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Recently, the construction of cryptographic schemes based on hard lattice problems has gained immense popularity. Apart from being
quantum resistant, lattice-based cryptography allows a wide range of variations in the underlying hard problem. As cryptographic
schemes can work in different environments under different operational constraints such as memory footprint, silicon area, efficiency,
power requirement, etc., such variations in the underlying hard problem are very useful for designers to construct different cryptographic
schemes. In this work, we explore various design choices of lattice-based cryptography and their impact on performance in the real
world. In particular, we propose a suite of key-encapsulation mechanisms based on the learning with rounding problem with a focus
on improving different performance aspects of lattice-based cryptography. Our suite consists of three schemes. Our first scheme is
Florete, which is designed for efficiency. The second scheme is Espada, which is aimed at improving parallelization, flexibility, and
memory footprint. The last scheme is Sable, which can be considered an improved version in terms of key sizes and parameters of
the Saber key-encapsulation mechanism, one of the finalists in the National Institute of Standards and Technology’s post-quantum
standardization procedure. In this work, we have described our design rationale behind each scheme.

Further, to demonstrate the justification of our design decisions, we have provided software and hardware implementations. Our
results show Florete is faster than most state-of-the-art KEMs on software platforms. For example, the key-generation algorithm
of high-security version Florete outperforms the National Institute of Standards and Technology’s standard Kyber by 47%, the
Federal Office for Information Security’s standard Frodo by 99%, and Saber by 57% on the ARM Cortex-M4 platform. Similarly, in
hardware, Florete outperforms Frodo and NTRU Prime for all KEM operations. The scheme Espada requires less memory and area
than the implementation of most state-of-the-art schemes. For example, the encapsulation algorithm of high-security version Espada
uses 30% less stack memory than Kyber, 57% less stack memory than Frodo, and 67% less stack memory than Saber on the ARM
Cortex-M4 platform. The implementations of Sable maintain a trade-off between Florete and Espada regarding software performance
and memory requirements. Sable outperforms Saber at least by 6% and Frodo by 99%. Through an efficient polynomial multiplier
design, which exploits the small secret size, Sable outperforms most state-of-the-art KEMs, including Saber, Frodo, and NTRU Prime.
The implementations of Sable that use number theoretic transform-based polynomial multiplication (SableNTT) surpass all the
state-of-the-art schemes in performance, which are optimized for speed on the Cortext M4 platform. The performance benefit of
SableNTT against Kyber lies in between 7 − 29%, 2 − 13% for Saber, and around 99% for Frodo.
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1 INTRODUCTION

Lattice-based cryptography has been one of the most discussed topics in public-key cryptography (PKC) for the past
several years. Apart from being resistant to quantum attacks and hence a possible alternative for integer-factorization
(IF) and discrete-log problem (DLP)-based cryptographic constructions, lattice-based cryptographic constructions are
relatively simpler. Moreover, compared to IF and DLP, lattices offer lots of variations of underlying hard problems. This
provides cryptographic designers with lots of maneuvering space to explore different designs to optimize and curate
their cryptographic constructions for different applications. For example, from Ajtai’s short-integer solution (SIS) [3] and
Hoffstein et al.’s NTRU [59] in 1996 to Regev’s learning with errors (LWE) [98] in 2005 and its subsequent variations such
as Ring-LWE [81], Module-LWE [78], learning with rounding [8, 13], and recently discovered PLWE [99], CLWE [31],
etc., the choice of computationally hard problems to design cryptographic schemes is in galore. Nevertheless, lattice-
based cryptography has not always been the most preferred choice for cryptographers. IF and DLP-based cryptography,
which were invented a couple of decades earlier, had already well-established themselves in the existing public-key
infrastructure. Due to lots of research on their implementation, side-channel security, cryptanalysis, etc., their theoretical
and implementation aspects were well understood. Therefore, there was little incentive for theorists and practitioners
alike to replace these classical cryptosystems with lattice-based cryptography even though Shor’s [93, 101] algorithm
and its detrimental effect on IF and DLP-based cryptography was known since 1994. This happened partly because
quantum computing research was mostly restricted to the realm of theory, and there was skepticism about its physical
existence in the future.

However, as the research on developing large-scale quantum computers gained momentum, the future of IF and
DLP-based cryptosystems as mainstream PKC algorithms started looking bleak proportionately. Due to the recent
advancements in the field of quantum computing, the adverse effects of quantum computers on our existing public-key
infrastructure have become too hard to ignore further. Although the research in quantum-resistant PKC or post-quantum
cryptography started a couple of decades ago, the watershed moment in the process of transitioning from classical
PKC to PQC is the National Institute of Standards and Technology’s (NIST) conclusion of a long and multi-staged
standardization procedure [4] in 2022. NIST standardized PQC primitives such as public-key encryption (PKE) or key-
encapsulation mechanism (KEM) Kyber [27], and digital signature schemes CRYSTALS-Dilithium [43], FALCON [46],
and SPHINCS+ [11].

During NIST’s standardization process, the cryptographic community witnessed many innovations in the design
and implementation of PQC. Such as the introduction of module lattices [78] instead of more traditional standard [98]
or ideal [81] lattices as a trade-off between speed and security, usage of central binomial distributions [7] instead of
discrete Gaussian distribution for protection against potential side-channel attacks, just-in-time matrix generation in
module lattices [68] and improvements in polynomial multiplications [24, 37, 62, 82] algorithms to improve efficiency,
the introduction of error-correcting codes [23] to reduce the decryption failure rates of lattice-based cryptography,
etc. These different designs went through a thorough and rigorous evaluation. For example, the non constant-time
behavior of error-correcting codes was found to be highly vulnerable to side-channel attacks; similarly, the sparse
distributions used in schemes such as LAC [80] were found to be unsuitable for generating secret polynomials. On
the other hand, improvements in the NTT polynomial multiplications, such as using K-reduction algorithm [79], or
just-in-time generation of module lattices, almost became the standard choice. Therefore, the NIST standardization
process does not mark a zenith in the research and development of lattice-based or PQC; rather, it has established a
framework and set a course for future advancement in PQC.
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In this work, we have decided to evaluate various design choices for constructing PQ KEM. We have particularly
chosen the hard lattice problem learning with rounding (LWR). LWR is a relatively less used hard problem when
designing lattice-based cryptographic schemes. The LWR problem is a de-randomized variant of the LWE problem
where a deterministic rounding to a smaller modulus replaces the error sampling. This problem was introduced by
Banerjee et al. [13] in 2012. Several works have been done on the hardness of the LWR problem and deduced that the
LWR problem is as hard as the LWE problem [8, 9, 25]. Nevertheless, in the context of PQ KEM Saber [14], one of the
finalists in the NIST procedure, we have seen quite some intriguing results on the LWR-based schemes. In particular,
the major reasons that motivated us to explore the LWR-based PQ KEMs further are described below.

LWR-based schemes require fewer pseudo-random numbers than LWE-based schemes, as errors are not required to
be sampled explicitly here. The error is generated inherently from rounding operations, which helps to gain better
performance. The rounding modulus is smaller than the modulus of the LWE problem. Therefore for similar security
levels, it results in smaller public-key sizes and ciphertext sizes. This also implies lesser bandwidth compared to the
schemes based on the LWE problem. Although Kyber is based on the module-LWE (MLWE) problem, it also uses
rounding on the encapsulation procedure (Compress function) to reduce the ciphertext size. In terms of performance,
module-LWR (MLWR) based scheme Saber outperforms MLWE-based scheme Kyber in the cortex-M4 platform when
an NTT-based multiplier is used for Saber (shown in Table 6). As NTT-based polynomial multiplication takes a similar
amount of cycles for Saber and Kyber, Saber doesn’t require expensive error sampling. Also, Saber’s auxiliary functions,
such as compress, decompress, encode, and decode operations, are simple and cheaper than Kyber’s, thanks to its
power-of-two moduli.

The choice of power-of-two moduli helps Saber achieve efficient hardware implementation as well. LWR-based
schemes, in general, use Toom-Cook based polynomial multiplication instead of NTT-based polynomial multiplication.
It helps to reduce the area requirements to implement LWR-based schemes in hardware compared to the LWE-based
schemes. To perform NTT multiplication efficiently, the twiddle factors need to be stored in the memory. Also, the
secret polynomial is smaller in the LWR-based scheme than LWE-based scheme, because in LWE-based scheme NTT
needs to be performed on the secret polynomial, and it increases the memory requirement to store the secret key
after the NTT. LWE-based schemes need to use a prime reduction algorithm (for Kyber, it is Montgomery and Barrett
reduction), which also costs memory. However, no fancy reduction algorithm is required for LWR-based schemes due to
its power-of-two moduli. All the factor mentioned above helps LWR-based schemes to a resource-scarce cryptographic
application. There is already an implementation of MLWR-based KEM Saber in the application-specific integrated
circuit (ASIC) available that uses the lowest area, lowest power, and low energy [48, 50].

There exist several physical attack i.e. side-channel attacks (SCA) and fault injection attacks(FIA) [10, 54, 63, 74,
84, 85, 94, 94] on both lattice-based signatures and KEMs. Since in this work, we are mostly concerned with KEMs,
we will keep our discussion regarding physical attacks on PQC limited to KEMs only. Masking [34] is a well-known
and provably secure countermeasure against SCA. The integration of the masking technique into a KEM scheme
incorporates huge performance overhead. However, the performance overhead of the LWR-based KEM Saber after
masking is comparatively less than the LWE-based scheme Kyber. State-of-the-art first-order masked Saber performs
slightly better (4%) than Kyber [17, 56], but the performance difference between Saber and Kyber is considerably
much for higher-order masking. State-of-the-art second-order and third-order masked Saber perform 53% and 48%
better than Kyber, respectively [30, 75]. There are several components, such as arithmetic-to-Boolean conversion,
Boolean-to-arithmetic conversion, compress, encode, and decode, that are cheaper when power-of-two modulus (used
in LWR-based schemes) is used instead of prime modulus (used in LWE-based schemes). The secret and error of the
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LWE instances in the LWE-based schemes are generated from the same seed. There is a fault attack on LWE-based
KEM where the successfully injected fault in the seed results in an LWE instance where the error and secret are the
same [97]. It breaks the hardness assumption of the LWE problem. However, as the LWR problem has no explicit error
sampling, LWR-based schemes are naturally protected against this kind of fault attack.

Although NIST has selected Kyber as their first post-quantum secure KEM standard, several other standardization
efforts are still in process, such as the Korean post-quantum competition (KPQC) [73]. It is currently in its second round.
Smaug is based on a combination of MLWE and MLWR problems, and its design is inspired by the initial Scabbard
paper [18]. Smaug [35] is one of the second-round KEM candidates. The currently selected PQC algorithms have been
designed to address a variety of problems for many different applications. In particular, they have not been designed
specifically for resource-constrained or Internet of Things (IoT) devices. Due to the rapid proliferation of these devices
in almost every part of our digital ecosystem, they have become ubiquitous. However, due to their small sizes, it is
often difficult to equip them with strong security measures. Due to these reasons often they become the weakest part of
any security protocol. Therefore, there is an urgent need to design PQC schemes specifically for these devices.

There are two ways to design lightweight schemes for resource-constrained devices: design new schemes (different
design components, different parameters, etc.) from scratch for resource-constrained devices or implement the existing
schemes in a lightweight manner by probably trading off efficiency or reducing the security. The work on designing
lightweight PQC has just begun to gain attention [33, 45]. Recently, a lightweight MLWE-based KEM, Rudraksh, has
been proposed for resource-constrained devices [76]. Therefore, we believe that our current work on studying the
exploration of various design and parameter choices will have a valuable positive impact on the seamless transition
from classical to PQC. We also think that this study will help construct efficient schemes and improve state-of-the-art
practices. In fact, NIST historically includes and updates their already standardized cryptographic primitives with
efficient ones. For example, NIST first standardized the elliptic curves digital signature algorithm in 1999 [88] and
recommended 15 elliptic curves. After that, throughout the 2.5 decades, NIST has been modifying its recommended list
of elliptic curves [86, 87], and the last modification was performed in 2023 [89]. Therefore, the progress achieved in this
work will benefit to improve the state-of-the-art of post-quantum cryptography.
Contribution: We propose Scabbard, a suite with three new LWR-based key-encapsulation mechanisms (KEMs):
Florete, Espada, and Sable. To implement these three schemes efficiently, we utilized one of the NIST’s finalist KEMs,
Saber’s optimized software and hardware implementations, and modified it according to our scheme requirements. In
this paper, we extend our earlier work, Scabbard’s initial suite [18] by proposing parameters for several new security
versions of previously proposed schemes and also implementing them in software. We also present unified hardware
implementations of a (medium) security version of all these three schemes. Below, we briefly elaborate on all of our
contributions.

• Florete is the first candidate of the Scabbard suite, and it is based on the ring-LWR (RLWR) hard problem. This
KEM is designed to provide performance efficiency over the other LWE/LWR-based schemes. We proposed
only the medium (NIST-3) security version in the initial paper. As an extension, we propose a low (NIST-1) and
a high (NIST-5) security version of the Florete scheme in this paper. We show that all three security versions of
Florete maintain the initial design rationale, and Florete performs better than most of the other lattice-based
KEMs on the software platforms.

• Espada is the second scheme of this suite, and its hardness depends on the MLWR problem. However, the size
of the polynomial used in this scheme is as small as 64, which is the first of its kind. The small polynomial size
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makes this scheme suitable for resource-constraint devices and also highly parallelizable in hardware. In this
paper, we propose a low and high-security version of the Espada. Together with the previous medium security
version of Espada [18], this scheme now has three security versions, which broadens its applicability. We also
show that all security versions of this scheme use less stack memory than most of the other lattice-based KEMs
on the software platforms.

• We explored parameter sets similar to Saber’s and obtained slightly reduced parameter sets that provide similar
security. This new variant of Saber is the third scheme of our suite, Sable. It is based on the MLWR problem,
and the polynomial used in this scheme is of the same size as Saber (256). This scheme can also be considered
an efficient variant of Saber. We implemented all three security versions of Sable and show that it performs
better than Saber and requires less stack memory on software platforms. We also show that Sable performs
better than Saber and has less memory footprint when implemented on hardware platforms.

• We provide efficient implementations of all the schemes of Scabbard (also for all the security variants) on Intel’s
general-purpose processor and further optimize themwith advanced vector instructions (AVX2). We also provide
efficient implementations of Scabbard’s schemes on the ARM Cortex-M4 platform. Low and high-security
versions of Florete and Espada are implemented efficiently on all these software platforms for this paper. We
compare our schemes with state-of-the-art schemes, such as the NIST standard Kyber, the Federal Office for
Information Security’s (BSI) standard Frodo, and several KPQC schemes on software platforms. We show that
Florete performs better and Espada uses less amount of stack memory than most of the state-of-the-art KEMs
on the Cortex-M4 platforms for all the security versions.

• MLWR-based scheme Saber is implemented using Toom-Cook (TC) based polynomial multiplication, but
Chung et al. [36] improved its performance with a number-theoretic transformation (NTT) based polynomial
multiplication and then Abdulrahman et al. [1] improved it even more. To show that this result can be extended
for the schemes of our suite, we propose an implementation of Sable with number theoretic transformation
(NTT) based polynomial multiplication on the Cortex-M4 platform and call it SableNTT. Our SableNTT not
only performs better than SaberNTT (Saber with NTT-based polynomial multiplication) but also performs
better than Kyber-Speed (Kyber’s implementation optimized for speed).

• We implement Florete, Espada, and Sable as full instruction-set coprocessor architectures on hardware (medium
security version, NIST-3). By integrating and optimizing all building blocks, our design can compute all KEM
operations in hardware: key generation, encapsulation, and decapsulation. As most individual components
use non-multiples of 8-bit operands, hardware implementations become increasingly complex. We discuss our
approach and optimized design, leading to reduced cycle counts and area counts. We utilize the polynomial
multiplier architectures proposed in the initial paper. We show that our Sable implementation outperforms
Saber, and all of the Scabbard schemes have comparable performance with state-of-the-art KEMs on hardware
platforms.

2 PRELIMINARIES

2.1 Notation

We represent the set of integers modulo 𝑞 by Z𝑞 for a positive integer 𝑞. We use R𝑛𝑞 to denote the quotient ring
Z𝑞 [𝑥]/(𝑥𝑛 + 1) or Z𝑞 [𝑥]/(𝑥𝑛 − 𝑥𝑛/2 + 1). The ring with 𝑙 length vectors over R𝑛𝑞 is denoted by (R𝑛𝑞 )𝑙 , and the ring
of𝑚 × 𝑙 matrices over R𝑛𝑞 is refereed by (R𝑛𝑞 )𝑚×𝑙 . We denote single polynomials by lower case letters and matrices



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Kundu et al.

by upper case letters. We denote by {𝑥𝑖 }0≤𝑖≤𝑡 to the set of 𝑡 + 1 elements {𝑥0, 𝑥1, . . . , 𝑥𝑡 } from the same ring R. If 𝑥
is sampled from the set 𝑆 according to the distribution 𝜒 , then we use 𝑥 ← 𝜒 (𝑆). When 𝑥 is generated from a seed
seed𝑥 using some pseudo-random number generator according to the distribution 𝜒 over the set 𝑆 , then we denote it by
𝑥 ← 𝜒 (𝑆 ; seedx). We denote the uniform distribution byU. The centered binomial distribution (CBD) with standard
deviation

√︁
𝜇/2 is refereed as 𝛽𝜇 . We use · to indicate matrix-vector and vector-vector multiplications. Here, we use

scaling down function ⌊·⌉𝑝 : Z𝑞 −→ Z𝑝 defined by ⌊𝑥⌉𝑝 = ⌊(𝑞/𝑝)𝑥⌉, where 𝑞 > 𝑝 and the rounding function ⌊𝑦⌉
outputs the closest integer to the real number 𝑦, and during ties rounded upwards e.g. ⌊1/2⌉ = 1. The operations ⌊·⌉𝑝
can be extended for matrices and vectors by applying them coefficient-wise. Throughout this paper, the multiplication
of two 𝑛 degree polynomials over the ring R𝑛𝑞 is mentioned as 𝑛 × 𝑛 polynomial multiplication. We use · to represent
multiplication between two polynomials, two vectors of polynomials, or one matrix and one vector of polynomials,
depending on the context.

2.2 Learning with Rounding Problem

The decision version of LWE problem [98] states that given A ← U(Z𝑚×𝑙𝑞 ) and s and e are sampled according to
following respective small distributions 𝛽𝜇 (Z𝑙𝑞) and 𝛽𝜇 (Z𝑚𝑞 ), distinguishing between the LWE sample (A, b = A · s+e) ∈
Z𝑚×𝑙𝑞 × Z𝑚𝑞 and (A, b′) ∈ Z𝑚×𝑙𝑞 × Z𝑚𝑞 is hard, when b′ is sampled uniformly from Z𝑚𝑞 . The LWR problem [8, 13] is a
variation of the LWE problem, and the LWR sample is constructed as (A, b = ⌊A · s⌉𝑝 = ⌊(𝑞/𝑝)A · s⌉) ∈ Z𝑚×𝑙𝑞 × Z𝑚𝑝 ,
where s← 𝛽𝜇 (Z𝑙𝑞). Here, we do not need an explicit sampling of e rather, it generates implicitly from rounding. The
decision version of LWR problem states that given A ∈ Z𝑚×𝑙𝑞 , it is hard to differentiate between the LWR sample
(A, b = ⌊A · s⌉𝑝 ) ∈ Z𝑚×𝑙𝑞 × Z𝑚𝑝 and (A, b′) ∈ Z𝑚×𝑙𝑞 × Z𝑚𝑝 , where s← 𝛽𝜇 (Z𝑙𝑞) and b′ ←U(Z𝑚𝑝 ).

Ring-LWE (RLWE) problem is a variant of the LWE problem based on structure lattice and is proposed in [81] to
improve the practicality and efficiency of cryptographic schemes. In the RLWE, A, s, e, and b of the LWE are all replaced
by polynomials of the ring (R𝑛𝑞 ). Similar to the RLWE, we can define the decision version of the RLWR problem, which
states that the RLWR sample (a, b = ⌊a·s⌉𝑝 ) ∈ R𝑛𝑞×R𝑛𝑝 and (a, b′) ∈ R𝑛𝑞×R𝑛𝑝 are hard to distinguish, where s← 𝛽𝜇 (R𝑛𝑞 )
and b′ ←U(R𝑛𝑝 ). The ring version offers better efficiency and practicality compared to the cryptosystem based on
standard lattices of similar security. However, due to the presence of additional structures, many researchers are skeptical
about their hardness. Therefore, as a trade-off between security and efficiency, the MLWR problem was introduced [78],
which states that it is hard to differentiate between the MLWR sample (A, b = ⌊A · s⌉𝑝 ) ∈ (R𝑛𝑞 )𝑙×𝑙 × (R𝑛𝑝 )𝑙 and
(A, b′) ∈ (R𝑛𝑞 )𝑙×𝑙 × (R𝑛𝑝 )𝑙 , where s ← 𝛽𝜇 ((R𝑛𝑞 )𝑙 ) and b′ ← U((R𝑛𝑝 )𝑙 ). The rank of the underlying lattice of this
MLWR problem is 𝑛 × 𝑙 = 𝑛′. MLWR has less structure than RLWR, and the expensive matrix-vector multiplication of
the standard LWR problem is replaced by efficient polynomial multiplication in the MLWR problem.

The module lattice-based problem can be used as generic construction, as all the MLWR problems with 𝑛 = 𝑛′ and
𝑙 = 1 are classified as RLWR problems, and all the MLWR problems with 𝑛 = 1 and 𝑙 = 𝑛′ are categorized as standard
LWR problems. At this moment, there is no attack that provides any advantage to the adversary for MLWR or RLWR
problems over the standard LWR problem. Therefore, if the rank of the underlying lattice problem is the same, then the
security provided by the problem is the same. Henceforth, we will use the MLWR problem to denote different variations
of the LWR problem.

2.3 Construction of Generic LWR-based KEM

The LWR-based public-key encryption (PKE) scheme is used to construct an LWR-based key-encapsulation mechanism
(KEM), and we illustrate the PKE scheme in Fig. 1. It consists of three algorithms (i) key-generation (LWR.PKE.KeyGen),
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(ii) encryption (LWR.PKE.Enc), and (iii) decryption (LWR.PKE.Dec). Firstly, the LWR.PKE.KeyGen algorithm generates
the public key and secret key pair. Secondly, the LWR.PKE.Enc algorithm uses the public key to encrypt the message𝑚
and to produce ciphertext. Lastly, the LWR.PKE.Dec algorithm decrypts the received ciphertext to the message𝑚′.

Three quotient rings R𝑛𝑞 ,R𝑛𝑝 ,R𝑛𝑡 has been used here, and 𝑡 < 𝑝 < 𝑞. The constants 𝜖𝑞 = log2 (𝑞), 𝜖𝑝 = log2 (𝑝), 𝜖𝑡 =
log2 (𝑡) are used to construct the constant polynomials ℎ2, ℎ3, and by the vector of constant polynomials h1. Each
coefficient of the constant polynomials ℎ2 and ℎ3 are 2(𝜖𝑞−𝜖𝑝−1) and (2(𝜖𝑝−𝐵−1) − 2(𝜖𝑝−𝜖𝑡−1) ), respectively. The
value of each coefficient of the vector with constant polynomials h1 is 2(𝜖𝑞−𝜖𝑝−1) . The extendable-output function
XOF : {0, 1}256 −→ {0, 1}∗ is a pseudorandom number generator realized with SHAKE-128.

As the LWR-based schemes are not perfect, there is always a possibility of a decryption failure, i.e. the encrypted
message𝑚 and decrypted message𝑚′ are not equal even when the scheme is executed properly. The decryption failure
probability depends on the decryption noise 𝑑 = 𝑣 ′′ − 𝑣 ′. The decryption failure will not occur if the decryption noise 𝑑
satisfies the following relation |𝑑 | ≤ 𝑝

2𝐵+1 (1 −
1
𝑡 ) [29]. Therefore, if 𝑡 = 2𝜖𝑡 is large enough, then the decryption failure

probability, 𝛿 , becomes negligible. Eventually, it makes the corresponding LWR-based PKE scheme (1 − 𝛿) correct.

LWR.PKE.KeyGen()
(1) seed𝐴𝐴𝐴 ←U({0, 1}256) ▷ seed of the public matrix𝐴𝐴𝐴
(2) 𝐴𝐴𝐴←U((R𝑛𝑞 )𝑙×𝑙 ; seed𝐴𝐴𝐴) ▷ 𝐴𝐴𝐴 is generated using XOF function over seed𝐴𝐴𝐴
(3) seed𝑠𝑠𝑠 ←U({0, 1}256) ▷ seed of the secret vector 𝑠𝑠𝑠
(4) 𝑠𝑠𝑠 ← 𝛽𝜇 ((R𝑛𝑞 )𝑙 ; seed𝑠𝑠𝑠 ) ▷ 𝑠𝑠𝑠 is generated using CBD 𝛽𝜇 over the XOF(seed𝑠𝑠𝑠 )
(5) 𝑏𝑏𝑏 ← ((𝐴𝐴𝐴𝑇 · 𝑠𝑠𝑠 +ℎ1ℎ1ℎ1) mod 𝑞) ≫ (𝜖𝑞 − 𝜖𝑝 ) ∈ (R𝑛𝑝 )𝑙 ▷ Performing rounding operation on𝐴𝐴𝐴𝑇 · 𝑠𝑠𝑠 to create 𝑏𝑏𝑏
(6) return (𝑝𝑘 = (seed𝐴𝐴𝐴, 𝑏𝑏𝑏), 𝑠𝑘 = (𝑠𝑠𝑠)) ▷ 𝑝𝑘 public key and 𝑠𝑘 secret key

LWR.PKE.Enc(𝑝𝑘 = (seed𝐴𝐴𝐴,𝑏𝑏𝑏),𝑚 ∈ 𝑅2; 𝑟 ) ▷ 𝑝𝑘 is sent via insecure channel

(1) 𝐴𝐴𝐴←U((R𝑛𝑞 )𝑙×𝑙 ; seed𝐴𝐴𝐴) ▷ 𝐴𝐴𝐴 is re-generated using XOF function over public seed𝐴𝐴𝐴
(2) if: 𝑟 is not specified:
(3) 𝑟 ←U({0, 1}256) ▷ seed of the 𝑠′𝑠′𝑠′
(4) 𝑠′𝑠′𝑠′ ← 𝛽𝜇 ((R𝑛𝑞 )𝑙 ; 𝑟 ) ▷ 𝑠′𝑠′𝑠′ is produced using CBD 𝛽𝜇 over the XOF(seed𝑠′𝑠′𝑠′ )
(5) 𝑢𝑢𝑢 ← ((𝐴𝐴𝐴 · 𝑠𝑠𝑠′ +ℎ1ℎ1ℎ1) mod 𝑞) ≫ (𝜖𝑞 − 𝜖𝑝 ) ∈ (R𝑛𝑝 )𝑙 ▷ Creates 𝑏′𝑏′𝑏′ key contained part of the ciphertext
(6) 𝑣 ′ ← 𝑏𝑏𝑏𝑇 · (𝑠𝑠𝑠′ mod 𝑝) + ℎ2 ∈ R𝑛𝑝
(7) 𝑣 ← (𝑣 ′ − 2𝜖𝑝−𝐵𝑚 mod 𝑝) ≫ (𝜖𝑝 − 𝜖𝑡 − 𝐵) ∈ R𝑛2𝐵𝑡 ▷ 𝑣𝑣𝑣 message contained part of the ciphertext
(8) return 𝑐 = (𝑢𝑢𝑢, 𝑣) ▷ Ciphertext c

LWR.PKE.Dec(𝑠𝑘 = 𝑠𝑠𝑠, 𝑐 = (𝑢𝑢𝑢, 𝑣)) ▷ 𝑠𝑘 is stored and 𝑐 is delivered via insecure channel

(1) 𝑣 ′′ ← 𝑢𝑢𝑢𝑇 · (𝑠𝑠𝑠 mod 𝑝) + ℎ2 ∈ R𝑛𝑝
(2) 𝑚′ ← (𝑣 ′′ − 2𝜖𝑝−𝜖𝑡−𝐵𝑣 + ℎ3) mod 𝑝 ≫ (𝜖𝑝 − 𝐵) ∈ R𝑛2𝐵𝑡 ▷ Recover message by decoding the ciphertext 𝑐
(3) return𝑚′

Fig. 1. Generic LWR.PKE

The aforementioned LWR-based PKE scheme is indistinguishable against chosen plaintext attacks (IND-CPA) and
can be converted to an indistinguishable under adaptive chosen ciphertext attacks (IND-CCA) KEM with a modified
version of Fujisaki-Okamoto transformation [47] proposed by Hofheinz et al . [60]. Authors show that if the underlying
PKE scheme is (1 − 𝛿) correct, then the KEM is also (1 − 𝛿) correct. The KEM is 𝑆 bit post-quantum secure only when
the failure probability 𝛿 < 2−𝑆 [64].
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LWR.KEM.KeyGen()
(1) (𝑝𝑘 𝑠𝑘) = ((𝑠𝑒𝑒𝑑𝐴𝐴𝐴, 𝑏𝑏𝑏), 𝑠𝑠𝑠) ← LWR.PKE.KeyGen() ▷ The key-generation of the PKE is called to generate (𝑝𝑘 𝑠𝑘)
(2) 𝑝𝑘ℎ ←H(𝑝𝑘) ▷ Hash of 𝑝𝑘 is part of the secret key
(3) 𝑧 ←U({0, 1}256) ▷ random 𝑧 is used by decapsulation in cases of decryption failure
(4) return (𝑝𝑘 = 𝑝𝑘 = (𝑠𝑒𝑒𝑑𝐴𝐴𝐴, 𝑏𝑏𝑏), 𝑠𝑘 = (𝑠𝑘, 𝑧, 𝑝𝑘ℎ) = (𝑠𝑠𝑠, 𝑧, 𝑝𝑘ℎ)) ▷ public key 𝑝𝑘 , secret key 𝑠𝑘

LWR.KEM.Encaps(𝑝𝑘 = (𝑠𝑒𝑒𝑑𝐴𝐴𝐴, 𝑏𝑏𝑏))
(1) 𝑚′ ←U({0, 1}256) ▷ message sampled
(2) 𝑚 ← arrange_msg(𝑚′) ▷ message arranged for sending as input in LWR.PKE.Enc
(3) (�̂�, 𝑟 ) ← G(H (𝑝𝑘),𝑚) ▷ 𝑟 is used as seed to generate 𝑠′ in LWR.PKE.Enc during PKE encryption
(4) 𝑐 ← LWR.PKE.Enc(𝑝𝑘,𝑚; 𝑟 ) ▷ The encryption of the PKE is called to generate ciphertext 𝑐
(5) 𝐾 ← KDF(�̂�,H(𝑐)) ▷ 𝑘 and ciphertext 𝑐 are used to the generate shared key 𝐾
(6) return (𝑐, 𝐾) ▷ ciphertext of the KEM is (𝑐, 𝐾 )

LWR.KEM.Decaps(𝑠𝑘 = (𝑠𝑠𝑠, 𝑧, 𝑝𝑘ℎ), 𝑝𝑘 = (𝑠𝑒𝑒𝑑𝐴𝐴𝐴, 𝑏𝑏𝑏), 𝑐)
(1) 𝑚′′ ← LWR.PKE.Dec(𝑠𝑠𝑠, 𝑐) ▷ The decryption of the PKE is called to decrypt 𝑐
(2) 𝑚′ ← original_msg(𝑚′′) ▷ Inverse of the arrange_msg to get back the original message
(3) (�̂� ′, 𝑟 ′) ← G(𝑝𝑘ℎ,𝑚′) ▷ 𝑟 ′ is used to generate 𝑠′ in re-encryption and �̂� ′ is used for shared key generation
(4) 𝑐∗ ← LWR.PKE.Enc(𝑝𝑘,𝑚′; 𝑟 ′) ▷ re-encryption with decrypted message𝑚′
(5) if: 𝑐 = 𝑐∗ ▷ equality check of the public ciphertext 𝑐 and re-encrypted ciphertext 𝑐∗
(6) 𝐾 ← KDF(�̂� ′,H(𝑐)) ▷ the equality check satisfies and 𝐾 is the valid shared key
(7) else:
(8) 𝐾 ← KDF(𝑧,H(𝑐)) ▷ the equality check fails and 𝐾 is an invalid shared key
(9) return (𝐾)

Fig. 2. Generic LWR.KEM

The CCA-secure LWR-based KEM based on the CPA-secure LWR-based PKE is presented in Fig. 2. This KEM consists
of three algorithms: (i) key-generation (LWR.KEM.KeyGen), (ii) encapsulation (LWR.KEM.Encaps), and (iii) decapsulation
(LWR.KEM.Decaps). Here, the key-generation algorithm generates the public key and secret key pair (𝑝𝑘, 𝑠𝑘). Secondly,
the encapsulation algorithm uses the public key 𝑝𝑘 to encrypt the message and to produce ciphertext 𝑐 and the session
key 𝐾 . Lastly, in the decapsulation algorithm, we decrypt the received ciphertext to the message then we re-encrypt
the decrypted message using the public key. If the re-encrypted ciphertext is equal to the received ciphertext, then
the algorithm outputs the session key 𝐾 ; else outputs a random key. In these algorithms, we use two hash functions
𝐻 : {0, 1}∗ −→ {0, 1}256 realized by SHA3-256 and G : {0, 1}∗ −→ {0, 1}512 implemented with SHA3-512. In
LWR.KEM.Encaps and LWR.KEM.Decaps, the arrange_msg : {0, 1}256 −→ R𝑛𝑞 function is used, which converts the 256
bits message to the message polynomial in R𝑛𝑞 . The inverse of arrange_msg function original_msg : R𝑛𝑞 −→ {0, 1}256

is required in LWR.KEM.Decaps. It converts the message polynomial in R𝑛𝑞 to the 256 bits message.

3 SCABBARD SUITE OF LWR-BASED KEMS

We present the schemes of the suite Scabbard in this section. These schemes have been designed to improve the
state-of-the-art of the efficient lattice-based KEM. This suite consists of three different designs of LWR-based KEMs
(i) Florete, (ii) Espada, and (iii) Sable. All three schemes follow the generic LWR-based KEM construction. Florete
is designed to achieve better performance. Espada is designed to use less memory footprint when implemented for
resource-constrained devices and can also be implemented efficiently in hardware by using its high parallelism. Sable is
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designed to provide a trade-off between performance and memory usage. As we can see from Fig. 1, for a LWR-based
KEM, everything is the same except the choice of the ring/ module parameters 𝑛 and 𝑙 , the CBD parameter 𝜇, moduli
𝑞, 𝑝, 𝑡 . Therefore, the polynomial multiplication, message encoding and decoding, and the secret sampler used in these
three schemes are different. We will discuss these different aspects of the KEMs and describe their design rationale in
the following sections. In Scabbard’s KEMs design, one of the important aspects is we tried to maximally utilize already
developed optimized software and hardware modules of LWR-based schemes.

3.1 Florete: RLWR based KEM

This scheme is based on the RLWR hard problem, and therefore the ring/modulus parameter 𝑙 is equal to 1. The public
matrix A, secret vector s, and public key vector b are all polynomials and are elements of the ring R𝑛𝑞 . The parameter 𝑛
and the ring R𝑛𝑞 vary for different security versions of Florete. We choose 𝑛 = 512 for the low-security version, 𝑛 = 768
for the medium-security version, and 𝑛 = 1024 for the high-security version. We are required to use an irreducible
polynomial to construct the ring 𝑅𝑛𝑞 for the RLWR problem [81] (otherwise hardness of the RLWR problem reduces).
Generally, 𝑥𝑛 + 1 is chosen as an irreducible polynomial to construct the ring 𝑅𝑛𝑞 , but 𝑥768 + 1 is not an irreducible
polynomial. Therefore, the irreducible polynomial (𝑥768 − 𝑥384 + 1) is applied to construct 𝑅𝑛𝑞 for 𝑛 = 768.

Polynomial Multiplication
Polynomial multiplication is one of the fundamental operations performed during all three algorithms of a KEM, and it
is one of the most time-consuming operations. The procedure of this multiplication depends on the two parameters
of R𝑛𝑞 , which are 𝑛 and modulus 𝑞. As mentioned earlier, we plan to utilize the optimized software and hardware
modules developed for LWR-based schemes (e.g., Saber) during the NIST competition for easier adaptation. Polynomial
multiplication is one of the modules whose implementation has been optimized in several works [16, 65, 82, 100].
LWR-based schemes can not use fast number theoretic transformation for polynomial multiplication because the
modulus 𝑞 and 𝑛 are not co-prime (gcd(𝑞, 𝑛) > 1). The next best option for the 𝑛 × 𝑛 polynomial multiplication is
utilizing Toom-Cook or Karatsuba multiplication, which has been used and optimized for the MLWR-based KEM
Saber [82, 100]. Therefore, we have decided to re-purpose Saber’s efficient 256 × 256 multiplier for Florete’s 𝑛 × 𝑛
multiplication. We use Saber’s efficient 256 × 256 multiplier for implementing all three polynomial multiplications of
Florete. The 256×256 polynomial multiplication of Saber is implemented by using a layer of Toom-Cook4 multiplication
followed by two layers of Karatsuba multiplication, and the last stage is 16 × 16 schoolbook multiplication.

There is a small problem in using Saber’s multiplier in Florete. We target to fit a coefficient of the multiplier polynomial
fit into 16 bit space for efficient implementation in vector processors, small microcontrollers (e.g. Cortex-M4), etc.
Even though the coefficients of the multiplier are less than or equal to 16 bit, we need to save some extra space when
performing division by some 𝑔, which is a divisor of 2. The reason is gcd(𝑔, 𝑞) ≥ 2, and the inverse of 𝑔 does not exist
in Z𝑞 . In this case, let us assume 𝑦/𝑔 needs to be computed. If 𝑔 = ℎ ∗ 2𝑤 , where gcd(ℎ, 2) = 1, then gcd(ℎ, 𝑞) = 1 (as 𝑞
is a power-of-2 modulus). We first compute ℎ−1, and then we multiply it with 𝑔 and perform𝑤 right shift afterward.
Therefore we need to store𝑤 extra bits while performing 𝑔 ·ℎ−1. There are several such divisions by 𝑔, where 𝑔 = ℎ ∗ 2𝑤

are needed while using Toom-Cook multiplications. The maximum value of such𝑤 is equal to 1 for Toom-Cook 3-way
multiplication, whereas𝑤 is equal to 3 for Toom-Cook 4-way multiplication. For the 512×512 polynomial multiplication,
we use one extra layer of Karatsuba multiplication on top of Saber’s 256 × 256 multiplication. Therefore, the log2 of the
modulus 𝑞, 𝜖𝑞 need to be ≤ 13 for the low-security version of Florete. For the 768 × 768 polynomial multiplication, we
add an extra layer of Toom-Cook 3-way multiplication on top of the 256 × 256 multiplication. Here, the 𝜖𝑞 need to be
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≤ 12 (= 16 − 3 − 1) (It is not possible with Saber’s modulus 𝑞, which is 213). We apply Toom-Cook 4-way multiplication
on top of the 256 × 256 multiplication for the 1024 × 1024 polynomial multiplication. The modulus 𝜖𝑞 need to be
≤ 10 (= 16 − 3 − 3) in this case.

Now, we will compare the number of 256 × 256 polynomial multiplications used in Saber with Florete. As Saber
is based on the MLWR problem, it has a module structure and the parameter 𝑙 > 1. Therefore several 256 × 256
polynomial multiplications are needed for matrix-vector multiplications (e.g.𝐴𝐴𝐴 · 𝑠𝑠𝑠) and vector-vector multiplications
(e.g. 𝑏𝑏𝑏𝑇 · 𝑠′𝑠′𝑠′), which are used in all three (key-generation, encapsulation, and decapsulation) algorithms of all three
security versions of Saber. These exact numbers are provided in Table 1. For example, the key-generation, encapsulation,
and decapsulation algorithm of the medium-security version of Saber requires 9, 12, and 15 polynomial multiplication
(256 × 256), respectively.

Fig. 3. Polynomial multiplication used in Florete. The values of 𝑘 for low, medium, and security versions of Florete are 2, 3, and 4,
respectively.

Florete is an RLWR-based scheme. So, all matrix-vector multiplications (e.g.𝐴𝐴𝐴 · 𝑠𝑠𝑠) and vector-vector multiplications
(e.g.𝑏𝑏𝑏𝑇 · 𝑠′𝑠′𝑠′) are just a single polynomial multiplication in Florete. The key-generation, encapsulation, and decapsulation
algorithms of Florete require 1, 2, and 3 𝑛 × 𝑛 polynomial multiplications, respectively. As mentioned earlier, we
apply an extra layer of Karatsuba multiplication on top of Saber’s 256 × 256 multiplication for 512 × 512 polynomial
multiplication of the low-security version of Florete. Here, we perform 3 256 × 256 polynomial multiplications for a
512 × 512 polynomial multiplication (as displayed in Fig. 3). There are some other steps which are interpolation and
reduction, to complete the whole multiplication. However, the performance cost of these steps is negligible compared
to the total number of polynomial multiplications. Therefore, the low-security version of Florete needs 3, 6, and 9
256 × 256 multiplications for the key-generation, encapsulation, and decapsulation algorithms, respectively. For a
768 × 768 polynomial multiplication, an extra layer of Toom-Cook 3-way multiplication is added on top of 256 × 256
multiplication. As we are applying Toom-Cook 3-way multiplication for 768 × 768 polynomial multiplication, we need
to perform 5 = (2 ∗ 3 − 1), 256 × 256 polynomial multiplications (as portrayed in Fig. 3). We are applying an extra layer
of Toom-Cook 4-way multiplication for 1024 × 1024 polynomial multiplication. So, we need to perform 7 = (2 ∗ 4 − 1),
256× 256 polynomial multiplications for a single 1024× 1024multiplication (as shown in Fig. 3). We provide the number
of 256 × 256 polynomial multiplications required by all the algorithms of all the security versions of Florete in Table 1.
We have included the performance of multiplications used in Florete and Saber on the Cortex-M4 platform. More
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detailed performance results are given in Sec. 5. We can see from Table 1 that the number of 256 × 256 multiplications

Table 1. Comparison of the usage of 256 × 256 multiplications in the algorithms of Florete with Saber.

Multiplication on Cortex-M4#256 × 256 multiplications (x1000 clock cycles)Scheme
Name

Security
level KeyGen Encaps Decaps KeyGen Encaps Decaps
Low 3 6 9 121 243 364

Florete Medium 5 10 15 202 405 607
High 7 14 21 300 600 900
Low 4 6 8 149 223 298

Saber Medium 9 12 15 334 446 557
High 16 20 24 594 743 891

used in the key-generation algorithm of the low-security version of Florete is less than the low-security version of Saber.
The number of 256× 256multiplications used in the encapsulation algorithm of the low-security version of Florete is the
same as the low-security version of Saber, whereas the decapsulation algorithm of the low-security version of Florete
uses 1 more 256 × 256 polynomial multiplication than Saber. For the medium security, the number of 256 × 256 multipli-
cations used in the key-generation and encapsulation algorithms of Florete is less than Saber. The number of 256 × 256
multiplications used in the decapsulation algorithm of the medium-security version of Florete is the same as Saber.
Lastly, for the high security, the number of 256×256multiplications used in all the algorithms of Florete is less than Saber.

Message Encoding and Decoding
Message encoding and decoding are done in the LWR-based KEM described in Fig. 2 by using the arrange_msg and
original_msg, respectively. The secret payload/message (𝑚′) size is 256 bits in all the security versions of Florete,
and the size of the polynomial is at least twice. So, we repeat the secret payload multiple times with the help of
the arrange_msg{0, 1}256 −→ {0, 1}𝑛 function and make its bit size the same as the size of any polynomial in the
corresponding security version of Florete.

arrange_msg(𝑚′) =


𝑚′ | |𝑚′ if 𝑛 = 512

𝑚′ | |𝑚′ | |𝑚′ if 𝑛 = 768

𝑚′ | |𝑚′ | |𝑚′ | |𝑚′ if 𝑛 = 1024

.

The original_msg function is the counter function of arrange_msg function and is used in the decryption algorithm.
We define the original_msg function for each security version of Florete below. For the low security version of Florete,
the original_msg : {0, 1}512 −→ {0, 1}256 is original_msg(𝑚′′) =𝑚′ and 𝑏 ∈ {0, 1, . . . , 255}

𝑚′ [𝑏] =

0 if𝑚′′ [𝑏] +𝑚′′ [𝑏 + 256] ≤ 0

1 else
.

For the medium security version of Florete, the original_msg : {0, 1}768 −→ {0, 1}256 is original_msg(𝑚′′) =𝑚′

and 𝑏 ∈ {0, 1, . . . , 255}

𝑚′ [𝑏] =

0 if𝑚′′ [𝑏] +𝑚′′ [𝑏 + 256] +𝑚′′ [𝑏 + 512] ≤ 1

1 else
.
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For the high security version of Florete the original_msg : {0, 1}1024 −→ {0, 1}256 is original_msg(𝑚′′) =𝑚′ and
𝑏 ∈ {0, 1, . . . , 255}

𝑚′ [𝑏] =


0 if𝑚′′ [𝑏] +𝑚′′ [𝑏 + 256] +𝑚′′ [𝑏 + 512]

+𝑚′′ [𝑏 + 768] ≤ 2

1 else

.

The repetition of message bits during encoding helps to reduce the failure probability and eventually helps to achieve
more security. Therefore, Florete can achieve the same level of security with a smaller modulus. Therefore, we can reduce
the three modulus size 𝜖𝑞 < 𝜖𝑝 < 𝜖𝑡 even further than Saber (or Kyber). It reduces the requirement of pseudo-random
bytes to create the public matrix A in Florete compared to Saber, which has been supplied in Table 2. It eventually helps
to reduce the public key size of Florete compared to Kyber (the exact public key sizes are shown in Table 3). Kindly note
that we have not applied any error-correction code to reduce failure probability RLWE-based scheme LAC [80], as it
leads to several attacks [41, 51, 55].

Secret Distribution
The coefficient of the secret s (or s′) is sampled from centered binomial distribution, 𝛽1. Therefore possible values of a
coefficient of s (s′) are {−1, 0, 1}. It enables the possibility of very fast multiplication in the processors. In this case,
multiplication can be replaced by addition and subtraction only. This method is highly advantageous to the processor,
where multiplication is way more costlier than addition or subtraction (e.g. MSP430 microcontrollers). Saber’s secret
coefficients are from 𝛽5, 𝛽4, and 𝛽3 for low, medium, and high-security versions, respectively. In comparison, the secret
coefficients of Florete are from 𝛽1 for all the security versions. It leads less pseudo-random number requirements for
Florete than Saber, which has been provided in Table 2. We have shown the required clock cycles to generate the matrix
A and the secret s for all the versions of Florete and Saber on the Cortex-M4 platform. More detailed performance
analyses are shown in Sec. 5. The coefficients of the secret can be represented by 2 bits, which reduces the memory
requirement to store the secret s (s′) in hardware compared to Saber (Saber needs 4 bits to store a coefficient of s). It
ultimately helps Florete to have smaller secret key sizes than Saber for all the security versions (the exact numbers are
shown in Table 3).

Table 2. Comparison of pseudo-random byte used in Florete with Saber.

Performance on Cortex-M4pseudo-random bytes (x1000 clock cycles)Scheme
Name

Security
level matrix A secret s (s′) matrix A secret s (s′)
Low 704 128 68 18

Florete Medium 960 192 83 32
High 1280 256 110 34
Low 1664 640 137 76

Saber Medium 3744 768 313 72
High 6656 768 545 75

The centered binomial distribution is proposed by Alkim et al. [7] to replace the costly Gaussian distribution, which is
hard to implement in constant-time. This distribution is used in NIST standardized Kyber and third-round finalist Saber.
Therefore, we have decided to sample the secret using CBD. Here, we refrained from taking any aggressive decision for
secret distribution, eg. fixing the hamming weight of the secret key like LWR-based scheme Round5 [23] or fixing the
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weight of the secret vector like NTRU Prime [20]. This decision has been taken to avoid any new adversarial attack
due to the choice of secret distribution. The Saber team proposed a lightweight version of Saber, named uSaber [14]
2 bits secret key coefficient. More specifically, they use a uniform distribution over 2 bits numbers. There is another
lattice-based scheme proposed in the ongoing Korean PQC competition [73], called Smaug [35]. The secret key of this
specific scheme has each coefficient sampled from the set {−1, 0, 1}.

3.2 Espada: MLWR based KEM

The next LWR-based KEM in the Scabbard is Espada. It uses MLWR as a hard problem, and this KEM also takes
advantage of module lattices like Saber and Kyber. Therefore the matrix A is an element of the ring (R𝑛𝑞 )𝑙×𝑙 , and the
secret vector s is an element of the ring (R𝑛𝑞 )𝑙 . However, the underlying quotient ring is R64𝑞 (𝑛 = 64) constructed
by the help of cyclotomic polynomial (𝑥64 + 1). Therefore the polynomial size of Espada is just 64, which is very
small compared to the size of the polynomial in Saber or Kyber (their polynomials are of size 256). This design choice
allows Espada to use less stack memory while executing in a reasonable amount of clock cycles when implemented in
embedded devices, such as Cortex M4 microcontrollers. It can also be implemented in hardware with less area due to
its small polynomial size. This scheme can also be implemented in hardware very fast by using multiple polynomial
multiplication instances. It provides the flexibility to implement Espada using one or many polynomial multipliers
depending on the application’s requirements (as shown in Fig. 4), which is not possible for Saber or Kyber.

Polynomial Multiplication The ring modulus 𝑞 = 215 for each version of Espada. Since 𝜖𝑞 (= log2 (𝑞)) = 15 and
we want to restrict each coefficient of the polynomial in 16 bits of word length (described in Sec. 3.1), we cannot use
Toom-Cook 4-way multiplication for the 64 × 64 polynomial multiplication of Espada. So, we use a combination of
Karatsuba and schoolbook multiplication for the 64 × 64 polynomial multiplications. During the implementation of the
matrix-vector or vector-vector multiplication, we take advantage of the lazy interpolation technique [82]. However, the
interpolation step in Karatsuba multiplication is smaller than the interpolation step in Toom-Cook 𝑘-way multiplication
for 𝑘 > 2. The lazy interpolation technique helps to significantly improve the performance of matrix-vector and
vector-vector multiplication because the vector dimension 𝑙 of Espada is large.

Saber or Kyber use 256 × 256 polynomial multiplication, and utilizing multiple instances of this multiplication is
expensive in hardware. In fact, Mera et al. [83] developed Saber’s 256 × 256 multiplier by using 7 parallel 64 × 64 poly-
nomial multiplication instances together with an evaluation (TC Eval) and interpolation (TC Inter) steps of Toom-Cook
4-way algorithm (as shown in Fig. 4). [83] shows that the 64 × 64 schoolbook multiplication is already very fast in
hardware. However, this implementation uses 28 DSP just for one 256 × 256 multiplication. Therefore, using multiple
such multiplications will make the whole design area expensive, and then there will not be much space left for other
components. In Espada, the length of the polynomial is as small as 64, so the vector dimension 𝑙 needs to be quite
large in order to achieve the desired security. The values of 𝑙 are 10, 12, and 15, corresponding to low, medium, and
high-security versions of Espada (shown in Table 3). Therefore, this scheme can also be implemented in hardware very
fast by employing 𝑙 (the length of the vector) parallel 64 × 64 polynomial multiplication instances while computing the
matrix-vector (e.g.: A · s) and vector-vector (e.g.: bT · s′) multiplication. In this work, we also utilize 64 × 64 schoolbook
multiplication as one polynomial multiplication in hardware in Espada. By design Espada has extremely parallelizable
matrix-vector and vector-vector multiplication in hardware, and it aids Espada to achieve high throughput in hardware.

Message Encoding and Decoding
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Fig. 4. Comparison between the application of parallel 64 × 64 polynomial multiplication in Espada (top) and Saber (bottom). The
blue line represents parallel execution, and the red line denotes serial execution.

The degree of the polynomial for all the versions of Espada is 64, and the secret payload (𝑚′) size is 256 bits. So, we use
one coefficient to hide multiple (4) bits of secret payloads and 𝐵 = 4. Here, the function arrange_msg : {0, 1}256 −→
{0, 1, 2, . . . , 15}64 is arrange_msg(𝑚′) = 𝑚 and 𝑏 ∈ {0, 1, . . . , 64}, then𝑚[𝑏] = 𝑚′ [4 ∗ 𝑏] | |𝑚′ [4 ∗ 𝑏 + 1] | |𝑚′ [4 ∗
𝑏 + 2] | |𝑚′ [4 ∗ 𝑏 + 3]. The function original_msg : {0, 1, 2, . . . , 15}64 −→ {0, 1}256 is original_msg(𝑚′′) = 𝑚′ and
𝑏 ∈ {0, 1, . . . , 255} , then𝑚′ [𝑏] = (𝑚′′ [𝑏1] ≫ 𝑏2)&1, where 𝑏 = 4 ∗ 𝑏1 + 𝑏2.

Secret Distribution
In Espada, the coefficient of the secret s (s′) is sampled according to the centered binomial distribution, 𝛽3, for all the
security versions. So, each secret coefficient is from the set {−3, −2, · · · , 3}. These secret coefficients can be represented
by 3 bits, but the unpacking becomes fairly costly in that case. Therefore, the cost-effective way to store the secret s is
to reserve 4 bits for each coefficient.

3.3 Sable: an Alternate Saber

Sable can be viewed as an improved version of Saber. Like Saber, Sable uses the MLWR structure, and the underlying
quotient ring of Sable is the same as Saber (𝑥256 + 1). In this scheme, we have readjusted the parameters of Saber. The
modulus size of the quotient ring 𝑞 for Sable is 211, and it is smaller than Saber’s modulus 𝑞 = 213 (shown in Table 3).
The public-key modulus 𝑝 of Sable (29) is also smaller than Saber (210) for the low and medium security version, which
assists in Sable having shorter public keys (given in Table 3).

Polynomial Multiplication
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Sable can utilize the same 256 × 256 polynomial multiplication, as the modulus is less than 13 bits. Also, the polynomial
multiplication of Sable is less costly than Saber in hardware, thanks to its smaller modulus.

Message Encoding and Decoding
The degree of the polynomial for all the versions of Sable is 256, which is the same as the secret payload (𝑚′). Therefore,
we use one coefficient for a single bit of secret payloads and 𝐵 = 1. The function arrange_msg : {0, 1}256 −→ {0, 1}256

is arrange_msg(𝑚′) =𝑚′ =𝑚 and the function original_msg : {0, 1}256 −→ {0, 1}256 is arrange_msg(𝑚′′) =𝑚′′ =
𝑚′.

Secret Distribution
Like Florete, a coefficient of the secret vector is sampled from the CBD 𝛽2 in every version of Sable. Therefore, one
secret coefficient can be stored as a 2 bits number, allowing Sable to have smaller secret keys. All these choices help
Sable to reduce stack memory requirements when implemented in a microcontroller, and area requirements when
implemented in hardware. More details regarding implementation are provided in Sec. 5 & 6.

4 PARAMETER SET

The lattice-based schemes whose hardness depends on the LWE problems or its variant, such as the (M/R)LWR problem,
are solved by utilizing lattice reduction algorithms that construct a "sufficient orthogonal" basis from the given lattice.
Currently the best-known algorithm for lattice reduction is the BKZ algorithm. Here, given one lattice or a basis of
lattice, the attacker needs to find the block size or sub-lattice size required for recovering the shortest vector of the lattice
while performing the BKZ algorithm. The security of a lattice-based scheme depends on the cost of the execution time
of the BKZ algorithm on the underlying lattice. The BKZ algorithm also calls the shortest vector problem (SVP) solving
oracle on sub-lattices. The cost of solving the LWE problem with block size 𝛽 depends on the number of SVP oracle calls
made by the BKZ algorithm and the cost of solving each SVP for dimension 𝛽 . This cost is approximately 2𝑐𝛽+𝑜 (𝛽 ) [6],
where the value of 𝑐 is approximately 0.292 in classical settings and 0.265 with Grover’s speed-up algorithm [52] in
quantum settings.

Dachman-Soled et al. [38] has introduced leaky-LWE-Estimator, the state-of-the-art toolkit to estimate the hardness
of the underlying LWE problem for lattice-based schemes. This tool takes the 𝑛 = dimension of the lattice, 𝑞 = modulus,
𝐷𝑒 = error distribution, 𝐷𝑠 = secret distribution, and outputs the block size 𝛽 . We have utilized this toolkit for the
security estimation of our schemes. The post-quantum bit security is estimated as 0.265 ∗ 𝛽 [5], and classical bit security
is estimated as 0.292 ∗ 𝛽 [15]. Since the post-quantum security is lower than classical security (0.292 ∗ 𝛽 bit secure, we
have mentioned only the post-quantum (PQ) security of our schemes in Table 3.

We present the parameter sets of our schemes for three security levels in Table 3. For security level 1, PQ security of
each of the KEMs is ≥ 2100, for security level 3, PQ security is ≥ 2128, and for security level 5, PQ security is ≥ 2160.
LWE-based cryptosystem has another security factor which is failure probability. However, another type of attack is
possible on LWR or LWR-based cryptographic schemes that exploit failure probability during decryption. As mentioned
in Sec. 2.3, the failure probability should be ≤ 2−𝑆 , where 𝑆 is the security of the KEM to maintain the IND-CCA security
of the KEM. Therefore, for security level 1, 3, 5 in contrast with the PQ security, the failure probability we maintain
≤ 2−100, ≤ 2−128, ≤ 2−160, respectively for each of the KEMs. NIST security levels 1, 3, and 5 are represented by low,
medium, and high-security levels in Table 3.
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Table 3. Compare parameters and key sizes of Scabbard suite with Saber

Scheme
Name

Security
level

Ring/Module
Parameters

PQ
Security

Failure
probability Moduli CBD

(𝛽𝜂 )
Encoding Key sizes for

KEM (Bytes)
n: 512 𝜖𝑞 : 11 Public key: 608

Low 2104 2−138 𝜖𝑝 : 9 𝜂 = 1 B=1 Secret key: 800
l: 1 𝜖𝑡 : 2 Ciphertext: 768
n: 768 𝜖𝑞 : 10 Public key: 896

Florete Medium 2157 2−131 𝜖𝑝 : 9 𝜂 = 1 B=1 Secret key: 1152
l: 1 𝜖𝑡 : 3 Ciphertext: 1248
n: 1024 𝜖𝑞 : 10 Public key: 1184

High 2220 2−165 𝜖𝑝 : 9 𝜂 = 1 B=1 Secret key: 1504
l: 1 𝜖𝑡 : 4 Ciphertext: 1792
n: 64 𝜖𝑞 : 15 Public key: 1072

Low 2101 2−148 𝜖𝑝 : 13 𝜂 = 3 B=4 Secret key: 1456
l: 10 𝜖𝑡 : 2 Ciphertext: 1088
n: 64 𝜖𝑞 : 15 Public key: 1280

Espada Medium 2128 2−167 𝜖𝑝 : 13 𝜂 = 3 B=4 Secret key: 1728
l: 12 𝜖𝑡 : 3 Ciphertext: 1304
n: 64 𝜖𝑞 : 15 Public key: 1592

High 2168 2−162 𝜖𝑝 : 13 𝜂 = 3 B=4 Secret key: 2136
l: 15 𝜖𝑡 : 5 Ciphertext: 1632
n: 256 𝜖𝑞 : 11 Public key: 608

Low 2104 2−139 𝜖𝑝 : 9 𝜂 = 1 B=1 Secret key: 800
l: 2 𝜖𝑡 : 2 Ciphertext: 672
n: 256 𝜖𝑞 : 11 Public key: 896

Sable Medium 2169 2−143 𝜖𝑝 : 9 𝜂 = 1 B=1 Secret key: 1152
l: 3 𝜖𝑡 : 4 Ciphertext: 1024
n: 256 𝜖𝑞 : 11 Public key: 1312

High 2203 2−208 𝜖𝑝 : 10 𝜂 = 1 B=1 Secret key: 1632
l: 4 𝜖𝑡 : 2 Ciphertext: 1376
n: 256 𝜖𝑞 : 13 Public key: 672

Low 2107 2−120 𝜖𝑝 : 10 𝜂 = 5 B=1 Secret key: 992
l: 2 𝜖𝑡 : 2 Ciphertext: 736
n: 256 𝜖𝑞 : 13 Public key: 992

Saber Medium 2172 2−136 𝜖𝑝 : 10 𝜂 = 4 B=1 Secret key: 1440
l: 3 𝜖𝑡 : 3 Ciphertext: 1088
n: 256 𝜖𝑞 : 13 Public key: 1312

High 2236 2−165 𝜖𝑝 : 10 𝜂 = 3 B=1 Secret key: 1760
l: 4 𝜖𝑡 : 5 Ciphertext: 1472
n: 256 𝑞: 3329 𝜂1 = 3 Public key: 800

Low 2107 2−139 𝜖𝑝 : 10 B=1 Secret key: 1632
l: 2 𝜖𝑡 : 3 𝜂2 = 2 Ciphertext: 768
n: 256 𝑞: 3329 𝜂1 = 2 Public key: 1184

Kyber Medium 2166 2−164 𝜖𝑝 : 10 B=1 Secret key: 2400
l: 3 𝜖𝑡 : 3 𝜂2 = 2 Ciphertext: 1088
n: 256 𝑞: 3329 𝜂1 = 2 Public key: 1568

High 2232 2−174 𝜖𝑝 : 10 B=1 Secret key: 3168
l: 4 𝜖𝑡 : 4 𝜂2 = 2 Ciphertext: 1568
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For comparing the key sizes of our schemes with Saber and Kyber, we also include the parameter sets of Saber in
Table 3. The public key and secret key sizes of Florete are smaller than Saber, while the size of the ciphertext is slightly
larger for Florete than Saber for all three security levels. The public key and secret key sizes of Florete are also smaller
than Kyber for all three security versions. Even, the size of the ciphertext is the same for the low-security version of
Florete and Kyber. Due to larger moduli and vector dimensions, the public key, secret key, and ciphertext sizes are
bigger in Espada than in Saber for the same security level. However, the secret key size of Espada is smaller in Espada
than in Kyber for all the security versions. In the case of any of the three security levels of Sable, the sizes of the public
key, secret key, and ciphertext are smaller than in the case of the same security level of Saber and Kyber.

5 SOFTWARE IMPLEMENTATION

In this section, we describe the implementation results of our schemes on the software platforms. We have implemented
Scabbard’s schemes on general-purpose intel processors using C and advanced vector instructions (AVX2). We also
implemented Scabbard’s schemes on the NIST-recommended ARM Cortex-M4 platform. As most of the PQC schemes
are implemented in these two software platforms, we can compare the implementation results of our schemes with the
state-of-the-art schemes and demonstrate the efficiency of our scheme.

5.1 Results in C and AVX2

To implement our schemes on general-purpose intel processors using C and advanced vector instructions (AVX2), we use
the GCC 6.5 compiler and optimization flags-O3. We also used -fomit-frame-pointer on an Intel (R) Core (TM) i7-6600
CPU running in 2.60GHz, and disabled hyperthreading, turbo-boost, and multicore support in our system following
the standard practice. The performance results of Scabbard’s schemes in portable C and AVX2 implementations are
presented in Table 4. For comparison, we also include the performances of C and AVX2 implementation of NIST’s third-
round finalist Saber and NIST’s standard Kyber together with BSI recommended [32] Frodo [29] (also in consideration
of ISO for standard [53]) in the tables. This table also compares KPQC schemes Smaug [35], NTRU+ [69], and Tiger [90],
which have been advanced to the second-round [73].

As we can see from Table 4, the performance of all three algorithms (key generation, encapsulation, and decapsulation)
of Florete and Sable is better than all the other schemes, including Kyber, Frodo, and Saber, for all the security versions
on C. All three algorithms of Florete and Sable perform better than Saber and Smaug in the AVX2 implementation as
well for all the security versions. Algorithms of Espada take approximately twice as many clock cycles as Saber for all
the security levels due to the use of more pseudo-random numbers and more 64 × 64 multiplications. However, the
slowdown factor for Espada’s performance compared to Saber’s decreases as the security order increases because the
underlying lattice rank 𝑙 × 𝑛 decreases in Espada compared to Saber as the security increases.

5.2 Results in Cortex-M4

Wehave implemented Scabbard’s schemes on theNIST-recommended 32-bit ARMCortex-M4microcontroller (STM32F407-
DISCOVERY development board) using the PQM4 [67] framework. For compilation, we have used arm-none-eabi-gcc
compiler version 4.9.3. The PQM4 library uses a 24 MHz system clock to calculate clock cycles. The results of the
implementations of Scabbard’s schemes in a Cortex-M4 platform are presented in Table 5. We have also included the
clock cycles spent in hashing, polynomial multiplication, and the remaining operations in this table. We have compared
our implementations of Scabbard with the state-of-the-art schemes in Table 6. This table contains two implementations
of Saber, one with NTT multiplication (SaberNTT [14]) and another with Toom-cook multiplication (Saber [14]). For
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Table 4. Comparing performance of Scabbard schemes with Saber and kyber in portable C and AVX2 implementations

C (X1000 clock cycles) AVX (X1000 clock cycles)Scheme Name Security
level KeyGen Encaps Decaps KeyGen Encaps Decaps
Low 43 66 83 31 43 47

Florete Medium 64 104 143 45 66 75
High 80 140 181 52 83 97
Low 159 173 193 148 158 153

Espada Medium 224 234 232 203 215 210
High 336 351 352 310 324 317
Low 55 69 76 38 45 41

Sable Medium 101 126 137 63 74 71
High 173 230 226 97 113 110
Low 64 81 92 44 51 49

Saber [14] Medium 116 143 154 73 85 82
High 188 222 244 107 122 120
Low 113 150 176 26 38 29

Kyber [27] Medium 185 238 268 41 53 40
High 301 341 382 49 66 51
Low 1237 1382 1383 - - -

Frodo [29] Medium 2654 2819 2509 - - -
High 4225 4238 4465 - - -
Low 89 83 93 48 37 47

Smaug [35] Medium 157 148 158 73 59 74
High 251 251 267 127 115 128
Low 339 110 164 18 15 12

NTRU+ [69] Medium 335 154 233 16 18 16
High 358 180 277 14 20 18
Low 89 80 78 - - -

Tiger [90] Medium 104 122 127 - - -
High 123 162 176 - - -

a fair comparison, we have also included implementation results of two versions of Kyber [67] and Frodo [28] (i)
Kyber-Speed & Frodo-Speed: optimized to achieve speed, and (ii) Kyber-Stack & Frodo-Stack: optimized to reduce stack
memory usage.

We have used optimized Toom-Cook-based polynomial multiplication for Florete, Espada, and Sable. These optimized
polynomial multiplications are generated using the software package provided by Kannwischer et al. [66]. It can
generate optimized assembly code for different combinations of Toom-Cook-based polynomial multiplications. As
mentioned earlier, LWR-based schemes directly cannot use NTT. Later, Chung et al. [36] showed that Saber could use
the NTT-based polynomial multiplication over a big prime field so that the absolute magnitude of the largest possible
number occurs from the polynomial multiplication is smaller than the big prime. [36] also showed that Saber with
NTT-based polynomial multiplication (SaberNTT) performs better than Saber with Toom-Cook-based polynomial
multiplication. Afterward, Abdulrahman et al. [1] further improved the NTT-based polynomial multiplication of Saber
using multi-moduli NTT. To show that Scabbard’s schemes can be optimized for speed using NTT-based polynomial
multiplication, we have implemented a version of Sable that uses NTT-based polynomial multiplication. We have
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Table 5. Spent cycles of Scabbard schemes in hashing, polynomial multiplication, and other operations on the Cortex-M4 platform.

Total Performance on M4 Hashing Polynomial multiplication Other components
(x1000 clock cycles) (x1000 clock cycles) (x1000 clock cycles) (x1000 clock cycles)Scheme

Name
Security
level KeyGen Encaps Decaps KeyGen Encaps Decaps KeyGen Encaps Decaps KeyGen Encaps Decaps
Low 299 536 606 158 261 183 121 243 364 20 32 59

Florete Medium 439 815 957 209 362 259 202 405 607 28 48 91
High 598 1,131 1,357 259 463 335 300 600 900 39 68 122
Low 1,659 1,859 1804 1,029 1,170 1,054 482 530 579 148 159 171

Espada Medium 2,342 2,566 2,497 1,442 1,596 1,455 694 752 810 206 218 232
High 3,577 3,859 3,779 2,181 2,372 2,206 1,085 1,157 1,230 311 330 343
Low 381 558 568 205 296 218 148 222 296 28 40 54

Sable Medium 745 1,005 1,031 363 491 388 333 444 555 49 70 88
High 1,251 1,593 1,622 583 749 608 592 741 889 76 103 125
Low 306 431 419 204 294 218 66 94 132 36 43 69

SableNTT Medium 568 742 730 370 497 395 129 167 222 69 78 113
High 924 1,149 1,124 599 763 624 213 260 331 112 126 169

implemented a multi-moduli NTT-based Sable with the help of the multi-moduli NTT-based implementation of Saber.
We call this NTT-based Sable as SableNTT in Table 6.

We can observe from Table 6 that the KeyGen algorithm of Florete performs 34%, 49%, 57% faster than Saber, 31%,
38%, 47% faster than Kyber-Speed, and 99.6%, 99.7%, 99.8% faster than Frodo-Speed for low, medium, and high-security
versions, respectively. The Encaps algorithm of Florete performs 15%, 26%, 33% faster than Saber, and 99.4%, 99.6%,
99.7% faster than Frodo-Speed for low, medium, and high-security versions, respectively. The Encaps algorithm of
Florete performs 6%, 14% better compared to Kyber-Speed for medium, and high-security versions, respectively. The
Decaps algorithm of Florete performs 6%, 15%, 21% faster than Saber, and 99.3%, 99.5%, 99.6% faster than Frodo-speed
for low, medium, and high-security versions, respectively. However, one thing to note is that the improvement of the
performance of the KeyGen, Encaps, and Decaps algorithms for Florete against Saber increases as security increases.
Also, the performance improvement of the KeyGen, Encaps algorithms for Florete against Kyber-Speed increases as
security increases, and the slowdown factor for the Decaps algorithm of Florete against Kyber decreases as security
increases.

The stack memory requirements for the implementations of low, medium, and high-security versions of the KeyGen
algorithm in Espada are respectively 58%, 56%, 52% lower than Saber and 68%, 47%, 50% lower than Frodo-Stack. The
KeyGen algorithm of Espada requires more stack memory than Kyber1. For implementations of low, medium, and
high-security versions of the Encaps algorithm in Espada, the stack memory requirements are respectively 67%, 68%,
67% lower than Saber, 16%, 26%, 30% lower than Kyber, and 71%, 56%, 57% lower than Frodo-Stack. The stack memory
requirements in implementations of low, medium, and high-security versions of the Decaps algorithm in Espada are
respectively 69%, 69%, 68% lower than Saber, 22%, 30%, 34% lower than Kyber, and 72%, 56%, 58% lower than Frodo-Stack.

The KeyGen algorithm of Sable performs at least 9% faster than Saber and at least 99.5% faster than Frodo-Speed. The
Encaps and Decaps algorithms of Sable perform at least 6% faster than Saber and at least 99.3% faster than Frodo-Speed.
All the algorithms of Sable also use less stack memory compared to Saber for all the security versions. The NTT-based

1The latest Kyber uses a different technique to generate matrix𝐴 and𝐴𝑇 during the matrix-vector multiplication than Espada. In Kyber, each polynomial
of the matrix𝐴 and𝐴𝑇 can be generated independently from SHAKE-128 with a slightly different version of the seed. Therefore, each polynomial of the
matrix𝐴 can be generated run-time during matrix-vector multiplication using just-in-time strategy [68] and only one polynomial space is required for
the matrix𝐴 and𝐴𝑇 . However, in Espada, the whole matrix𝐴 is generated from a single seed. So, between matrix𝐴 and𝐴𝑇 , the matrix𝐴 can utilize the
maximum benefit from the just-in-time strategy. Here, the matrix𝐴 needs one polynomial to store the whole matrix, but the matrix𝐴𝑇 needs a vector of
polynomial space for the entire matrix. Therefore, the KeyGen algorithm of Espada requires more stack memory than Kyber. However, Kyber’s matrix
generation technique can also be used in Espada. Then, like Encaps algorithm, KeyGen algorithm of Espada will require less stack memory than Kyber.
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Table 6. Comparing performance and stack memory requirement of Scabbard schemes with Saber and Kyber on Cortex-M4 platform

Performance Stack memory
(x1000 clock cycles) (bytes)Scheme

Name
Security
level KeyGen Encaps Decaps KeyGen Encaps Decaps
Low 299 536 606 8,256 8,392 8,392

Florete Medium 439 815 957 18,252 18,420 18,420
High 598 1,131 1,357 25,408 25,608 25,608
Low 1,659 1,859 1804 2,544 1,960 1,840

Espada Medium 2,342 2,566 2,497 2,896 2,120 2,000
High 3,577 3,859 3,779 3,424 2,360 2,240
Low 381 558 568 5,672 5,928 5,432

Sable Medium 745 1,005 1,031 6,184 5,992 5,496
High 1,251 1,593 1,622 6,696 6,056 5,560
Low 306 431 419 5,548 6,220 6,228

SableNTT Medium 568 742 730 6,564 7,244 7,252
High 924 1,149 1,124 7,596 8,276 8,284
Low 454 631 643 6,060 6,020 6,028

Saber [14] Medium 856 1,106 1,121 6,572 6,540 6,548
High 1,382 1,694 1,726 7,084 7,052 7,060
Low 351 481 452 5,628 6,308 6,316

SaberNTT [1] Medium 644 820 773 6,652 7,332 7,340
High 992 1,203 1,149 7,676 8,348 8,356
Low 434 530 477 4,320 5,424 5,432

Kyber-Speed [67] Medium 707 863 783 5,344 6,456 6,472
High 1,123 1,316 1,210 6,400 7,496 7,512
Low 434 532 478 2,248 2,336 2,352

Kyber-Stack [67] Medium 707 867 788 2,784 2,856 2,872
High 1,127 1,324 1,219 3,296 3,368 3,392
Low 75,000 85,000 84,000 12,516 14,468 14,476

Frodo-speed [28] Medium 169,000 186,000 185,000 18,572 19,860 19,868
High 309,000 345,000 344,000 25,196 25,764 25,772
Low 223,000 293,000 294,000 7,948 6,668 6,460

Frodo-stack [28] Medium 1,103,000 1,296,000 1,296,000 5,444 4,796 4,596
High 2,003,000 2,380,000 2,379,000 6,916 5,532 5,324

version of Sable is named SableNTT. The KeyGen algorithm of SableNTT performs 13%, 12%, 7% faster than SaberNTT,
29%, 20%, 18% faster than Kyber-Speed, and 99.6%, 99.7%, 99.7% faster than Frodo-Speed for low, medium, and high-
security versions, respectively. The Encaps algorithm of SableNTT performs 10%, 10%, 4% faster than SaberNTT, 19%,
14%, 13% faster than Kyber-Speed, and 99.5%, 99.6%, 99.7% faster than Frodo-Speed for low, medium, and high-security
versions, respectively. The Decaps algorithm of SableNTT performs 7%, 6%, 2% faster than SaberNTT, 12%, 7%, 7%
faster than Kyber-Speed, and 99.5%, 99.6%, 99.7% faster than Frodo-speed for low, medium, and high-security versions,
respectively. Also, all three algorithms of SableNTT also need less stack memory compared to SaberNTT for all the
security versions.
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6 HARDWARE IMPLEMENTATION

The following section describes our design decisions for the unified implementations of Scabbard (medium security
version) in hardware, followed by a discussion and comparison of the results. We will demonstrate how taking hardware
efficiency into account during the design cycle of cryptographic schemes leads to efficient implementations on hardware
platforms.

All schemes in the Scabbard suite (Florete, Espada and Sable) are LWR-based KEMs and consist of three main routines:
(i) key-generation (LWR.KEM.KeyGen), (ii) encapsulation (LWR.KEM.Encaps), and (iii) decapsulation (LWR.KEM.Decaps).
As outlined in Sec. 2 and 3, these share several fundamental operations, including polynomial multiplication, hashing,
pseudo-random number generation, and binomial sampling. We explore the trade-off between high speed, low area and
high flexibility for the full-hardware implementation of the KEM operations by (re-)using common building blocks
where possible. Where possible, we optimize our implementation to meet our design objectives, outlined in Sec. 3.

6.1 High-level Architecture

We follow a hardware (HW) only design methodology as opposed to a HW/SW co-design strategy. In a HW/SW co-
design, only the most computationally expensive operations (i.e. polynomial multiplier) are implemented on hardware,
providing high flexibility at the cost of reduced performance. In our implementations, all the building blocks reside in
hardware, as we prioritize speed. Yet, our implementation remains flexible (e.g. support for key generation, encapsulation,
and decapsulation) by targeting an instruction-set coprocessor architecture (ISA), as proposed in [100]. Such a unified
architecture offers instruction-level flexibility andmodularity. A high-level diagram of the ISA for all schemes of Scabbard
is shown in Fig. 5. As the CCA-secure KEM routines for Florete, Espada, and Sable follow a common framework (Sec. 2.3),
the high-level architecture of their hardware implementations are similar. The differences between implementations of
sub-blocks of different schemes are explicitly listed, and our design methodology is explained, if applicable. We also
focus on the particularities of the different polynomial multipliers for Florete, Espada, and Sable.

The coprocessor is controlled by loading the programmemory with the microcode of the protocol (e.g. key generation).
The instruction words are 35-bit, consisting of a 5-bit wide instruction code, and 3×10-bit data addresses, of which two
are for input operands and one for the result. The algorithms and instructions are designed to not include conditional
branching, to prevent timing-based side-channel attacks. The main communication controller interacts with the
individual building blocks, which are designed to be constant-time. As a result, each of the implementations of all KEM
operations takes a fixed amount of time.

6.2 Data Memory

Both input data and results for each of the operations are read from/written back to the data memory, which is
implemented using BRAM tiles. The medium security versions of all Scabbard schemes require at minimum an 8KB
memory size such that all KEM routines can be computed. The word size is 64-bit, as this allows for easy integration of
the ISA co-processor with a 32-bit or 64-bit host computer. We ensure data is optimally packed inside the 64-bit words,
and all individual blocks maximally exploit this format.

6.2.1 Espada. In order to be able to store the public matrix A, generated from the public seed𝐴 using an 𝑋𝑂𝐹 , we
instantiate an additional ± 17KB of parallel data memory. We design and implement it to consist of 𝑙 = 12 parallel
memory banks, which each store 𝑛 = 64 coefficients. It allows for our polynomial multiplier to maximally exploit its
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Fig. 5. The high-level architecture diagram of the instruction set processor for schemes of Scabbard. The blue line symbolizes the
data bus, and the red line indicates the control signal.

parallel nature by simultaneously reading from and writing to all 𝑙 memory banks in a Single-Instruction Multiple-Data
(SIMD) fashion during matrix-vector multiplication (Fig. 7).

6.3 SHA3/SHAKE

The Scabbard suite relies on the HW-friendly Keccak sponge function (FIPS 202) [44] through the hash functions
SHA3-256 and SHA3-512 and the extendable output function SHAKE-128 for generating pseudorandom numbers. The
SHA3/SHAKE block is implemented using the open-source high-speed implementation of the Kecak core, designed by
the Keccak Team [102]. Around this sits the SHA3/SHAKE wrapper from the open-source implementation of Saber on
hardware [100].

All data padding and extraction operations are performed in the wrapper in hardware, controlled by a second
instruction from the program memory. The input/output data length is flexible and first specified through 2×16-bit
fields, followed by the data and result operand addresses. The SHA3/SHAKE block consumes around 5,900 LUTs and
3,127 FFs, or up to 35% of total area utilization of the full HW implementation of Sable. Also, during the decapsulation
operation, up to 21% of total execution time (1,521 clock cycles for Sable) is required for Keccak-related operations. For
Florete, where the polynomial multiplier is a more performance-critical component, the SHA3/SHAKE block accounts
for around 20% of total area utilization. For a full decapsulation operation, 4% of total execution time is required for
Keccak-related operations. We argue that instantiating a single Keccak core in hardware is a good compromise, as we
achieve high speed, and this building block is already an area-expensive component.
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6.3.1 Florete. As this scheme is based on the RLWR hard problem, the ring/modulus parameter 𝑙 is equal to 1. The
public matrix A is a polynomial and an element of the ring R𝑛𝑞 . Compared to Sable and Espada, where A is a matrix, the
generation of this public value is much cheaper for Florete in hardware. Only 426 clock cycles are required in total for
all SHAKE-128 operations during encapsulation and decapsulation.

6.4 Binomial Sampler

In Scabbard, the secret coefficients are drawn from a centered binomial distribution with parameter 𝜇. A 𝜇-bit pseudo-
random string 𝑟 [𝜇 − 1 : 0] is split in two parts, and the Hamming weight HW() of each is subtracted. More specifically,
HW(𝑟 [ 𝜇2 − 1 : 0]) - HW(𝑟 [𝜇 − 1 : 𝜇

2 ]) is computed. As proposed in [100], the sampler is implemented as a combinatorial
block with an input and output buffer. The output samples are in sign-magnitude representation.

6.4.1 Florete & Sable. For both schemes 𝜇 = 2, meaning the secret coefficients are in [−1 : 1] (two bits), and 32 samples
can be directly stored in a 64-bit data word. First, a 64-bit pseudo-random word is loaded from the data memory, stored
in a buffer and then 32 samples are generated in parallel. The 64-bit result is transferred from the output buffer to the
global data memory and repeated until the full secret polynomial is generated.

6.4.2 Espada. As 𝜇 = 6, which is not a divisor of 64, the input buffer is 192-bit since lcm(6, 64) = 192. Three 64-bit,
pseudo-random strings are loaded to the input registers, after which 16 4-bit samples are computed twice in a row.
Generating 16 output samples requires 96 = 2 · 3 · 16 bits, meaning the process is repeated twice until the input buffer is
filled again.

6.5 Polynomial Multiplication

The following section discusses the particularities of our polynomial multiplier design for Florete, Espada, and Sable.
As Scabbard was designed to be polynomial arithmetic-friendly, we use off-the-shelf and state-of-the-art polynomial
multipliers to demonstrate their efficiency in hardware. We integrate the multipliers in our high-speed hardware
design and modify them so they support both inner-product and matrix-vector polynomial multiplications on the same
hardware. Depending on the instruction loaded from the program memory, the appropriate control signals are set, and
the operation is performed.

During operation, typically, the secret polynomial s is first loaded from the data memory, unpacked, and stored
in a LUT-based buffer. Secondly, the polynomial multiplicand a is loaded into an input buffer. For the matrix-vector
multiplication A · s or A𝑇 ·s, the coefficients are 𝜖𝑞 bits and generated by SHAKE-128, 64 bits at a time and continuously
stored in the data memory. The input buffer unpacks the coefficients which may be split across different words in
data memory, to 16-bit operands for the multipliers. The processing starts as soon as the first few coefficients are
available in this buffer, parallelizing the computation and data transfers, as proposed in [100]. For the inner-product
calculations u𝑇 ·s or b𝑇 ·s′, the coefficients of the polynomial multiplicand are 𝜖𝑝 -bit wide and zero-padded up to (and
stored as) 16-bit coefficients. Four are loaded from the data memory at once (in one 64-bit word) and directly stored in
the polynomial multiplicand registers. After the computation has finished, the coefficients of the resulting polynomial
are zero-padded to 16-bit, packed into 64-bit data words, and stored in the data memory.

6.5.1 Florete. In Florete, a 768×768 polynomial multiplication is required, which we decompose into smaller (256×256)
polynomial multiplications by implementing Toom-Cook 3-way evaluation and interpolation in hardware. These acts as
a wrapper around five 256×256 polynomial multipliers, which we all instantiate in parallel. A benefit of our approach,
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using Toom-Cook 3, is that our implementation can reuse any state-of-the-art 256×256 polynomial multiplier available
in literature [39, 83, 100].

In order to further exploit parallelism in our hardware implementation, we break down the polynomial multiplication
further using Toom-Cook 4-way evaluation and interpolation as proposed in [83]. Hence, each 256×256 polynomial
multiplier consists of 7 parallel 64×64 polynomial multipliers, which all execute in parallel. In total, 7 ∗ 5 = 35 64×64
polynomial multiplications are instantiated and performed in parallel (Fig. 6).

As a result, a 768×768 multiplication takes as long as a single 256×256 multiplication at the cost of a five times
larger area. In between the different stages, intermediate and accumulated results are stored in LUT-based buffers. The
evaluation and interpolation datapath are pipelined.

Fig. 6. Polynomial multiplication of Florete. 768×768 multiplication is decomposed into 35 64×64 polynomial multiplications, using
Toom-Cook 3-way and Toom-Cook 4-way.

6.5.2 Espada. Our Espada multiplier is designed to exploit the inherent parallelism of the scheme and its matrix-vector
multiplication. We do not require any evaluation/interpolation steps to break down a large polynomial multiplication
due to the choice of parameters and choice of module lattices. More specifically, as can be observed in Fig. 7, 𝑙
64×64 polynomial multipliers are instantiated in parallel (𝑙 = 12 for medium security level). During the matrix-vector
multiplication, each multiplier is fed with one row of the public matrix of dimension 𝑙 × 𝑙 in parallel. During the
inner-product operation, only one multiplier is active. In both cases, the corresponding secret polynomial is the same
for all multipliers and is loaded first in a small LUT-based buffer.

Before the computation starts, the polynomial multiplicands are loaded to small LUT-based buffers, instantiated for
each of the multipliers. These allow for each of the multipliers to perform read and write operations during computation.
In order to minimize the overhead of loading the large public matrix A from data memory and writing back the results
of all 𝑙 multipliers to global memory, we instantiate an additional data memory consisting of 𝑙 = 12 banks. During the



1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Scabbard: An Exploratory Study on Hardware Aware Design Choices of LWR-based KEMs 25

generation of the public matrix using SHAKE-128, these are filled in a sequential manner, containing one row of the
matrix each. The multipliers read the polynomial multiplicands from these banks in parallel and write their results to 𝑙
banks in parallel. As such, not only the computation but also the read and write operations are parallelized (on the
matrix-vector level), bringing the performance close to state-of-the-art.

For both Florete and Espada, our architecture leaves space to optimize the 64×64 multipliers for area or performance.
Our parametrizable design allows us to select the number of arithmetic units (implemented using DSP units), achieving
higher performance at the cost of higher area utilization. We choose 4 DSP units per polynomial multiplier, in order
to keep area cost at a reasonable level. As a result, our latency is high compared to our Sable implementation, as our
multiplier requires 16 ∗ 64 clock cycles to perform a full 64×64 multiplication.

Fig. 7. Polynomial multiplication for Espada. Blue colored blocks represent register and the multiplication and add block is colored
green. The dotted yellow colored block represents a 64 × 64 polynomial multiplication. Here, we perform 12 such multiplication in
parallel.

6.5.3 Sable. The Sable multiplier is based on the high-speed Saber implementation in [100] but optimized for the Sable
parameters. As a result, the area requirements are reduced without a performance loss as the property of 2-bit secrets
is exploited. Our proposed architecture is drawn in Fig. 8. The custom ‘Multiply & Add’ arithmetic unit (in green) is
instantiated 256 times, resulting in a full parallel polynomial multiplication. The arithmetic unit is a combinatorial
block, thus, a full 𝑁 = 256 polynomial multiplication requires only 256 cycles.

Before computation, the entire 512-bit secret polynomial s is loaded in a LUT-based shift register, which allows
for the negacyclic convolution to be performed in-place and access to all secret coefficients at once. The nega-cyclic
left-shift operation moves each secret coefficient from position 𝑖 to 𝑖 + 1 and the last secret to the first position after
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modular subtraction from zero. As the secret coefficients use sign-magnitude representation, only a simple sign flip is
required.

The full polynomial multiplicand a is also loaded into an input buffer, from which four coefficients at a time are
processed by the arithmetic units. For matrix-vector multiplication, as 𝜖𝑞 = 11, 11-bit coefficients are unpacked to four
16-bit coefficients by the input buffer, and 64-bit data words are fed to the MAC units. For the inner-product calculations,
four zero-padded coefficients are stored in one data-memory word (𝜖𝑝 = 11), which are directly wired to the MAC units.

The result of the arithmetic unit is stored in the output accumulator buffer. This value is reset or preserved, depending
on whether an inner product or full row-column multiplication (matrix-vector multiplication) is computed. Upon
completion, the resulting polynomial is stored in the global data memory.

Fig. 8. Polynomial multiplication for Sable. Blue colored blocks represent register and the multiplication and add block is colored
green.

The custom arithmetic unit is optimized for Sable’s 2-bit secrets: only if LSB(𝑠𝑖 ) is 1 the accumulated result will be
updated. The most significant bit of the secret determines if 𝑎𝑖 is added or subtracted from the result.

6.6 AddRound, AddPack, and Unpack/Decode

All three schemes in the Scabbard suite use power-of-two moduli 𝑝 = 2𝜖𝑝 and 𝑞 = 2𝜖𝑞 . In hardware, this translates to
modular reduction and rounding being essentially free as they consist of shifting, re-wiring, adding, and bit-selecting.
However, as the exact parameters are rarely selected as multiples of 8, low-level bit manipulations and small memory
buffers are required. We fine-tune our implementation to minimize additional area utilization.

6.7 Remaining sub-blocks

The Verify module compares the received ciphertext and re-encrypted ciphertext during the decapsulation, word-
by-word, and stores the result in a flag register. The CMOV module copies either the shared session key 𝐾 or a
pseudo-random string to a specified location based on this flag. The data move is constant-time.
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6.7.1 Florete. As 𝑙 = 1 for Florete, being based on the RLWR hard problem, A consists of a single polynomial. As a
result, no matrix transpose is required during key generation, resulting reducing the cycle count.

6.7.2 Espada. An additional module, CopyTranspose, is added in order to efficiently transpose the 𝑙 × 𝑙 matrix A. Still, it
is relatively more expensive compared to other Scabbard schemes and Saber.

6.8 Performance Evaluation

Our full-hardware ISA is described in mixed Verilog and VHDL and compiled using Xilinx Vivado 2021.1 (default
strategies) for the target platform Xilinx ZCU102 board, containing an Ultrascale+ XCZU9EG-2FFVB1156 FPGA and
Arm Cortex-A53 host processor. Before a KEM operation, all operand data is transferred from the host processor to
the coprocessor at once, then all computations are performed on the FPGA, and the result is read back by the host
processor.

6.8.1 Timing Results. We first give a detailed breakdown of the cycle counts for the individual low-level operations and
total cycle count in Table 7. Numbers for our implementation of all Scabbard schemes and the Saber implementation
(using 256 MAC units & multipliers) from [100] are provided and compared. Table 8 shows the total execution times for
our hardware implementations, calculated at 150MHz using Vivado simulation. We compare our designs of the Scabbard
suite, which are based on variants of the LWR problem, with Saber, as it is the most well-known LWR-based scheme.
For Keygen/Encaps/Decaps operations, our Sable implementation requires 13/11/10% fewer clock cycles. This is mainly
due to our optimized multiplier design’s relaxed requirements for sampling pseudo-random numbers compared to
Saber. Our multiplier, similar to the Saber design, uses 256 MAC units and multipliers, which allows for the best direct
comparison. It is clear that our design decisions lead to improved performance in hardware.

Additionally, all Scabbard schemes benefit from their choice of secret distribution, which results in more efficient
vector sampling. For all KEM operations, Florete/Espada/Sable require 84/16/84% fewer clock cycles compared to Saber,
respectively.

In all Scabbard KEM operations, the time spent performing polynomial multiplications is significant: 85/85/86%,
69/82/87% and 55/59/60% of total Keygen/Encaps/Decaps cycle counts. Our Sable multiplier is optimized for the 2-bit
secrets and consists of 256 MAC units and multipliers, resulting in a low total latency.

Both Espada and Florete rely on 64×64 polynomial multipliers, which are implemented using only 4 DSP units.
Increasing the DSP units of each multiplier will bring their performance closer to the state-of-the-art at the cost of
increased area utilization. Our implementation prioritizes area cost while still achieving reasonable latency overhead.
Notice that for Espada, due to our parallelized design, the latency for a complete matrix-vector multiplication and inner
product are identical, as 𝑙 polynomial multipliers are instantiated in parallel.

The second significant factor in the execution time of Scabbard are all Keccak-based functions: SHA3-256, SHA3-512,
and SHAKE-128. For key generation, encapsulation, and decapsulation, this is 10/8/4%, 24/16/10%, and 28/28/21% of
total cycle counts, respectively.

Compared to Saber, our Florete implementation requires 67/70/70% fewer clock cycles during Keygen/Encaps/Decaps
operations. Our Sable HW implementation requires 22/24/24% fewer clock cycles compared to Saber. A large contributing
factor to the Espada cycle counts is its randomness requirement (SHAKE-128) for the generation of A (around 5K clock
cycles).
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Table 7. Total cycles spent in low-level operations for Scabbard schemes and Saber [100] using Vivado simulation (Medium security
parameters).

Cycle CountInstruction Scheme
Name KeyGen Encaps Decaps
Florete 200 589 333
Espada 272 661 333

SHA3-256 Sable 200 541 387

Saber 339 585 303
Florete 0 65 68
Espada 0 65 68

SHA3-512 Sable 0 65 68

Saber 0 62 62
Florete 489 426 426
Espada 5,352 5,286 5,286

SHAKE-128 Sable 1,135 1,066 1,066

Saber 1,461 1,403 1,403
Florete 28 28 28
Espada 147 147 147

Vector sampling Sable 25 28 28

Saber 176 176 176
Florete 6,051 12,102 18,153
Espada 15,826 31,652 47,478

Polynomial multiplications Sable 2,598 3,464 4,330

Saber 2,685 3,592 4,484
Florete 318 954 2,087
Espada 1,441 767 1,511

Remaining operations Sable 783 738 1,385

Saber 792 800 1,606
Florete 7,086 14,164 21,095
Espada 23,038 38,578 54,823

Total cycles Sable 4,741 5,902 7,264

Saber 5,453 6,618 8,034

6.8.2 Area Results. In Table 9 a detailed breakdown of the area utilization of the full instruction-set coprocessor
architecture of all Scabbard schemes and Saber is provided. We include numbers of the internal building blocks.

Our full HW Sable implementation requires 27% less LUTs compared to the state-of-the-art Saber implementation
and 15% more FFs. The increase in registers is related to the choice of 𝜖𝑝 = 9 and 𝜖𝑞 = 11, which result in non-multiples
of 8-bit operands. As a result, larger intermediate buffers are required to temporarily store data operands during
conversion to 16-bit operands. Our flexible Espada implementation utilizes 20% fewer LUTs and requires 14 BRAM tiles



1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Scabbard: An Exploratory Study on Hardware Aware Design Choices of LWR-based KEMs 29

Table 8. Execution times for Scabbard schemes and Saber [100] using Vivado simulation calculated at 150 MHz (Medium security
parameters).

Time (𝜇s)Instruction Scheme
Name KeyGen Encaps Decaps
Florete 47.24 94.43 140.63
Espada 153.59 257.19 365.49

Total time at 150 MHz Sable 31.61 39.35 48.43

Saber 36.35 44.12 53.56

(to store 𝑙 rows of A) instead of 2 in the Saber implementation. On the matrix-vector level, our Espada implementation
is fully parallelized, consisting of 𝑙 = 12 multipliers and intermediate buffers.

For all implementations, the poly-vector multiplier is the largest contributor at 75/66%, 39/62%, and 58/49% of total
LUT/FF counts (and all DSP units) for Florete, Espada, and Sable, respectively. Still, due to making hardware-aware
design choices, our multipliers perform well compared to prior art. Our Sable multiplier utilizes 43% fewer LUTs and
only 9% more FFs due to its small secret coefficients and custom shift register architecture. Our Espada design requires
58% fewer LUTs and around two times as many FFs. This is due to the fact that each of the 𝑙 multipliers requires
intermediate buffers for the unpacking of public matrix A to 16-bit coefficients in parallel. Our Florete multiplier design
consists of a full Toom-Cook 3 and 4-way evaluation and interpolation (pipelined) datapath, with 35 64×64 multipliers.
Because of the massive parallelization, our implementation utilizes 21% more LUTs and 2 times more FFs compared to
Saber. By choosing only 4 DSP units per multiplier, we keep the area utilization at a reasonable level. However, our
flexible design allows to use of any 64×64 polynomial multiplier, including increasing the DSP units per multiplier.

6.8.3 Comparisons with existing implementations. Our high-speed and highly flexible architectures for Florete, Espada,
and Sable are compared with recent hardware implementations of other post-quantum KEM schemes in Table 10. It is
important to note that different hardware implementations target different schemes, security levels, platforms, or design
methodologies. As a result, a fair and direct comparison is not always possible. The timing results of our implementation
are derived from the Vivado simulation, calculated at 250MHz.

The fairest comparison is of our high-speed Sable implementation with the Saber implementation by [100]. Both are
high-speed designs and implement the polynomial multiplier with 256 MAC units and multipliers, costing 256 cycles in
total. Due to the hardware-aware design decisions, Sable requires 13/11/10% fewer clock cycles and has a lower area
utilization.

Our Espada and Florete implementations are targeting a trade-off between high-speed and low-area. More specifically,
the multiplier architecture around the 64×64 polynomial multipliers is highly parallelized and pipelined, allowing for
efficient data transfers. We implement the 64×64 multipliers with only 4 DSP units per multiplier in order to reduce
area utilization, requiring 64*16 clock cycles for complete multiplication. Our flexible design allows for the DSP count to
be increased and directly reduces the total latency up to a factor of 16 or to be replaced with any available off-the-shelf
designs.

Frodo KEM is implemented in hardware by How et al. [61] and uses dedicated data paths for KeyGen, Encaps and
Decaps. The security of Frodo is based on the standard LWE problem, meaning the computationally expensive matrix-
vector multiplications need to be computed several times. As a result, the latency of KEM operations is significantly
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Table 9. Area results for full HW implementation of Scabbard schemes and Saber [100], with clock frequency constraint set to
250MHz in Vivado (Medium security parameters).

Block Scheme
Name LUTs FFs DSPs BRAMs
Florete 5,834 3,126 0 0
Espada 5,964 3,127 0 0

SHA3/SHAKE Sable 5,831 3,127 0 0

Saber 5,113 3,068 0 0
Florete 79 86 0 0
Espada 253 282 0 0

Binomial Sampler Sable 67 86 0 0

Saber 92 88 0 0
Florete 21,143 10,613 140 0
Espada 7,286 11,662 48 0

Poly-vector multiplier Sable 9,841 5,523 0 0

Saber 17,429 5,083 0 0
Florete 1,225 2,204 0 0
Espada 5,238 3,752 0 0

Other blocks Sable 1,353 2,544 0 0

Saber 1,052 1,566 0 0
Florete 28,281 16,029 140 2
Espada 18,741 18,823 48 14

Full co-processor Sable 17,092 11,280 0 2

Saber 23,686 9,805 0 2

higher compared to ring or module lattice-based schemes, like Scabbard or Saber. The high-speed Kyber implementation
targets an extremely high operating frequency (450MHz), which translates into a faster execution time.

Compared to the high-speed NTRU prime hardware implementation by Peng et al. [40], Sable outperforms both in
performance and area utilization. Florete achieves faster (total) execution time at lower area utilization, mainly due to
the expensive KeyGen of NTRU Prime. Espada is slower yet has significantly lower area utilization, which is our design
goal nonetheless. Compared to the low area NTRU prime hardware implementation, all Scabbard implementations
significantly outperform NTRU performance-wise. However, this NTRU implementation has a lower area utilization
than any other work listed in Table 10.

More recently, several designs tailored for ASIC have been published. Ghosh et al. [49] implemented NIST Round
3 Saber [14] in TSMC 65nm technology, targeting a low power consumption. Their crypto accelerator runs at 160
MHz and occupies 0.158 mm2 and is 2.07/0.76/4.92 times slower compared to our implementations. We also highlight a
unified Dilithium/Kyber ASIC implementation by Aikata et al. [2], occupying 0.263 mm2 (TSMC 28 nm) and which
utilizes multiple clock domains. As they utilize an advanced technology node, their design can run at 2 GHz (compared
to 250 MHz) and still our Sable implementation is only 9% slower in total execution time.
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Table 10. Overview and comparison of Scabbard schemes and existing hardware implementations of CCA-secure KEM schemes.
(Medium security level.)

Implementation Platform Time in 𝜇s
(KeyGen/Encaps/Decaps)

Frequency
(MHz)

Area
(LUT/FF/DSP/BRAM)
(or𝑚𝑚2 for ASIC)

Florete UltraScale+ 28.3/56.7/84.4 250 28.2K/16.0K/140/2
Espada UltraScale+ 92.2/154.3/219.3 250 18.7K/18.8K/48/14
Sable UltraScale+ 18.9/23.6/29.0 250 17.0K/11.2K/0/2

Saber [100] UltraScale+ 21.8/26.5/32.1 250 23.6K/9.8K/0/2
Kyber [40] UltraScale+ 5.9/8.3/10.9 450 10.6K/10.5K/6/6.5
Frodo [61] Artix-7 45K/45K/47K 167 ≈7.7K/3.5K/1/24

NTRU Prime (High Speed) [91] UltraScale+ 224.7/17.3/38.6 285 40.1K/26.4K/36.5/31
NTRU Prime (Low Area) [91] UltraScale+ 2.2K/100.8/302.6 285 9.2K/4.4K/8.5/18

Saber [49] ASIC (65 nm) 89/117/146 160 0.158
Kyber [2] ASIC (28 nm) 6.18/11.09/47.89 2K 0.263

From our experimental performance evaluationwe can conclude that our Scabbard coprocessors have fast computation
time compared to other lattice-based KEM hardware implementations, with moderate area utilization. In the case
of Sable, which utilizes the same multiplier architecture as the Saber implementation in [100], our implementation
requires 13%/11%/10% fewer clock cycles for KEM operations and lower area utilization. By considering hardware design
choices during the design of the schemes themselves, efficient implementations have been achieved. Our full-hardware
instruction-set coprocessor architectures result in high-speed and highly flexible implementations. We leave support
for multiple parameter sets and security versions in a single hardware implementation as future work.

7 PHYSICAL ATTACK ANALYSIS

Physical attacks have been demonstrated to be very potent against even for mathematically secure cryptographic
algorithms [26, 70–72], and lattice-based cryptography is no exception [10, 54, 63, 85, 94]. Therefore, physical attack
analysis is one of the essential measures that ought to be carried out before deploying cryptographic algorithms in the
real-world. Physical attacks can be divided into two categories depending on their properties: (i) passive attacks, which
include timing-based side-channel attacks [54, 70], power-based side-channel attacks [10, 12, 63, 71, 85], side-channel
attacks based on electromagnetic radiation (EM) [72, 94], etc., and (ii) active attacks, which include fault-injection
attacks [26, 74, 84, 94].

Timing-based SCA is mitigated with constant-time implementations, where the execution time of the cryptographic
algorithm does not depend on the secret data. All of our software and hardware implementations of Scabbard are in
constant-time. It has been accomplished by avoiding secret-data-dependent operations (such as division), secret-data-
dependent conditional operations (if-else), or secret-data-dependent memory access. Recently, Bernstein et al. [19] have
proposed that the modular divisions used in Kyber’s implementation are vulnerable to timing SCA due to division by
prime modulus. These timing SCA do not apply to our schemes as our divisions are merely shift operations.

The implementations of Scabbard are susceptible to power- or EM-based SCA like other lattice-based schemes, e.g.,
Kyber [94], Saber [85], NewHope [94], Frodo [12], NTRU Prime [63], etc. More specifically, as our schemes use similar
constructions as Saber, most of the power- or EM-based SCA shown on Saber are also applicable to Scabbard’s schemes.
For example, [85] has shown correlation power analysis based SCA on the Toom-Cook-based polynomial multiplication
of Saber; similar attacks are possible on the schemes of Scabbard.
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Masking [34] or shuffling [57] are utilized to thwart power-based or EM-based SCA. Between these two counter-
measures, masking is a provably secure countermeasure and is usually integrated with lattice-based cryptographic
algorithms to prevent SCA [30, 75]. Although shuffling is a low-cost countermeasure compared to masking, it has
been shown to be insufficient [96] to prevent SCA when shuffling is used alone. Therefore, the overhead reduction in
incorporating masking countermeasures into lattice-based KEMs is one of the crucial steps. One way to achieve this is
by exploring masking-friendly design elements of the existing lattice-based KEMs.

In masking, secret dependent variables (e.g., 𝑥 ) are split into multiple separate shares (for the first-order masking, 𝑥 is
divided into two shares 𝑥1 and 𝑥2). Then, all the operations of the cryptographic algorithms are performed independently
on all the shares. To achieve efficiency, masking LWE/LWR-based KEMs requires two kinds of masking techniques, i)
arithmetic masking (𝑥 = 𝑥1 + 𝑥2 mod 𝑞) and ii) Boolean masking (𝑥 = 𝑥1 ⊕ 𝑥2). Masked LWE/LWR-based KEMs mainly
use the following components: (i) masked polynomial arithmetic (modular addition, subtraction, and multiplication),
(ii) masked compression, (iii) masked message decoding and encoding function, (iv) masked CBD, (v) masked Keccak
(used in SHA3-512 and SHAKE-128), and (vi) masked ciphertext comparison. From all the components, (ii) Masked
compression, (iii) masked message decoding and encoding function, (iv) masked CBD, and (vi) masked ciphertext
comparison require either arithmetic to Boolean (A2B) conversion or Boolean to arithmetic (B2A) conversion. A2B or
B2A conversions are one of the performance hefty operations introduced solely due to masking, making the masked
components that use them expensive in terms of performance. However, this performance cost heavily depends on the
parameters of the LWE/LWR-based KEMs. For example, the modulus 𝑞 is usually chosen to be prime for LWE-based
schemes for being able to use NTT, whereas it is mostly a power-of-2 for LWR-based schemes. A2B and B2A conversions
are much cheaper for a power-of-2 modulus compared to a prime modulus with the same bit length. Also, the smaller
parameters in our schemes reduce the performance overhead of masking components. More elaborated observations
regarding the design choices of the schemes of Scabbard and their effect on masking have been shown in [77]. We
have presented some of these results in Appendix A. Overall, all three schemes of Scabbard outperform Kyber on the
Cortex-M4 platform when masking countermeasures are integrated.

Masking LWE/LWR-based KEMs can prevent some of the fault-injection attacks (FIA), such as safe-error attacks [22].
However, several FIA have been proposed on masked implementation of LWE/LWR-based KEMs [42, 58, 74, 84, 92, 103].
In fact, [74] demonstrates that masking introduces new attack surfaces for the FIA in the LWE/LWR-based KEMs.
The FIA in the context of LWE/LWR-based schemes can be primarily divided into two categories: (i) ineffective fault
attacks and (ii) FIA at the ciphertext comparison. In ineffective fault attacks, the secret data-dependent behavioral
changes of the decapsulation procedure of the KEMs upon fault injection on a specific variable leak information
regarding the secret key. Basically, in these attacks, injected fault changes the value of the targeted variable, which
causes decapsulation failure for some values of the targeted variable. For the other values of the targeted variable, the
injected fault doesn’t affect the final outcome i.e. decapsulation success. This phenomenon leaks information regarding
the targeted variable’s value, which depends on the secret key. Some examples of such fault attacks are [42, 58, 74, 92].
In the FIA at the ciphertext comparison [84, 103], the last equality checking in the decapsulation procedure between
re-encrypted ciphertext and received public ciphertext is bypassed. Fundamentally, this removes the Fujisaki-Okamoto
transform i.e changes a CCA-secure KEM scheme to a CPA-secure KEX scheme. It forces the decapsulation to succeed
even in cases where decapsulation would have failed in the normal scenario. Therefore, the adversary can retrieve the
long-term secret key from the decapsulation process with the help of specially crafted input ciphertexts.

Scabbard’s schemes are also vulnerable to the fault-injection attacks discussed here. Recently, some works [21, 95]
have proposed detection-based countermeasures against FIA on LWE/LWR-based KEMs. These countermeasures can
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be integrated into Scabbard with small adjustments. However, further research is needed to verify the effectiveness and
cost of these countermeasures on Scabbard.

8 CONCLUSION

We provide a suite of three LWR-based KEMs by exploring possible design choices and the parameter set. Our
study improves the state-of-the-art lattice-based post-quantum cryptography in aspects of software and hardware
implementations. We show that the choice of design primitives heavily affects the scheme’s efficiency on the software
and hardware platforms. In fact, the design choices of a lattice-based KEM also affect the performance overhead of
the scheme’s secure implementations. The work in [77] experimentally demonstrated that the schemes of Scabbard
outperform Kyber on the Cortex-m4 platform when side-channel countermeasure masking is integrated. In this work,
we consider implementation aspects during the design of a scheme, which results in a more efficient scheme while
providing a similar level of security. Our result opens a new research direction for LWR-based lightweight secure PQC
KEMs, which can be extended to LWE-based KEMs. In fact, a new lightweight MLWE-based scheme, Rudraksh [76], has
been proposed by performing a similar module-space exploration strategy on LWE-based primitives. We believe this
research will benefit other LWE-/LWR-based primitives such as lattice-based digital signature schemes, lightweight
schemes, group-key exchange schemes, etc. We have left these as potential future work.
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A PERFORMANCE OF MASKED SCABBARD
Kundu et al. [77] integrated masking countermeasures on the medium security version (NIST-3) of all the schemes
of Scabbard. It also proposes proof-of-concept implementations on the ARM Cortex-M4 platform using the PQM4
framework [67]. The test vector leakage assessment hasn’t been performed and is left as future work. Table 11, 12, and 13
present performance results of masked Florete, Espada, and Sable, respectively. In Table 14, masked implementations of
Scabbard have been compared with the state-of-the-art implementations of LWE/LWR-based KEMs, including Kyber.

Table 11. Performance of components of Florete on Cortex-M4 [77]

x1000 clock cycles
Order Unmask 1st 2nd 3rd

Florete CCA-KEM-Decapsulation 954 2,621 (2.74x) 4,844 (5.07x) 7,395 (7.75x)
CPA-PKE-Decryption 248 615 (2.47x) 1,107 (4.46x) 1,651 (6.65x)

Polynomial arithmetic 241 461 (1.91x) 690 (2.86x) 917 (3.80x)
Compression
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑚𝑠𝑔 6 153 (25.50x) 416 (69.33x) 734 (122.33x)

Hash G (SHA3-512) 13 123 (9.46x) 242 (18.61x) 379 (29.15x)
CPA-PKE-Encryption 554 1,744 (3.14x) 3,354 (6.05x) 5,225 (9.43x)

Secret generation 29 427 (14.72x) 982 (33.86x) 1,663 (57.34x)
XOF (SHAKE-128) 25 245 (9.80x) 484 (19.36x) 756 (30.24x)
CBD (𝛽1) 4 182 (45.50x) 497 (124.25x) 907 (226.75x)

Polynomial arithmetic
𝑎𝑟𝑟𝑎𝑛𝑔𝑒_𝑚𝑠𝑔 943 1,357 1,783

Polynomial Comparison
524

373
(2.51x)

1,014
(4.52x)

1,778
(6.79x)

Other operations 138 139 (1.00x) 140 (1.01x) 140 (1.01x)
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Table 12. Performance of components of Espada on Cortex-M4 [77]

x1000 clock cycles
Order Unmask 1st 2nd 3rd

Espada CCA-KEM-Decapsulation 2,422 4,335 (1.78x) 6,838 (2.82x) 9,861 (4.07x)
CPA-PKE-Decryption 70 137 (1.95x) 230 (3.28x) 324 (4.62x)

Polynomial arithmetic 69 116 (1.68x) 170 (2.46x) 225 (3.26x)
Compression
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑚𝑠𝑔 0.4 20 (50.00x) 60 (150.00x) 99 (247.50x)

Hash G (SHA3-512) 13 123 (9.46x) 243 (18.69x) 379 (29.15x)
CPA-PKE-Encryption 2,215 3,950 (1.78x) 6,240 (2.81x) 9,031 (4.07x)

Secret generation 57 748 (13.12x) 1,650 (28.94x) 3,009 (52.78x)
XOF (SHAKE-128) 51 489 (9.58x) 968 (18.98x) 1,510 (29.60x)
CBD (𝛽3) 6 259 (43.16x) 681 (113.50x) 1,498 (249.66x)

Polynomial arithmetic
𝑎𝑟𝑟𝑎𝑛𝑔𝑒_𝑚𝑠𝑔 2,865 3,593 4,354

Polynomial Comparison
2,157

259
(1.44x)

996
(2.12x)

1,667
(2.79x)

Other operations 124 124 (1.00x) 124 (1.00x) 126 (1.01x)

Table 13. Performance of components of Sable on Cortex-M4 [77]

x1000 clock cycles
Order Unmask 1st 2nd 3rd

Sable CCA-KEM-Decapsulation 1,020 2,431 (2.38x) 4,348 (4.26x) 6,480 (6.35x)
CPA-PKE-Decryption 130 291 (2.23x) 510 (3.92x) 745 (5.73x)

Polynomial arithmetic 128 238 (1.85x) 350 (2.73x) 465 (3.63x)
Compression
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑚𝑠𝑔 2 52 (26.00x) 160 (80.00x) 280 (140.00x)

Hash G (SHA3-512) 13 123 (9.46x) 242 (18.61x) 379 (29.15x)
CPA-PKE-Encryption 764 1,903 (2.49x) 3,482 (4.55x) 5,241 (6.85x)

Secret generation 29 427 (14.72x) 984 (33.93x) 1,666 (57.44x)
XOF (SHAKE-128) 25 245 (9.80x) 484 (19.36x) 756 (30.24x)
CBD (𝛽1) 4 182 (45.50x) 499 (124.75x) 909 (227.25x)

Polynomial arithmetic
𝑎𝑟𝑟𝑎𝑛𝑔𝑒_𝑚𝑠𝑔 1,187 1,640 2,086

Polynomial Comparison
734

287
(2.00x)

856
(3.40x)

1,488
(4.86x)

Other operations 112 113 (1.00x) 113 (1.00x) 113 (1.00x)

Table 14. Comparing performance of masked Scabbard with the state-of-the-art [77]

Performance # Random numbers
(x1000 clock cycles) (bytes)Scheme
1st 2nd 3rd 1st 2nd 3rd

Florete [77] 2,621 4,844 7,395 15,824 52,176 101,280
Espada [77] 4,335 6,838 9,861 11,496 39,320 85,296
Sable [77] 2,431 4,348 6,480 12,496 39,152 75,232
Saber [75] 3,022 5,567 8,649 12,752 43,760 93,664
uSaber [75] 2,473 4,452 6,947 10,544 36,848 79,840
Kyber [30] 10,018 16,747 24,709 - - -
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