Heuristic Ideal Obfuscation Based on Evasive LWR

Zhuang Shan ${ }^{1[0000-0003-4309-4505]}$, Leyou Zhang ${ }^{1, *[0000-0003-4950-1140]}$, and Qiqi Lai ${ }^{2}$
${ }^{1}$ School of Mathematics and Statistics, Xidian University, Xi'an 710126, China arcsec30@163com, lyzhang@mail.xidian.edu.cn
${ }^{2}$ School of Computer Science, Shaanxi Normal University, Xi'an 710121, China
laiqq@snnu.edu.cn

Abstract

This paper introduces a heuristic ideal obfuscation scheme grounded in the lattice problems, which differs from that proposed by Jain, Lin, and Luo ([JLLW23], CRYPTO 2023). The approach in this paper follows a methodology akin to that of Brakerski, Dottling, Garg, and Malavolta ([BDGM20], EUROCRYPT 2020) for building indistinguishable obfuscation (iO). The proposal is achieved by leveraging a variant of learning with rounding (LWR) to build linearly homomorphic encryption (LHE) and employing Evasive LWR to construct multilinear maps. Initially, we reprove the hardness of LWR using the prime number theorem and the fixed-point theorem, showing that the statistical distance between $\lfloor A s\rfloor_{p}$ and $\lfloor u\rfloor_{p}$ does not exceed $\exp \left(-\frac{n \log _{2} n \ln p}{\sqrt{5}}\right)$ when the security parameter $q>2^{n} p$. Additionally, we provide definitions for Evasive LWR and composite homomorphic pseudorandom function (cHPRF), and based on these, we construct multilinear maps, thereby establishing the ideal obfuscation scheme proposed in this paper.

Keywords: Multilinear maps • Evasive LWR • Lattice problem reduction • Ideal obfuscation • Split FHE

1 Introduction

In 2000, Hada[Had00] first introduced the definition of virtual black box (VBB) obfuscation, which is essential for embedding a circuit C into an opaque black box that cannot be opened. By inputting x into one end of the black box, the other end automatically outputs $C(x)$. Since the entire circuit is hidden inside the black box, no specific information about the construction of C can be obtained. The only action we can take is to provide input and observe the output on the other side.

VBB functions like a virtualized black box, where a circuit C obfuscated by VBB prevents us from obtaining any information related to its construction through the obfuscated output. The only action possible is to provide input x and compute $C(x)[Y u e 20]$. Unfortunately, Barak et al.[BGI $\left.{ }^{+} 01\right]$ have proven that virtual black box obfuscation does not exist.

In 2001, Barak et al. proved the nonexistence of virtual black box obfuscation and they also presented a new definition for obfuscation: to obfuscate two circuits C_{1} and C_{2} such that the obfuscated circuits have the same functionality and an adversary cannot distinguish between the two circuits. This is well known as indistinguishable obfuscation.

In 2013, Garg et al. introduced indistinguishable obfuscation based on multilinear maps $\left[\mathrm{GGH}^{+} 13 \mathrm{~b}\right]$ and applied it to functional encryption. It is noteworthy that multilinear maps were also proposed by Garg et al. [GGH13a]. Subsequently, significant work using program obfuscation(e.g., [BZ17,GGHR14,SW21]) has shown that most interesting cryptographic applications can be realized using iO (and one-way functions).

Due to its importance, many scholars have begun to focus on researching how to construct indistinguishable obfuscation. One construction method is based on new multilinear maps, which extends its applicability to a wider range [GGH13a,CLT13,GGH15]. However, in 2016, Hu and Jia [HJ16] broke the indistinguishable obfuscation based on multilinear maps proposed by Garg et al. [GGH13a]. In the same year, Miles, Sahai, and Zhandry [MSZ16] partially broke another indistinguishable obfuscation scheme by Garg et al. [GGH $\left.{ }^{+} 13 \mathrm{~b}\right]$. Since 2015, the field of obfuscation with multilinear pairings has entered a cycle where proposed schemes are quickly broken, leading to improvements based on the attacks, only to be broken again shortly thereafter.

Recently, Bitansky and Vaikuntanathan [BV18] and Ananth and Jain [AJ15] have independently proven through different methods that when Functional Encryption with compact ciphertexts (Compact FE) exists, then indistinguishable obfuscation can be achieved. Based on these results, the current construction methods for indistinguishable obfuscation mainly fall into two categories, namely:

1. The first approach is to restrict the depth of multilinear maps to achieve indistinguishable obfuscation. For example, in 2016, Lin restricted the depth to 5 layers [Lin17], and later with Tessaro restricted it to 3 layers [LT17]. In 2020, Jain, Lin, and Sahai [JLS21] successfully constructed indistinguishable obfuscation based on bilinear pairings, learning with error (LWE), learning parity with noise (LPN) [YZ21], and boolean pseudo-random generator (SPFG).
2. The second approach is to achieve indistinguishable obfuscation through splitting fully homomorphic encryption. For example, Brakerski, Dottling, Garg, and Malavolta [BDGM22,BDGM20] combined fully homomorphic encryption (FHE) with LHE (Damgård-Jurik). By cleverly leveraging circularsecurity assumptions, they enable ciphertexts to circulate between the two encryption systems, ultimately constructing indistinguishable obfuscation.

In 2023, Jain, Lin, and Luo introduced a new concept called ideal obfuscation [JLLW23]. This concept is a refinement of Jain's work on indistinguishable obfuscation. We wonder:

Can we use sFHE to construct ideal obfuscation under

the pseudorandom oracle model?

To "receive" outputs of the pseudorandom oracle model, we present a variant of LWR and reconstruct LHE. Additionally, to overcome the challenge of bit-bybit encryption in LWE, we present the definition of Evasive LWR and composite homomorphic pseudorandom functions. We construct new multilinear maps and devise fully homomorphic schemes based on these multilinear maps. Then an ideal obfuscation is achieved.

1.1 Our work

New LWR reduction The LWR problem is a variant of the LWE problem [Reg04], while being reduced to the shortest vector problem (SVP) and closest vector problem (CVP). In 2012, Banerjee, Peikert, and Rosen first proposed this problem, which is primarily used to construct pseudorandom functions and deterministic encryption [XXZ12]. In 2013, Alwen and others used information entropy theory to reduce the learning with rounding problem to the learning with errors problem, indirectly leading to a reduction to the SVP and CVP in lattices, and requires $q>\beta 2^{n} p$.

In 2024, Dr. Chen [Che24] published an article on quantum algorithms for LWE, although there are some issues with the proof process, but this also serves as a warning that not all lattice problems can be reduced to LWE. Therefore, this paper redefines the LWR problem without using any intermediate problems as reduction bridges. Instead, it calculates the maximum statistical distance between $\lfloor A s\rfloor_{p}$ and $\lfloor u\rfloor_{p}$ in Appendix.

Define \mathcal{S}_{q} as the probability set for any $i \in \mathbb{Z}_{q}$, undoubtedly, $\operatorname{Pr}(i)=\frac{1}{q}$, for all $i \in \mathbb{Z}_{q}$. $\mathcal{S}_{q}[i]=\operatorname{Pr}(i)$. Now, calculate the value when $\operatorname{Pr}(i) \in \overline{\mathcal{S}}_{q}:=\mathcal{S}_{q} \times \mathcal{S}_{q}$. Since $\operatorname{Pr}(i)$ is related to the prime factorization of i, the value of $\operatorname{Pr}(i)$ is given based on the prime number theorem and the theory of prime factorization. Define its maximum value as $\operatorname{Pr}(\mathfrak{A})$, with the corresponding element $\mathfrak{A} \in \mathbb{Z}_{q}$. At this point, we are calculating the probability of $a_{1} s_{1}=b_{1} \rightarrow \mathbb{Z}_{q}$, then we calculate $\operatorname{Pr}(i) \in\left(\overline{\mathcal{S}}_{q}+\overline{\mathcal{S}}_{q}\right)$, which is the probability of $a_{1} s_{1}+a_{2} s_{2}=b_{2} \rightarrow \mathbb{Z}_{q}$, and so on. We find that this relationship is consistent with the relationship $i_{n+1}=T_{i_{n}} i_{n}$, where

$$
T_{i_{n}}=\left(\begin{array}{cccc}
i_{n}^{(1)} & i_{n}^{(q)} & \ldots & i_{n}^{(2)} \\
i_{n}^{(2)} & i_{n}^{(1)} & \ldots & i_{n}^{(3)} \\
\vdots & \vdots & \ddots & \vdots \\
i_{n}^{(q)} & i_{n}^{(q-1)} & \ldots & i_{n}^{(1)}
\end{array}\right)
$$

$i_{n}^{(j)}=\operatorname{Pr}(j)$. So the idea arose whether we could leverage the theory of fixed points to prove the convergence of this sequence, and perhaps even establish the hardness of LWR? Indeed, it is affirmative, because $T_{i_{n}}$ satisfies the conditions of the fixed-point theorem, namely, $T_{i_{n}}$ is a κ-contraction operator, and it converges to $v_{q}:=(\underbrace{\frac{1}{q}, \ldots, \frac{1}{q}}_{q})$. However, it is worth noting that $T_{i_{n}}$ has more than one
fixed point. So why does it only converge to v_{q} ? This is because the other fixed points take the form $i^{(k)}=1, i^{(l)}=0$, where $l \neq k, k \in \mathbb{Z}_{q}$. However, the previous analysis on probabilities indicates that $i_{n}^{(j)} \in(0,1)$. Therefore, it will only converge to v_{q}. Furthermore, we can obtain

$$
\left\|i_{n+1}-i_{n}\right\| \leq \kappa\left\|i_{n}-i_{n-1}\right\| \leq \cdots \leq \kappa^{n-1}\left\|i_{2}-i_{1}\right\|
$$

Therefore, as long as κ^{n-1} meets the requirement, the reduction of LWR is completed. Based on the LWR, we provide a variant of the indistinguishability theorem, as follows:

Theorem (Informal). Let $q>2^{n} p$ be prime numbers, $A \in \mathbb{Z}_{q}^{m \times n}, s \in \mathbb{Z}_{3}^{n}$, $u \in \mathbb{Z}_{q}^{m}$. If it is difficult to distinguish between $\left(A,\lfloor A s\rfloor_{p}\right)$ and $\left(A,\lfloor u\rfloor_{p}\right)$, then for $a, b \in_{R} \mathbb{Z}_{q}$ (or $b \in_{R} \mathbb{Z}_{q}, a \in_{R} \mathbb{Z}_{q}^{m \times n}$), we have

$$
\left(\odot_{q}(A, a),\lfloor u\rfloor_{p}\right) \approx_{c}\left(\odot_{q}(A, a),\left\lfloor\odot_{q}(A, a b) \cdot s\right\rfloor_{p}\right)
$$

Building on the work of Brakerski et.al.[BDGM22,BDGM20], heuristic notion of ideal obfuscation is provided. Leveraging the variant problem (LWR.DV), we construct a linear homomorphic scheme. This LWR.DV-based linear homomorphic scheme theoretically possesses properties resistant to quantum attacks.

Evasive LWR and multilinear maps In 2015, Gentry, Gorbunov, and Halevi presented lattice-based Multilinear Maps [GGH15], defined as

$$
A, S_{1} A_{1}+E_{1}, \ldots, S_{k} A_{k}+E_{k} \rightarrow \prod_{i=1}^{n} S A+E \bmod q
$$

Most notably, none of the current indistinguishability obfuscation candidates from GGH15 have any formal security guarantees against zeroizing attacks [BGMZ18].

To resist zeroizing attacks, in 2022, Wee introduced the definition of Evasive LWE [Wee22] and proposed new multilinear maps [VWW22], defined as

$$
\begin{aligned}
A,\left(u M_{1} \otimes S_{1}\right) A_{1}+E_{1}, \ldots, & \left.A_{k-1}^{-1}\left(\left(M_{k} \otimes S_{k}\right) A_{k}+E_{k}\right)\right) \\
& \rightarrow\left(\left(u \prod_{i=1}^{n} M_{i}\right) \otimes\left(\prod_{i=1}^{n} S_{i}\right)\right) A+E \bmod q .
\end{aligned}
$$

Inspired by this, we attempt to construct a new GGH15 multilinear maps based on Evasive LWR. Here's our first attempt.

First attempt

$\operatorname{KeyGen}(n, m, q)$. Generate necessary parameters.
$\operatorname{Eval}\left(M=\left(M_{1}, \ldots, M_{\ell}\right),\left(u,\left\{R_{i}\right\}_{i=1}^{\ell}\right)\right) . \quad$ - Set S_{i} as

$$
\widehat{S}_{i}= \begin{cases}u\left(M_{1} \otimes R_{1}\right), & \text { when } i=1, \\ M_{i} \otimes R_{i}, & \text { when } i>1 .\end{cases}
$$

- Output encrypted result

$$
\left\{\left\lfloor u\left(M_{1} \otimes R_{1}\right) A_{1}\right\rfloor_{p}\right\},\left\{\left\lfloor A_{i-1}^{-1}\left(M_{i} \otimes R_{i}\right) A_{i}\right\rfloor_{p}\right\}_{i=1}^{\ell} .
$$

Remark 1. $M_{i} \otimes R_{i}$ is not a random matrix, hence it does not satisfy the Evasive LWR assumption.

Second attempt

$\operatorname{KeyGen}(n, m, q)$. Generate necessary parameters.
$\operatorname{Eval}\left(M=\left(M_{1}, \ldots, M_{\ell}\right),\left(u,\left\{R_{i}\right\}_{i=1}^{\ell}\right)\right)$. \bullet Set S_{i} as

$$
\widehat{S}_{i}= \begin{cases}u\left(M_{1} \odot R_{1}\right), & \text { when } i=1 \\ M_{i} \odot R_{i}, & \text { when } i>1\end{cases}
$$

- Output encrypted result

$$
\left\{\left\lfloor u\left(M_{1} \odot R_{1}\right) A_{1}\right\rfloor_{p}\right\},\left\{\left\lfloor A_{i-1}^{-1}\left(M_{i} \odot R_{i}\right) A_{i}\right\rfloor_{p}\right\}_{i=1}^{\ell} .
$$

Remark 2. Although $M_{i} \odot R_{i}$ meets the randomness requirement, its computational cost is slightly high. Therefore, considering increasing the randomness of M_{i} to reduce computational expenses. And we don't get

$$
\begin{aligned}
A,\left(\left\{\left\lfloor u\left(M_{1} \odot R_{1}\right) A_{1}\right\rfloor_{p}\right\}, \ldots,\right. & \left.\left\{\left\lfloor A_{i-1}^{-1}\left(M_{i} \odot R_{i}\right) A_{i}\right\rfloor_{p}\right\}_{i=1}^{\ell}\right) \\
& \rightarrow\left\lfloor\left(\left(u \prod_{i=1}^{n} M_{i}\right) \odot\left(\prod_{i=1}^{n} R_{i}\right)\right) A\right\rfloor_{p}
\end{aligned}
$$

Third Attempt

We refer to the following scheme as cHPRF.
$\operatorname{KeyGen}(n, m, q)$. Generate necessary parameters.
PRF.Enc $\left(\left\{M_{i}\right\}_{i=1}^{\ell}, u, k e y, n, m, q\right)$.

$$
C_{i}=\operatorname{PRF}\left(\left\{M_{i}\right\}_{i=1}^{\ell}, \text { key }\right)
$$

$\operatorname{Eval}\left(C=\left(C_{1}, \ldots, C_{\ell}\right)\right) . \quad$ Set S_{i} as

$$
\widehat{S}_{i}= \begin{cases}u\left(C_{1}\right), & \text { when } i=1 \\ C_{i}, & \text { when } i>1\end{cases}
$$

- Output encrypted result

$$
\left\{\left\lfloor u\left(C_{1}\right) A_{1}\right\rfloor_{p}\right\},\left\{\left\lfloor A_{i-1}^{-1}\left(C_{i}\right) A_{i}\right\rfloor_{p}\right\}_{i=2}^{\ell}
$$

Remark 3. Using a pseudorandom function improves the randomness of M_{i} while also reducing computational overhead.

Conceptual Ideal Obfuscation Scheme Next, present a conceptual split FHE scheme (ideal obfuscation scheme), which is based on three main techniques: (i) Using multilinear maps to construct FHE scheme, (ii) short decryption gadgets for linear homomorphic encryption schemes (such as the scheme in this paper, based on the LWR.DV problem), and (iii) encrypted hash functions (used for a part of the linear homomorphic encryption scheme). The security of this scheme can be based on a new conjecture regarding the interaction of these primitives, which we believe is a natural strengthening of circular security.

We aim to instantiate the underlying primitives randomly rather than nonrandomly, as non-random instantiations of primitives are insecure, and thus would lead to an insecure split FHE scheme. For randomly instantiated primitives, we can speculate about their security.

Security Proof. In order to prove the security of our scheme, demonstrate the existence of an oracle that interacts securely between the underlying primitives and a randomly instantiated scheme. This oracle is defined as $\mathcal{O}_{(\widehat{p k}, \overline{p k}, q, \tilde{q})}(x)$: given a string $x \in\{0,1\}^{*}$ and a ciphertext taken from the ciphertext space of the linear homomorphic scheme,

$$
c \leftarrow \mathcal{C}
$$

it then calculates

$$
\tilde{c} \leftarrow \operatorname{Eval}(\widehat{p k},-\lfloor\overline{\operatorname{DEC}}(\cdot, c) / \tilde{q}\rfloor \cdot \tilde{q}, \widehat{c})
$$

and returns (c, \tilde{c}). In this paper, we use this oracle for the security proof of the scheme.

Theorem (Informal). Assuming the sub-exponential hardness of the LWR problem and the Evasive LWR problem, there exists a sub-exponentially secure split fully homomorphic encryption scheme. Consequently, there exists an ideal obfuscation that can be applied to any circuit.

1.2 Technical Overview

Next, provide a generalized description of the method for constructing split FHE, and readers can refer to relevant literature [BDGM22,BDGM20,BDGM19] for a more detailed description.

Split FHE In 2019, Brakerski et al. [BDGM19] introduced the concept of a split FHE scheme. Asymptotically, they aimed to design an efficient FHE scheme by eliminating linear noise in previous Evasive LWR-based FHE schemes. More specifically, given an FHE ciphertext c and an Evasive LWR key $\left(s_{1}, \ldots, s_{n}\right)$, we can denote the decryption operator as a linear function $\mathcal{L}_{c}(\cdot)$, that is

$$
\mathcal{L}_{c}\left(s_{1}, \ldots, s_{n}\right)=\mathrm{ECC}(m)+e
$$

Here, e is a noise term bounded by B, and ECC is the encoding operator for the text. Then, this paper introduces the construction of a linear homomorphic
scheme using LWR.DV, and encrypts the key $\left(s_{1}, \ldots, s_{n}\right)$ with this homomorphic encryption scheme, allowing the compression of FHE ciphertexts through the computation of $\mathcal{L}_{c}(\cdot)$. The public key of this scheme is $\left(r \in_{R}\{0,1\}^{n}, \odot_{q}(A, l)\right)$, and it computes the encryption of a message m as

$$
c=\left\lfloor\odot_{q}(A, l u)(m+k)\right\rfloor_{p} .
$$

Here, $u=H(r)$, where $H:\{0,1\}^{n} \rightarrow \mathbb{Z}_{q}$ and $k \in_{R}\{0, \ell+1\}$. Furthermore, this scheme possesses an additional property, which refer to as split decryption. If the decryption algorithm can be divided into a private subroutine and a public subroutine, then the scheme has split decryption:

- The private process takes a ciphertext c and key $\left(\odot_{q}(A, l u), T_{s k}\right)$ as input, outputs $\tilde{m}=\operatorname{LWRInvert}\left(T_{s k}, \odot_{q}(A, l u), c\right)$. For each component \tilde{m}_{i} of \tilde{m},

$$
\begin{cases}\tilde{k}_{i}=0, & \text { if } \tilde{m}_{i} \in\{0,1\} \\ \tilde{k}_{i}=\tilde{m}_{i}, & \text { if } \tilde{m}_{i} \in\{(\ell+1), \ldots, n(\ell+1)\} \\ \tilde{k}_{i}=\tilde{m}_{i}-1, & \text { if } \tilde{m}_{i} \notin\{0,1,(\ell+1), \ldots, n(\ell+1)\}\end{cases}
$$

It returns the decryption primer $\rho=\left(s k, \tilde{k}=\left(\tilde{k}_{i}\right)_{i \in\{1, \ldots, \ell\}}\right)$.

- The public process takes the ciphertext c and decryption primer ρ as inputs, outputs $\tilde{m}=\operatorname{LWRInvert}\left(T_{s k}, \odot_{q}(A, l u), c\right)$, decrypts $m^{\prime}=\tilde{m}-\tilde{k}$.

In summary, m can be fully recovered by passing a fixed-size decryption primer, especially independent of the norm of m. As we will discuss later, this property will be the main feature in constructing universal obfuscation.

FHE scheme and sFHE scheme based on multilinear maps Because Evasive LWR itself possesses certain homomorphic properties, namely

$$
\left\lfloor A_{i-1}^{-1}\left(C_{i}^{(1)}\right) A_{i}\right\rfloor_{p}+\left\lfloor A_{i-1}^{-1}\left(C_{i}^{(2)}\right) A_{i}\right\rfloor_{p} \approx\left\lfloor A_{i-1}^{-1}\left(C_{i}^{(1)}+C_{i}^{(2)}\right) A_{i}\right\rfloor_{p},
$$

and

$$
\left\lfloor A_{i-1}^{-1}\left(C_{i}\right) A_{i}\right\rfloor_{p} \cdot \frac{q}{p}\left\lfloor A_{i}^{-1}\left(C_{i+1}\right) A_{i+1}\right\rfloor_{p} \approx\left\lfloor A_{i-1}^{-1}\left(C_{i} C_{i+1}\right) A_{i+1}\right\rfloor_{p}
$$

Thus, it is possible to obtain $C_{i}^{(1)}+C_{i}^{(2)}$ and $C_{i} C_{i+1}$ using LWR gates. However, to obtain the corresponding $M_{i}^{(1)}+M_{i}^{(2)}$ and $M_{i} M_{i+1}$, the PRF.Enc function must also possess homomorphic and decryptable properties, which is not a feature of ordinary pseudorandom functions.

The Security of Split FHE We now discuss the security of the split FHE scheme. Our primary concern is ensuring that the decryption primer does not carry any information about the plaintext; otherwise, the simplicity of the split encryption process and straightforward output of keys in every scheme would be moot. We propose a more profound indistinguishability definition, meaning
that for all plaintext pairs $\left(m_{0}, m_{1}\right)$ and any set of circuits $\left(C_{1}, \ldots, C_{\beta}\right)$, we have $C_{i}\left(m_{0}\right)=C_{i}\left(m_{1}\right)$. Even if an adversary knows the decryption primer ρ_{i}, they cannot distinguish between the encryptions of $\left(m_{0}, m_{1}\right)$ as $\left(c_{0}, c_{1}\right)$. The condition $C_{i}\left(m_{0}\right)=C_{i}\left(m_{1}\right)$ eliminates some other attacks, where the adversary only needs to check the obfuscator's output. Here, $\beta=\beta(\lambda)$ is a priori bounded polynomial of a security parameter.

Theorem (Informal). Assuming the sub-exponential hardness of the LWR problem and the Evasive LWR problem hold, there exists a split FHE scheme secure under the \mathcal{O}-hybrid security model.

From Split FHE Scheme to Ideal Obfuscation Utilize the split FHE scheme presented in this paper and PrO Model [JLLW23] to construct ideal obfuscation. Building on the work of Lin et al. [Lin17], we achieve an obfuscated circuit C with input domain $\{0,1\}^{\eta}$ whose length does not exceed $\operatorname{poly}(\lambda,|C|) \cdot 2 \eta \cdot(1-\varepsilon)$, where $\varepsilon>0$. This implies that split FHE signifies the existence of an obfuscator with non-trivial efficiency (for circuits with polynomialsize input domains).

2 Preliminary

We define a function $\operatorname{negl}(\cdot)$, which is an infinitesimal of any polynomial function poly, and we refer to it as "negligible". Given a set \mathcal{S}, $s \in_{R} \mathcal{S}$ means randomly selecting an element s from the set \mathcal{S}. When an algorithm can be computed within a polynomial function poly, we say that this algorithm is "computable in polynomial time".

Lemma 1 ([AJLA ${ }^{+}$12], Smudging). Let $B_{1}=B_{1}(n), B_{2}=B_{2}(n)$ be positive integers, and $e_{1} \in\left[B_{1}\right]$. Let $e_{2} \in_{R}\left[B_{2}\right]$. If $B_{1} / B_{2}=\operatorname{negl}(n)$, then the distribution of e_{2} is computationally indistinguishable from the distribution of $e_{2}+e_{1}$.

Definition 1 ([GSM18], page 32, Section 4.1.6). We say that $\varepsilon(n)$ is negligible associated with n if $\varepsilon(n)$ can be expressed as

$$
\varepsilon(n)=\frac{1}{O\left(e^{n}\right)}
$$

and the notation $O(n)$ represents a quantity that grows at most as fast as n approaches infinity.

2.1 LWR Trapdoor Algorithm

This is the LWR trapdoor algorithm in[AKPW13],
$\operatorname{GenTrap}(\boldsymbol{n}, \boldsymbol{m}, \boldsymbol{q}):$ A method that outputs $A \in \mathbb{Z}_{q}^{m \times n}$ and a trapdoor T in polynomial time, where the input to this algorithm is an integer n, q, and a sufficiently large integer m. The matrix A is uniformly distributed in $\mathbb{Z}_{q}^{m \times n}$.
$\operatorname{Invert}(\boldsymbol{T}, \boldsymbol{A}, \boldsymbol{c}):$ A method that outputs $s \in \mathbb{Z}_{q}^{n}$ from $c=A s+e \in \mathbb{Z}_{q}^{m}$ in polynomial time, with $\|e\|_{2} \leq \gamma$. The input to this algorithm is the output A and trapdoor T from the $\operatorname{GenTrap}(\boldsymbol{n}, \boldsymbol{m}, \boldsymbol{q})$ algorithm.
LWRInvert $(\boldsymbol{T}, \boldsymbol{A}, \boldsymbol{c})$: A method that outputs $s \in \mathbb{Z}_{q}^{n}$ from $c=\lfloor A s\rfloor_{p} \in \mathbb{Z}_{p}^{m}$ in polynomial time. The input to this algorithm is the output A and trapdoor T from the $\operatorname{GenTrap}(\boldsymbol{n}, \boldsymbol{m}, \boldsymbol{q})$ algorithm.

Lemma 2 (Existence Lemma of LWR Trapdoor Algorithm, [AKPW13]). The LWR trapdoor algorithm definitely exists, that is, for integers n, q, sufficiently large integer $m \geq O(n \log q)$, and sufficiently large integer $p \geq O(\sqrt{n \log q})$, there exist algorithms $\operatorname{GenTrap}(\boldsymbol{n}, \boldsymbol{m}, \boldsymbol{q})$ and $\operatorname{LWRInvert(~} \boldsymbol{T}, \boldsymbol{A}, \boldsymbol{c})$ that output results in polynomial time.

2.2 Variants of LWR and Their Applications

Lemma 3. If $a \in_{R} \mathbb{Z}_{q}$, then for $r \in_{R} \mathbb{Z}_{p}$, $a^{r} \bmod q$ is indistinguishable from $u \in_{R} \mathbb{Z}_{q}$.

Proof. According to Lemma 6, it is easy to prove.
Lemma 4. If $A \in_{R} \mathbb{Z}_{q}^{m \times n}$, then $\odot_{q}(A, r) \in_{R} \mathbb{Z}_{q}^{m \times n}$. Where the operation $\odot_{q}(A, r)$ is defined as follows:
$\odot_{q}(A, r)=\left\{\begin{array}{l}\tilde{A}\left(a_{i j} \in A, a_{i j}^{r} \in \tilde{A}, i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\}\right) \bmod q, \text { for } r \in \mathbb{Z}_{q}, \\ \tilde{A}\left(a_{i j} \in A, a_{i j}^{r_{i j}} \in \tilde{A}, i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\}\right) \bmod q, \text { for } r \in \mathbb{Z}_{q}^{m \times n} .\end{array}\right.$
Proof. From Lemma 3, if $a_{i j} \in_{R} \mathbb{Z}_{q}$, then $a_{i j}^{r} \bmod q \in_{R} \mathbb{Z}_{q}\left(\right.$ or $a_{i j}^{r_{i j}} \bmod q \in_{R}$ $\left.\mathbb{Z}_{q}\right)$. Therefore, $\odot_{q}(A, r) \in_{R} \mathbb{Z}_{q}^{m \times n}$.

Lemma 5. If $\left(A,\lfloor A s\rfloor_{p}\right)$ and $\left(A,\lfloor u\rfloor_{p}\right)$ are indistinguishable, then for $r \in_{R} \mathbb{Z}_{p}$ (or $\left.r \in \mathbb{Z}_{q}^{m \times n}\right),\left(\odot_{q}(A, r),\left\lfloor\odot_{q}(A, r) \cdot s\right\rfloor_{p}\right)$ and $\left(\odot_{q}(A, r),\lfloor u\rfloor_{p}\right)$ are also indistinguishable.

Proof. According to the form of LWR, when $A \in \mathbb{Z}_{q}^{m \times n}$, we have $\tilde{A}=\odot_{q}(A, r) \in$ $\mathbb{Z}_{q}^{m \times n}$. Therefore, $\left(\tilde{A},\lfloor\tilde{A} s\rfloor_{p}\right)$ and $\left(\tilde{A},\lfloor u\rfloor_{p}\right)$ still maintain indistinguishability.

Corollary 1. If there exists an algorithm \mathcal{O} to solve the $L W R$ problem, then there also exists an algorithm \mathcal{O}^{\prime} to solve the Variant LWR problem, and vice versa.

Proof. According to Lemma 4, the sufficiency of the proposition is established. Now, to prove the necessity, since f is a bijection, there exists f^{-1} such that $f^{-1} \cdot f=f \cdot f^{-1}=I d$. It can be easily shown that f^{-1} is also a bijection. Hence, when $\odot_{q}(A, r) \in_{R} \mathbb{Z}_{q}^{m \times n}$, it implies $A \in_{R} \mathbb{Z}_{q}^{m \times n}$, thus the necessity is proved.

Lemma 6. If $\left(A,\lfloor A s\rfloor_{p}\right)$ is indistinguishable from $\left(A,\lfloor u\rfloor_{p}\right)$, then for randomly chosen $b \in_{R} \mathbb{Z}_{p}$ and $a \in_{R} \mathbb{Z}_{p}^{m \times n}$, we have

$$
\left(\odot_{q}(A, a),\lfloor u\rfloor_{p}\right) \approx_{c}\left(\odot_{q}(A, a),\left\lfloor\odot_{q}(A, a b) \cdot s\right\rfloor_{p}\right)
$$

Proof.

$$
\begin{aligned}
\left(\odot_{q}(A, a),\lfloor u\rfloor_{p}\right) & \approx_{c}\left(\odot_{q}(A, a b),\lfloor u\rfloor_{p}\right) \\
& \approx_{c}\left(\odot_{q}(A, a b),\left\lfloor\odot_{q}(A, a b) \cdot s\right\rfloor_{p}\right) \\
& \approx_{c}\left(\odot_{q}(A, a),\left\lfloor\odot_{q}(A, a b) \cdot s\right\rfloor_{p}\right)
\end{aligned}
$$

Corollary 2. If $\left(A,\lfloor A s\rfloor_{p}\right)$ is indistinguishable from $\left(A,\lfloor u\rfloor_{p}\right)$, $s \in \mathbb{Z}_{3}^{n}$, then for randomly chosen $b \in_{R} \mathbb{Z}_{p}$ and $a \in_{R} \mathbb{Z}_{p}^{m \times n}$, we have

$$
\left(\odot_{q}(A, a),\lfloor u\rfloor_{p}\right) \approx_{c}\left(\odot_{q}(A, a),\left\lfloor\odot_{q}(A, a b) \cdot s\right\rfloor_{p}\right)
$$

Proof. Let $\overline{\mathcal{S}}_{q, 3}:=\mathcal{S}_{q} \times \mathcal{S}_{3}$, and for all $i \in \mathbb{Z}_{q}$, we have

$$
\operatorname{Pr}(i):=\frac{C N_{q}(i)}{q^{2}}=\sum_{\mathfrak{P}_{1}, \mathfrak{P}_{2} \in \overline{\mathcal{S}}_{q, 3}} \frac{2}{q^{2}}
$$

Similarly, we can prove that

$$
\frac{1}{q^{2}} \leq \operatorname{Pr}(i) \leq \frac{C N_{q}(\mathfrak{A})}{q^{2}}
$$

thus, by utilizing fixed-point theory and Lemma 6, we obtain the conclusion.

2.3 -Graded Encoding System and composite homomorphic pseudorandom function

Definition 2 (\aleph-GES, [GGH13a]). Let $\aleph \in \mathbb{N}^{\tau}$ be a $\tau>0$ dimensional natural number vector. An $\mathfrak{\aleph}-G E S$ consists of $a \operatorname{ring} \mathcal{R}$ and a set $\mathcal{S}=\left\{S_{v}^{(\alpha)} \subset\right.$ $\left.\{0,1\}^{*}: \alpha \in \mathcal{R}, v \leq \aleph\right\}$ (each element of this set $S_{v}^{(\alpha)}$ is also a set, representing the set of all order-v encodings for the ring element α) with the following properties:

1. For all v, the sets $\left\{S_{v}^{(\alpha)}: \alpha \in \mathcal{R}\right\}$ are disjoint, thus $S_{v}=\bigcup_{\alpha} S_{v}^{(\alpha)}$.
2. There exist a binary operator ' + ' and a unary operator '-', such that for all $\alpha_{1}, \alpha_{2} \in \mathcal{R}, v \leq \aleph, u_{1} \in S_{v}^{\left(\alpha_{1}\right)}$, and $u_{2} \in S_{v}^{\left(\alpha_{2}\right)}$, the following operations hold:

$$
u_{1}+u_{2} \in S_{v}^{\left(\alpha_{1}+\alpha_{2}\right)}, \quad \text { and } \quad-u_{1} \in S_{v}^{\left(-\alpha_{1}\right)}
$$

Here, $\alpha_{1}+\alpha_{2}$ and $-\alpha_{1}$ denote addition and negation in the ring \mathcal{R}.
3. There exists a binary operator ' \times ', such that for any $\alpha_{1}, \alpha_{2} \in \mathcal{R}, v_{1}+v_{2} \leq \aleph$, $u_{1} \in S_{v_{1}}^{\left(\alpha_{1}\right)}$, and $u_{2} \in S_{v_{2}}^{\left(\alpha_{2}\right)}$, the following operation holds:

$$
u_{1} \times u_{2} \in S_{v_{1}+v_{2}}^{\left(\alpha_{1} \cdot \alpha_{2}\right)}
$$

Here, $\alpha_{1} \cdot \alpha_{2}$ represents multiplication in the ring \mathcal{R}, and $v_{1}+v_{2}$ represents addition in \mathbb{N}^{τ}.

Definition 3. Define homomorphic pseudorandom functions F_{1} and F_{2} such that:

1. $F_{1}(x, k e y) \rightarrow C_{i}, F_{1}(0, k e y) \rightarrow 0, F_{1}\left(x_{1}, k e y\right)+F_{1}\left(x_{2}, k e y\right)=F_{1}\left(x_{1}+\right.$ x_{2}, key $)$, and $F_{1}\left(x_{1}, k e y\right) F_{1}\left(x_{2}, k e y\right)=F_{1}\left(x_{1} x_{2}, k e y\right)$.
2. $F_{2}\left(C=\left(C_{1}, \ldots, C_{\ell}\right), k e y\right)=F_{2}\left(F_{1}\left(C_{1}\right.\right.$, key $), \ldots, F_{1}\left(C_{\ell}\right.$, key $\left.)\right) \rightarrow y$, where ℓ can be any value less than \aleph, and F_{2} satisfies:
$-F_{2}\left(C_{1}, k e y\right)+F_{2}\left(C_{2}, k e y\right)=F_{2}\left(C_{1}+C_{2}, k e y\right)$,
$-F_{2}(0, k e y)=0$.

2.4 Homomorphic Encryption and Ideal Obfuscation

Homomorphic encryption is defined as follows:
Definition 4 ([Gen09a]). A homomorphic encryption scheme consists of the following components:

- KeyGen(n): Given a security parameter n, the key generation part returns a key pair ($s k, p k$).
- Enc(pk, m): Given the public key $p k$ and the plaintext message m, the encryption part returns the encrypted ciphertext c.
$-\operatorname{Eval}\left(\mathbf{p k}, C,\left(c_{1}, \ldots, c_{\ell}\right)\right):$ Given the public key pk, a circuit C of depth ℓ, and a vector of ciphertexts $\left(c_{1}, \ldots, c_{\ell}\right)$, the homomorphic operation part returns the ciphertext after homomorphic computation.
- Dec(sk, c): Given the private key sk and the ciphertext c, the decryption part returns the decrypted plaintext message m.

Definition 5 (Correctness). Let $n \in \mathbb{N}$, and C be a circuit of depth ℓ. For an encryption scheme (KeyGen, Enc, Eval, Dec) with inputs $\left(m_{1}, \ldots, m_{\ell}\right)$, key pair (pk, sk) generated by $\operatorname{KeyGen}(n)$, and ciphertexts c_{i} generated by $\operatorname{Enc}\left(\mathrm{pk}, m_{i}\right)$ according to the scheme, we have

$$
\operatorname{Pr}\left[\operatorname{Dec}\left(\mathrm{sk}, \operatorname{Eval}\left(\mathrm{pk}, C,\left(c_{1}, \ldots, c_{\ell}\right)\right)\right)=C\left(c_{1}, \ldots, c_{\ell}\right)\right]=1
$$

Refer to such an encryption scheme as a homomorphic encryption scheme. We desire that the length of ciphertexts in the scheme does not increase due to the depth ℓ of circuit C, a property referred to as "compactness" (distinct from the concept of "compactness" in functional analysis).

Definition 6 (Compactness). Let $n \in \mathbb{N}, C$ be a circuit of depth ℓ, and poly (\cdot) be a polynomial function. For a homomorphic encryption scheme (KeyGen, Enc, Eval, Dec) with inputs $\left(m_{1}, \ldots, m_{\ell}\right)$, key pair $(p k, s k)$ generated by $\operatorname{KeyGen}(n)$, and ciphertexts c_{i} generated by $\operatorname{Enc}\left(p k, m_{i}\right)$, if

$$
\left|\operatorname{Eval}\left(\mathrm{pk}, C,\left(c_{1}, \ldots, c_{\ell}\right)\right)\right|=\operatorname{poly}(n) \cdot\left|C\left(m_{1}, \ldots, m_{\ell}\right)\right|,
$$

then one called the homomorphic encryption scheme compact. Define a weak security notion (implied by standard semantic security [38]) for convenience.

Definition 7 (Semantic Security). Let $n \in \mathbb{N}$, C be a circuit of depth ℓ, and negl(•) be a negligible function. For a homomorphic encryption scheme (KeyGen, Enc, Eval, Dec) with inputs $\left(m_{0}, m_{1}\right)$, key pair ($p k, s k$) generated by $\operatorname{KeyGen}(n)$, ciphertexts c_{i} generated by $\operatorname{Enc}\left(p k, m_{i}\right)$, and all polynomial-time distinguishers \mathcal{D}, if

$$
\left|\operatorname{Pr}\left[1=\mathcal{D}\left(p k, \operatorname{Enc}\left(p k, m_{0}\right)\right)\right]-\operatorname{Pr}\left[1=\mathcal{D}\left(p k, \operatorname{Enc}\left(p k, m_{1}\right)\right)\right]\right|=\operatorname{negl}(n)
$$

then one called the homomorphic encryption scheme semantically secure.
Definition 8 (ϵ-Indistinguishability). Consider two distributions $\mathcal{X}=\left\{\mathcal{X}_{\lambda}\right\}_{\lambda \in \mathbb{N}}$ and $\mathcal{Y}=\left\{\mathcal{Y}_{\lambda}\right\}_{\lambda \in \mathbb{N}}$, and $\epsilon: \mathbb{N} \rightarrow[0,1]$. If for every sufficiently large $\lambda \in \mathbb{N}$, it holds that

$$
\left|\operatorname{Pr}_{x \leftarrow \mathcal{X}_{\lambda}}\left[\mathcal{A}\left(1^{\lambda}, x\right)=1\right]-\operatorname{Pr}_{y \leftarrow \mathcal{Y}_{\lambda}}\left[\mathcal{A}\left(1^{\lambda}, y\right)=1\right]\right| \leq \epsilon(\lambda),
$$

one said that the two distributions \mathcal{X} and \mathcal{Y} are indistinguishable. Here, \mathcal{A} is a probabilistic polynomial-time adversary. Specifically, when $\epsilon(\lambda)=\operatorname{negl}(\lambda)$, one called \mathcal{X} and \mathcal{Y} indistinguishable with respect to ϵ; when $\epsilon(\lambda)=2^{-\lambda^{c}}$, one called \mathcal{X} and \mathcal{Y} sub-exponentially indistinguishable.

Definition 9 (Circuit Obfuscation). A circuit obfuscation scheme under the ideal model with an oracle \mathcal{O} is said to be efficient $\operatorname{Obf}^{\mathcal{O}}(\lambda, C)$ if, for a given input circuit C, it outputs an obfuscated circuit \widehat{C}^{\bullet}. The scheme is required to be correct, meaning that for all $\lambda \in \mathbb{N}$, where the circuit $C:\{0,1\}^{D} \rightarrow\{0,1\}^{*}$ and input $x \in\{0,1\}^{D}$, the following relation holds:

$$
\operatorname{Pr}\left[\widehat{C}^{\bullet} \leftarrow \operatorname{Obf}^{\mathcal{O}}(\lambda, C): \widehat{C}^{\mathcal{O}}=C(x)\right]=1
$$

Definition 10 (Ideal Obfuscation). A circuit obfuscation scheme $\operatorname{Obf}^{\mathcal{O}}(\lambda, C)$ is said to be ideal if there exists an efficient simulator $\mathcal{S}=\left(\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}\right)$ such that for all adversaries $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$, the adversary's advantage is negligible, i.e.,

$$
\operatorname{Pr}\left[\begin{array}{c}
C \leftarrow \mathcal{A}_{1}^{\mathcal{O}}(\lambda) \\
\widehat{C}^{\bullet} \leftarrow \operatorname{Obf}^{\mathcal{O}}(\lambda, C)
\end{array}: \mathcal{A}_{2}^{\mathcal{O}}\left(\widehat{C}^{\bullet}\right)=1\right]-\operatorname{Pr}\left[\begin{array}{c}
C \leftarrow \mathcal{A}_{1}^{\mathcal{S}_{1}}(\lambda) \\
\widetilde{C}^{\bullet} \leftarrow \mathcal{S}_{2}^{C}(\lambda, D, S)
\end{array}: \mathcal{A}_{2}^{\mathcal{S}_{3}^{C}}\left(\widetilde{C}^{\bullet}\right)=1\right] .
$$

Here, $D=|x|$ is the length of the input circuit C, and $S=|C|$ is the size of the circuit C.

3 Evasive LWR and Multilinear Mapping

3.1 Evasive LWR

Definition 11 (Solution Evasive LWR). For $A_{i}, S_{i} \in \mathbb{Z}_{q}^{n \times n}, i=1, \ldots, \ell$, where A_{i}^{-1} denotes the inverse of matrix A_{i} for $i=2, \ldots, \ell$, and $u \in \mathbb{Z}_{q}^{n}$, the Solution Evasive LWR problem refers to finding $S_{i}, i=1, \ldots, \ell$, from $\left(\left\lfloor u S_{1} A_{1}\right\rfloor_{p}\right.$, $\left.\left\lfloor A_{1}^{-1} S_{2} A_{2}\right\rfloor_{p}, \ldots,\left\lfloor A_{\ell-1}^{-1} S_{\ell} A_{\ell}\right\rfloor_{p}\right)$.

Theorem 1. For $A_{i}, S_{i} \in \mathbb{Z}_{q}^{n \times n}, i=1, \ldots, \ell$, where A_{i}^{-1} denotes the inverse of $\operatorname{matrix} A_{i}$ for $i=2, \ldots, \ell$, and $u \in \mathbb{Z}_{q}^{n}$, we have

$$
\left(\left\{A_{i}\right\}_{i=1}^{\ell},\left\lfloor k S_{1} A_{1}\right\rfloor_{p},\left\{\left\lfloor A_{i-1}^{-1} S_{i} A_{i}\right\rfloor_{p}\right\}_{i=2}^{\ell}\right) \approx_{C}\left(\left\{A_{i}\right\}_{i=1}^{\ell},\left\lfloor u_{1}\right\rfloor_{p},\left\{\left\lfloor U_{i}\right\rfloor_{p}\right\}_{i=2}^{\ell}\right)
$$

as well as

$$
\left(A_{1},\left\lfloor u\left(\prod_{i=1}^{\ell} S_{1}\right) A_{1}\right\rfloor_{p}\right) \approx_{C}\left(A_{1},\left\lfloor u_{1} \prod_{i=1}^{\ell} U_{i}\right\rfloor_{p}\right)
$$

Proof. First, let

$$
O(n)=\frac{n \log _{2} n \ln p}{\sqrt{5}}
$$

On one hand, according to Theorem 7 in Appendix, it is known that

$$
\left|\operatorname{Pr}\left(\left\lfloor b_{1}\right\rfloor_{p}=\left\lfloor u S_{1} A_{1}\right\rfloor_{p}\right)-\operatorname{Pr}\left(\left\lfloor u_{1}\right\rfloor_{p}\right)\right| \leq 2 \cdot e^{-O(n)}+e^{-2 O(n)}
$$

and

$$
\left|\operatorname{Pr}\left(\left\lfloor B_{i}\right\rfloor_{p}=\left\lfloor A_{i-1}^{-1} S_{i} A_{i}\right\rfloor_{p}\right)-\operatorname{Pr}\left(\left\lfloor U_{i}\right\rfloor_{p}\right)\right| \leq 2 \cdot e^{-O(n)}+e^{-2 O(n)}
$$

thus we can obtain

$$
\begin{aligned}
& \left(\left\{A_{i}\right\}_{i=1}^{\ell},\left\lfloor u S_{1} A_{1}\right\rfloor_{p},\left\{\left\lfloor A_{i-1}^{-1} S_{i} A_{i}{ }_{p}\right\}_{i=2}^{\ell}\right)\right. \\
& \approx_{C}\left(\left\{A_{i}\right\}_{i=1}^{\ell},\left\lfloor u_{1}\right\rfloor_{p},\left\{\left\lfloor A_{i-1}^{-1} S_{i} A_{i}\right\rfloor_{p}\right\}_{i=2}^{\ell}\right) \\
& \left.\approx_{C}\left(\left\{A_{i}\right\}_{i=1}^{\ell},\left\lfloor u_{1}\right\rfloor_{p},\left\lfloor U_{2}\right\rfloor_{p},\left\{\left\lfloor A_{i-1}^{-1} S_{i} A_{i}\right\rfloor\right\rfloor_{p}\right\}_{i=3}^{\ell}\right) \\
& \vdots \\
& \approx_{C}\left(\left\{A_{i}\right\}_{i=1}^{\ell},\left\lfloor u_{1}\right\rfloor_{p},\left\{\left\lfloor U_{i}\right\rfloor_{p}\right\}_{i=2}^{\ell}\right) .
\end{aligned}
$$

On the other hand, using the same principle, it can be derived that

$$
\left|\operatorname{Pr}\left(\left(A_{1},\left\lfloor u\left(\prod_{i=1}^{\ell} S_{i}\right) A_{1}\right\rfloor_{p}\right)\right)-\operatorname{Pr}\left(\left(A_{1},\left\lfloor u_{1} \prod_{i=1}^{\ell} U_{i}\right\rfloor_{p}\right)\right)\right| \leq \ell^{\prime} \cdot e^{-O(n)}
$$

$\ell^{\prime} \in(\ell, 2 \ell)$.

Definition 12 (Evasive LWR Decision). For $A_{i}, S_{i} \in \mathbb{Z}_{q}^{n \times n}, i=1, \ldots, \ell$, where A_{i}^{-1} denotes the inverse of matrix A_{i} for $i=2, \ldots, \ell$, and $u \in \mathbb{Z}_{q}^{n}$, the Evasive LWR decision problem refers to distinguishing, in polynomial time, between the distributions

$$
\left(\left\lfloor b_{1}=u S_{1} A_{1}\right\rfloor_{p},\left\lfloor B_{2}=A_{1}^{-1} S_{2} A_{2}\right\rfloor_{p}, \ldots,\left\lfloor B_{\ell}=A_{\ell-1}^{-1} S_{\ell} A_{\ell}\right\rfloor_{p}\right)
$$

and

$$
\left(\left\lfloor u_{1}\right\rfloor_{p},\left\lfloor U_{2}\right\rfloor_{p}, \ldots,\left\lfloor U_{\ell}\right\rfloor_{p}\right)
$$

as well as between the distributions

$$
\left(A_{1},\left\lfloor u\left(\prod_{i=1}^{\ell} S_{i}\right) A_{1}\right\rfloor_{p}\right) \text { and }\left(A_{1},\left\lfloor u_{1} \prod_{i=1}^{\ell} U_{i}\right\rfloor_{p}\right) .
$$

3.2 Evasive LWR-base Multilinear Mapping

```
Algorithm 1 Composite homomorphic pseudorandom function
PRF.KeyGen \((n, m, q)\). Generate necessary parameters.
PRF.Enc \(\left(\left\{M_{i}\right\}_{i=1}^{\ell}\right.\), key, \(\left.n, m, q\right)\).
```

$$
C_{i}=P R F\left(\left\{M_{i}\right\}_{i=1}^{\ell}, \text { key }\right) .
$$

PRF.Eval $\left(C=\left(C_{1}, \ldots, C_{\ell}\right)\right)$. Set S_{i} as

$$
\widehat{S}_{i}= \begin{cases}u\left(C_{1}\right), & \text { if } i=1, \\ C_{i}, & \text { if } i>1\end{cases}
$$

- Output encrypted result

$$
\left\{\left\lfloor u\left(C_{1}\right) A_{1}\right\rfloor_{p}\right\},\left\{A_{i-1}^{-1}\left\lfloor\left(C_{i}\right) A_{i}\right\rfloor_{p}\right\}_{i=2}^{\ell} .
$$

Theorem 2. Composite homomorphic pseudorandom function is a type of graded encoding system.

Proof. A usable asymmetric graded encoding system comprises the following effective algorithms: Instance Generation, Ring Element Sampling, Encoding, Addition and Multiplication Encodings, Zero Testing, and Extraction, denoted as $\mathcal{G E S}=$ (InstGen, samp, enc, add, neg, mul, isZero, ext).

Instance Generation. Generates keys for ciphertext fully homomorphic pseudorandom functions, as well as algorithms like Enc and Eval. Security parameters n, and noise ε such that $\|\varepsilon\| \leq \mathrm{B}$.

Encoding. For input plaintext to be encrypted $\left\{m_{i}\right\}_{i=1}^{\ell}, \ell \leq \aleph$, use the fully homomorphic encryption algorithm $\operatorname{Enc}\left(m_{i}\right.$, key $)$ to obtain ciphertext $\left\{c_{i}\right\}_{i=1}^{\ell}$.

Addition and Multiplication Encodings. According to the definition of fully homomorphic encryption schemes or ciphertext fully homomorphic pseudorandom functions: $c_{a}+c_{b}=\operatorname{Enc}\left(m_{a}+m_{b}, k e y\right), c_{a} \cdot c_{b}=\operatorname{Enc}\left(m_{a} \cdot m_{b}, k e y\right)$, $-c_{a}=\operatorname{Enc}\left(-m_{a}\right.$, key $)$.

Furthermore, for $\left\{m_{i}\right\}_{i=1}^{\ell}$, we have that

$$
\sum_{i=1}^{\aleph} c_{i}=\operatorname{Enc}\left(\sum_{i=1}^{\aleph} m_{i}, k e y\right)+\sum_{i=1}^{\aleph} \varepsilon_{i},\left\|\sum_{i=1}^{\aleph} \varepsilon_{i}\right\| \leq \mathrm{B} .
$$

Additionally, we know that

$$
\prod_{i=1}^{\aleph} c_{i}=\operatorname{Enc}\left(\prod_{i=1}^{\aleph} m_{i}, k e y\right)+\Xi,\|\Xi\| \leq \mathrm{B}
$$

Zero Testing. Since $\|\operatorname{Enc}(0, k e y)\|=\left\|\operatorname{Enc}\left(m_{a}-m_{a}, k e y\right)\right\|=\| \operatorname{Enc}\left(m_{a}\right.$, key $)$ $+\operatorname{Enc}\left(-m_{a}, k e y\right)\|=\| c_{a}-c_{a} \| \leq \mathrm{B}$, it's easy to prove that zero testing holds.

Extraction. For \aleph-level encodings c, c^{\prime}, we have

$$
\left\|c-c^{\prime}\right\|=\left\|E n c(m, k e y)+\varepsilon-E n c(m, k e y)-\varepsilon^{\prime}\right\| \leq \mathrm{B}
$$

4 Linear Homomorphic Encryption Scheme based on LWR Variant Problems

Scheme 2 LHE Scheme based on LWR Problem
LWR.DV.KeyGen $(\boldsymbol{n}, \boldsymbol{m}, \boldsymbol{q})$. Choose a random vector $r \in\{0,1\}^{n}$ and matrices $A, l \in_{R} \mathbb{Z}_{q}^{m \times n}$. Let $u=H(r) \in \mathbb{Z}_{q}$, output sample $\left(\odot_{q}(A, l u), T_{s k}\right) \leftarrow$ $\operatorname{GenTrap}(n, m, q)$, set $p k=\left(r, \odot_{q}(A, l)\right)$ and $s k=\left(\odot_{q}(A, l u), T_{s k}\right)$.
LWR.DV.Enc $(\boldsymbol{p} \boldsymbol{k}, \boldsymbol{s}, \boldsymbol{q}, \boldsymbol{p})$. Let $u=H(r) \in \mathbb{Z}_{q}$. For each element $a_{i j}^{l}$ of $\odot_{q}(A, l)$, compute $\left(a_{i j}^{l}\right)^{u} \bmod q=a_{i j}^{l u}$, thus obtaining $\odot_{q}(A, l u)$. For plaintext $s \in\{0,1\}^{n}$, choose a random vector $k \in\{0, \ell+1\}^{n}$, output $c=$ $\left\lfloor\odot_{q}(A, l u)(s+k)\right\rfloor_{p}$.
LWR.DV. $\operatorname{Eval}\left(\boldsymbol{p} \boldsymbol{k}, \boldsymbol{q}, \boldsymbol{p}, \boldsymbol{f},\left(\boldsymbol{c}_{\mathbf{1}}, \ldots, \boldsymbol{c}_{\ell}\right)\right)$. Input ciphertext vector $\left(c_{1}, \ldots, c_{\ell}\right)$ and linear function $g=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right) \in\{0,1\}^{\ell}$, compute

$$
c=\sum_{i=1}^{\ell} \alpha_{i} c_{i} \bmod q
$$

LWR.DV.PDec $(s k, \boldsymbol{c})$. For ciphertext $c \in \mathbb{Z}_{p}^{n}$, output $\tilde{s}=\operatorname{LWRInvert}\left(T_{s k}, \odot_{q}(A, l u), c\right)$, for each component \tilde{s}_{i} of \tilde{s},

$$
\left\{\begin{array}{l}
\tilde{k}_{i}=0, \quad \text { when } \tilde{s}_{i} \in\{0,1\} \\
\tilde{k}_{i}=\tilde{s}_{i}, \quad \text { when } \tilde{s}_{i} \in\{(\ell+1), \ldots, n(\ell+1)\} \\
\tilde{k}_{i}=\tilde{s}_{i}-1, \text { when } \tilde{s}_{i} \notin\{0,1,(\ell+1), \ldots, n(\ell+1)\}
\end{array}\right.
$$

Return $\rho=\left(s k, \tilde{k}=\left(\tilde{k}_{i}\right)_{i \in\{1, \ldots, \ell\}}\right)$.

LWR.DV.Rec $(\boldsymbol{\rho}, \boldsymbol{c})$. For ciphertext $c \in \mathbb{Z}_{p}^{n}$, output $\tilde{s}=\operatorname{LWRInvert}\left(T_{s k}, \odot_{q}(A, l u), c\right)$, decrypt $s^{\prime}=\tilde{s}-\tilde{k}$.

Simulatable Decryption Hint. For given ciphertext c and plaintext message \tilde{s} (where c and \tilde{s} are unrelated), choose $\tilde{k} \in_{R}\{0, \ell+1, \ldots, n(\ell+1)\}^{n}$, $\tilde{u} \in_{R} \mathbb{Z}_{q}$. Let $\tilde{s k} \leftarrow \operatorname{GenTrap}(n, m, q)$, compute simulated ciphertext \tilde{c} and

$$
\tilde{c}_{i}=\left|\left(c-\left\lfloor\odot_{q}(A, l \tilde{u})(\tilde{s}+\tilde{k})\right\rfloor_{p}\right)_{i}\right|, i \in\{1, \ldots, n\} .
$$

Then output $\tilde{\rho}=(\tilde{s k}, \tilde{k})$.

5 Splitting Fully Homomorphic Encryption Scheme

This chapter mainly introduces the construction of sFHE under the Random Oracle Model. Firstly, FHE is constructed based on multilinear maps. Then, sFHE is constructed by combining the interface oracle and LWR.DV-based LHE.

5.1 Defining a Special Oracle for Constructing Splitting Fully Homomorphic Schemes

Before presenting the split fully homomorphic scheme, define a special oracle. The parameters of this oracle are $(\widehat{p k}, \overline{p k}, q, \tilde{q})$, where the input is a string $x \in$ $\{0,1\}^{*}$, and it uniformly outputs encrypted values for LHE and FHE. The oracle is deterministic and accessible to all parties, so when given the same input x, the oracle always outputs the same pair of ciphertexts. The formal definition of this oracle is as follows.

Definition 13 ([BDGM20]). $\mathcal{O}_{(\widehat{p k}, \overline{p k}, q, \tilde{q})}$: Given input string $x \in\{0,1\}^{*}$, outputs two ciphertexts that are uniformly distributed:

$$
\overline{\operatorname{Enc}}(\overline{p k}, s) \text { and } \widehat{\operatorname{Enc}}(\widehat{p k},-\lfloor s / \tilde{q}\rfloor \cdot \tilde{q})
$$

where $s \leftarrow \mathbb{Z}_{q}$.
The oracle $\mathcal{O}_{(\widehat{p k}, \overline{p k}, q, \tilde{q})}$ can encrypt the private key of FHE using LHE scheme, and the resulting ciphertexts follow a uniform distribution. This is because we use the decryption and multiplication algorithms DEC\&Mult in the FHE scheme to compute $\overline{\operatorname{Enc}}(\overline{p k}, s-\lfloor s / \tilde{q}\rfloor \cdot \tilde{q}+$ noise $)$, where the noise is the decryption noise of the FHE scheme. By choosing appropriate parameters \tilde{q}, we can achieve

$$
\begin{aligned}
\overline{\operatorname{Enc}}(\overline{p k}, s-\lfloor s / \tilde{q}\rfloor \cdot \tilde{q}+\text { noise }) & =\overline{\operatorname{Enc}}(\overline{p k},(s \bmod \tilde{q})+\text { noise }) \\
& \approx_{s} \overline{\operatorname{Enc}}(\overline{p k},(s \bmod \tilde{q})) .
\end{aligned}
$$

Thus, one obtained ciphertexts that are statistically indistinguishable through the two encryption systems.

Description. Now, provide a formal description of our scheme. We assume the existence of the following primitives:

- FHE $=(\widehat{\text { KeyGen }}=$ PRF.KeyGen,$\widehat{\text { Enc }}=$ PRF.Enc, $\widehat{\text { Eval }}=$ PRF.Eval, $\widehat{\mathbf{D e c}}=$ PRF.Dec) with linear decryption-multiplication and noise constraint B.
$-\mathbf{L H E}=(\overline{\text { KeyGen }}, \overline{\text { Enc }}, \overline{\text { Eval }}, \overline{\text { PDec }}, \overline{\text { Rec }})$ with small decryption hints and simulatable decryption hints, then we refer to LHE as linear homomorphic encryption.

If the underlying FHE scheme is leveled out, then it will result in split FHE. Conversely, if the FHE scheme supports evaluation of unbounded circuits, then the resultant split FHE construction will also do so. The formal description of this scheme is as follows.

Scheme 3 Split Homomorphic Encryption Scheme
$\operatorname{KeyGen}(n, m, q)$. Given security parameter n, output sample $(\overline{s k}, \overline{p k}) \leftarrow$ $\overline{\operatorname{KeyGen}}(n)$. Let \mathbb{Z}_{q} be the plaintext space under LHE definition, output sample $(\widehat{s k}, \widehat{p k}) \leftarrow \widehat{\operatorname{KeyGen}}(n, m, q)$.
Let $\widehat{s k}=\left(T_{1}, \ldots, T_{n}\right) \in\{0,1\}^{n \times n}$, then return

$$
s k=\overline{s k} \text { and } p k=\left(\widehat{p k}, \overline{p k}, \bar{c}_{1}, \ldots, \bar{c}_{n}\right)
$$

where, for any $i \in[n]$, define $\bar{c}_{i} \leftarrow \overline{\operatorname{Enc}}\left(\overline{p k}, T_{i}\right)$.
$\operatorname{Enc}(\boldsymbol{p} \boldsymbol{k}, \boldsymbol{s})$. Return the ciphertext

$$
c \leftarrow \widehat{\operatorname{Enc}}(\widehat{p k}, s) .
$$

$\operatorname{Eval}\left(p \boldsymbol{k}, \boldsymbol{f},\left(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{\ell}\right)\right.$. Given a circuit \mathcal{C} of ℓ bits and ciphertexts of length k bits $\left.\left(c_{1}, \ldots, c_{\ell}\right)\right)$. For any $j \in[k], \mathcal{C}_{j}$ is the j-th component of circuit \mathcal{C}, calculate

$$
d_{j} \leftarrow \widehat{\operatorname{Eval}}\left(\widehat{p k}, C_{j},\left(c_{1}, \ldots, c_{\ell}\right)\right) .
$$

Define the linear function over \mathbb{Z}_{q} as

$$
g\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{k} \operatorname{DEC} \& \operatorname{Mult}\left(\left(x_{1}, \ldots, x_{n}\right), d_{j}, 2^{\lceil\log (\tilde{q}+(k+1) \mathrm{B})\rceil+j}\right)
$$

Compute $d \leftarrow \overline{\operatorname{Eval}}\left(\overline{p k}, g,\left(\bar{c}_{1}, \ldots, \bar{c}_{n}\right)\right)$, then query $(a, \tilde{a}) \leftarrow \mathcal{O}_{(\widehat{p k}, \overline{p k}, q, \tilde{q})}(d)$ and define the following linear function

$$
\tilde{g}\left(x_{1}, \ldots, x_{n}, x_{n+1}, x_{n+2}\right)=\operatorname{DEC} \& M u l t\left(\left(x_{1}, \ldots, x_{n}\right), \tilde{a}, 1\right)+x_{n+1}+x_{n+2} .
$$

Return

$$
c \leftarrow \overline{\operatorname{Eval}}\left(\overline{p k}, \tilde{g},\left(\bar{c}_{1}, \ldots, \bar{c}_{n}\right), d, a\right) .
$$

$\operatorname{PDec}(s k, c)$. Given an evaluable ciphertext c, return

$$
\rho \leftarrow \overline{\mathrm{PDec}}(\overline{s k}, c) .
$$

$\boldsymbol{\operatorname { R e c }}(\boldsymbol{\rho}, \boldsymbol{c})$. Given an evaluable ciphertext c, return

$$
\tilde{s} \leftarrow \overline{\operatorname{Rec}}(\rho, c),
$$

and return the binary representation of \tilde{s} without the $\lceil\log (\tilde{q}+(k+1) \mathrm{B})\rceil$ least significant bits.

Analysis: During the analysis, set parameters as needed to ensure the scheme can decrypt correctly. Subsequently, demonstrate that our choices lead to a set of satisfiable constraints. These constraints satisfy the conditions of the underlying hard problems, thus the hardness problem assumptions still hold. The following theorem establishes correctness.

Theorem 3 (Correctness of Split Homomorphic Encryption Scheme). Let $q \geq 2^{k}+2^{\lceil\log (\tilde{q}+(k+1) \mathrm{B})\rceil}$. Assuming that FHE and LHE are correct, then Scheme 3 satisfies the correctness of split homomorphism.

Proof. We rewrite

$$
\tilde{s}=\overline{\operatorname{Rec}}(\rho, c)=\overline{\operatorname{Rec}}(\overline{\operatorname{PDec}}(\overline{s k}, c), c),
$$

where $\left.c=\overline{\operatorname{Eval}}\left(\overline{p k}, \tilde{g},\left(\bar{c}_{1}, \ldots, \bar{c}_{n}\right), d, a\right)\right)$. By the correctness of the LHE scheme, we can rewrite d as

$$
\begin{aligned}
& d=\overline{\operatorname{Eval}}\left(\overline{p k}, g,\left(\bar{c}_{1}, \ldots, \bar{c}_{n}\right)\right) \\
&=\overline{\operatorname{Eval}}\left(\overline{p k}, g,\left(\overline{\operatorname{Enc}}\left(\overline{p k}, T_{1}\right), \ldots, \overline{\operatorname{Enc}}\left(\overline{p k}, T_{n}\right)\right)\right) \\
&=\overline{\operatorname{Enc}}\left(\overline{p k}, \sum_{j=1}^{k} \operatorname{DEC} \& M u l t\right. \\
&\left.\left(\left(T_{1}, \ldots, T_{n}\right), d_{j}, 2^{[\log (\tilde{q}+(k+1) \mathrm{B})\rceil+j}\right)\right) .
\end{aligned}
$$

Where

$$
d_{j}=\widehat{\operatorname{Eval}}\left(\widehat{p k}, C_{j},\left(c_{1}, \ldots, c_{\ell}\right)\right)
$$

and $c_{i}=\widehat{\operatorname{Enc}}\left(\widehat{p k}, s_{i}\right)$. Therefore, by the correctness of the FHE scheme for decryption-multiplication, we can rewrite as

$$
\begin{aligned}
d & =\overline{\operatorname{Enc}}\left(\overline{p k}, \sum_{j=1}^{k} \operatorname{DEC} \& \operatorname{Mult}\left(\left(T_{1}, \ldots, T_{n}\right), d_{j}, 2^{\lceil\log (\tilde{q}+(k+1) \mathrm{B})\rceil+j}\right)\right) \\
& =\overline{\operatorname{Enc}}(\overline{p k}, \sum_{j=1}^{k} 2^{\lceil\log (\tilde{q}+(k+1) \mathrm{B})\rceil+j} \cdot C_{j}\left(s_{1}, \cdots, s_{\ell}\right)+\underbrace{\sum_{j=1}^{k} e_{j}}_{\tilde{e}}) .
\end{aligned}
$$

Let $r \leftarrow \mathbb{Z}_{q}$ and define the oracle $\mathcal{O}_{(\widehat{p k}, \overline{p k}, q, \tilde{q})}$ such that $a=\overline{\operatorname{Enc}}(\overline{p k}, r)$ and

$$
\tilde{g}\left(x_{1}, \ldots, x_{n}, x_{n+1}, x_{n+2}\right)=\operatorname{DEC} \& M u l t\left(\left(x_{1}, \ldots, x_{n}\right), \tilde{a}, 1\right)+x_{n+1}+x_{n+2} .
$$

Where, $\tilde{a}=\widehat{\operatorname{Enc}}(\widehat{p k},-\lfloor r / \tilde{q}\rfloor \cdot \tilde{q})$. Then by the correctness of the FHE scheme, and $c=\overline{\operatorname{Enc}}(\overline{p k}, \tilde{s})$, where \tilde{s} is

$$
\begin{aligned}
\tilde{s} & =\operatorname{DEC} \& \operatorname{Mult}\left(\left(T_{1}, \ldots, T_{n}\right), \tilde{a}, 1\right)+\sum_{j=1}^{k} 2^{[\log (\tilde{q}+(k+1) \mathrm{B})\rceil+j} \cdot C_{j}\left(s_{1}, \cdots, s_{\ell}\right)+\tilde{e}+r \\
& =-\lfloor r / \tilde{q}\rfloor \cdot \tilde{q}+e+\sum_{j=1}^{k} 2^{[\log (\tilde{q}+(k+1) \mathrm{B})\rceil+j} \cdot C_{j}\left(s_{1}, \cdots, s_{\ell}\right)+\tilde{e}+r \\
& =\sum_{j=1}^{k} 2^{\lceil\log (\tilde{q}+(k+1) \mathrm{B})\rceil+j} \cdot C_{j}\left(s_{1}, \cdots, s_{\ell}\right)+\tilde{e}+e+\underbrace{r \bmod \tilde{q}}_{\tilde{r}} .
\end{aligned}
$$

Note that an upper bound for $\tilde{e}+e$ is $(k+1) \cdot \mathrm{B}$, and \tilde{r} is a small perturbation due to the modulo \tilde{q}. This means that the output of the circuit is encoded as a high-order bit \tilde{s} with probability 1 when q is sufficiently large.

Theorem 4 (Security of Split Homomorphic Encryption Scheme). Let $q \geq 2^{k}+2^{\lceil\log (\tilde{q}+(k+1) \mathrm{B})\rceil}$. Assuming that the FHE scheme and the LHE scheme are secure schemes, then Scheme $\mathbf{3}$ satisfies the security model $\mathcal{O}_{(\widehat{p k}, \overline{p k}, q, \tilde{q})}$ for split homomorphism.

Proof. Assume ($s_{0}, s_{1}, C_{1}, \ldots, C_{\beta}$) is the adversary's input chosen at the beginning of the generation of system π.

Hybrid \mathcal{H}_{0} : Define the following original system. The challenger generates a distribution using a random coin toss as follows:

$$
\left(p k, c=\widehat{\operatorname{Enc}}\left(\widehat{p k}, s_{\delta}\right), \rho_{1}, \ldots, \rho_{\beta}\right) .
$$

Where

$$
p k=\left(\widehat{p k}, \overline{p k}, \overline{\operatorname{Enc}}\left(\overline{p k}, T_{1}\right), \ldots, \overline{\operatorname{Enc}}\left(\overline{p k}, T_{n}\right)\right),
$$

and ρ_{i} is obtained from $\operatorname{PDec}\left(s k, \operatorname{Eval}\left(p k, C_{i}, c\right)\right)$.
Hybrids $\mathcal{H}_{1}, \ldots, \mathcal{H}_{\beta}: \operatorname{Let} \operatorname{Eval}\left(p k, C_{i}, c\right)$ generate $d^{(i)}$. The i th Hybrids \mathcal{H}_{i} is defined the same as Hybrids \mathcal{H}_{i-1} except for the input $d^{(i)}$ and the output a (or $\tilde{a})$ such that

$$
c=\overline{\operatorname{Enc}}\left(\overline{p k}, \operatorname{ECC}\left(C_{i}\left(s_{\delta}\right)\right)+\tilde{e}+e+r-\lfloor r / \tilde{q}\rfloor \cdot \tilde{q}\right),
$$

where ECC is the high-order bit encoding defined in the homomorphic encryption part, $\tilde{e}+e$ is the decryption noise after homomorphic computation $\left(d^{(1)}, \ldots, d^{(k)}, \tilde{a}\right), r \leftarrow \mathbb{Z}_{q}, \tilde{\rho}_{i}$ is the "decryption tweak" obtained using random coin toss a, which can be used to decrypt the ciphertext c.

Note that the decryption noise $\tilde{e}+e$ can be efficiently calculated using the FHE scheme key, therefore $\tilde{\rho}_{i}$ can also be computed in polynomial time. The ciphertext distributions of Hybrids $\mathcal{H}_{1}, \ldots, \mathcal{H}_{\beta}$ are consistent, with the only difference being the specific form of $\tilde{\rho}_{i}$. This is because the LHE scheme has
simulatable decryption tweaks, so the distribution of \mathcal{H}_{i} is consistent with the distribution of \mathcal{H}_{i-1}, i.e.,

$$
\begin{aligned}
& \left(p k, \widehat{\operatorname{Enc}}\left(\widehat{p k}, s_{\delta}\right), \tilde{\rho}_{1}, \ldots, \tilde{\rho}_{i-1}, \rho_{i}, \rho_{i+1}, \ldots, \rho_{\beta}\right) \\
& =\left(p k, \widehat{\operatorname{Enc}}\left(\widehat{p k}, s_{\delta}\right), \tilde{\rho}_{1}, \ldots, \tilde{\rho}_{i-1}, \tilde{\rho}_{i}, \rho_{i+1}, \ldots, \rho_{\beta}\right)
\end{aligned}
$$

Hybrids $\mathcal{H}_{\beta+1}, \ldots, \mathcal{H}_{2 \beta}$: The $\beta+i$ th Hybrids and the previous β Hybrids are different mainly in a, i.e.,

$$
\begin{aligned}
c & =\overline{\operatorname{Enc}}\left(\overline{p k}, \operatorname{ECC}\left(C_{i}\left(s_{\delta}\right)\right)+\tilde{e}+e+\lfloor r / \tilde{q}\rfloor \cdot \tilde{q}+\tilde{r}-\lfloor r / \tilde{q}\rfloor \cdot \tilde{q}\right) \\
& =\overline{\operatorname{Enc}}\left(\overline{p k}, \operatorname{ECC}\left(C_{i}\left(s_{\delta}\right)\right)+\tilde{e}+e+\tilde{r}\right) .
\end{aligned}
$$

Where, $\tilde{r} \leftarrow \mathbb{Z}_{\tilde{q}}$. Note that the distributions caused by these two Hybrids are different only when $r \in R$, where $R:=\{q-(q \bmod \tilde{q}), \ldots, q\}$. Because $\tilde{q} / q \leq 2^{-\lambda}$, these two distributions to be statistically close.

Hybrids $\mathcal{H}_{2 \beta+1}, \ldots, \mathcal{H}_{3 \beta}$: The $2 \beta+i$ th Hybrids are defined the same as the previous ones, except for the value of a, i.e.,

$$
c=\overline{\operatorname{Enc}}\left(\overline{p k}, \operatorname{ECC}\left(C_{i}\left(s_{\delta}\right)\right)+\tilde{y}\right) .
$$

Where the noise \tilde{e} can be neglected in the calculation, therefore it is not reflected in the above equation. The difference between this and the previous Hybrids lies in whether the ciphertext contains $\tilde{e}+e$. Since an upper bound of the noise $\tilde{e}+e$ is $(k+1) \cdot \mathrm{B}$, and $\tilde{q} \geq 2^{\lambda} \cdot(k+1) \cdot B$, according to Lemma 1 , the distribution caused by this Hybrids is statistically indistinguishable from the previous one.

Hybrids $\mathcal{H}_{3 \beta+1}, \ldots, \mathcal{H}_{3 \beta+n}$: The $3 \beta+i$ th Hybrids are defined the same as the previous ones, except that the ciphertext $c_{(\text {LHE }, i)}$ is derived from encrypting 0 with the public key. At this point, the LHE scheme key no longer contributes to $\left(\tilde{\rho}_{1}, \ldots, \tilde{\rho}_{\beta}\right)$, so use indistinguishability to demonstrate the semantic security of these Hybrids.

$$
\begin{aligned}
& \binom{\overline{\operatorname{Enc}}(\overline{p k}, 0), \ldots, \overline{\operatorname{Enc}}(\overline{p k}, 0), \overline{\operatorname{Enc}}\left(\overline{p k}, T_{i}\right),}{\overline{\operatorname{Enc}}\left(\overline{p k}, T_{i+1}\right), \ldots, \overline{\operatorname{Enc}}\left(\overline{p k}, T_{n}\right)} \\
& \approx_{c}\binom{\overline{\operatorname{Enc}}(\overline{p k}, 0), \ldots, \overline{\operatorname{Enc}}(\overline{p k}, 0), \overline{\operatorname{Enc}}(\overline{p k}, 0),}{\overline{\operatorname{Enc}}\left(\overline{p k}, T_{i+1}\right), \ldots, \overline{\operatorname{Enc}}\left(\overline{p k}, T_{n}\right)} .
\end{aligned}
$$

Hybrids $\mathcal{H}_{3 \beta+n}^{(0)}, \ldots, \mathcal{H}_{3 \beta+n}^{(b)}$: Fix the length of the challenge plaintext to i, and use the symbol $\mathcal{H}_{3 \beta+n}^{(i)}$ to represent the Hybrids at this point. The distribution of this Hybrids is

$$
\left(p k, c=\widehat{\operatorname{Enc}}\left(\widehat{p k}, s_{i}\right), \tilde{\rho}_{1}, \ldots, \tilde{\rho}_{\beta}\right)
$$

where

$$
p k=(\widehat{p k}, \overline{p k}, \overline{\operatorname{Enc}}(\overline{p k}, 0), \ldots, \overline{\operatorname{Enc}}(\overline{p k}, 0))
$$

Because the FHE scheme key is no longer encoded in the public parameters, there is no need to compute $\left(\tilde{\rho}_{1}, \ldots, \tilde{\rho}_{\beta}\right)$. Therefore, any advantage that the adversary
has in distinguishing $\mathcal{H}_{3 \beta+n}^{(0)}$ and $\mathcal{H}_{3 \beta+n}^{(1)}$ cannot be greater than distinguishing $\widehat{\operatorname{Enc}}\left(\widehat{p k}, s_{0}\right)$ and $\widehat{\operatorname{Enc}}\left(\widehat{p k}, s_{1}\right)$. Therefore, the FHE scheme is computationally indistinguishable, thus proving the semantic security of the sFHE scheme.

5.2 Instantiation of Oracle Model

To complete the description of our scheme, we discuss some candidate instantiations $\mathcal{O}_{(\widehat{p k}, \overline{p k}, q, \tilde{q})}$ of the oracle. We require the underlying LHE scheme to have a dense ciphertext space. We introduced the cyclic assumption introduced by Brakerski et al. [BDGM20] bridging the gap between FHE and LHE schemes. The oracle machine shown in Theorem 4 is just one of them, which is a special program obfuscation that enables the realization of split fully homomorphic schemes. Next, we introduce another oracle constructed by Brakerski et al. [BDGM20].

Simple Candidate Quantum Oracle. Let \mathcal{C} be the ciphertext space of LHE. The first instantiation is to take the encryption algorithm in FHE and encrypt the key in LHE, $\widehat{c} \leftarrow \widehat{\operatorname{Enc}}(\widehat{p k}, \overline{s k})$. Extract the ciphertext hash value of the homomorphic operation obtained through a hash function, which is used to fix the random coin in the algorithm. LHE ciphertext is sampled without knowing the underlying plaintext (which is why we need dense ciphertext), while FHE terms are calculated by homomorphically evaluating the decryption circuit and rounding the resulting message to the nearest multiple of \tilde{q}.

Let $D=\left(D_{a}\right)_{a \in \mathcal{C}}$, where D_{a} is a set in the Hilbert space $\mathcal{H}_{D_{a}}=\mathbb{C}\left[\{0,1\}^{n} \cup\right.$ $\{\perp\}]$. The Hilbert space $\mathcal{H}_{D_{a}}$ can be seen as a space spanned by a set of orthogonal bases $|b\rangle$, where $b \in\{0,1\}^{n} \cup\{\perp\}$. Let the unitary transformation U be defined as

$$
U|\perp\rangle=\left|\psi_{0}\right\rangle, U\left|\psi_{0}\right\rangle=|\perp\rangle \text { and } U\left|\psi_{b}\right\rangle=\left|\psi_{b}\right\rangle, \forall b \in\{0,1\}^{n} \backslash\{0\}^{n} .
$$

where $\left|\psi_{b}\right\rangle:=H|b\rangle$, and H is the Hadamard transform on $\mathbb{C}\left[\{0,1\}^{n}\right]=\left(\mathbb{C}^{2}\right)^{\otimes n}$. Let $|b\rangle=2^{-n / 2} \sum_{\eta}(-1)^{\eta \cdot b}\left|\psi_{\eta}\right\rangle$, then we have

$$
U|b\rangle=|b\rangle+2^{-n / 2}\left(|\perp\rangle-\left|\psi_{0}\right\rangle\right)
$$

When the oracle is queried, the unitary transformation $O_{X Y Z}$ acts on the query register X and Y, and the database register D, with the specific expression

$$
O_{X Y Z}=\sum_{a}|a\rangle\langle a| \otimes O_{Y D_{a}}^{a} \text { and } O_{Y D_{a}}^{a}=U_{D_{a}} \operatorname{CNOT}_{Y D_{a}} U_{D_{a}}
$$

where $\mathrm{CNOT}|b\rangle\left|b_{a}\right\rangle=|b\rangle\left|b \oplus b_{a}\right\rangle, b, b_{a} \in\{0,1\}^{n}$ and CNOT $|b\rangle|\perp\rangle=|b\rangle|\perp\rangle$. With these tools, present Don et al.'s quantum hash oracle model as follows:

$$
y:=\max _{a \in \mathcal{C}}\left|\left\{b \in\{0,1\}^{n} \mid\langle a, b\rangle \in \mathbb{R}\right\}\right|, \quad \tilde{y} \leftarrow \widehat{\operatorname{Eval}}(\widehat{p k},-\lfloor\overline{\operatorname{Dec}}(\cdot, y) / \tilde{q}\rfloor \cdot \tilde{q}, \widehat{c})
$$

Additionally, consider the following projector:

$$
\Pi_{D_{a}}^{a}:=\sum_{\substack{b \text { s.t. } \\\langle a, b\rangle \in \mathbb{R}}}|b\rangle\left\langle\left. b\right|_{D_{a}} \text { and } \Pi_{D_{a}}^{\emptyset}:=\mathbb{1}_{D}-\sum_{a \in \mathcal{X}} \Pi_{D_{a}}^{a}=\bigotimes_{a \in \mathcal{X}} \bar{\Pi}_{D_{a}}^{a}\right.
$$

where $\bar{\Pi}_{D_{a}}^{a}:=\mathbb{1}_{D_{a}}-\Pi_{D_{a}}^{a}$. Furthermore, define the measurement $\mathcal{M}=\mathcal{M}^{R}$, and the following projector

$$
\Sigma^{a}:=\bigotimes_{a^{\prime}<a} \bar{\Pi}_{D_{a^{\prime}}}^{a^{\prime}} \otimes \Pi_{D_{a}}^{a} \text { and } \Sigma^{\emptyset}:=\mathbb{1}-\sum_{a^{\prime}} \Sigma^{a^{\prime}}=\bigotimes_{a^{\prime}} \bar{\Pi}_{D_{a^{\prime}}}^{a^{\prime}}=\Pi^{\emptyset}
$$

In addition, define the pure state measurement unitary transformation $M_{D P}=$ $M_{D P}^{R} \in L\left(\mathcal{H}_{D} \otimes \mathcal{H}_{R}\right)$, i.e.,

$$
M_{D P}:=|\varphi\rangle_{D}|w\rangle_{P} \mapsto|\varphi\rangle_{D}|w+a\rangle_{P}
$$

Note that y is an element in the ciphertext domain of LHE, and its form is $y=\overline{\operatorname{Enc}}(\overline{p k}, s)$. For some $s \in \mathbb{Z}_{q}$, because LHE has a dense ciphertext domain. Furthermore, through the correctness of the FHE and LHE schemes, we have

$$
\begin{aligned}
\tilde{y} & =\widehat{\operatorname{Eval}}(\widehat{p k},-\lfloor\overline{\operatorname{Dec}}(\cdot, y) / \tilde{q}\rfloor \cdot \tilde{q}, \widehat{c}) \\
& =\widehat{\operatorname{Eval}}(\widehat{p k},-\lfloor\overline{\operatorname{Dec}}(\cdot, y) / \tilde{q}\rfloor \cdot \tilde{q}, \widehat{\operatorname{Enc}}(\widehat{p k}, \overline{s k})) \\
& =\widehat{\operatorname{Enc}}(\widehat{p k},-\lfloor\overline{\operatorname{Dec}}(\overline{s k}, y) / \tilde{q}\rfloor \cdot \tilde{q}) \\
& =\widehat{\operatorname{Enc}}(\widehat{p k},-\lfloor s / \tilde{q}\rfloor \cdot \tilde{q}) .
\end{aligned}
$$

Therefore, it can be seen that the formation of (y, \tilde{y}) is based on the following assumptions.

Alternating Encryption Security. The cyclic dependency introduced by $\widehat{c}=\widehat{\operatorname{Enc}}(\widehat{p k}, \overline{s k})$ in the security of LHE and FHE schemes (e.g., the split FHE construction in this paper includes the encryption of $\widehat{s k}$ under $\overline{p k}$ in the public key) is considered a very mild assumption. Currently, it is the only known method to construct FHE from the LWE problem through bootstrapping theorems [Gen09b].

Perturbation. In the case of $y:=\max _{a \in \mathcal{C}}\left|\left\{b \in\{0,1\}^{n} \mid\langle a, b\rangle \in \mathbb{R}\right\}\right|$, although \tilde{y} is an FHE encryption of the correct value, it is not necessarily uniformly distributed. In particular, the randomness of \tilde{y} may depend on the low-order bits of s in a complex way. In the specific case of LWR-based schemes, the noise term may carry information about s modulo \tilde{q}, which may introduce perturbation that interferes with decryption. However, the noise function is usually highly nonlinear, making it difficult to exploit. Therefore, we only consider the FHE.Eval algorithm.

Perturbation Elimination. Regarding the methods for eliminating the perturbation in LHE and FHE ciphertexts, we naturally think of ciphertext reprocessing techniques [DS16]: it can be expected that repeating bootstraping operations on FHE ciphertexts can eliminate the perturbation from LHE ciphertext noise. Unfortunately, our setting is different from the typical settings considered in the literature, as the ciphertext perturbation reprocessing algorithm must be executed by the distinguisher and cannot use private random coins. Although it seems difficult to formally analyze the effectiveness of these methods in our setting, we hope that these techniques may (at least heuristically) help mitigate
the perturbation that interferes with decryption. This paper takes a different approach and provides a simple heuristic to alleviate perturbation. In short, the idea is to sample a set of random plaintexts and define a random string as the sum of a uniform subset \mathcal{S} of these plaintexts. For the construction described earlier, Brakerski et al.'s instantiation includes a ciphertext $\widehat{c}=\widehat{\operatorname{Enc}}(\widehat{p k}, \overline{s k})$. The parameter $\sigma \in \operatorname{poly}(n, m, q, p)$ of the scheme is determined by the length of the set \mathcal{S}. The algorithm is presented randomly below, although this simplification can be easily bypassed using standard techniques (e.g., computing random coins using encrypted $\operatorname{Hash}(x)$).
$\mathcal{O}(\widehat{p k}, \overline{p k}, q, \tilde{q})(x)$: Input string $x \in\{0,1\}^{*}$ and a random set $\mathcal{S} \leftarrow\{0,1\}^{\sigma}$. For all $i \in[\sigma]$, when $\mathcal{S}_{i}=1$, uniformly output sample

$$
y_{i}:=\max _{a \in \mathcal{C}}\left|\left\{b \in\{0,1\}^{n} \mid\langle a, b\rangle \in \mathbb{R}\right\}\right|
$$

when $\mathcal{S}_{i}=0$, uniformly output sample $y_{i} \leftarrow \overline{\operatorname{Enc}}\left(\overline{p k}, s_{i}\right)$, where s_{i} is any known plaintext message. Then compute

$$
\tilde{y} \leftarrow \widehat{\text { Eval }}\left(\widehat{p k},-\sum_{i=1}^{\sigma}\lfloor\overline{\operatorname{Dec}}(\cdot, y) / \tilde{q}\rfloor \cdot \tilde{q}, \widehat{c}\right)
$$

Let g be a linear function defined as follows

$$
g\left(x_{1}, \ldots, x_{\mathcal{S}}\right)=\sum_{i \in \mathcal{S}} x_{i}+\sum_{i \notin \mathcal{S}}\left\lfloor x_{i} / \tilde{q}\right\rfloor \cdot \tilde{q}
$$

Then compute $\tilde{y} \leftarrow \overline{\operatorname{Eval}}\left(\overline{p k}, g,\left\{y_{i}\right\}_{i \in \mathcal{S}}\right)$ and return (y, \tilde{y}). By the correctness of homomorphic operations in the FHE scheme, it shown that

$$
\begin{aligned}
\tilde{y} & =\widehat{\operatorname{Eval}}\left(\widehat{p k},-\sum_{i=1}^{\sigma}\lfloor\overline{\operatorname{Dec}}(\cdot, y) / \tilde{q}\rfloor \cdot \tilde{q}, \widehat{c}\right)=\widehat{\operatorname{Eval}}\left(\widehat{p k},-\sum_{i=1}^{\sigma}\lfloor\overline{\operatorname{Dec}}(\cdot, y) / \tilde{q}\rfloor \cdot \tilde{q}, \widehat{\operatorname{Enc}}(\widehat{p k}, \overline{s k})\right) \\
& =\widehat{\operatorname{Enc}}\left(\widehat{p k},-\sum_{i=1}^{\sigma}\lfloor\overline{\operatorname{Dec}}(\overline{s k}, y) / \tilde{q}\rfloor \cdot \tilde{q}\right)=\widehat{\operatorname{Enc}}\left(\widehat{p k},-\sum_{i=1}^{\sigma}\lfloor s / \tilde{q}\rfloor \cdot \tilde{q}\right) .
\end{aligned}
$$

Combining with the correctness of the LHE scheme, one obtain

$$
\begin{aligned}
y & \left.=\overline{\operatorname{Eval}} \overline{p k}, g,\left\{y_{i}\right\}_{i \in \mathcal{S}}\right)=\overline{\operatorname{Eval}}\left(\overline{p k}, g,\left\{\overline{\operatorname{Enc}}\left(\overline{p k}, s_{i}\right)\right\}_{i \in \mathcal{S}}\right) \\
& =\overline{\operatorname{Enc}}\left(\overline{p k}, \sum_{i \in \mathcal{S}} s_{i}+\sum_{i \notin \mathcal{S}}\left\lfloor s_{i} / \tilde{q}\right\rfloor \cdot \tilde{q}\right)=\overline{\operatorname{Enc}}(\overline{p k}, \underbrace{\sum_{i \in \mathcal{S}}\left(s_{i} \bmod \tilde{q}\right)}_{\tilde{s}}+\sum_{i \notin \mathcal{S}}\left\lfloor s_{i} / \tilde{q}\right\rfloor \cdot \tilde{q}) .
\end{aligned}
$$

6 Constructing Ideal Obfuscation using Homomorphic Splitting Encryption Scheme

6.1 Ideal Obfuscation

Scheme 4 Ideal Obfuscation Scheme

$\operatorname{KeyGen}(n, m, q)$. For $i \in[0, D), j \in[0, B]$, randomly sample $k_{i, j} \leftarrow\{0,1\}^{\lambda}$ and compute

$$
h_{i, j}=\operatorname{Pr} \mathcal{O}\left(k_{i . j}, x\right)
$$

Randomly sample $s_{\varepsilon} \leftarrow\{0,1\}^{\lambda}$. For $d \in[0, D]$, input security parameter n, output sample $\left(\overline{s k}_{d}, \overline{p k}_{d}\right) \leftarrow \overline{\operatorname{KeyGen}}(n)$. Let \mathbb{Z}_{q} be the plaintext space under LHE definition, output sample $\left(\widehat{s k}_{d}, \widehat{p k}_{d}\right) \leftarrow \widehat{\operatorname{KeyGe}}(n, m, q)$. Let $\widehat{s k}_{d}=\left(T_{1}, \ldots, T_{n}\right) \in\{0,1\}^{n \times n}$, then return

$$
s k_{d}=\overline{s k}_{d} \text { and } p k_{d}=\left(\widehat{p k}_{d}, \overline{p k}_{d}, \bar{c}_{1}, \ldots, \bar{c}_{n}\right)
$$

where, for any $i \in[n]$, we define $\bar{c}_{i} \leftarrow \overline{\operatorname{Enc}}\left(\overline{p k}_{d}, T_{i}\right)$.
$\boldsymbol{\operatorname { E n c }}\left(\boldsymbol{p} \boldsymbol{k}_{\boldsymbol{d}}, \operatorname{info}_{\boldsymbol{\varepsilon}}\right)$. For input $\operatorname{info}_{\varepsilon}=\left(\right.$ normal, $\left.\varepsilon,\left\{k_{i, j}\right\}_{i \in[0, D), j \in[1, B]}, s_{\varepsilon}\right)$, return

$$
c t_{\varepsilon} \leftarrow \widehat{\operatorname{Enc}}\left(\widehat{p k}_{d}, \operatorname{info}_{\varepsilon}\right)
$$

$\operatorname{Eval}\left(p k_{d}, f_{d},\left(c_{1}, \ldots, c_{\ell}\right) . f_{d}\right.$ is provided later. Input circuit \mathcal{C} of ℓ bits and ciphertext of length k bits $\left(c_{1}, \ldots, c_{\ell}\right)$. For any $j \in[k]$, where \mathcal{C}_{j} is the j-th component of circuit \mathcal{C}, compute

$$
\dot{d}_{j} \leftarrow \widehat{\operatorname{Eval}}\left(\widehat{p k}_{d}, C_{j},\left(c_{1}, \ldots, c_{\ell}\right)\right)
$$

Define linear function over \mathbb{Z}_{q} as

$$
g\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{k} \text { DEC\&Mult }\left(\left(x_{1}, \ldots, x_{n}\right), \dot{d}_{j}, 2^{\lceil\log (\tilde{q}+(k+1) B)\rceil+j}\right)
$$

Compute $\dot{d} \leftarrow \overline{\operatorname{Eval}}\left(\overline{p k}_{d}, g,\left(\bar{c}_{1}, \ldots, \bar{c}_{n}\right)\right)$, then query $(a, \tilde{a}) \leftarrow \mathcal{O}_{\left(\widehat{p k}_{d}, \overline{p k}_{d}, q, \tilde{q}\right)}(\dot{d})$ and define the following linear function

$$
\tilde{g}\left(x_{1}, \ldots, x_{n}, x_{n+1}, x_{n+2}\right)=\operatorname{DEC} \& M u l t\left(\left(x_{1}, \ldots, x_{n}\right), \tilde{a}, 1\right)+x_{n+1}+x_{n+2} .
$$

Output

$$
c t_{\varepsilon} \leftarrow \overline{\operatorname{Eval}}\left(\overline{p k}_{d}, \tilde{g},\left(\bar{c}_{1}, \ldots, \bar{c}_{n}\right), \dot{d}, a\right)
$$

Return the obfuscated circuit

$$
\widehat{C}=\left(\left\{h_{i, j}\right\}_{i \in[0, D), j \in[1, B]}, c t_{\varepsilon},\left\{s k_{d}\right\}_{d \in[0, D]}\right)
$$

Eval\&Expand. (normal mode)

- For $d \in[0, D)$, Eval\&Expand encrypts $f_{d}\left(\right.$ normal, $\left.\chi,\left\{k_{i, j}\right\}_{i \in[0, D), j \in[1, B]}, s_{\chi}\right)$

1. Compute $s_{\chi \| 0}\left\|r_{\chi \mid 0}\right\| s_{\chi \| 1} \| r_{\chi \| 1} \leftarrow G\left(s_{\chi}\right)$.
2. For $b \in\{0,1\}$, run $c t_{\chi \| b} \leftarrow \widehat{\operatorname{Enc}}\left(\widehat{p k}_{d+1}\right.$, info $\left._{\chi \| b} ; r_{\chi \| b}\right)$. where,

$$
\operatorname{info}_{\chi \| b}=\left(\text { normal }, C, \chi\left\|b,\left\{k_{i, j}\right\}_{i \in[d+1, D), j \in[1, B]}, s_{\chi}\right\| b\right),
$$

C is the circuit to be obfuscated. Output

$$
\left(H\left(k_{d, 1}, \chi\right)\|\cdots\| H\left(k_{d, B}, \chi\right)\right) \oplus\left(c t_{\chi \| 0} \| c t_{\chi \| 1}\right) .
$$

- For $d=D, f_{D}\left(\right.$ normal $\left., C, x, s_{x}\right)$, output $C(x)$.

$$
\widehat{C}^{\mathcal{O}}\left[c t_{\varepsilon},\left\{s k_{d}\right\}_{d \in[0, D]},\left\{h_{i, j}\right\}_{i \in[0, D), j \in[0, B]}\right](x)
$$

Hardwired. $c t_{\varepsilon}$, initial ciphertext.
$s k_{d}$, secret key.
$h_{i, j}$, handles generated by PrO.
Input. $x \in\{0,1\}^{D}$, input circuit.
Output. Compute as follows.
For $d=0, \ldots, D-1$:
$\chi_{d} \leftarrow x_{\leq d}$
$\nu_{\chi_{d}} \leftarrow \overline{\operatorname{Rec}}\left(\rho_{\chi_{d}}, c t_{\chi_{d}}\right), \rho_{\chi_{d}} \leftarrow \overline{\operatorname{PDec}}\left(s k_{d}, c t_{\chi_{d}}\right)$
$\operatorname{otp}_{\chi_{d}} \leftarrow \mathcal{O}\left(\right.$ hEval, $\left.h_{d, 1}, \chi_{d} \| 0^{D-d}\right)\|\cdots\| \mathcal{O}\left(\right.$ hEval, $\left.h_{d, B}, \chi_{d} \| 0^{D-d}\right)$ $c t_{\chi_{d} \| 0} \| c t_{\chi_{d} \| 1} \leftarrow \nu_{\chi_{d}} \oplus \operatorname{otp}_{\chi_{d}}$
Output $\operatorname{Dec}\left(s k_{D}, c t_{x}\right)$

Fig. 1. Obfuscated Circuit $\left(\widehat{C}^{\mathcal{O}}\right) \rightarrow \widehat{C}^{\bullet}\left[c t_{x},\left\{s k_{d}\right\}_{d \in[0, D]},\left\{h_{i, j}\right\}_{i \in[0, D), j \in[0, B]}\right]$

Correctness Analysis. According to the obfuscation form $\widehat{C}^{\mathcal{O}}$ in Figure 3 and the tree structure in Figure 2.

$$
\begin{gathered}
H\left(k_{d, 1}, \chi_{d} \| 0^{D-d}\right)\|\cdots\| H\left(k_{d, B}, \chi_{d} \| 0^{D-d}\right) \\
=\mathcal{O}\left(\mathrm{hEval}, h_{d, 1}, \chi_{d} \| 0^{D-d}\right)\|\cdots\| \mathcal{O}\left(\mathrm{hEval}, h_{d, B}, \chi_{d} \| 0^{D-d}\right) .
\end{gathered}
$$

6.2 Security Analysis

Lemma 7. Assuming H is a pseudo-random function, $G_{s r}, G_{v}$ are pseudorandom generators, and (Gen, Enc, Enc) is adaptively secure, with appropriate parameters L and B, then Construction 1 in [JLLW23] is an ideal obfuscation under PrOM.

Theorem 5. Assuming H is a pseudo-random function, $G_{s r}, G_{v}$ are pseudorandom generators, LWR and Evasive LWR are hard. Then scheme 4 is an ideal obfuscation under PrO M.

Proof. Lemma 7 has already proven the correctness of the obfuscated circuit output by the $\operatorname{Pr} \mathcal{O}$. This paper establishes sFHE as an obfuscation algorithm, thus Scheme 4 is an ideal obfuscation under PrOM.

7 Conclusions

This paper presents the construction of ideal obfuscation under $\operatorname{PrO} \mathcal{O}$ based on sFHE. And the sFHE is composed of LHE and FHE, where LHE is constructed from LWR, and FHE is constructed from Evasive LWR-based multilinear mappings. By combining Jain et al.'s $\operatorname{Pr} \mathcal{O} M$, we ultimately construct the ideal obfuscation.

Moreover, this paper provides a new reduction proof for LWR, the definition of Evasive LWR, and new cryptographic primitive of composite homomorphic pseudorandom function. It enriches the lattice problem reduction methods, the underlying problem selection of lattice cryptography, and the methods for constructing multilinear mappings to some extent.

Fig. 2. The binary tree of ciphertexts [JLLW23] in Scheme 4

$$
\operatorname{Expand}_{d, \mathrm{hyb}}\left[p k_{d+1}\right]\left(\chi, \operatorname{info}_{\chi}\right)
$$

Hardwired. $p k_{d+1}$, public key at level $(d+1)$.
Input. $x \in\{0,1\}^{d}$, input appropriate circuit;
$\operatorname{info}_{\chi}=\left(C,\left\{k_{i, j}\right\}_{i \in(d, D), j \in[1, B]}, s_{\chi}, \beta,\left\{\sigma_{\chi, j}\right\}_{j \in[0 . \beta)}, w_{\chi},\left\{k_{d, j}\right\}_{j \in(\sigma, B]}\right)$:
C, circuit to be obfuscated.
$k_{i, j}$, keys of H at levels $(d+1, \ldots, D-1)$.
s_{χ}, seed of pseudo-random generator $G_{s r}$, related to χ.
β, mixing index.
$\sigma_{\chi, j}$, seed of pseudo-random generator G_{v}, related to χ. w_{χ}, decryption result of the software module.
$k_{d, j}$, keys of H at level $(d+1)$.
Output. Calculated as follows.
$s_{\chi \| 0}\left\|r_{\chi \| 0}\right\| s_{\chi \| 1} \| r_{\chi \| 1} \leftarrow G_{s r}\left(s_{\chi}\right)$
For $\eta=0,1$:
flag $_{\chi \| \eta} \leftarrow$ normal
$\operatorname{info}_{\chi \| \eta} \leftarrow\left(C,\left\{k_{i, j}\right\}_{i \in[d+1, D), j \in[1, B]}, s_{\chi \| \eta}\right)$
$c t_{\varepsilon} \leftarrow \operatorname{Enc}\left(p k_{d+1}, \mathrm{flag}_{\chi \| \eta}, \chi \| \eta\right.$, info $\left._{\chi \| \eta}\right)$
Output $\nu_{\chi} \leftarrow G_{\nu}\left(\sigma_{\chi}, 1\right)\|\cdots\| G_{\nu}\left(\sigma_{\chi}, \beta-1\right) \| w_{\chi}$
$\left\|\left(\left[c t_{\chi \| 0} \| c t_{\chi \| 1}\right]_{\beta+1} \oplus H\left(k_{d, \beta+1}, \chi \| 0^{D-d}\right)\right)\right\| \cdots$
$\|\left(\left[c t_{\chi \| 0} \| c t_{\chi \| 1}\right]_{B} \oplus H\left(k_{d, B}, \chi \| 0^{D-d}\right)\right)$

Fig. 3. Obfuscation circuit $\left(\widehat{C}^{\mathcal{O}}\right) \rightarrow \widehat{C}^{\bullet}\left[c t_{x},\left\{s k_{d}\right\}_{d \in[0, D]},\left\{h_{i, j}\right\}_{i \in[0, D), j \in[0, B]}\right]$

References

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact functional encryption. In Advances in Cryptology - CRYPTO 2015, pages 308-326. Springer Berlin Heidelberg, 2015.
[AJLA ${ }^{+}$12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel Wichs. Multiparty computation with low communication, computation and interaction via threshold fhe. In Proceedings of the 31st Annual International Conference on Theory and Applications of Cryptographic Techniques, pages 483-501. Springer-Verlag, 2012.
[AKPW13] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with rounding, revisited. In Advances in Cryptology - CRYPTO 2013, pages 57-74. Springer Berlin Heidelberg, 2013.
[BDGM19] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Leveraging linear decryption: Rate-1 fully-homomorphic encryption and timelock puzzles. In Theory of Cryptography: ${ }^{17}$ th International Conference, pages 407-437. Springer-Verlag, 2019.
[BDGM20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Candidate io from homomorphic encryption schemes. In Advances in Cryptolo-gy-EUROCRYPT 2020, pages 79-109. Springer International Publishing, 2020.
[BDGM22] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring and Pairings Are Not Necessary for IO: Circular-Secure LWE Suffices. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229, pages 1-20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
[$\left.\mathrm{BGI}^{+} 01\right]$ Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Advances in Cryptology - CRYPTO 2001, pages 1-18. Springer Berlin Heidelberg, 2001.
[BGMZ18] James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. Return of ggh15: Provable security against zeroizing attacks. In Theory of Cryptography, pages 544-574, Cham, 2018. Springer International Publishing.
[BV18] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional encryption. Journal of the ACM, 65(6):1-37, 2018.
[BZ17] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. Algorithmica, 79:1233-1285, 2017.
[Ceg12] Andrzej Cegielski. Iterative Methods for Fixed Point Problems in Hilbert Spaces. 2012.
[Che24] Yilei Chen. Quantum algorithms for lattice problems. Cryptology ePrint Archive, Paper 2024/555, 2024. https://eprint.iacr.org/2024/555.
[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps over the integers. In Advances in Cryptology - CRYPTO 2013, pages 476-493. Springer Berlin Heidelberg, 2013.
[DS16] Léo Ducas and Damien Stehlé. Sanitization of fhe ciphertexts. In Advances in Cryptology - EUROCRYPT 2016, pages 294-310. Springer Berlin Heidelberg, 2016.
[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford, CA, USA, 2009.
[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pages 169-178. Association for Computing Machinery, 2009.
[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In Advances in Cryptology - EUROCRYPT 2013, pages 1-17. Springer Berlin Heidelberg, 2013.
[GGH ${ }^{+}$13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate indistinguishability obfuscation and functional encryption for all circuits. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 40-49, 2013.
[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from lattices. In Theory of Cryptography, pages 498-527. Springer Berlin Heidelberg, 2015.
[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Tworound secure mpc from indistinguishability obfuscation. In Theory of Cryptography, pages 74-94. Springer Berlin Heidelberg, 2014.
[GSM18] Fuchun Guo, Willy Susilo, and Yi Mu. Introduction to Security Reduction. 2018.
[Had00] Satoshi Hada. Zero-knowledge and code obfuscation. In Advances in Cryptology - ASIACRYPT 2000, pages 443-457. Springer Berlin Heidelberg, 2000.
[HJ16] Yupu Hu and Huiwen Jia. Cryptanalysis of ggh map. In Advances in Cryptology - EUROCRYPT 2016, pages 537-565. Springer Berlin Heidelberg, 2016.
[JLLW23] Aayush Jain, Huijia Lin, Ji Luo, and Daniel Wichs. The pseudorandom oracle model and ideal obfuscation. In Advances in Cryptology - CRYPTO 2023, pages 233-262, Cham, 2023. Springer Nature Switzerland.
[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded assumptions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 60-73. Association for Computing Machinery, 2021.
[Lin17] Huijia Lin. Indistinguishability obfuscation from sxdh on 5-linear maps and locality-5 prgs. In Advances in Cryptology - CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science, pages 599-629. Springer, 2017.
[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps and block-wise local prgs. In Advances in Cryptology - CRYPTO 2017, pages 630-660. Springer International Publishing, 2017.
[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps: Cryptanalysis of indistinguishability obfuscation over ggh13. In Advances in Cryptology - CRYPTO 2016, pages 629-658. Springer Berlin Heidelberg, 2016.
[Nor66] Levinson Norman. On the elementary proof of the prime number theorem. Proceedings of the Edinburgh Mathematical Society, 15(2):141-146, 1966.
[Reg04] Oded Regev. New lattice-based cryptographic constructions. Journal of ACM, 51:899-942, 2004.
[SW21] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable encryption, and more. SIAM Journal on Computing, 50(3):857908, 2021.
[VWW22] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption and null-io from evasive lwe. In Advances in Cryptology - ASIACRYPT 2022, pages 195-221, Cham, 2022. Springer Nature Switzerland.
[Wee22] Hoeteck Wee. Optimal broadcast encryption and cp-abe from evasive lattice assumptions. In Advances in Cryptology - EUROCRYPT 2022, pages 217-241, Cham, 2022. Springer International Publishing.
[XXZ12] Xiang Xie, Rui Xue, and Rui Zhang. Deterministic public key encryption and identity-based encryption from lattices in the auxiliary-input setting. In Proceedings of the 8th International Conference on Security and Cryptography for Networks, pages 1-18. Springer-Verlag, 2012.
[Yue20] Steven Yue. Introduction to io 01: What is indistinguishability obfuscation (io)?, 2020.
[YZ21] Yu Yu and Jiang Zhang. Smoothing out binary linear codes and worst-case sub-exponential hardness for lpn. In Advances in Cryptology - CRYPTO 2021, pages 473-501, Cham, 2021. Springer International Publishing.

A The new reduction for LWR.

Dr. Chen Yilei's attack does have some flaws. However, it also serves as a warning that we cannot reduce all difficult problems to LWE. We utilize the prime number theorem and fixed-point theory to reevaluate its reduction.

Lemma 8 ([Nor66]). For $q \in \mathbb{Z}$, the prime distribution over the set $\mathcal{S}_{q}=$ $\{1, \ldots, q\}$ satisfies the following relationship:

$$
\lim _{q \rightarrow \infty} \frac{\pi(q)}{\int_{2}^{q} \frac{1}{\ln (t)} d t}=1
$$

where $\pi(q)$ denotes the number of primes.
Claim 1. Let $\pi(q)$ denote the number of prime numbers in the set \mathcal{S}_{q}, and let $P_{q}:=\left\{p_{1}, \ldots, p_{\pi(q)}\right\}$ be the set of all prime numbers. Then, the number of prime numbers in the set $\mathcal{S}_{q} \times \mathcal{S}_{q}$ is still $\pi(q)$, and we have

$$
\overline{\mathcal{S}}_{q}:=\mathcal{S}_{q} \times \mathcal{S}_{q}=\mathcal{S}_{q^{2}} \backslash\left\{\mathcal{S}_{q} \times\left(P_{q^{2}} \backslash P_{q}\right)\right\}
$$

Claim 2. For the set \mathcal{S}_{q}, for an element $a \in \overline{\mathcal{S}}_{q}$ with prime factorization $\mathfrak{p}_{1}^{\alpha_{1}} \cdots \mathfrak{p}_{\ell}^{\alpha_{\ell}}$, the probability of a occurring in the set $\overline{\mathcal{S}}_{q}$ is

$$
\operatorname{Pr}(a):=\frac{C N_{q}(a)}{q^{2}}=\sum_{\mathfrak{P}_{1}, \mathfrak{P}_{2} \in \overline{\mathcal{S}}_{q}} \frac{2}{q^{2}},
$$

where $\mathfrak{P}_{1}=\mathfrak{p}_{1}^{\alpha_{1}^{\prime}} \cdots \mathfrak{p}_{\ell}^{\alpha_{\ell}^{\prime}}, \mathfrak{P}_{2}=\mathfrak{p}_{1}^{\alpha_{1}^{\prime \prime}} \cdots \mathfrak{p}_{\ell}^{\alpha_{\ell}^{\prime \prime}}, \alpha_{i}^{\prime}+\alpha_{i}^{\prime \prime}=\alpha_{i}, i \in \mathcal{S}$.
Claim 3. For the set \mathcal{S}_{q}, where each event occurs with probability q^{-1}, then for the set $\mathcal{S}_{q} \times \mathcal{S}_{q}$, the probability of each event a occurring is

$$
\operatorname{Pr}(a)=\left\{\begin{array}{lr}
\frac{1}{q^{2}}, & a=1 \\
\frac{2}{q^{2}}, & a \text { is prime }, \\
\frac{C N_{q}(a)}{q^{2}}, & a \text { is composite } .
\end{array}\right.
$$

Claim 4. For $\mathfrak{A} \in \overline{\mathcal{S}}_{q}$, and assuming

$$
\operatorname{Pr}(\mathfrak{A})=\max _{a \in \overline{\mathcal{S}}_{q}} \operatorname{Pr}(a)=\frac{C N_{q}(\mathfrak{A})}{q^{2}}
$$

then for any $k \in\left(\overline{\mathcal{S}}_{q}+\overline{\mathcal{S}}_{q}\right) \bmod q \rightarrow \mathcal{S}_{q^{2}}$, we have

$$
\frac{1}{q^{2}} \leq \operatorname{Pr}(k) \leq \operatorname{Pr}(\mathfrak{A})=\frac{C N_{q}(\mathfrak{A})}{q^{2}}
$$

Proof.

$$
\begin{aligned}
\operatorname{Pr}(k) & =\sum_{i=1}^{k} \operatorname{Pr}(i) \operatorname{Pr}(k+i-1)+\sum_{i=k+1}^{q+k-1} \operatorname{Pr}(i) \operatorname{Pr}(q+k+1-i) \\
& =\sum_{i=1}^{k} \frac{a_{i}}{q^{2}} \frac{a_{k+i-1}}{q^{2}}+\sum_{i=k+1}^{q+k-1} \frac{a_{i}}{q^{2}} \frac{a_{q+k+1-i}}{q^{2}} \\
& \leq \frac{C N_{q}(\mathfrak{A})}{q^{2}} \sum_{i=1}^{q^{2}} \frac{a_{i}}{q^{2}}=\frac{C N_{q}(\mathfrak{A})}{q^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Pr}(k) & =\sum_{i=1}^{k} \operatorname{Pr}(i) \operatorname{Pr}(k+i-1)+\sum_{i=k+1}^{q+k-1} \operatorname{Pr}(i) \operatorname{Pr}(q+k+1-i) \\
& \geq \frac{1}{q^{2}} \sum_{i=1}^{q^{2}} \frac{a_{i}}{q^{2}}=\frac{1}{q^{2}}
\end{aligned}
$$

Definition 14 ([Ceg12], Definition 2.1.6). Let \mathcal{H} be a Hilbert space, and let $T: \mathcal{H} \rightarrow \mathcal{H}$ be an operator. If $T(\cdot)$ satisfies

$$
\|T x-T y\|<\|x-y\|, \forall x, y \in \mathcal{H}
$$

then $T(\cdot)$ is called a contraction operator.
Lemma 9 ([Ceg12], Proposition 2.1.11). If \mathcal{H} is a closed set (every Cauchy sequence in \mathcal{H} converges to a point within $\mathcal{H})$, and $T(\cdot)$ is a contraction operator, and $\operatorname{Fix}(T)$ is a closed convex set, then the algorithm $x_{n+1}=T x_{n}$ converges to some $x \in \operatorname{Fix}(T)$, where $\operatorname{Fix}(T)$ denotes the set of fixed points of the operator $T(\cdot)$.

Remark 4. The convergence mentioned in Lemma 9 should be considered as strong convergence. However, this paper does not discuss the difference between strong and weak convergence, because in finite dimensions strong and weak convergence are equivalent.

Claim 5. For any vector $a=\left(a^{(1)}, a^{(2)}, \ldots, a^{(q)}\right)$, where $a_{i} \in[0,1]$ and $\sum_{i=1}^{q} a^{(i)}=$ 1 , let $A_{k}=\max _{i \in \mathcal{S}_{q}}\left(a^{(i)}\right)$. Then, the matrix M_{a} defined as follows is a contraction operator

$$
M_{a}=\left(\begin{array}{cccc}
a^{(1)} & a^{(q)} & \cdots & a^{(2)} \\
a^{(2)} & a^{(1)} & \cdots & a^{(3)} \\
\vdots & \vdots & \ddots & \vdots \\
a^{(q)} & a^{(q-1)} & \cdots & a^{(1)}
\end{array}\right)
$$

Proof. For any vectors $b=\left(b^{(1)}, b^{(2)}, \ldots, b^{(q)}\right)$ and $c=\left(c^{(1)}, c^{(2)}, \ldots, c^{(q)}\right)$ satisfying the conditions of vector a, and

$$
\begin{aligned}
\left\|M_{a} b-M_{a} c\right\| & =\left\|M_{a}(b-c)\right\| \leq\left\|M_{a}\right\|\|b-c\| \\
& =\sqrt{\frac{C N_{q}^{2}(\mathfrak{A})}{q^{2}}+\frac{q-2}{q^{2}}+\frac{\left(2 \sqrt{q}-C N_{q}(\mathfrak{A})\right)^{2}}{q^{2}}}\|b-c\| \\
& =\frac{\sqrt{5 q-4 \sqrt{q} C N_{q}(\mathfrak{A})+2 C N_{q}^{2}(\mathfrak{A})+2}}{q}\|b-c\| \\
& <\|b-c\| .
\end{aligned}
$$

Lemma 10. For any initial vector $a_{0}=\left(a_{0}^{(1)}, a_{0}^{(2)}, \ldots, a_{0}^{(q)}\right)$, where $a_{0}^{(i)} \in[0,1]$ and $\sum_{i=1}^{q} a_{0}^{(i)}=1$, and $C N_{q}(\mathfrak{A})=\max _{i \in \mathcal{S}_{q}}\left(a_{0}^{(i)}\right)$, the matrix $M_{a_{0}}$ is generated as follows:

$$
M_{a_{0}}=\left(\begin{array}{cccc}
a_{0}^{(1)} & a_{0}^{(q)} & \cdots & a_{0}^{(2)} \\
a_{0}^{(2)} & a_{0}^{(1)} & \cdots & a_{0}^{(3)} \\
\vdots & \vdots & \ddots & \vdots \\
a_{0}^{(q)} & a_{0}^{(q-1)} & \cdots & a_{0}^{(1)}
\end{array}\right)
$$

Then, let $a_{n+1}:=M_{a_{n}} a_{n}:=T a_{n}$, then $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence and converges to v_{q}.

Proof. According to Claim 5, we know that $M_{a_{n}}$ is a contraction operator, and

$$
\left\|M_{a_{n}}\right\| \leq \frac{\sqrt{5 q-4 \sqrt{q} C N_{q}(\mathfrak{A})+2 C N_{q}^{2}(\mathfrak{A})+2}}{q}
$$

Moreover, since $a_{n+1}:=M_{a_{n}} a_{n}$ is itself an algorithm for finding fixed points, the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges, and it converges to the fixed point of $T(\cdot)$.

Lemma 11. For the set $\mathcal{S}_{q}^{i}:=\{1,2, \ldots, q\}$, where each event $j \in \mathcal{S}_{q}$ has a probability of occurrence a_{j}, as n approaches infinity, the probability of each event after taking modulo q over $\mathcal{S}_{q}:=\prod_{i=1}^{n} \mathcal{S}_{q}^{i} \bmod q=\{1,2, \ldots, q\}$ tends toward $\frac{1}{q}$.

Theorem 6. Given $\left\{a_{j}\right\}_{j=1}^{n}$ and $\left\{s_{j}\right\}_{j=1}^{n}$ such that $a_{j}, s_{j} \in_{R} \mathbb{Z}_{q}$. Then for any $i \in_{R} \mathbb{Z}_{q}$, we have
$\max _{i \in \mathcal{S}_{q}}\left|\operatorname{Pr}\left(\sum_{j=1}^{n}\left(a_{j} s_{j}\right)=i\right)-\operatorname{Pr}(u=i)\right| \leq \exp \left(2 n \ln \left(\frac{\sqrt{5 q-4 \sqrt{q} C N_{q}(\mathfrak{A})+2 C N_{q}^{2}(\mathfrak{A})+2}}{q}\right)\right)$.
Corollary 3. For any $A \in \mathbb{Z}_{q}^{m \times n}$, $s \in \mathbb{Z}_{q}^{n}$, and $u \in \mathbb{Z}_{q}^{m}$, where $q>2^{n} p$, the indistinguishability probability between $A s$ and u is bounded by
$\exp \left(-2 \log _{2} n \ln \left(\frac{q}{\sqrt{5 q-4 \sqrt{q} C N_{q}(\mathfrak{A})+2 C N_{q}^{2}(\mathfrak{A})+2}}\right)\right) \leq \exp \left(-\frac{n \log _{2} n \ln p}{\sqrt{5}}\right)$.
Theorem 7. For any $A \in \mathbb{Z}_{q}^{m \times n}$, $s \in \mathbb{Z}_{q}^{n}$, and $u \in \mathbb{Z}_{q}^{m}$, where $q>2^{n} p$, the indistinguishability probability between $\lfloor A s\rfloor_{p}$ and $\lfloor u\rfloor_{p}$ is bounded by

$$
\exp \left(-\frac{n \log _{2} n \ln p}{\sqrt{5}}\right)
$$

That is, the adversary's advantage in distinguishing between $\lfloor A s\rfloor_{p}$ and $\lfloor u\rfloor_{p}$ can be neglected.

$$
\operatorname{Expand}_{d}\left[p k_{d+1}\right]\left(\mathrm{flag}_{\chi}, \chi, \text { info }_{\chi}\right)-\text { For Level } d \in[0, D)
$$

Hardwired. $p k_{d+1},(d+1)$ level public key.
Input. $\mathrm{flag}_{\chi} \in\{$ normal, hyb, sim $\}$, flag matching with χ.
$\chi \in\{0,1\}^{d}$, input appropriate prefix for the circuit.
info ${ }_{\chi}$, information matching with χ, changes with flag_{χ}.
Output.

$$
\left\{\begin{array}{cl}
\operatorname{Expand}_{d, \text { normal }}\left[p k_{d+1}\right]\left(\chi, \text { info }_{\chi}\right), & \text { if flag } \\
\chi=\text { normal } ; \\
\operatorname{Expand}_{d, \text { hyb }}\left[p k_{d+1}\right]\left(\chi, \text { info }_{\chi}\right), & \text { if flag } \\
\operatorname{Expand}_{d, \text { hyb }}\left(\chi, \operatorname{sim}_{\chi}\right), & \text { if flag } \text { fla }_{\chi}=\operatorname{sim} .
\end{array}\right\} \text { Fig. } 7
$$

$$
\operatorname{Eval}\left(\operatorname{flag}_{\chi}, \chi, \operatorname{info}_{\chi}\right)-\text { For Level } D
$$

Hardwired. $p k_{d+1},(d+1)$ level public key.
Input. $\operatorname{flag}_{\chi} \in\{$ normal, sim $\}$, flag matching with χ.
$\chi \in\{0,1\}^{D}$, input circuit.
info $_{\chi}$, information matching with χ, changes with $\operatorname{llag}_{\chi}$.
Output.

$$
\left\{\begin{array}{c}
\operatorname{Eval}_{d, \text { normal }}\left(\chi, \operatorname{info}_{\chi}\right), \\
\operatorname{Eval}_{d, \operatorname{sim}}\left(\chi, \operatorname{infog}_{\chi}\right), \quad \text { if } \operatorname{fag}_{\chi}=\operatorname{sim} .
\end{array}\right.
$$

$$
\operatorname{Expand}_{d, \text { normal }}\left[p k_{d+1}\right]\left(\chi, \operatorname{info}_{\chi}\right)
$$

Hardwired. $p k_{d+1},(d+1)$ level public key.
Input. $\quad \chi \in\{0,1\}^{d}$, input appropriate prefix for the circuit.
$\operatorname{info}_{\chi}=\left(C,\left\{k_{i, j}\right\}_{i \in[0, D), j \in[0, B]}, s_{\chi}\right)$:
C, circuit to be obfuscated.
$k_{i, j}$, keys for hash functions $d, \ldots, D-1 H$.
s_{χ}, seed for pseudo-random generator $G_{s r}$ corresponding to χ.
Output. Perform the following calculations.

$$
\begin{aligned}
& s_{\chi \| 0}\left\|r_{\chi \| 0}\right\| s_{\chi\| \|} \| r_{\chi \| 1} \leftarrow G_{s r}\left(s_{\chi}\right) . \\
& \text { for } \eta=0,1: \\
& \quad \text { fag }_{\chi \| \eta} \leftarrow \text { normal } \\
& \quad \operatorname{info}_{\chi \| \eta} \leftarrow\left(C,\left\{k_{i, j}\right\}_{i \in[d+1, D), j \in[1, B]}, s_{\chi \| \eta}\right) . \\
& \quad c t_{\chi \| \eta} \leftarrow \operatorname{Enc}\left(p k_{d+1}, \operatorname{flag}_{\chi \| \eta}, \chi \| \eta, \text { info }_{\chi \| \eta}\right) \\
& \text { otp }_{\chi} \leftarrow H\left(k_{d, 1}, \chi\left\|0^{D-d}\right\| \cdots \| H\left(k_{d, B}, \chi \| 0^{D-d}\right)\right. \\
& \text { Output } \nu_{\chi} \leftarrow\left(c t_{\chi \| 0} \| c t_{\chi \| 1}\right) \oplus \operatorname{otp}_{\chi}
\end{aligned}
$$

$$
\operatorname{Eval}_{\text {normal }}\left(\chi, \operatorname{info}_{\chi}\right)
$$

Input. $\chi \in\{0,1\}^{D}$, input circuit.
$\operatorname{info}_{\chi}=\left(C, s_{\chi}\right)$:
C, circuit to be obfuscated.
s_{χ}, unused seed.
Output. $C(\chi)$, compute the evaluation of a generalized circuit (C, χ).

Fig. 4. The circuits Expand\&Eval ${ }_{d}$ in Scheme 4

