
ECO-CRYSTALS: Efficient Cryptography
CRYSTALS on Standard RISC-V ISA

Xinyi Ji∗, Jiankuo Dong∗, Junhao Huang†‡, Zhijian Yuan∗, Wangchen Dai§, Fu Xiao∗, Jingqiang Lin¶
∗School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China

†Department of Computer Science, BNU-HKBU United International College, Zhuhai, China
‡Department of Computer Science, Hong Kong Baptist University, Hong Kong, China

§School of Cyber Science and Technology, SUN YAT-SEN University, Hangzhou, China.
¶School of Cyber Security, University of Science and Technology of China, Hefei, China.

Abstract—The field of post-quantum cryptography (PQC) is
continuously evolving. Many researchers are exploring efficient
PQC implementation on various platforms, including x86, ARM,
FPGA, GPU, etc. In this paper, we present an Efficient Cryp-
tOgraphy CRYSTALS (ECO-CRYSTALS) implementation on
standard 64-bit RISC-V Instruction Set Architecture (ISA). The
target schemes are two winners of the National Institute of Stan-
dards and Technology (NIST) PQC competition: CRYSTALS-
Kyber and CRYSTALS-Dilithium, where the two most time-
consuming operations are Keccak and polynomial multiplication.
Notably, this paper is the first highly-optimized assembly software
implementation to deploy Kyber and Dilithium on the 64-bit
RISC-V ISA. Firstly, we propose a better scheduling strategy
for Keccak, which is specifically tailored for the 64-bit dual-
issue RISC-V architecture. Our 24-round Keccak permutation
(Keccak-p[1600,24]) achieves a 59.18% speed-up compared to
the reference implementation. Secondly, we apply two modular
arithmetic (Montgomery arithmetic and Plantard arithmetic) in
the polynomial multiplication of Kyber and Dilithium to get a bet-
ter lazy reduction. Then, we propose a flexible dual-instruction-
issue scheme of Number Theoretic Transform (NTT). As for
the matrix-vector multiplication, we introduce a row-to-column
processing methodology to minimize the expensive memory access
operations. Compared to the reference implementation, we obtain
a speedup of 53.85%∼85.57% for NTT, matrix-vector multipli-
cation, and INTT in our ECO-CRYSTALS. Finally, our ECO-
CRYSTALS implementation for key generation, encapsulation,
and decapsulation in Kyber achieves 399k, 448k, and 479k cycles
respectively, achieving speedups of 60.82%, 63.93%, and 65.56%
compared to the NIST reference implementation. Similarly, our
ECO-CRYSTALS implementation for key generation, sign, and
verify in Dilithium reaches 1 364k, 3 191k, and 1 369k cycles,
showcasing speedups of 54.84%, 64.98%, and 57.20%, respec-
tively.

Index Terms—PQC, Kyber, Dilithium, RISC-V, Keccak,
Matrix-vector multiplication

This work was supported in part by Major Science and Technology
Demonstration Project of Jiangsu Provincial Key R & D Program under
Grant No. BE2022798, in part by the National Natural Science Foundation of
China under Grant No. 62302238, in part by the Natural Science Foundation
of Jiangsu Province under Grant No. BK20220388, in part by the Natural
Science Research Project of Colleges and Universities in Jiangsu Province
under Grant No. 22KJB520004, in part by the China Postdoctoral Science
Foundation under Grant No. 2022M711689, in part by the Postgraduate
Research and Practice Innovation Program of Jiangsu Province under Grant
No. KYCX23 1079. Corresponding author: Fu Xiao.

I. INTRODUCTION

The rapid advancement of quantum computers presents
a significant threat to modern cryptography due to their
formidable attack capabilities. Shor’s algorithm [1] based on
quantum computers provided an exponential speedup in crack-
ing the discrete logarithmic and large integer factorization
problems in polynomial time. Consequently, the security of
public-key cryptographic algorithms, reliant on the protection
of private keys, is compromised. To guarantee the secure
implementation of public-key cryptography, there is an urgent
demand for novel algorithms capable of withstanding both
quantum and classical attacks. The post-quantum cryptography
(PQC) is investigated to supersede the current public-key cryp-
tosystems to cope with the quantum challenge. The National
Institute of Standards and Technology (NIST) has launched a
competition to standardize post-quantum cryptosystems. This
competition is now in its fourth round, with three algorithms
(CRYSTALS-DILITHIUM [2], FALCON [3], SPHINCS+ [4])
being selected to be standardized for digital signature algo-
rithms and one algorithm (CRYSTALS-KYBER [5]) being
standardized for the key encapsulation mechanism. Kyber and
Dilithium are a cryptographic suite for algebraic lattices.

The performance of Kyber and Dilithium has garnered sig-
nificant attention during the NIST PQC Standardization Pro-
cess. Researchers have explored various optimization strate-
gies to enhance the efficiency of computationally intensive
operations in lattice-based cryptography on ARM [6] [7] [8]
[9] [10] [11] [12], AVX2 [13] [14], and GPU [15] [16],
etc. Sanal et al. [17] was the first optimized implementation
of Kyber on 64-bit ARM processors, optimizing vectorized
operations and accelerating symmetric functions through cryp-
tography extension. Becker et al. [7] shortened the canonical
implementation by eliminating explicit rotations to implement
the Keccak permutation on the A-profile of the ARM architec-
ture. Abdulrahman et al. [18] implemented NTT instances on
the ARMv8.1-M+Helium and AArch64+Neon architectures.
Ye et al. [19] designed novel Single-Instruction-Multiple-Data
(SIMD) instructions and utilized dual-issue techniques on
CV32E40P to optimize the polynomial operations in 256-bit
mode.

Our Contribution. RISC-V, an open-source Instruction Set

Architecture (ISA), is gaining attention from academia and
industry due to its modular design and flexibility. While the ex-
isting platforms mainly concentrate on the ARM architecture
[7] [18] and the efficient SIMD RISC-V processor [19], the
implementation of CRYSTALS lacks support for 64-bit RISC-
V platforms. Moreover, while most research in PQC focuses
on polynomial multiplication, Keccak has received compara-
tively less attention. Faced with these problems, we propose
the first efficient PQC software implementations (Kyber1024
and Dilithium5) targeting the RV64IMB ISA on VisionFive
2 with an in-order dual-issue CPU. The contributions of the
paper are summarized as follows.

• Firstly, we present a better scheduling strategy for Kec-
cak, specifically tailored for the RV64 dual-issue architec-
ture. In addition to leveraging the efficient manipulation
instructions rori and andn in RV64IMB to speed up
Keccak, we refactor Keccak instruction sequences to
eliminate data hazards in a dual-issue mode, thereby
maximizing Keccak throughput and improving its per-
formance. Notably, our approach ensures no memory
accesses during the Keccak round. Our Keccak im-
plementation achieves a 59.18% speed-up compared to
the reference implementation. For other 64-bit platforms
lacking rori and andn instruction, we also provide an
efficient generic implementation that minimizes the num-
ber of not operations based on the lane complementing
transform technique proposed in [20]. This alternative
implementation results in a 51.51% speed-up compared
to the reference.

• Then, two optimized modular arithmetic (Montgomery
arithmetic and Plantard arithmetic) are applied to CRYS-
TALS considering both instruction and memory effi-
ciency. For polynomial arithmetic, we propose a flexi-
ble dual-instruction-issue scheme for NTT with careful
register allocation and module planning. The shuffled
data and interleaved instructions are designed to avoid
data hazards. By introducing Montgomery arithmetic and
Plantard arithmetic, we can achieve a more effective lazy
reduction. After a more advanced range analysis based
on Montgomery multiplication proposed in [14], there is
no reduction required after NTT in CRYSTALS either
using Montgomery arithmetic or Plantard arithmetic. We
achieve speedups of 76.76% and 85.57% for NTT and
INTT in Kyber, respectively, compared to the refer-
ence implementation. The performance improvements are
75.65% and 78.96% for NTT and INTT in Dilithium.

• Thirdly, for the matrix-vector multiplication, we present
a row-to-column processing methodology to minimize
expensive memory access operations by transforming
the row-based approach to a column-based approach. In
our matrix-vector multiplication, the number of loading
sk is reduced from k × l × n times to l × n times.
We also eliminate the memory consumption for the
precomputed values sk2t+1ζ

2br7(t)+1 (0 ≤ t < 128) and
the precomputed values sk2t+1ζ

2br7(t)+1 is multiplied at

once by all related computations rather than duplicate
loading them following by the redundant loading sk.
In the k-th polynomial multiplication, compared to the
reference implementation, we obtain speedups of 78.71%
and 53.85% for matrix-vector multiplication in Kyber and
Dilithium, respectively.

This paper is the first highly-optimized assembly soft-
ware implementation to deploy Kyber and Dilithium on
the 64-bit RISC-V ISA. By integrating optimizations across
core operations (Keccak, NTT and matrix-vector multipli-
cation), our ECO-CRYSTALS of key generation, encapsu-
lation, and decapsulation in Kyber with Plantard arithmetic
outperform the NIST reference implementation with a speedup
of 60.82%∼65.56%. Our ECO-CRYSTALS of key gener-
ation, sign, and verify in Dilithium with Plantard arith-
metic outperform the NIST reference implementation with
a speedup of 54.84%∼64.98%. Due to the lack of exper-
iments with 64-bit RISC-V ISA implementations, we also
compare our ECO-CRYSTALS with the existing implemen-
tations on 32-bit or 64-bit microprocessors. Overall, our
ECO-CRYSTALS outperform the implementation on 32-bit
RISC-V [10] by 8.44×∼9.90× and the implementation on
32-bit ARM Cortex-M4 [11] by 2.18×∼2.98×. However,
compared to the implementations on the 64-bit triple-issue
out-of-order architecture Cortex-A75 [17] and the state-of-
the-art hardware/software implementations on 32-bit platforms
CV32E40P [19], our ECO-CRYSTALS are 1.65×∼1.77× and
1.96×∼2.92× slower than the work in [17] and [19], respec-
tively. However, we believe it is normal for our implementation
to be slower than theirs because their platforms have more
powerful SIMD instruction set than ours.

The remainder of the paper is structured as follows. Section
2 introduces fundamental preparatory knowledge. Section 3
describes the efficient Keccak implementation designed on the
RV64 dual-issue architecture. Section 4 outlines our dedicated
optimization implementation scheme of Kyber and Dilithium
on RISC-V ISA. Section 5 presents the experimental results.

II. PRELIMINARY KNOWLEDGE

In this section, the Cryptographic Suite for Algebraic
Lattices (Kyber and Dilithium) is briefly described. Then,
the related time-consuming operations are given. Finally, we
introduce the basic knowledge of the RISC-V architecture.

A. The Cryptographic Suite for Algebraic Lattices

Two cryptographic primitives make up the cryptographic
suite for algebraic lattices, Kyber and Dilithium, respectively.

1) Kyber: Kyber is an IND-CCA2-secure key-
encapsulation mechanism (Kyber.CCAKEM) from an IND-
CPA-secure public-key encryption scheme (Kyber.CPAPKE).
It is equipped with 3 parameter sets, namely Kyber512,
Kyber768, and Kyber1024, to provide different levels of
security. The length of plaintext n is set to 256 and parameter
k is the degree of the polynomial matrix or vector. We usually
change k to scale security to different levels, where k equals
2, 3, and 4 respectively. All of the symmetric primitives

with functions are instantiated from the FIPS 202 standard.
Kyber.CCAKEM consists of three parts: key generation,
encapsulation, and decapsulation.

2) Dilithium: Dilithium is an EUF-CMA-secure digital
signature algorithm which is based on Fiat-Shamir with Aborts
[21] approach. Dilithium uses 3 parameter sets, Dilithium2,
Dilithium3, and Dilithium5. The only way to scale the security
of Dilithium is by changing the values of (k, l), where (k, l)
equals (4,4), (6,5), and (8,7) respectively. All of the symmetric
primitives with functions are instantiated from the FIPS 202
standard. All algebraic operations are assumed to be over the
polynomial ring Rq . The general framework of Dilithium con-
sists of three parts: key generation, signing, and verification.

B. Keccak

Keccak is the new standard for hash functions, having won
the SHA-3 competition [20] of NIST in 2012. It is a big family
consisting of four cryptographic hash functions (SHA3-224,
SHA3-256, SHA3-384, and SHA3-512) and two extendable
output functions (SHAKE-128 and SHAKE-256). Its main
structure is the sponge structure with innovative Keccak-f
permutation as the underlying function and multi-rate padding
as the padding rule. The width of the permutation b and the
number of iterations nr is denoted by Keccak-p[b,nr], where
b ∈ {25, 50, 100, 200, 400, 800, 1600} comprise the state and
nr is a positive integer. Input and output states of the step
mappings are represented as arrays of bits with dimensions 5-
by-5-by-w, where w is b/25. The six hash functions of Keccak
can be conceptually understood as different ways or modes in
which the Keccak-p[1600,24] permutation is used.

A Keccak-f round consists of five step mappings called θ,
ρ, ψ, χ and ι. The pseudocode of five step mappings in a
round of Keccak-f [1600] is shown in Algorithm 1. A[x, y]
represents a specific lane in the permutation state. C[x], D[x]
and B[x, y] are intermediate variables. The symbols xor, not
and and denote the bitwise exclusive, the bitwise complement
and the bitwise AND operation, respectively. The goal of
ROL(a, offset) is to move bit a from native position i to
position i + offset. The constants r[x, y] are specified in a
table and RC is a round constant with a different value in each
round.

C. Modular Arithmetic

The goal of modular arithmetic is to limit the magnitude
of the coefficients. The symbol [x]l′ in Algorithm 2 and
Algorithm 3 denotes x >> l′, while [x]l

′
denotes x mod 2l

′
,

where l′ denotes machine word size 16, 32 or 64. It is
commonly applied following arithmetic operations, such as
multiplication or addition. Kyber and Dilithium employ the
Montgomery algorithm [22] after multiplying with a precom-
puted root of unity. The Barrett reduction [23] is utilized
to mitigate overflow after the adding operation. To ensure
the accuracy of the reduced values as representatives, the
precomputed roots incorporate the Montgomery factor.

Compared to the state-of-the-art signed Montgomery arith-
metic, Huang et al. [9] and Aoki et al. [12] proposed two

Algorithm 1: A Keccak-f round
Input : A state array A[x, y] of 5 × 5 lanes, x,y ∈

{0, 1, 2, 3, 4}
Output: An updated state array A[x, y] of 5 × 5

lanes, x,y ∈ {0, 1, 2, 3, 4}
// θ STEP
for x = 0 to 4 do

C[x] = A[x, 0] ⊕ A[x, 1] ⊕ A[x, 2] ⊕ A[x, 3] ⊕
A[x, 4]

for x = 0 to 4 do
D[x] = C[x− 1] ⊕ ROL(C[x+ 1],1)

for y = 0 to 4 do
for x = 0 to 4 do

A[x, y] = A[x, y] ⊕ D[x]

// ρ AND ψ AND χ STEPS
for y = 0 to 4 do

for x = 0 to 4 do
B[y, 2x+ 3y] = ROL(A[x, y],r[x, y])

for x = 0 to 4 do
A[x, y] = B[x, y] ⊕ ((not B[x+ 1, y]) and
B[x+ 2, y])

// ι STEP
A[0, 0] = A[0, 0] ⊕ RC

variants of Plantard arithmetic [24] for LBC schemes. [12]
used rounding operations for which there were no correspond-
ing integer instructions on RISC-V. [10] enlarged the input
range of Plantard arithmetic which enables more effective lazy
reduction strategies in NTT/INTT.

Algorithm 2: Signed Montgomery multiplication [13]

Input: Two signed integers a, b, and ab ∈ [-q2l
′−1, q2l

′−1),
q < 2l

′−1.
Output: r ≡ ab2−l′ mod q, r ∈ (-q,q).

1: c = ab = c12
l′ + c0

2: m = [c0q
−1]2l′

3: t1 = [mq]l
′

4: r = c1 − t1

Algorithm 3: Plantard multiplication [10]

Input: Two signed integers a, b, and ab ∈ (q2l
′ − q2l

′+α,
22l

′ − q2l
′+α), q < 2l

′−α−1, q′ = q−1 mod± 22l
′
.

Output: r = ab(−2−2l′) mod± q, r ∈ [- q+1
2 , q2).

1: r = [([[abq′]2l′]
l′ + 2α)q]l

′

The primary distinction between [13] and [10] lies in the
varying ranges of inputs and outputs. The input range of
Plantard multiplication is at least 2l

′+α − 2 times bigger than
Montgomery multiplication where α = 3 for the modulus q =

212 − 210 + 28 + 1 in Kyber, α = 8 for q = 223 − 213 + 1 in
Dilithium, and l′ is equal to 16 and 32 in Kyber and Dilithium
as shown in Algorithm 2 and Algorithm 3, respectively.

D. Number Theoretic Transform

NTT is a specialized version of the Fast Fourier Transform
(FFT) that operates over finite fields or rings. The sequence
of elements f = [f0, f1, ..., fn−1] can be transformed into
another sequence by formula Fi =

∑n−1
j=0 fj · ζij , where ζ

is the primitive n-th roots of unity. It can be restored to the
original sequence by formula fj = n−1

∑n−1
i=0 Fi · (ζij)−1,

called INTT. The Cooley-Tukey algorithm (CT) [25] is a
widely used algorithm for efficiently computing the Discrete
Fourier Transform (DFT) and its variants NTT. The Chinese
Remainder Theorem (CRT) [26] provides a way to reconstruct
an integer from its residues modulo several pairwise coprime
moduli. The Gentleman-Sande Algorithm (GS) [27] is used
in INTT to restore the sequence. Using NTT and INTT, the
product of two polynomial f , g is efficiently computed as
f ·g=NTT−1(NTT(f) ◦ NTT(g)), where ◦ denotes the efficient
pointwise multiplication.

For Kyber, the polynomial ring is Rq =
∏

i Zq[X]/(Xn+1)
where q = 13·28+1 and n = 256. The polynomial X256+1 of
R factors into 128 polynomials of degree 2 modulo q where
NTT domain representation exists primitive 256-th roots of
unity ζ = 17 modulo q. The cyclotomic polynomial X256 +1
splits into X2 − ζi modulo q with i = 1, 3, 5, ..., 255. The
NTT of Kyber which has log n − 1 layers is an incomplete
implementation for 16-bit signed integers.

For Dilithium, the polynomial ring is Rq =∏
i Zq[X]/(Xn + 1) where q = 223 − 213 + 1 and

N = 256. The polynomial X256 + 1 of R factors into
256 polynomials of degree 1 modulo q where NTT domain
representation exists primitive 512-th roots of unity r = 1753
modulo q. The cyclotomic polynomial X256 + 1 splits into
linear factors X − ri modulo q with i = 1, 3, 5, ..., 511.
The NTT of Dilithium with log n layers is a complete
implementation for 32-bit signed integers.

E. RV64IMB ISA on VisionFive 2

RV64IMB denotes a RISC-V processor architecture that
embraces 64-bit functionalities (RV64). It encompasses funda-
mental integer operations (I), facilitates integer multiplication
and division (M), and employs bit manipulation instructions
(B) for fine-tuned bit-level operations. In Table I, we present
a comprehensive demonstration of the fundamental integer
operations in RV64IMB architecture, where sext stands for
sign-extend, and S and U represent arithmetic shift right and
logical shift right, respectively.

Apart from the above instructions, load and store instruc-
tions are fundamental in transferring data between memory
and registers, such as lw (Load Word) and ld (Load Dou-
ble Word), sw (Store Word) and sd (Store Double Word).
In particular, the mulh instruction is part of the integer
multiplication extension. This instruction performs a signed

TABLE I
RV64IMB ISA INSTRUCTION EXPLANATION

Instructions Meanings

Basic operations

add rd,rs1,rs2 x[rd]=x[rs1] + x[rs2]
mul rd,rs1,rs2 x[rd]=x[rs1] × x[rs2]
addw rd,rs1,rs2 x[rd]=sext((x[rs1] + x[rs2])[31:0])
mulw rd,rs1,rs2 x[rd]=sext((x[rs1] × x[rs2])[31:0])

Shift operations

sll rd,rs1,rs2 x[rd]=x[rs1] << x[rs2]
sra rd,rs1,rs2 x[rd]=x[rs1] >>s x[rs2]
srl rd,rs1,rs2 x[rd]=x[rs1] >>u x[rs2]

slliw rd,rs1,shamt x[rd]=sext((x[rs1] << shamt)[31:0])
sraiw rd,rs1,shamt x[rd]=sext(x[rs1][31:0] >>s shamt)
srliw rd,rs1,rs2 x[rd]=sext(x[rs1][31:0] >>u shamt)

Logical operations
and rd,rs1,rs2 x[rd]=x[rs1] & x[rs2]
or rd,rs1,rs2 x[rd]=x[rs1] — x[rs2]
xor rd,rs1,rs2 x[rd]=x[rs1] ⊕ x[rs2]

Bit manipulation operations
andn rd,rs1,rs2 x[rd]=x[rs1] & x̃[rs2]
orn rd,rs1,rs2 x[rd]=x[rs1] | x̃[rs2]
xnor rd,rs1,rs2 x[rd]=x[rs1] ⊕ x̃[rs2]

Bit permutation operations ror rd,rs1,rs2 x[rd]=(x[rs1] << (64-x[rs2])) | (x[rs1] >> x[rs2])
rori rd,rs1,shamt x[rd]=(x[rs1] << (64-shamt)) | (x[rs1] >> shamt)

multiplication of two 64-bit integers and returns the upper 64
bits of the 128-bit result.

Our target platform VisionFive 2 is an in-order dual-issue
CPU with a non-trivial pipeline that is capable of executing
up to two instructions per clock cycle. If no data hazards
exist between a pair of instructions, they can be issued
simultaneously in the same cycle. The execution unit is fully
bypassed, allowing most instructions to have a one-cycle result
latency. In particular, the load instructions and multiplication
instructions generally take around 3 cycles.

III. OPTIMIZED KECCAK ON THE RV64IMB
ARCHITECTURE

Bertoni et al. [20], the Keccak team members, proposed a
lane complementing transform to reduce the number of not
operations from 25 to 5 in a round of Keccak-f [1600]. They
also optimized the addressing in the plane-by-plane processing
to minimize the required memory for computing Keccak-f .
Nevertheless, reducing the number of not operations is not a
primary concern on the RV64IMB architecture, as it includes
the andn instruction. In this paper, we proposed two versions
of Keccak implementation. The first version is based on the
open-source Keccak implementation targeting the RV64 [28]
with rori and andn. The second version is also based on the
Keccak implementation in [28], but we managed to reduce the
not instructions, and we believe it could be adapted to other
64-bit platforms without rori and andn instructions.

In our experimental platform, a total of 29 registers within
the 32 general-purpose registers can be programmable, exclud-
ing the hard-wired zero, the return address, and the stack point.
While the stack pointer is programmable, we refrain from
arbitrary changes to x2 due to program execution and memory
management concerns. For the 25 fixed input and output
states in Keccak-p[1600,24], we employ 25 fixed registers
(64-bit wide in RV64IMB) to represent each state. Among
the remaining four registers (r0, r1, r2, r3) whose values can
be changed arbitrarily, they are used to store the values of
intermediate variables during each round (C0-C3 in [28]).

A. Implementation of Keccak on RV64IMB architecture

Better scheduling of Keccak on RV64IMB architecture.
We refactor the instruction execution order of 24 Keccak

...

STEP//

......

STEP// and// STEP

1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27

the input of mapping

Equation (1)

1 2 3 4 5 6 7 8 9 10 11

...

STEP//

......

STEP// and// STEP

1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27

the input of mapping

Equation (1)

1 2 3 4 5 6 7 8 9 10 11

Fig. 1. Refactor Keccak instruction execution order in a dual-issue mode

rounds in a dual-issue mode. Fig. 1 shows the instruction flow
in round i where indexes represent array offsets and i0-i5 are
immediate values. Each calculation is presented as a column.
Gray dotted boxes are utilized to denote the dual-issue
instructions. In our platform, xor can be dual-issued with
other xor instructions. The instructions rori and andn are
as well. All these instructions used in Keccak can operate in
dual-issue mode when there are no data conflicts. Hence, the
specifics of the logical operations are omitted.

Firstly, we can fix x as a constant and keep y as a variable
in the θ step of Algorithm 1. When C[0] = A[0, 0] ⊕ A[0, 1]
⊕ ... ⊕ A[0, 4] is computed, A[0, y] will be changed in the
first xor operations with the parties of two columns where
y ∈ {0, 1, 2, 3, 4}, as demonstrated in [28]. The computations
of r0, r1 and r2 are interlaced rather than executed sequentially
in the θ step, as the manual implementation is to perform line
1, line 4, and line 7 in that order.

Then, the core we are studying supports the bit manipulation
extension which comes with the rori and andn instructions
that are very useful when implementing Keccak. By reducing
the number of instructions needed in the implementation,
the rori and andn offer substantial improvements in per-
formance, code size, and energy efficiency, particularly for
Keccak requiring intensive bitwise manipulation. For the ρ and
ψ step in Fig. 1, the computation result A[0, 1] in line 8 does
not influence the source data A[3, 3] in line 9. It shows that
there is no direct data dependency between two instructions
which can be scheduled and executed in parallel.

Thirdly, for the χ step, the four available registers can
store four intermediate values making multiple andn in-
structions free from resource conflicts which can maximize
processor throughput and performance according to the in-
struction scheduling. Hence, our refactored instructions reduce
the waiting time from the last computation result and avoid
data hazards, ensuring the program runs in dual-issue mode.
And to be sure, there are no memory accesses during the
keccak round (except RC in ι step, it is inevitably), and all
the interactive computation of data is performed in registers.

B. Implementation of Keccak on other 64-bit platforms

For other 64-bit platforms that do not support rori and
andn instructions, the rori instruction can be split into
one slli, one srli, and one or instruction, while the andn
instruction can be split into one not and one and instruction.
Notably, Bertoni et al. [20] provided the 64-bit C code
implementation of the lane complementing transform without
targeting the RV64IMB ISA. In particular, we apply the lane
complementing transform proposed in [20] to the Keccak
implementation for 64-bit RISC-V in [28]. It replaces 2 or
3 and operations with or operations and retains 5 xor
operations where the number of not operations can be reduced
from 600 to 120 in 24 rounds. When applying the mapping
χ to the 5 lanes in a plane y, the not operations for each 5
lanes of the state in round i are delineated in the subsequent
five equations.

A[1, 0] = A[1, 0] ⊕ ((not A[2, 0]) or A[3, 0]) (1)

A[2, 1] = A[2, 1] ⊕ (A[3, 1] or (not A[4, 1])) (2)

A[2, 2] = A[2, 2] ⊕ ((not A[3, 2]) and A[4, 2])

A[3, 2] = (not A[3, 2]) ⊕ (A[4, 2] or A[0, 2])
(3)

A[2, 3] = A[2, 3] ⊕ ((not A[3, 3]) or A[4, 3])

A[3, 3] = (not A[3, 3] ⊕ (A[4, 3] and A[0, 3])
(4)

A[0, 4] = A[0, 4] ⊕ ((not A[1, 4]) and A[2, 4])

A[1, 4] = (not A[1, 4]) ⊕ (A[2, 4] or A[3, 4])
(5)

Better scheduling of Keccak on other 64-bit platforms.
For one thing, the rori instruction is split into three
instructions in the ρ and ψ step. We can interlace the slli,
srli, and or instructions to avoid data hazards similar to the
θ step in Fig. 1. For another thing, we use Equation 1 as
an example to demonstrate the calculation processes across
every 5 lanes in the χ step. As shown in Fig. 2, the andn
instruction is broken down into two instructions in lines
6 and 8, separated by a single instruction to avoid stalls.
Compared to the implementation of RV64IMB architecture,
we use one more instruction on 64-bit platforms based on
the lane complementing transform. Our process remains in
a dual-issue mode to accommodate platforms that execute
it out-of-order. Finally, our refactored instructions on other
64-bit platforms also eliminate memory accesses during 24
Keccak rounds.

IV. OPTIMIZED KYBER AND DILITHIUM ON THE
RV64IMB ARCHITECTURE

This section discusses the detailed optimization strate-
gies for the polynomial and matrix-vector multiplication
with Montgomery and Plantard arithmetic in Kyber1024 and
Dilithium5.

...

STEP//

......

STEP// and// STEP

1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27

the input of mapping

Equation (1)

1 2 3 4 5 6 7 8 9 10 11

Fig. 2. Refactor Keccak instruction execution order on other 64-bit platforms

A. Montgomery and Plantard arithmetic in Kyber and
Dilithium

For the choice of the Plantard algorithm, we compare two
existing Plantard arithmetic in [10] and [12]. Since our target
platform does not support the rounding operations required in
[12], the Plantard arithmetic in [12] uses one more addition
than [10]. Hence, we opt for [10]. We conduct a thorough
comparison of the Montgomery arithmetic [13] and Plantard
arithmetic [10], discussing from both instruction and memory
perspectives. The detailed ISA is outlined in Algorithms 4, 5,
6, and 7.

1) An analysis of two arithmetic implementations in Kyber:
The Montgomery arithmetic shown in [13] requires to compute
a signed low product. For Kyber, this would need to fetch the
low 16-bit result from a 32-bit register. Given the absence
of explicit instruction for fetching the low 16 bits of 32-bit
registers in the RISC-V ISA, we choose to multiply q−1 by 216

to eliminate the high 16 bits of 32-bit registers after the mulw
instruction rather than manually performing a 16-bit left shift
followed by a 16-bit right shift. For the Plantard arithmetic,
our 64-bit RISC-V platform does not support the 32-bit mulh
instruction to multiply two 32-bit values and extract the high
32 bits of the product, and we can only implement the Plantard
arithmetic in 5 instructions which is one instruction fewer than
the Montgomery Multiplication. Compared to Algorithm 5,
Algorithm 4 needs an extra temporary variable t to store in-
termediate values and an extra 32-bit register to store q−1216.

Algorithm 4: Montgomery multiplication implemen-
tation for Kyber

Input: Two 16-bit integers a, ζ and aζ ∈ [-q215, q215).
Output: r = aζ2−l′ mod q, r ∈ (-q,q).

1: mulw r, a, ζ
2: mulw t, r, q−1216

3: sraiw t, t, 16
4: mulw t, t, q
5: subw r, r, t
6: sraiw r, r, 16

2) An analysis of two arithmetic implementations in
Dilithium: Unlike Algorithm 4, the signed-low-product for
32-bit modulus can be directly implemented with mulw
as shown in Algorithm 6, which saves the 64-bit product
t as a 32-bit word. As for the 32-bit Plantard arithmetic

Algorithm 5: Plantard multiplication by a constant
implementation for Kyber

Input: A 16-bit integer a ∈ [-215, 215), a 32-bit
precomputed twiddle factor ζ.

Output: r = aζ(−2−2l′) mod± q, r ∈ [- q+1
2 , q2).

1: mulw r, a, ζ
2: sraiw r, r, 16
3: addiw r, r, 8
4: mulw r, r, q
5: sraiw r, r, 16

in Dilithium, similar to [10], we can multiply q by q32 to
obtain the effective high 32-bit result with mulh instruction.
Hence, we obtain a 4-instruction Plantard multiplication by a
constant (Algorithm 7) for 32-bit modulus on the 64-bit RISC-
V platform which is one instruction fewer than Algorithm 6.
Furthermore, compared to Algorithm 7, Algorithm 6 needs an
extra temporary variable t to store intermediate values and an
extra register to store q−1.

Algorithm 6: Montgomery multiplication implemen-
tation for Dilithium
Input: r = aζ2−l′ mod q, r ∈ (-q,q).
Output: r = aζ(−2−2l′) mod± q, r ∈ [- q+1

2 , q2).
1: mul r, a, ζ
2: mulw t, r, q−1

3: mul t, t, q
4: sub r, r, t
5: srai r, r, 32

Algorithm 7: Plantard multiplication by a constant
implementation for Dilithium

Input: A 32-bit integer a ∈ [-231, 231), a 64-bit
precomputed twiddle factor ζ.

Output: r = aζ(−2−2l′) mod± q, r ∈ [- q+1
2 , q2).

1: mul r, a, ζ
2: srai r, r, 32
3: addi r, r, 256
4: mulh r, r, q232

3) Montgomery multiplication VS Plantard multiplication:
Table II shows the number of instructions and registers used
in Montgomery and Plantard multiplication on RV64 ISA in
Kyber and Dilithium. Regarding the number of instructions,
Plantard multiplication requires 5 instructions in Kyber and
4 instructions in Dilithium, respectively, which are all one
multiplication instruction fewer than Montgomery multiplica-
tion. Regarding the number of registers, excluding the input
and output parameters and the twiddle factor, Montgomery
multiplication uses two more registers than Plantard multipli-
cation in Kyber and Dilithium, in which one is fixed to store

a constant and another is used to store an intermediate value
in Montgomery arithmetic.

This extra register to store the intermediate value would
increase the register pressure, especially in dual-issue mode.
Specifically, when the pre-allocation of registers is completed,
the fixed constant in Montgomery multiplication can be reused.
However, the intermediate value cannot be reused within a pair
of input parameters (a0 and a1) that are expected to execute
in dual-issue mode. To distinguish the results between a0ζ
and a1ζ, we need to use two different registers t0 and t1.
Specifically, it would require i registers (t0-ti) to compute i
Montgomery multiplications in dual-issue mode. In contrast,
the Plantard multiplication does not need any additional regis-
ters to compute i Plantard multiplications in dual-issue mode,
which significantly reduces the register pressure.

TABLE II
COMPARISON OF NUMBER OF INSTRUCTIONS AND REGISTERS BETWEEN

MONTGOMERY AND PLANTARD MULTIPLICATION ON RV64 ISA

Kyber Montgomery multiplication Plantard multiplication
MUL (*) 3 2

ADD (+/-) 1 1
SHIFT (>>) 2 2

of instructions 6 5
of registers 3 1

Dilithium Montgomery multiplication Plantard multiplication
MUL (*) 3 2

ADD (+/-) 1 1
SHIFT (>>) 1 1

of instructions 5 4
of registers 3 1

B. NTT
For the dimension-256 NTT, there are 128 pairs of butterfly

operations in each layer (f = f + (gζ)q , g = f − (gζ)q).
Register allocation. We adopt the 3+4 layer merging

scheme for the 7-layer dimension-256 NTT in Kyber and
the 4+4 layer merging strategy for the 8-layer dimension-
256 NTT in Dilithium. The redundant registers available in
RISC-V enable us to load 8 pairs of coefficients and the
corresponding twiddle factors at once. For the given layers
with a substantial quantity of twiddle factors, address entries
of the twiddle factor array which also need to be placed in
registers are utilized to differentiate the butterfly operations
across layers. Our foundational principle lies in substituting
as many high-frequency occurrences of variables into registers
as possible, such as q and q−1.
Module planning. The butterfly operation can be split

into three parts: the multiplication module gζ, the reduction
module (gζ)q (Algorithms in IV-A except the first line), and
the addition and subtraction (additive) module f = f +(gζ)q ,
g = f − (gζ)q . For 8 pairs of coefficients, there are eight
multiplication modules, eight reduction modules, and sixteen
additive modules. It can be seen that multiplication instructions
have a throughput of 1 and a 3-cycle latency [29], and multi-
plications cannot be dual-issued with other multiplications. It
makes instruction scheduling an essential part of high-speed
implementations.

0

1

2

3

4

5

6

7

0

0

1

1

2

2

3

3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

0

1

1

2

2

3

3

4

5

6

7

4

5

6

7

0

1

2

3

0

1

2

3

4

5

4

5

6

7

6

7

0

1

0

1

2

3

2

3

0

1

2

3

4

5

6

7

0

0

1

1

2

2

3

3

layer 1 layer 2 layer 3

0

1

2

3 3

2

1

0

5

6

77

0

1

2

3

4

5

6

7

0

0

1

1

2

2

3

3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

0

1

1

2

2

3

3

4

5

6

7

4

5

6

7

0

1

2

3

0

1

2

3

4

5

4

5

6

7

6

7

0

1

0

1

2

3

2

3

0

1

2

3

4

5

6

7

0

0

1

1

2

2

3

3

layer 1 layer 2 layer 3

0

1

2

3 3

2

1

0

5

6

77

0

1

2

3

4

5

6

7

0

0

1

1

2

2

3

3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

0

1

1

2

2

3

3

4

5

6

7

4

5

6

7

0

1

2

3

0

1

2

3

4

5

4

5

6

7

6

7

0

1

0

1

2

3

2

3

0

1

2

3

4

5

6

7

0

0

1

1

2

2

3

3

layer 1

0

1

2

3 3

2

1

0

5

6

77

layer 2 layer 3

Fig. 3. A flexible dual-instruction-issue scheme of NTT

We present a flexible dual-instruction-issue scheme of NTT
to avoid stalls as shown in Fig. 3 where the red, green, and
blue boxes represent the multiplication module, the reduction
module, and the additive module, respectively. The presence
of two identical values with the same color in each column
indicates that the two modules are dual-issue. The numbers
represent the module operations of coefficients in each layer.
Take the first three layers in NTT as an example, the group
set {fi+0, fi+16, ..., fi+240}, 0 ≤ i < 16, will be loaded
into register r0-r15 in order. Once two of the multiplication
modules in each layer have been completed, it is possible to
advance to the reduction modules, without waiting for all the
other multiplication modules in that layer to be completed.

Note that all of this is predicated on the absence of data
hazards. After the reduction module, a pair of additive modules
with the same number need to perform f = f + (gζ)q ,
g = f − (gζ)q . It can be seen that f will be changed in
the first instruction which influences the source data of the
second instruction. Hence, we shuffle the data for the 8 pairs of
coefficients by using a temporary register to save a coefficient.
For example, in layer 1, we can use r16 to pre-save the value
of r7. Then, the register r7 can take the place of r0, thus
making this formula (r7 = r0 + r8, r8 = r0 - r8) free of data
conflicts. Data shuffling is performed in the additive module
at each layer to ensure dual-issue capability. Ultimately, the
coefficients in the registers are saved to the corresponding NTT
array memory.

Moreover, a continuous sequence of multiplication instruc-
tions would be ineffective. By interleaving the order of in-
structions, the multiplication module of the next layer (layer
2) can be alternated with the additive module of the former

layer (layer 1) under the reasonable register allocation. When
the multiplication module and the additive module appear
simultaneously where there are no data hazards, they can be
issued simultaneously by the processor and executed in dual-
issue mode. For example in layer 1, after the fourth pair of
coefficients in the additive module is calculated, the number
0 in the multiplication module can be dual-issued with the
number 5 in the additive module. Suppose the twiddle factors
are not pre-loaded in the registers which are ready to multiply
by the coefficients of number 0 in the multiplication module,
in that case, we can load them before number 4 of the additive
module rather than number 0 of the multiplication module to
avoid data hazards.

C. Matrix-vector Multiplication

Many optimization techniques known as asymmetric mul-
tiplication [30] and accumulation technique [8] are used to
speed up pointwise multiplication and matrix-vector multipli-
cation. The asymmetric multiplication is only applicable to
Kyber. It caches the sk2t+1ζ

2br7(t)+1 (0 ≤ t < 128) with
a 16-bit array. The accumulation technique accumulates k
pointwise multiplication, reducing the number of modular
multiplications. Finally, the k-th pointwise algorithm performs
modular multiplication by the sum of the products which can
reduce (k − 1)× n modular arithmetic.

For the matrix-vector multiplication of Kyber and Dilithium,
we can express it in a unified formula:

pk[i][t] = a[i][j][t] ◦ sk[j][t], i ∈ [0, k), j ∈ [0, l), t ∈ [0, n)

where k is 4 and 8, l is 4 and 7, in Kyber and Dilithium
respectively. Note that we exclude the NTT and INTT com-
putation in this process. The former implementations [10],
[30] based on optimized techniques cache the sk2t+1ζ

2br7(t)+1

(0 ≤ t < 128) in memory when the first matrix-vector
multiplication pk[0][t] (0 ≤ t < 256) is computed. The
computation mode in the row (pk[0][t], pk[1][t], ..., pk[k−1][t])
would cause the sk to be reloaded k times despite saving
the computation of sk2t+1ζ

2br7(t)+1. Similarly, the cached
memory sk2t+1ζ

2br7(t)+1 is reloaded k − 1 times.
We propose a row-to-column processing methodology of

matrix-vector multiplication without duplicate loading and
memory consumption. Fig. 4 shows the transformation from
a row-based approach to a column-based approach. When
the partial coefficients of sk[j][t], such as 0 ≤ j < l, 0 ≤
t < 2, are loaded into the registers, we can compute the
sk[j][1]ζ2br7(0)+1 (0 ≤ j < l) and execute the matrix-vector
multiplication with matrix a[0][j][t] (0 ≤ j < l, 0 ≤ t < 256)
to get the result of pk[0][t]. Note that we can not load too
many coefficients at once since the limited register resources.
Then, reuse the sk[j][1]ζ2br7(0)+1 to continue computing with
the left coefficients of a[i][j][t] in matrix A which is marked
with a green arrow in Fig. 4. When all related computa-
tions with sk[j][1]ζ2br7(0)+1 are finished, the precomputed

63

...

...

pointwise multiplication

No duplicate loading

Save in columns

Load coefficients in batches

Save in columns

...

pointwise multiplication

Load coefficients in batches

...

No duplicate loading

Fig. 4. A row-to-column processing methodology of matrix-vector multipli-
cation

sk[j][1]ζ2br7(0)+1 will no longer be accessed and will be
released. Finally, the results are saved to pk like a column.

In our processing methodology, each coefficient of sk, a,
and pk is only loaded once and the precomputed sk[j][2t +
1]ζ2br7(t)+1 do not consume memory, much less subsequently
duplicate loading them following by duplicate loading sk.
Compared with the former implementations [10], [30], We
reduce the number of loading sk from k× l× n to l× n and
there is no memory consumption for sk[j][2t + 1]ζ2br7(t)+1.
Note that there is no asymmetric multiplication in Dilithium
in that we use a grey arrow to express it in Fig. 4. And,
some dual-issue instructions are also possible in polynomial
multiplication if the left registers are rich.

D. Lazy Reduction

In lazy reduction, instead of performing modular reduc-
tion after each basic operation, the reduction operation is
postponed until it is necessary. To start, it is crucial to
determine the specific contexts where reduction arithmetic is
essential. Secondly, we have to specify the specific input and
output ranges of two arithmetic. When employing Plantard
multiplication by a constant whose value can be limited to
[0,q), the input range of the coefficients can be extended to
[2l

′−2l
′+α,22l

′
/q−2l

′+α) which is [-137q,230q] in Kyber and
[-130687q,131456q] in Dilithium. Notably, the Montgomery
algorithm does not support this operation because even with a
fixed constant, the coefficients remain within the 16-bit range,
equivalent to the parameter type range. Table III shows the
maximum boundary value of the modular arithmetic.

1) NTT: We introduce a more advanced range analysis for
Montgomery multiplication [14]. The output coefficients of
NTT are bounded by 16540 if the inputs are less than 3329
and the output coefficients of NTT are bounded by 42082400
if the inputs are less than 8380417. Two bounds are smaller
than 4.97q and 5.03q in Kyber and Dilithium respectively. For

TABLE III
THE MAXIMUM BOUNDARY VALUE OF THE MODULAR ARITHMETIC IN THE

SPEED VERSION

Output of NTT Output of matrix-vector multiplication Input of INTT
Kyber 4.97q / 4.5q q / 0.5q q / 0.5q

Dilithium 5.03q / 5q q / 0.5q q / 0.5q

Kyber, the coefficients after NTT are increased to 4.97q and
4.5q for Montgomery and Plantard arithmetic. We disregarded
the minor increase of 0.5 in the negative range of Plantard
arithmetic as it was deemed negligible. For Dilithium, one
variable is sampled uniformly in [0,q) by performing rejection
sampling on an array of random bytes, and the other variable
is obtained from NTT. The maximum values 5.03q2 and 5q2

are within the input range of Montgomery and Plantard multi-
plication, respectively. Hence, neither algorithms in Kyber and
Dilithium need to be reduced.

2) Matrix-vector Multiplication: Our matrix-vector multi-
plication is based on [6] which ensured that the output range
of the matrix-vector multiplication matches that of the multi-
plication algorithm (ĥ2i+1 = (f̂2iĝ2i+1+ f̂2i+1ĝ2i)q). Notably,
Dilithium has the polynomial of degree 1, which is unsuitable
for the method in [6]. The k-th pointwise multiplication with
accumulation technique [8] performs modular multiplication
by the sum of the products, thereby confining the output range
of the pointwise algorithm to the same range as modular
arithmetic which is discussed in IV-C. This technique has
been used in Kyber in [10], [30]. For Dilithium, it can be
seen that q × 5.03q × l and q × 5q × l are within the input
range of Montgomery arithmetic (256q2 < 231q < 257q2) and
Plantard arithmetic (130687q2 < 232q− 240q < 130688q2) in
pointwise multiplication, respectively. We can accumulate the
coefficients first and delay the modular reduction to the final
pointwise multiplication using either Montgomery arithmetic
or Plantard arithmetic. Even though the accumulation method
produces a difference of lq, it all reverts to the normal domain
after the INTT operation.

3) INTT: For Kyber, the input coefficients of INTT are q
with Montgomery arithmetic which will increase to 16q in the
fourth layer. The mind of [31] is not appliable to Montgomery
arithmetic where [31] computed the Fermat number transfor-
mation modulo 257 while loading the coefficients to 32-bit
registers in that the input range of Montgomery arithmetic
is less than 215 − 1. Not all coefficients in the fourth layer
require performing modular reduction. Hence, we need to find
the coefficients of 16q and some coefficients of 8q or 4q that
may increase to 16q in the latter layer. Finally, the coefficients
(fi+0, fi+32, fi+64, fi+96, fi+128, fi+160, fi+192, and fi+224,
0 ≤ i < 16) are required to be reduced. When implementing
Kyber with Plantard arithmetic, it is sufficient that the values
would not exceed the input range of Plantard multiplication
by a constant ([-137q,230q]) in INTT. The coefficients are
unrestricted by input ranges and parameter types. Note that the
limit of parameter type 16-bit is less than the limit of the input
range. Even if coefficients exceed the parameter type, they can
be loaded into 64-bit registers for more efficient lazy reduction.

Hence, there is no reduction required with Plantard arithmetic
in Kyber. For Dilithium, there is no reduction in INTT using
either Montgomery arithmetic or Plantard arithmetic.

Note that there are three reduction operations before
checking the infinity norm of polynomials (chknorm func-
tion) to avoid revealing secret information in the signature
of Dilithium, the coefficients require to be reduced to [-
6283009,6283007]. When using the Plantard arithmetic, the
maximum values are q

2 + 219 which are within the range of
[-6283009,6283007]. Hence, three reduction operations can be
saved in the signature procedure.

V. PERFORMANCE EVALUATION

Based on our optimized RISC-V software implementation
as outlined in III and IV, the experimental results for Kyber
and Dilithium are presented.

A. Experimental platforms

SiFive U74 4-core. Our CPU hardware environment com-
prises a CPU SiFive U74, featuring a 4-core 64-bit RV64GC
architecture running at 1.5GHz, with 4 GB LPDDR4 memory.
The Debian GNU/Linux bookworm/sid operating system facil-
itates the software ecosystem, alongside GCC version 11.3.0
(Debian 11.3.0-3) as the toolchain. The power consumption is
approximately 15W.
Comparative platforms. The 64-bit platforms currently avail-
able for comparison optimized for software implementation
are Cortex-A55, a dual-issue out-of-order architecture and
Cortex-A75, a triple-issue out-of-order architecture. Becker et
al. [7] implemented Keccak while Abdulrahman et al. [18]
implemented NTT. Sanal et al. [17] implemented NTT and
Kyber. Due to the lack of experiments with 64-bit RISC-V ISA
implementation, we also introduce the current best-performing
experiment [11] based on ARMv7-M ISA implementation
(Cortex-M4) and a hardware SIMD architecture [19] that
supports RV32IMC ISA to compare the performance of Kyber
and Dilithium. SiFive Freedom E310 is a 32-bit single-issue
processor where Huang et al. [10] implemented the entire
Kyber.

B. Performance of Keccak

5713

2332
2770

262559

643225

541516

0

1000

2000

3000

4000

5000

6000

Reference impl. RV64IMB impl. Generalized impl.
0

100000

200000

300000

400000

500000

600000

700000

CYCLE COUNTS AND THROUGHPUT OF
KECCAK-P[1600,24]
Cycle counts Throughput

Fig. 5. Performance of Keccak-p[1600,24] on SiFive U74

478526

447619

398705

551950

497831

439860

1389276

1241006

1017671

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000

Decapsulation

Encapsulation

KeyGen

CYCLE COUNTS OF KYBER
Reference implementation Opt based on Montgomery arithmetic Opt based on Plantard arithmetic

1368514

3191169

1363902

1450846

3832573

1408693

3197740

9111368

3019820

0 2000000 4000000 6000000 8000000 10000000

Verify

Sign

KeyGen

CYCLE COUNTS OF DILITHIUM
Reference implementation Opt based on Montgomery arithmetic Opt based on Plantard arithmetic

Fig. 6. Performance of Kyber and Dilithium on SiFive U74

Fig. 5 shows the cycle counts of Keccak-p[1600,24] on
SiFive U74. We implement Keccak on RV64IMB ISA for
Better scheduling of Keccak rounds. Except for using the
rori and andn instructions, we also refactor the instruction
execution order in a dual-issue path. Compared to the NIST
reference implementation [32], our optimized scheduling of
Keccak based on RV64IMB implementation achieves a speed-
up of 59.18%. For the generalized implementation, which does
not utilize the rori and andn instructions, we achieve a
speed-up of 51.51%. The maximum throughput of Keccak can
achieve up to 643k operations per second. However, our best
performance of Keccak consumes more 914 cycle counts than
[7]. The distinction between our work and [7] lies in Cortex-
A55 supports substituting explicit rotations with extensive
use of the Barrel shifter operation, resulting in a significant
performance improvement.

C. Performance of polynomial and matrix-vector multiplica-
tion

Table IV presents the performance of NTT, matrix-vector
multiplication, and INTT. For all implementations, we pro-
vide the NIST reference implementation of Kyber [5] and
Dilithium [2] on 64-bit RISC-V ISA for better comparison.
By introducing two arithmetic, NTT is designed in a flexi-
ble dual-instruction-issue way. Matrix-vector multiplication is
transformed from a row-based approach to a column-based
approach. INTT is also in a flexible dual-instruction-issue way.
Compared to Montgomery arithmetic, Plantard arithmetic used
2 fewer variables which leads more flexible dual-issue.

TABLE IV
CYCLE COUNTS OF POLYNOMIAL AND MATRIX-VECTOR MULTIPLICATION

Implementation of Kyber NTT Matrix-vector Multiplication INTT
Cortex-A55 (AArch64+NEON [18]) 891 - -
Cortex-A75 (AArch64+SIMD [17]) 2332 - 3209

This work (C-ref [5]) 24 525 214 995 38 920
This work (optimized based
on Montgomery arithmetic)

8 845 50 797 10 262
63.93% 76.37% 73.63%

This work (optimized based
on Plantard arithmetic)

5 700 45 774 5 618
76.76% 78.71% 85.57%

Implementation of Dilithium NTT Matrix-vector Multiplication INTT
Cortex-A55 (AArch64+Neon [18]) 1728 - -

This work (C-ref [2]) 24 202 310 898 27 258
This work (optimized based
on Montgomery arithmetic)

9 131 141 385 9 255
62.27% 54.52% 66.05%

This work (optimized based
on Plantard arithmetic)

5 893 143 488 5 736
75.65% 53.85% 78.96%

Multiplication instructions have a throughput of 1 and a
3-cycle latency. Because our target platform is a dual-issue
platform, we can estimate a lower bound for the number of
cycles for an NTT using the number of multiplications and
additions. The butterfly of Kyber and Dilithium requires 2
multiplications and 5 additions with plantard multiplication
which in total should require (2 × 3 + 5)/2 = 5.5 cycles
on the dual-issue platform. We expect the NTT with Plantard
arithmetic would require 128 × 7 × 5.5 = 4928 cycles
and 128 × 8 × 5.5 = 5632 cycles for the 7-layer and 8-
layer NTT in Kyber and Dilithium, respectively. The current
implementations take 5700 cycles and 5893 cycles which are
very close to the lower bounds. Only a small fraction of the
cycles would be spent on load, store, and other overhead.

Compared to the reference implementation, our proposed
NTT obtains speedups of 63.93% and 76.76% in Ky-
ber and 62.27% and 75.65% in Dilithium. Our matrix-
vector multiplication achieves speedups of 76.37%/78.71%
and 54.52%/53.85% for Kyber and Dilithium, respectively.
In Dilithium, the matrix-vector multiplication does not need
to precompute sk2t+1ζ

2br7(t)+1, resulting in a minimal dif-
ference between using Montgomery arithmetic and Plantard
arithmetic. INTT achieves speedups of 73.63%/85.57% and
66.05%/78.96% in Kyber and Dilithium, respectively. Our
NTT implementations in Kyber and Dilithium are 6.40× and
3.41× slower than [18] as they reserved the Neon units for the
core arithmetic. For the optimized vectorized implementation
[17] of NTT/INTT in Kyber on triple-issue architecture, our
implementations are 2.44×/1.75× slower than them. However,
we believe it is normal for our implementation to be slower
than theirs because their platforms have more powerful SIMD
instruction set than ours.

D. Performance of Kyber and Dilithium

Fig. 6 shows the performance of our ECO-CRYSTALS on
the 64-bit processor. We apply various optimizations focused
on Keccak, polynomial and matrix-vector multiplication to
the cryptographic suite. The overall reference implementa-
tion of Kyber [5] and Dilithium [2] are listed. Compared
with Montgomery arithmetic, Plantard arithmetic consumes
fewer numbers of instructions and performs fewer modular
reductions. Hence, Plantard arithmetic demonstrates superior

performance compared to Montgomery arithmetic when em-
ployed in both Kyber and Dilithium. Finally, the cycle counts
of key generation, encapsulation, and decapsulation in Kyber
with Plantard arithmetic are faster by 60.82%, 63.93%, and
65.56% respectively compared to the reference implemen-
tation. And, the cycle counts of key generation, sign, and
verify in Dilithium are faster by 54.84%, 64.98%, and 57.20%
respectively compared to the reference implementation.

E. Comparison with Related Work

Since this paper is the first software implementation that
deploys Kyber and Dilithium on a 64-bit RISC-V platform, we
are unable to conduct comparisons with other implementations
on the same platform. Therefore, we compare the performance
of ECO-CRYSTALS with the leading performance achieved
on 32-bit RISC-V [10], [19], 32-bit ARM [11] or 64-bit ARM
platforms [17].

As shown in Table V, our key generation, encapsulation, and
decapsulation in Kyber are 1.75×, 1.65×, and 1.77× slower
than that of Cortex-A75 [17], respectively. The slow-downs
mainly come from the advantage of SIMD operations on
polynomial multiplication and triple-issue architecture which
are not applicable to our target platform. The performance
of key generation, encapsulation, and decapsulation in Kyber
are 2.05×, 2.26×, and 1.96× slower than that of CV32E40P,
respectively. Additionally, the performance of key generation,
sign, and verify in Dilithium are 2.92×, 2.72×, and 2.55×
slower than that of [19] respectively. The slow-downs are
reasonable because their work is a hardware-software co-
design that introduced 256-bit SIMD operations to improve
the PQC performance, while our ECO-CRYSTALS is merely
a software implementation, and the target platform does not
support vector extension.

TABLE V
COMPARISON OF CYCLE COUNTS WITH THE STATE-OF-THE-ART WORKS

Platform Kyber1024 KeyGen Encapsulation Decapsulation
Cortex-M4 Huang et al. [11] 962k 1 119k 1 043k
Cortex-A75 Sanal et al. [17] 228k 272k 271k
CV32E40P Ye et al. [19] 195k 198k 244k

SiFive Freedom E310 Huang et al. [10] 3 794k 4 435k 4 045k
SiFive U74 This work 399k 448k 479k

Platform Dilithium5 KeyGen Sign Verify
Cortex-M4 Huang et al. [11] 4 069k 7 730k 3 998k
CV32E40P Ye et al. [19] 467k 1 173k 537k
SiFive U74 This work 1 364k 3 191k 1 369k

To the best of our knowledge, the most high-performing 32-
bit RISC-V ISA implementation of Kyber currently available
is provided by [10]. Compared to the implementation in
[10], our key generation, encapsulation, and decapsulation
in our Kyber implementation are 9.51×, 9.90×, and 8.44×
faster than that of the 32-bit RISC-V ISA implementation
[10], respectively. The large speed-ups mainly come from
the fact that their platform is a 32-bit single-issue RISC-V
platform, which are very different and incomparable from our
64-bit dual-issue platform. Compared to the best-performing
implementation on the 32-bit ARM Cortex-M4 in [11], the
key generation, encapsulation, and decapsulation in Kyber

are 2.41×, 2.50×, and 2.18× faster than that of Cortex-M4,
respectively. Additionally, the key generation, sign, and verify
in Dilithium are 2.98×, 2.42×, and 2.92× faster than that of
the 32-bit single-issued Cortex-M4.

VI. CONCLUSION

In this paper, we optimize the instruction execution order in
a dual-issue mode for better scheduling of Keccak and employ
two modular arithmetic with various optimizations to enhance
polynomial multiplication. For NTT, we propose a flexible
dual-instruction-issue scheme. For the matrix-vector multipli-
cation, we introduce a row-to-column processing methodology
to minimize the expensive memory access operations. Finally,
the cycle counts of key generation, encapsulation, and decap-
sulation in Kyber are 60.82%, 63.93%, and 65.56% faster than
that of NIST reference implementation, respectively. And, the
cycle counts of key generation, sign, and verify in Dilithium
are 54.84%, 64.98%, and 57.20% faster than that of the NIST
reference implementation.

REFERENCES

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303–332, 1999.

[2] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler,
and D. Stehlé, “Crystals-dilithium: A lattice-based digital signature
scheme,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 238–268, 2018.

[3] T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky,
T. Pornin, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, “Falcon,”
Post-Quantum Cryptography Project of NIST, 2020.

[4] D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijneveld,
and P. Schwabe, “The sphincs+ signature framework,” in Proceedings
of the 2019 ACM SIGSAC conference on computer and communications
security, 2019, pp. 2129–2146.

[5] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, “Crystals-kyber: a cca-secure
module-lattice-based kem,” in 2018 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE, 2018, pp. 353–367.

[6] E. Alkim, Y. A. Bilgin, M. Cenk, and F. Gérard, “Cortex-m4 optimiza-
tions for {R, M} LWE schemes,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2020, pp. 336–357, 2020.

[7] H. Becker and M. J. Kannwischer, “Hybrid scalar/vector implementa-
tions of keccak and sphincs+ on aarch64,” in International Conference
on Cryptology in India. Springer, 2022, pp. 272–293.

[8] A. Abdulrahman, J.-P. Chen, Y.-J. Chen, V. Hwang, M. J. Kannwischer,
and B.-Y. Yang, “Multi-moduli ntts for saber on cortex-m3 and cortex-
m4,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 127–151, 2022.

[9] J. Huang, J. Zhang, H. Zhao, Z. Liu, R. C. Cheung, Ç. K. Koç, and
D. Chen, “Improved plantard arithmetic for lattice-based cryptography,”
Cryptology ePrint Archive, 2022.

[10] J. Huang, H. Zhao, J. Zhang, W. Dai, L. Zhou, R. C. Cheung, Ç. K. Koç,
and D. Chen, “Yet another improvement of plantard arithmetic for faster
kyber on low-end 32-bit iot devices,” IEEE Transactions on Information
Forensics and Security, 2024.

[11] J. Huang, A. Adomnicăi, J. Zhang, W. Dai, Y. Liu, R. C. Cheung, Ç. K.
Koç, and D. Chen, “Revisiting keccak and dilithium implementations
on armv7-m,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2024, no. 2, pp. 1–24, 2024.

[12] D. Aoki, K. Minematsu, T. Okamura, and T. Takagi, “Efficient word
size modular multiplication over signed integers,” in 2022 IEEE 29th
Symposium on Computer Arithmetic (ARITH). IEEE, 2022, pp. 94–
101.

[13] G. Seiler, “Faster avx2 optimized ntt multiplication for ring-lwe lattice
cryptography,” Cryptology ePrint Archive, 2018.

[14] C.-M. M. Chung, V. Hwang, M. J. Kannwischer, G. Seiler, C.-J. Shih,
and B.-Y. Yang, “NTT multiplication for NTT-unfriendly rings: New
speed records for Saber and NTRU on Cortex-M4 and AVX2,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, pp.
159–188, 2021.

[15] N. Gupta, A. Jati, A. K. Chauhan, and A. Chattopadhyay, “Pqc acceler-
ation using gpus: Frodokem, newhope, and kyber,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 3, pp. 575–586, 2020.

[16] X. Ji, J. Dong, T. Deng, P. Zhang, J. Hua, and F. Xiao, “Hi-kyber: A
novel high-performance implementation scheme of kyber based on gpu,”
IEEE Transactions on Parallel and Distributed Systems, 2024.

[17] P. Sanal, E. Karagoz, H. Seo, R. Azarderakhsh, and M. Mozaffari-
Kermani, “Kyber on arm64: Compact implementations of kyber on 64-
bit arm cortex-a processors,” in International Conference on Security
and Privacy in Communication Systems. Springer, 2021, pp. 424–440.

[18] A. Abdulrahman, H. Becker, M. J. Kannwischer, and F. Klein, “Fast
and clean: Auditable high-performance assembly via constraint solving,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
vol. 2024, no. 1, pp. 87–132, 2024.

[19] Z. Ye, R. Song, H. Zhang, D. Chen, R. C.-C. Cheung, and K. Huang,
“A highly-efficient lattice-based post-quantum cryptography processor
for iot applications,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, vol. 2024, no. 2, pp. 130–153, 2024.

[20] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer,
“KECCAK implementation overview (May 2012),” http://keccak.
noekeon.org/.

[21] V. Lyubashevsky, “Lattice signatures without trapdoors,” in Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2012, pp. 738–755.

[22] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of computation, vol. 44, no. 170, pp. 519–521, 1985.

[23] P. Barrett, “Implementing the rivest shamir and adleman public key en-
cryption algorithm on a standard digital signal processor,” in Conference
on the Theory and Application of Cryptographic Techniques. Springer,
1986, pp. 311–323.

[24] T. Plantard, “Efficient word size modular arithmetic,” IEEE Transactions
on Emerging Topics in Computing, vol. 9, no. 3, pp. 1506–1518, 2021.

[25] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Mathematics of computation, vol. 19, no. 90,
pp. 297–301, 1965.

[26] D. Pei, A. Salomaa, and C. Ding, Chinese remainder theorem: applica-
tions in computing, coding, cryptography. World Scientific, 1996.

[27] W. M. Gentleman and G. Sande, “Fast fourier transforms: for fun and
profit,” in Proceedings of the November 7-10, 1966, fall joint computer
conference, 1966, pp. 563–578.

[28] Mjosaarinen, “RISC-V Cryptography Extension,” https://github.com/
riscv/riscv-crypto/blob/main/benchmarks/sha3/zscrypto rv64/Keccak.c,
2024.

[29] SiFive. (2024) Vf2 software documentation. [Online]. Available:
https://www.sifive.com/documentation

[30] H. Becker, V. Hwang, M. J. Kannwischer, B.-Y. Yang, and S.-Y. Yang,
“Neon ntt: Faster dilithium, kyber, and saber on cortex-a72 and apple
m1,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 221–244, 2022.

[31] A. Abdulrahman, V. Hwang, M. J. Kannwischer, and A. Sprenkels,
“Faster Kyber and Dilithium on the Cortex-M4,” in Applied Cryptogra-
phy and Network Security: 20th International Conference, ACNS 2022,
Rome, Italy, June 20–23, 2022, Proceedings. Springer, 2022, pp. 853–
871.

[32] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Keccak,”
in Annual international conference on the theory and applications of
cryptographic techniques. Springer, 2013, pp. 313–314.

Xinyi Ji received her B.E. degree from Nanjing Uni-
versity of Posts and Telecommunications in 2022,
and currently pursuing a Ph.D. degree in the School
of Computer Science and Technology, Nanjing Uni-
versity of Posts and Telecommunications. Her re-
search interests include cryptographic engineering,
lattice-based cryptography, post-quantum cryptogra-
phy, and high-performance computing.

Jiankuo Dong received the B.E. degree from the
Xi’an Jiaotong University, and the Ph.D. degree from
the University of Chinese Academy of Sciences in
2014 and 2019, respectively. He is currently an As-
sistant Professor with School of Computer Science,
Nanjing University of Posts and Telecommunica-
tions. His research interests include cryptographic
engineering, public key cryptography and applied
cryptography.

Junhao Huang received his Bachelor and Master
degrees from Nanjing University of Aeronautics and
Astronautics in 2018, and 2021, respectively. He is
currently a PhD student at BNU-HKBU United In-
ternational College and Hong Kong Baptist Univer-
sity. His research interests are public-key cryptogra-
phy, post-quantum cryptography and cryptographic
engineering.

Zhijian Yuan received his B.E. degree from Nanjing
University of Information Science and Technology
in 2022, and currently pursuing an MS. degree in
the School of Computer Science and Technology,
Nanjing University of Posts and Telecommunica-
tions. His research interests include cryptographic
engineering, post-quantum cryptography, and high-
performance computing.

Wangchen Dai received the Ph.D. degree in elec-
tronic engineering from the City University of Hong
Kong in 2018. After that, he had appointments at
Hardware Security Lab, Huawei Technologies Com-
pany Ltd., and the Department of CSSE, Shenzhen
University. He is currently working as a Senior
Researcher with Zhejiang Lab, Hangzhou, China.
His research interests include cryptographic hard-
ware and embedded systems, fully homomorphic
encryption, and reconfigurable computing.

Fu Xiao received the Ph.D. degree in computer
science and technology from the Nanjing Univer-
sity of Science and Technology, Nanjing, China,
in 2007. He is currently a Professor and a Ph.D.
Supervisor with the School of Computer Science
and Technology, Nanjing University of Posts and
Telecommunications. His research interest includes
wireless sensor networks. Prof. Xiao is a member of
the IEEE Computer Society and the Association for
Computing Machinery.

http://keccak.noekeon.org/
http://keccak.noekeon.org/
 https://github.com/riscv/riscv-crypto/blob/main/benchmarks/sha3/zscrypto_rv64/Keccak.c
 https://github.com/riscv/riscv-crypto/blob/main/benchmarks/sha3/zscrypto_rv64/Keccak.c
https://www.sifive.com/documentation

Jingqiang Lin School of Cyber Security, University
of Science and Technology of China, Hefei, China.
Jingqiang Lin (Senior Member, IEEE) received the
M.S. and Ph.D. degrees from the University of
Chinese Academy of Sciences, in 2004 and 2009, re-
spectively. He is a Full Professor with the School of
Cyber Security, University of Science and Technol-
ogy of China. His research interests include applied
cryptography and system security.

	Introduction
	Preliminary knowledge
	The Cryptographic Suite for Algebraic Lattices
	Kyber
	Dilithium

	Keccak
	Modular Arithmetic
	Number Theoretic Transform
	RV64IMB ISA on VisionFive 2

	Optimized Keccak on the RV64IMB architecture
	Implementation of Keccak on RV64IMB architecture
	Implementation of Keccak on other 64-bit platforms

	Optimized Kyber and Dilithium on the RV64IMB architecture
	Montgomery and Plantard arithmetic in Kyber and Dilithium
	An analysis of two arithmetic implementations in Kyber
	An analysis of two arithmetic implementations in Dilithium
	Montgomery multiplication VS Plantard multiplication

	NTT
	Matrix-vector Multiplication
	Lazy Reduction
	NTT
	Matrix-vector Multiplication
	INTT

	Performance Evaluation
	Experimental platforms
	Performance of Keccak
	Performance of polynomial and matrix-vector multiplication
	Performance of Kyber and Dilithium
	Comparison with Related Work

	Conclusion
	References
	Biographies
	Xinyi Ji
	Jiankuo Dong
	Junhao Huang
	Zhijian Yuan
	Wangchen Dai
	Fu Xiao
	Jingqiang Lin

