymen [GT03] to be
vulnerable to first-order zero-value DPA because of this very same reason.

Such characteristic can be leveraged by a SASCA attacker on the [RPBC20] counter-
measure in two ways:

• First way is as follows: suppose a usual NTT butterfly c = a + b · ωi, d = a − b · ωi.
If the attacker can successfully identify zeros in any layer of the NTT, they can know
that the inputs of the previous butterfly are related as b · ωi = q − a or a = b · ωi

depending if the zero was detected on c or d. This information is not hidden by the
multiplicative masking on any parameter for the [RPBC20] countermeasure.
This is specially true for the case of an NTT execution that is not previously additive-
masked. If this is the case, averaging several traces can reveal the presence of 0’s,
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simplifying the graph for the attack and reducing the entropy of it by revealing the
relationship between the previous coefficients.
In the case when the execution of the NTT is additive-masked, the averaging cannot
be done.

• Second way is by applying the strategies proposed by Hamburg et al. [HHP+21] for
attacking the inverse NTT and the long term key. In their work, they craft chosen
ciphertexts to force the result of PWM to zero in certain coefficients. This is to
reduce the size of the graph, reducing the entropy of some variables to zero. Such
strategy can also be applied here to attack an implementation of the inverse NTT
equipped with the [RPBC20] countermeasure, even in the additive-masked case.

As 0-values are not masked, then this effect should be possible to be seen in a t-test of an
implementation with the [RPBC20] countermeasure. If the leakage of such implementation
can be modeled with the noisy hamming weight model, the detection of such effect could
be resilient to a high level of noise.

4.3 Non-surjective masking
Consider the set of Twiddle factors W = {ζi mod q|i ∈ [0, n − 1]}. The masking of each
coefficient in the [RPBC20] countermeasure follows the map m : Zq × W → Zq. For a fixed
coefficient x ∈ Zq, the mapping becomes non-surjective. This means that for a fixed x,
there is only n possible values to which it can be mapped. This non-uniform mask reveals
information about the fixed coefficient x.

For a fixed x ∈ Zq, the set of possible values resulting from the map is {x · ζi mod q|i ∈
[0, n − 1]}. Let y ∈ Zq be a member of this set such that y ≡ x · ζi mod q. Then,
x ≡ y · ζ−i mod q. And because ζ is an n-th root of unity, x ≡ y · ζn−i mod q. Therefore,
x can also be generated from the map from y, with j = n − i and is inside the set {y · ζj

mod q|j ∈ [0, n − 1]}. As every set possible contains n values, then the number of unique
sets is (q − 1)/n, which in Kyber is 13. We will denote each of these sets with Wk, where
k is the smallest value that multiplies the possible twiddle factors and generates the sets
such that {k · ζi|i ∈ [0, n − 1]}, and k ∈ [1, 2, 3, 4, 5, 8, 9, 10, 11, 15, 20, 25, 31].

If an attacker can identify the ocurrence of one set in the mapping, then it reduces the
number of possible coefficient values from 3329 to 256.

An attacker could gather several traces until it narrows the possible cases. For example,
if they can distinguish individual values, then a set is identified and the number of
candidates is reduced to 256. However, if the attacker is only equipped with a Hamming
weight distinguisher, then it becomes more complicated. In Table 5, the ocurrence of
Hamming weights for each of the sets Wk is shown. As seen, some of the Hamming weights
are impossible to obtain for certain sets. For example, if a Hamming weight of value 11 is
detected, then the only possible sets are W2 and W4. Likewise, a detection of a Hamming
weight of 1 discards the set W20. Another strategy could be of obtaining several traces
and observing the distribution of Hamming weights. Then, a maximum likelihood strategy
could be employed to select the correct set.

It must be noted that means of the Hamming weights of each of the sets Wk, shown
in Table 5 are not the same as the mean of the Hamming weight of a random variable,
which is 5.69149895. If a local-masked NTT implementation leaks the Hamming weight,
the effect of the non-surjectiveness should be possible to be seen in a t-test, although it
should be more difficult to be seen than the previous vulnerability since the averages of
Hamming weights are very close and it should be very susceptible to noise.

Additionally, we argue that the MSISO butterfly is inherently more prone to leaks
than the MDIDO butterfly. This is because the set of intermediate values and every set of
outputs will be masked with the same mask, giving only n possible mappings of all these
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Table 5: Hamming weight frequencies for the values in the sets Wk, along with the weighted
means of Hamming weights

Set Wk

HW 1 2 3 4 5 6 7 8 9 10 11 Mean of
HW

W1 1 7 21 38 47 62 48 20 11 1 0 5.6328125
W2 1 7 19 35 49 58 54 21 8 3 1 5.71875
W3 1 3 17 34 64 61 44 23 6 3 0 5.6875
W4 1 6 15 41 56 55 47 23 10 1 1 5.6875
W5 1 3 21 35 60 47 57 23 8 1 0 5.69140625
W8 1 6 12 30 60 54 51 28 14 0 0 5.859375
W9 1 8 9 36 61 67 44 22 8 0 0 5.66796875
W10 1 3 23 39 53 57 48 22 9 1 0 5.6328125
W11 1 6 10 36 56 67 40 29 10 1 0 5.78515625
W15 1 7 12 39 57 68 42 22 7 1 0 5.63671875
W20 0 4 23 41 50 59 43 26 6 4 0 5.65625
W25 1 4 17 41 61 65 35 25 3 4 0 5.58984375
W31 1 2 20 33 54 64 43 29 8 2 0 5.765625

sets. In an implementation with parallelization, this could increase the signal to noise ratio
for a non-specific t-test. On the other hand, the MDIDO butterfly provides many more
possible mappings. For the set of four multiplications that need to be done, as shown in
(8), it provides n4 possible mappings and n2 for the outputs of the butterfly. Therefore the
noise expected for this operation is bigger, and leakage could be harder to find, specially
for an implementation with parallelization as the one presented in Section 3.

5 Leakage assessment on FPGA
In this section, we describe the leakage asseessment campaign for an FPGA programmed
with the implementation of [RPBC20] countermeasure discussed in Section 3. The method
for this assessment is a non-specific t-test, as described first in [GJJR11] and more formally
in [SM15]. A t-test is used to assess if whether the difference of a moment of two sets is
significant or not. In the case of the first statistical moment, it tests the hypothesis that
the means of two groups can be considered as different. The t-statistic is defined in (13),
where µ0 (resp. µ1) is the mean, s2

0 (resp. s2
1) is the sample variance and n0 (resp. n1) is

the cardinality of set 0 (resp. 1) .

t = µ0 − µ1√
s2

0
n0

+ s2
1

n1

(13)

For the side-channel scenario, the two samples come from an execution with a fixed
input and another one with a random input, i.e. a non-specific t-test. In the literature,
it is an empiric standard to consider that an implementation is leaking information if
|t| > 4.5, since, for n > 5000 the confidence of rejecting the null hypothesis that the two
sets have the same moment is 99, 999% [GJJR11, SM15].

5.1 Setup and methodology
The evaluation bench consists of a Tektronix MSO64 oscilloscope, a Femto HSA-X-2-40
low-noise amplifier and a Langer RF-U 5-2 EM probe. The evaluation board used is a
Digilent Basys-3 with a Xilinx Artix-7 XC7A35TCPG236 FPGA chip programmed with
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the implementation described in Section 3. The sample rate of the oscilloscope was fixed
to 625 MS/s, and the FPGA uses the built-in clock of 100 MHz.

To perform the leakage assessment for our implementation, we configure the accelerator
with u = 1 and with u = 128, according to the number of masks per stage as explained in
Section 2.5. We chose this cases, because they are the extreme cases for our implementation,
i.e. the NTT execution is masked with the least and most masks per round possible,
respectively. Additionally, u = 1, uses only MSISO butterflies, while u = 128 uses only
MDIDO butterflies for the intermediate layers (that are not input or output layers).
This allows us to draw some evidence about the hypothesis that the non-surjectiveness
vulnerability should be easier to detect in MSISO butterflies compared to MDIDO ones.
For each scenario we first perform a control experiment, by feeding 0 in the randomness
port to the masking unit, which means that the operation is always masked with a twiddle
factor of ζ0 = 1.

5.2 Results
Case 1: u=1. The results of the control experiment are shown in Figure 7, using 20k
traces for the fixed and random input executions. The seven stages of the NTT execution
are highlighted in different colors. They overlap because of the pipeline slack in the
architecture. As seen in the figure, the leakage is present throughout the execution without
the multiplicative masking.

Figure 7: Control experiment for case 1, u = 1. 20k traces.

For the next experiment, we chose a fixed input polynomial which would yield 0
as intermediate value at a certain point, to test the hypothesis of Section 4.2 that an
implementation would leak the 0-value. The results are shown in Figure 8, with a number
of traces per sample set of 500k. It can be seen that the t-value of the samples of all the
stages is reduced, except for the first and the last stage. This is expected, since the input
and the output of the NTT operation is unmasked. In Figure 8b we zoom on the stages 1
to 5. The fixed polynomial that was inputted to the device yielded zeros in stages 3 and 5,
so it was expected that t-values surpassing 4.5 would appear in these stages. However,
there are surpassing t-values that also appear in other stages. We make the conjecture
that the contribution to the leakage could also be coming from the non-surjectiveness
explained in Section 4.3.

To test the hypothesis that leakage can come from the non-surjectiveness vulnerability,
we choose a fixed polynomial that does not yield any zero in an intermediate value. In
this experiment, 1 million traces per set were obtained. The results are shown in Figure 9.
As seen in the zoomed Figure 9b, there is leakage detected in every stage. We make the
conjecture that this leakage is coming from the non-surjectiveness vulnerability.

Case 2: u = 128. The t-test of the control experiment is shown in Figure 10, using



Rafael Carrera Rodriguez, Emanuele Valea, Florent Bruguier and Pascal Benoit 19

(a) Full t-test. (b) Zoom on stages 1-5.

Figure 8: T-test for case 1, u = 1 using a polynomial that yields intermediate values with
zero. 500k traces.

(a) Full t-test. (b) Zoom on stages 1-5.

Figure 9: T-test for case 1, u = 1 using a polynomial that does not yield intermediate
values with zero. 1 million traces.

30k traces for each of the sets. Again, the leakage is shown to be present throughout the
whole execution. In this case, the stages do not overlap since before every stage (except
for the last one that demasks the output), there is a loading phase of the masks of 128
clock cycles, one for each mask.

Then, the test for non-surjectiveness is done by feeding a polynomial that will not
yield a zero as intermediate value. In this experiment, we used around 1 million traces per
set and the results are shown in Figure 11. As seen in the figure, no leakage is actually
detected in the intermediate rounds. This is because of the expected increased noise of
using MDIDO butterflies, as explained in Section 4.3.

Finally, to test for the zero-value problem, we feed a polynomial that will yield a zero
in round 4. With 336k traces, the result is shown in Figure 12. As seen in Figure 12b,
leakage is detected in round 5, since the zero coming from round 4 is an input for round
5. As the non-surjectiveness seems to be more dificult to detect with u = 128 than with
u = 1 because of the usage of MDIDO butterflies, we make the conjecture that this leakage
comes from the zero-value issue.
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Figure 10: Control experiment for case 2, u = 128. 30k traces.

(a) Full t-test. (b) Zoom on stages 1-5.

Figure 11: T-test for case 2, u = 128 using a polynomial that does not yield intermediate
values with zero. 1 million traces. No leakage detected in intermediate rounds.

6 Conclusion
In this paper we presented an analysis of surface, performance and security of the masking
countermeasure for the NTT against soft-analytical side-channel attacks presented in
[RPBC20]. We first introduced a hardware implementation of a local-masked NTT,
capable of executing different levels of protection according to the number of masks per
stage u, with the goal of making an exploration on area, performance and a posterior
security analysis. We showed the possible overhead incurred in implementing such a
countermeasure and the challenges behind ensuring maximum utilization of the modular
multipliers. Then, we described some of the possible vulnerabilities that are inherent to the
masking countermeasure. Finally, we performed a leakage assessment on an FPGA board
programmed with our proposed implementation to support our hypothesis of inherent
leakage of the local masking scheme.

Even if we argue that an implementation with this type of masking inherently leaks
information, it must be said that it does augment the level of noise of an NTT imple-
mentation and the entropy on individual intermediate values. As seen in the t-tests, the
t-values are significantly reduced, while still failing, specially for the MSISO case. If used,
this countermeasure should be used mainly with MDIDO butterflies and in conjunction
with usual additive masking to avoid attacks that improve the attacker knowledge, such as
the averaging for the zero value explained in Section 4.2 or a maximum-likelihood strategy,
as showed in Section 4.3.

As future work, we leave the evaluation of a practical SASCA attack on a local-masked
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(a) Full t-test. (b) Zoom on stages 1-5.

Figure 12: T-test for case 2, u = 128 using a polynomial that yields intermediate values
with zero in round 4. 336k traces. Leakage detected in round 5.

NTT taking advantage of the possible vulnerabilities identified in this paper. Additionally,
the effect of extending this local masking countermeasure to protect the PWM, as shown
in Section 3.3, can be studied in terms of security and its integration to the whole protocol
of CRYSTALS-Kyber. Moreover, a comparative study can be undertaken between local
masking and shuffling to analyze the security, area and performance aspects.
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