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ABSTRACT

The Bitcoin ecosystem has continued to evolve beyond its initial

promises of decentralization, transparency, and security. Recent

advancements have notably been made with the integration of

Layer-2 solutions, which address scalability issues by offloading

transactions from the main blockchain. This facilitates faster and

more cost-effective transactions while maintaining integrity. The

advent of inscriptions and ordinal protocols has further broadened

the spectrum of capabilities, enabling the creation of unique, indi-

visible assets on the blockchain. Despite these technological strides,

the inherent limitations of Bitcoin’s script being Turing-incomplete

restrict complex executions directly on the blockchain, necessi-

tating the use of Bitcoin indexers. These indexers act as off-chain

execution layers, allowing for the incorporation of Turing-complete

programming languages to manage and update state transitions

based on blockchain data. However, this off-chain solution intro-

duces challenges to data integrity and availability, compounded

by the decentralized nature of blockchain which complicates data

maintenance and accuracy.

To address these challenges, we propose a new modular indexer

architecture that enables a fully decentralized and user-verified

network, mitigating the risks associated with traditional decentral-

ized indexer networks susceptible to Sybil attacks. Our solution,

Indecure, leverages polynomial commitments as checkpoints to

streamline the verification process, significantly reducing the over-

head associated with integrity checks of state transitions. By imple-

menting a robust data attestation procedure, Indecure ensures the

reliability of state information against malicious alterations, facili-

tating trustless verifications by users. Our preliminary evaluations

of Indecure across various indexer protocols—BRC20, Bitmap, and

satsnames—demonstrate its superiority in reducing computation

time and data block size while maintaining high integrity in state

transitions. This modular approach not only enhances the secu-

rity and efficiency of Bitcoin’s off-chain executions but also sets a

foundational layer for scalable, secure blockchain applications.

1 INTRODUCTION

Blockchain technology continues to captivate the financial and

technological sectors with its promise of decentralization, trans-

parency, and security. The Bitcoin [40] (BTC) ecosystem, a pioneer

in this realm, has recently made impressive strides, particularly

with the advent of Layer-2 solutions like Stacks [9] and CKB [8],

which significantly alleviates scalability concerns by processing

transactions off the main blockchain, thus enabling faster and more

cost-efficient transactions. Furthermore, the introduction of inscrip-

tions [52] and ordinal protocols [3] has opened new horizons for

embedding data and creating unique, indivisible assets directly on

the Bitcoin blockchain, fostering a new wave of innovation and

utility.

Due to the Turing-incompleteness of the Bitcoin script language,

complex program logic cannot be executed directly on Bitcoin,

which restricts the functionalities of Bitcoin applications. To over-

come this shortage, developers leverage Bitcoin indexers to establish
off-chain execution layers that can execute programs written in

mainstream programming languages. Specifically, an indexer first

allows users to upload general data and contract code to Bitcoin,

where the contract code is written in some Turing-complete pro-

gramming languages. Based on these codes and data, the indexers

maintain a set of states. For each generation of the Bitcoin block

according to the Bitcoin transaction order, the indexer executes the

user code on the data and updates its state accordingly. Indexers

dramatically enhance the accessibility and usability of blockchain

data. There are many popular protocols that specify mechanisms

of different indexers, such as BRC20 [2], Bitmap [38], runes [45],

satsnames [46], and many others. For instance, the BRC20 protocol,

which enables users to create and transfer tokens, has kicked off a

$1𝐵+ market sector and a new level of growth on Bitcoin.

Despite their utility, existing Bitcoin indexers face data integrity

and availability challenges. Specifically, As an off-chain execution

layer, the indexer could tamper with the data leading to bogus states

for the user [23, 50]. For instance, a bug in the Ordinals protocol

has prevented over 1,200 inscriptions from being validated [23]. To

mitigate the data integrity problem, the user could download and

maintain up-to-date data from the Bitcoin blockchain and verify

the validity of the output by executing her indexer. However, doing

so will require substantial storage capacity and computing power to

manage the ever-expanding blockchain. Additionally, maintaining

up-to-date and accurate indexing amidst the blockchain’s decen-

tralized and immutable nature poses ongoing challenges.

Due to the integrity and cost of maintenance concernsmentioned

above, one native solution is to leverage a decentralized indexer net-
work to conduct the computation [31]. However, since the network

is completely permissionless, the consensus mechanism of the ex-

isting decentralized indexer network is vulnerable to Sybil attacks,

which enable malicious indexer operators to provide users with

false states, such as asset ownership and spendable balance.
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Figure 1: Framework overview.

To solve this issue, we propose a modular indexer architecture
that enables a truly decentralized, fully user-verified indexer net-

work. The key challenge here is to design a mechanism that allows

users to verify the validity of the states provided by the indexers

efficiently and cost-effectively. Our insight is based on the following
crucial observation: the expensive integrity checking of execution

over whole-state transitions can be reduced to checking the valid-

ity of a tiny amount of checkpoints through the design of proper

cryptography protocols.

Our solution. As shown in Figure 1, our modular indexer, In-

decure, works as an off-chain execution layer for the Bitcoin

blockchain. Given a decentralized protocol 𝜌 (e.g., BRC20) that

interacts with the Bitcoin blockchain by generating and reading

transactions, the modular indexer is responsible for the following

tasks: ❶ reading each block from Bitcoin and calculating protocol

states based on the logic specified by a decentralized protocol 𝜌 ,

❷ summarizing these states as a polynomial commitment, namely,

checkpoint, ❸ For every new Bitcoin block, generate a new check-

point and publish it to the data availability (DA) layer [41], ❹

retrieving the checkpoint from the DA layer and verifying the cor-

rectness of the states. With the proposed attestation procedure,

Indecure can ensure state integrity against malicious attacks with

negligible cost for different applications. Here, an off-the-shelf DA

layer ensures that transactions on a blockchain are readily accessi-

ble to all nodes in the network, which can prevent problems such

as data withholding attacks. Ultimately, our system aims to provide

fully user-verified modular execution generalizable for different

blockchain meta-protocols 𝜌 . As we show later in our technical

section, under the 1-of-N trust assumption, the light clients in In-

decure will never accept invalid states from malicious participants,

thus dramatically improving the robustness and security of existing

indexers and decentralized protocols on the Bitcoin ecosystem.

Evaluation. We evaluate Indecure on three popular implemen-

tations of indexer protocols, namely, BRC20, Bitmap, and satsnames.

Through a production testnet with 211,503 transactions and over

5,000 light clients, we confirm the effectiveness of our architecture,

which dramatically outperforms a stateful baseline in terms of com-

putation time as well as the size of data blocks. Additionally, we

simulated a recent incident due to invalid states from one indexer

of the BRC20 protocol, and Indecure can effectively compute the

correct states and report the violation caused by incorrect states.

Applications

Execution Engine

Data Availability Layer

Consensus Layer

Network Layer

Figure 2: Bitcoin blockchain layers.

Contributions. In summary, we make the following contribu-

tions:

• We propose Indecure, the first modular indexer architec-

ture that enables trustless verification in light clients on

Bitcoin.

• We propose a decentralized procedure for data attestation

with 1-of-N trustless assumption. The attestation procedure

guarantees the identification or recovery of states.

• We implement the proposed idea and systematically evalu-

ate its effectiveness through real-world applications.

2 BACKGROUND

In this section, we survey some basic concepts necessary to under-

stand our system’s technical details, followed by a realistic threat

model to quantify adversarial behavior in our environment.

2.1 Bitcoin

The idea of Bitcoinwas originally introduced by Satoshi Nakamoto [40].

Specifically, the Bitcoin blockchain operates through a network ar-

chitecture comprised of several layers shown in Figure 2. At the base,

the network layer manages peer-to-peer communications among

nodes, facilitating the seamless transaction propagation and block

data across the global network. This layer ensures that all nodes

can participate in the network equally and are updated with the

latest blockchain state, maintaining Bitcoin’s foundational prin-

ciple of decentralization. The consensus layer, primarily powered

by Proof of Work (PoW), allows nodes to agree on a single his-

tory of transactions, thus securing the network against fraud and

double-spending. This layer coordinates consensus across the di-

verse network of nodes and aligns economic incentives through

mining rewards, integrating robust security with a self-sustaining

economic model that underpins the entire Bitcoin system. On top

of that, the data availability layer ensures that all transaction data

necessary to validate the blockchain’s current state is accessible to

any nodes. This transparency is vital for the security and reliability

of the network, allowing independent verification of the blockchain

without reliance on a central authority. Moving upward, the execu-
tion layer processes transactions according to the rules set out in

Bitcoin’s protocol, ensuring that all transaction conditions are met

and that the ledger’s integrity is preserved. In spite of the Turing-

incompleteness of Bitcoin script language, the application layer
can still simulate complex computations through the assistance of

indexers.
2
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2.2 Data Availability

Data availability [12] refers to the assurance that data related to

transactions on a blockchain is readily accessible to all nodes in the

network, enabling them to validate transactions and maintain the

network’s integrity. This aspect is crucial in preventing problems

such as data withholding attacks, where some participants might

hide data to manipulate the network’s state or to disrupt the consen-

sus process. The importance of robust data availability solutions has

grown with the scaling of blockchains, as larger blocks and more

transactions intensify the demand on nodes to process and store

data efficiently. For instance, Layer-2 rollups execute transactions

outside the main blockchain (Layer-1) but post transaction data

back to it. Rollups could benefit greatly from robust data availability

solutions because they rely on L1 for data validation and security.

2.3 Polynomial Commitment and Verkle Tree

Polynomial commitments. Polynomial commitments are cryp-

tographic primitives that enable a party to commit to a polynomial

in a way that allows the committer to later prove properties about

the polynomial (such as its value at certain points) without reveal-

ing the entire polynomial. These commitments leverage algebraic

properties to compress the polynomial’s representation and provide

proofs of evaluation that are both succinct and easily verifiable. This

makes them particularly valuable in blockchain environments and

other cryptographic systems where data integrity, privacy, and scal-

ability are crucial, such as in zero-knowledge proof protocols where

they help verify complex computations without compromising the

privacy of the underlying data.

Verkle Tree. Indecure utilizes the Verkle tree [4, 18] as the data
structure for storing checkpoints. The Verkle Tree is a variant of

the Merkle Tree, featuring more branching and shallower depth.

Its nodes use polynomial commitments instead of the results of

cryptographic hash functions as summaries of the child nodes. The

Verkle Tree treats the root node as the commitment for the entire

tree (also referred to as the checkpoint mentioned earlier), meaning

the prover, unlike with a Merkle Tree, does not need to provide all

the “sibling nodes” hash values from the root to the leaf node. It

only needs to provide all the nodes on the path from the root to the

leaf node. Thus, the proof size of the Verkle Tree is smaller than

that of the Merkle Tree, especially when users query multiple leaf

nodes.

2.4 Indexer

Due to the Turing-incompleteness of the Bitcoin script language,

complex program logic cannot be executed directly on Bitcoin,

which restricts the functionalities of Bitcoin applications. To over-

come this shortage, developers leverage Bitcoin indexers to establish
an off-chain execution layer that is Turing-complete.

As shown in Figure 3, an indexer is a specialized component that

reads and processes data from the Bitcoin blockchain and returns

the computation results to clients. The fundamental purpose of an

indexer is to enhance the efficiency and usability of blockchain

data through off-chain turing-complete computations. Specifically,

Bitcoin indexers work by scanning the blockchain, extracting code

and data, and maintaining a set of states. For each generation of
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Figure 3: A strawman system for verifiable execution.

Bitcoin blocks according to the Bitcoin transaction order, index-

ers execute the code on the data and update the state accordingly.

Indexers dramatically enhance the accessibility and usability of

blockchain data. Because as Bitcoin evolves to include more com-

plex features like smart contracts and layer 2 solutions, the role of

indexers becomes even more pivotal. They enable users to verify

the validity of outputs in a trustless setup, reinforcing the security

and decentralization that are hallmarks of the Bitcoin network. This

kind of innovation is crucial as it supports the growing array of

applications on Bitcoin, transforming it into a more robust platform

for decentralized finance.

In spite of the crucial roles of Bitcoin indexers in querying Bit-

coin blockchain data efficiently, face several security concerns. ❶

Data Integrity: Indexers must ensure the data they retrieve and

store from the blockchain is accurate and unaltered. Manipulated

data can mislead users about transaction histories, balances, or

smart contract outcomes. ❷ Privacy: Indexers often accumulate

detailed transaction histories that could be exploited to track users’

financial behaviors. Ensuring data is handled in ways that protect

user anonymity and financial privacy is crucial. ❸ Centralization
Risks: Many indexing solutions rely on centralized servers, creating

potential single points of failure. These centralized components

can be targeted by attackers aiming to disrupt service or steal data.

❹ Sybil Attacks: as shown in Figure 3, even with a decentralized

network of indexers, due to lack of slashing mechanisms, attackers

could still control the majority of the nodes and create misleading

states of the computation, potentially affecting trading decisions

and market movements.

2.5 A Strawman System for Verifiable Execution

As we mentioned in the previous section, a decentralized net-

work composed of Bitcoin indexers still cannot prevent Sybil attacks

because its consensus layer lacks a penalty mechanism and can-

not punish malicious actors, which could lead to serious security

concerns that compromise data integrity. To address this problem,

Figure 3 shows a strawman system that allows users (i.e., light
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clients) to verify the correctness of the computation. Specifically, in

a completely trustless setup where a malicious indexer could return

bogus states, the user could still rely on the economic security of

Bitcoin mainnet and mitigate this problem through two steps: ❶

download code and data from all relevant blocks (i.e., from Block0
to Blockh), and ❷ Execute each block data locally until recovering

the final result of the current state. In this system, transaction order

is guaranteed by the Bitcoin blockchain, and for a given decentral-

ized protocol, the data and code on the block are interpreted and

executed at the light client side.

Caveat. Even though downstream applications could directly

obtain states from indexers, when it comes to discrepancies between

different states for the same block, applications are forced to re-

index the entire history of blocks. In other words, despite adding

an execution layer to the blockchain, the strawman system relies

on light clients to resolve conflicts, which leads to a huge burden

to end users in terms of computation, storage, and response time.

Threat model. We outline a realistic threat model that forms

the basis of our work. The primary threats include adversarial ca-

pabilities such as network-level attackers capable of intercepting or

altering data, internal threats from users with system access, and ex-

ternal hackers targeting software vulnerabilities. These adversaries

aim to disrupt service operations, manipulate data for fraudulent

purposes, or illicitly access sensitive information. The system faces

risks from various attack vectors including denial-of-service at-

tacks, Sybil attacks to undermine the indexer network, spoofing to

falsify identities, and exploitation of potential vulnerabilities both

within the Bitcoin protocol and the indexer’s architecture.

3 MODULAR EXECUTION LAYER

A critical limitation of the strawman system described in Section 2.5

is the lack of a mechanism that ensures data integrity and avail-

ability. In particular, to recover the actual under the trustless setup,

the strawman system will rely on light clients to recompute the

current states by accessing the blockchain’s full data history. Such

a recovery process could be slow and error-prone, leading to a

significant limitation on the efficiency and reliability of blockchain

computations. To mitigate this, we introduce modular execution
layer, a stateless and verifiable execution layer for meta-protocols

on Bitcoin.

The section is organized as follows: Section 3.1 presents an

overview of the proposed architecture with extended formulation

upon the strawman system; Section 3.2 introduces a key component

called modular indexer for computation and storage; Section 3.3

introduces another key component called light client for validation
and recovery, as well as its corresponding attestation algorithm for

ensuring data integrity.

3.1 Formulation and Architecture Overview

We start by re-iterating the 1-of-N trust assumption [51] that In-

decure applies upon. In a 1-of-N setup, there are many actors,

and the system will function as expected as long as at least one of

them behaves honestly. Any system based on fraud-proofs falls into

this category. We further extend this assumption in the context of

Bitcoin whose execution layer leverages indexers.

State Indexer

Blockchain
Block

Light Client

Data Availability 
Layer

Attested State

States

Checkpoints

State Indexer
Modular 
Indexer

Modular Execution Layer

Checkpoints

Decentralized 
Protocol 𝜌

Malicious Indexer Honest Indexer

INDECURE

Figure 4: Framework overview.

Assumption 1 (1-of-N Trust Assumption). For a block at a
given height, there is at least one honest indexer that always returns
the correct state.

Definition 1 guarantees that for the execution of each block,

the correct state always exists among the set of all obtainable (po-

tentially bogus) states from the indexer network. Following the

assumption, we can still assure that if all indexers reach the same

state for a block, the state is correct; otherwise, divergence needs

to be resolved to reach a consensus. Unlike the base system that

falls back to re-play of blockchain history, Indecure addresses and

resolves the divergence with a checkpoint mechanism that saves,

validates and recovers the correct states from within a minimal

window of history.

Figure 4 shows the high-level architecture of Indecure and the

workflow for generating an attested state. While Indecure can in-

corporate with various integrity validation techniques, for a concise

presentation, we use hash tree techniques
1
for integrity validation

by default in our discussion below. In particular, Indecure con-

sists of two layers, namely the modular execution layer and data

availability layer. There are two key components in the modular

execution layer:

• The modular indexer computes and stores states by retriev-

ing and executing blocks from the Bitcoin blockchain. In

addition to states, a modular indexer also generates extra

data used for state validation called checkpoints.
• The light client is responsible for state validation and recov-

ery. When a divergence of states happens, the light client

recovers the correct one by an attestation algorithm with

the help of checkpoints.

The data availability provides storage and indexing of checkpoints

generated by the modular indexer, making sure of their accessibility

to the light clients.

Therefore, for a given block and decentralized protocol, Inde-

cure invokes the following two steps to generated an attested state

for this block:

• Step 1 (State computation and storage): Each modular in-

dexer from the network first synchronizewith the blockchain

1
This includes techniques such as Merkle tree, Verkle tree, etc.
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by pulling the latest block, and then execute the target

decentralized protocol to generate a state. In addition, a

checkpoint for the current state is also computed via poly-

nomial commitment algorithm and published to the data

availability layer.

• Step 2 (State validation and recovery): A light client obtains

states and published checkpoints, and performs an attesta-

tion procedure to generated the correct state. Specifically,

the attestation procedure resolves potential discrepancy be-

tween states proposed by modular indexers by identifying

the successfully validated state-checkpoint pair.

In what follows, we discuss these two steps in detail.

3.2 State Computation and Storage

Given a block at height ℎ (denoted by 𝐵ℎ), and a decentralized

protocol 𝜌 , the execution (denoted by execute(·)) of the data on 𝐵ℎ
according to 𝜌 corresponds to the transition from the parent state

of height ℎ − 1 (denoted by 𝑆ℎ−1) to the current resulting state 𝑆ℎ :

execute(𝜌, 𝐵ℎ, 𝑆ℎ−1) → 𝑆ℎ .

Since such computation happens locally on indexers, a malicious

indexer can forge computational results thus creating a bogus state

𝑆 ′
ℎ
and submit when queried by other clients from the network.

Modular indexer and checkpoint. As a malicious indexer

could cause discrepancy of states and there’s no effective way to

identify or revoke the bogus states in a base system, Indecure

extends the notion of indexer to a new kind called modular in-

dexer that generates an additional “proof” for validating the state

proposed by itself.

Such a proof is also referred to as a checkpoint. A checkpoint at

height ℎ (denoted by𝐶ℎ) usually takes the form of polynomial com-

mitment, and can be computed by taking into account of different

states and checkpoints in the history, e.g.,:

checkpoint(𝑆ℎ−1, 𝑆ℎ,𝐶ℎ−1) → 𝐶ℎ,

where the current and parent states 𝑆ℎ and 𝑆ℎ−1, as well as the
parent checkpoint 𝐶ℎ−1, are used for checkpoint computation (de-

noted by checkpoint(·). The resulting checkpoint 𝐶ℎ recursively

encodes the history of parent states and checkpoints, which can

then be later used by third parties for validation of state integrity.

As state validation is closely related to the attestation procedure,

we defer the discussion to Section 3.3.

Revisiting the trust assumption. As a modular indexer pro-

poses both states and checkpoints, following Definition 1, when

queried for state and checkpoint at certain block height, modular

indexers can behave in three different ways:

• Fully honest. Both the state and checkpoint proposed are

correct.

• Half-half. Either only the state or checkpoint is correct.

• Fully malicious. Both the state and checkpoint are incor-

rect.

Of the above types, an incorrect state or checkpoint will mark

the indexer as malicious. Therefore, we can extend the notion of

honesty to the context of modular indexer.

Corollary 1 (Honest Modular Indexer). A modular indexer
is considered honest at certain block height, if it proposes both correct
state and checkpoint; otherwise it’s considered malicious.

Following Corollary 1, only a fully honest modular indexer is con-

sidered honest, and the other two types of indexers are considered

malicious. We base the follow-up discussion upon this corollary.

Data availability and protocol namespace. To enable data

accessibility and robustness, Indecure incorporates a data avail-

ability layer where modular indexers can publish the computed

checkpoints. The data availability layer assures that data related

to transactions on a blockchain is readily accessible to all nodes in

the network and can be retrieved efficiently by light clients.

As Indecure is compatible with different decentralized proto-

cols, each protocol establishes its own isolated storage that we call

namespace. Indexers executing the same protocol share the same

namespace.

3.3 State Validation and Recovery

As malicious indexers contribute mainly to state and checkpoint

generation, clients that consume the state for down-stream tasks

can skip the heavy-lifting work of computation most of the time

when the states obtained from various sources are consistent. In

the scenario where discrepancy between states appears, the client

must resort to a further attestation procedure that resolves a correct

state, before handing over to any down-stream tasks.

Light client and state proof. In Indecure, we extend a regular

indexer to a special kind called light client, which validates states

with their corresponding checkpoints, and recovers the correct

versions if state discrepancy happens. A light client usually starts

by obtaining a set of states (denoted by and checkpoints from the

modular indexers and data availability layer respectively.

The validation of the integrity of a state 𝑆ℎ with its corresponding

checkpoint 𝐶ℎ can be done by:

verify(𝐶ℎ, 𝜋ℎ),

where verify(·) corresponds to the validation operator, and the

proof 𝜋 of the hash tree is given by:

proof(𝑆ℎ) → 𝜋ℎ,

where proof(·) is the corresponding hash tree proof generator
2
.

Depending on the validation result, the light client follows a stan-

dard attestation procedure to resolve potential discrepancy among

states.

The attestation procedure. Algorithm 1 describes the proce-

dure for a light client to generate attested state and checkpoint at

given block height ℎ. In particular, attested states and checkpoints

are guaranteed to be correct regarding a given protocol 𝜌 , and can

be obtained by the following three ways:

• Attested by initialization (line 5). When queried height is 0

(line 4), an empty state ∅ and checkpoint 0x00 are returned.

2
In real-world practice, to reduce the workload of light clients, proof computation is

usually off-loaded to and provided by modular indexers rather than light clients.
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Algorithm 1 Attestation Procedure

1: procedure Attest(𝜌 , 𝐵, ℎ)

2: Input: Protocol 𝜌 , Blockchain Data 𝐵, Height ℎ

3: Output: Attested State 𝑆⋄ and Checkpoint 𝐶⋄

4: if ℎ = 0 then ⊲ base case

5: return ∅, 0x00 ⊲ initialized state and checkpoint

6: else ⊲ inductive case

7: Cℎ ←QueryCheckpoints(𝜌, ℎ)
8: if {𝐶} = Cℎ then ⊲ checkpoints are consistent

9: Sℎ ←QueryStates(𝜌, ℎ)
10: for each 𝑆 (𝑖 ) ∈ choose(Sℎ) do
11: 𝜋 ← proof (𝑆 (𝑖 ) )
12: if verify(𝐶, 𝜋) then return 𝑆 (𝑖 ) , 𝐶

13: return ⊥ ⊲ error state

14: else ⊲ checkpoints are inconsistent

15: 𝑆ℎ−1,𝐶ℎ−1 ← Attest(𝜌, 𝐵, ℎ − 1)
16: 𝑆ℎ ← execute(𝜌, 𝐵ℎ, 𝑆ℎ−1)
17: 𝐶ℎ ← checkpoint(𝑆ℎ−1, 𝑆ℎ,𝐶ℎ−1)
18: return 𝑆ℎ , 𝐶ℎ

At regular queried block eights (line 6), a set of checkpoints is first

obtained from the modular indexers (line 7), and based on the status

of these checkpoints, different methods of attestation are invoked:

• Attested by state selection (line 8-13). If all the checkpoints

obtained are consistent (line 8), according to Definition 1,

this consistent checkpoint is guaranteed to be correct. The

algorithm then obtains a set of states (line 9) and iterates

over them to find out the correct one using the already

attested checkpoint (line 10-14). In particular for each state

𝑆 (𝑖 ) (line 10), a proof 𝜋 is first generated (line 11) and paired

with the attested checkpoint for verification (line 12). If the

verification succeeds (line 12), then the current state 𝑆 (𝑖 )

proves correct and is returned with the attested checkpoint;

otherwise, the algorithm moves to the next available state

until the correct one is found
3
.

• Attested by checkpoint recovery (line 15-18). If the check-

points obtained are inconsistent (line 14), a recovery mech-

anism is then invoked. In particular, the algorithm first

delegates the resolution of an attested state and checkpoint

of the previous block height ℎ − 1 to itself in recursion

(line 15). Then starting from the attested state of previous

block height 𝑆ℎ−1, the light client proceeds with execution

of block 𝐵ℎ on state 𝑆ℎ−1 for protocol 𝜌 (line 16), which

produces the current state 𝑆ℎ . Since 𝑆ℎ−1 and𝐶ℎ−1 are both
attested, 𝑆ℎ is also attested and can be used to derive its

corresponding attested checkpoint 𝐶ℎ (line 17) and return

(line 18).

Example 3.1. Figure 5 shows an example of state recovery in

the presence of inconsistent results. Here, the checkpoints at block

height ℎ − 1 of modular indexers are consistent and attested, but

the checkpoint submitted by the committee indexer set selected

3
Note that Definition 1 and Corollary 1 ensures at least one of the states is correct. So

Algorithm 1 is guaranteed to attest a state and checkpoint without reaching the error

state (line 13), which we add for the algorithm’s syntactic correctness.

Block
(ℎ)

Block
(ℎ − 1)

Block
(ℎ − 2)

......Block
(0)

Bitcoin

IndexerIndexer
Modular 
Indexer

Execute

Light Client
𝑩𝒉 𝑺𝒉𝟎

Recover

Malicious Indexer Honest Indexer

......

Data Availability 
Layer

Modular Execution Layer

𝑺𝒉𝟏

𝑪𝒉𝟎 𝑪𝒉𝟏

𝑪𝒉𝟏

𝑪𝒉𝟎

𝑺𝒉$𝟏 (Attested) 𝑩𝒉

𝑺𝒉 (Attested)

Figure 5: An example of state recovery in Indecure.

by users at height ℎ is inconsistent. Without loss of generality, we

assume there are only two inconsistent checkpoints. A malicious

indexer provided the false checkpoint 𝐶1

ℎ
while the honest indexer

provided the true checkpoint 𝐶0

ℎ
. Upon discovering the inconsis-

tency between 𝑆0
ℎ
and 𝑆1

ℎ
, the light client will undergo the following

steps for stateless computation to generate the correct checkpoint,

thereby identifying the honest indexer and removing malicious

ones from the indexer network.

• Verify 𝑆ℎ−1: The light client first verifies whether the proof
𝜋 is correct through Verify(𝐶ℎ−1, 𝜋).

• Generate 𝑆ℎ : The light client obtains the transactions that

need to be executed from the current block ℎ and data 𝑉

from the parent block’s state 𝑆ℎ−1 required for executing

these transactions. Subsequently, the user executes trans-

actions on 𝑉 , calculating the post-execution state 𝑉 ′. Note
that the light client does not need to request the full state

(saving the full state requires hundreds of GB of storage

space) but calculates from a subset of the full state, con-

taining only those read and written by transactions in the

current block ℎ. Also, only one honest indexer needs to

provide 𝑆ℎ−1 as well as the proof 𝜋 for the transaction

execution.

• Verify Checkpoint 𝐶ℎ : After verifying the correctness of

𝑆ℎ−1 and calculating the 𝑆ℎ , the light client can calculate

the polynomial commitment of the complete state, as well

as the values of the leaves that need to be updated. This

means the light client can recover the current block’s Verkle

Tree 𝑇ℎ from 𝑆ℎ−1, 𝑆ℎ and the parent block’s checkpoint

𝐶ℎ−1, even though it only knows a tiny part of the leaves of

the tree, we can still generate the entire tree’s checkpoint

𝐶ℎ . Thereby, the light client can determine the correctness

of 𝐶0

ℎ
and 𝐶1

ℎ
by comparing these checkpoints with the

generated checkpoint 𝐶ℎ , thus identifying the attacker and

removing it from the indexer network.
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Definition 1 ensures that, as long as there’s at least one honest

modular indexer, the attested state and checkpoint returned by

Algorithm 1 from the light client will always be correct.

Security. Our security goal is to ensure that a user is always

able to retrieve the correct state at an arbitrary height. To show

this, we proceed with the analysis as follows.

(1) An honest indexer holds the correct states. The correctness of
local states of an honest indexer is shown by an induction.

Assuming secure bootstrapping and the correctness of 𝑆ℎ−1
and 𝐶ℎ−1, execute(𝜌, 𝐵ℎ, 𝑆ℎ−1) → 𝑆ℎ and

checkpoint(𝑆ℎ−1, 𝑆ℎ,𝐶ℎ−1) → 𝐶ℎ

deterministically return the correct 𝑆ℎ and 𝐶ℎ .

(2) At least one honest indexer returns the correct state. From our

1-of-𝑁 trustless assumption, there is always one indexer

returning a correct state with a valid proof.

(3) The user is capable of distinguishing the correct state from
forged ones with a proof. This is guaranteed by the Verkle

design, which is based on the binding property of its un-

derlying KZG-based vector commitment. This is shown by

induction. For a path of Verkle tree nodes 𝑢0, 𝑢1, . . . , 𝑢ℓ (𝑢0
is the Verkle root), for any integer 𝑖 satisfying 0 < 𝑖 ≤ ℓ ,
𝑢𝑖−1 contains the correct vector commitment for a vector

including 𝑢𝑖 at the desired index. In the other case, it vi-

olates the binding property of the vector commitment. If

𝑢𝑖−1 is the correct Verkle node, then 𝑢𝑖 is unforgeable.

Optimization. Additionally as an optimization, since the at-

tested states and checkpoints are guaranteed correct, a light client

can then identify and block malicious indexers by checking their

proposed states and checkpoints with the attested ones. As an ex-

ample, the choose operator (line 10) can be programmed to speed

up the attestation procedure by selectively skipping malicious in-

dexers (and promoting honest indexers) each time an attestation is

required.

3.4 From Stateful to Stateless Computation

Recall that Section 3.2 introduces a stateful computation that com-

putes a new checkpoint from three inputs, namely, the current state

𝑆ℎ , the parent state 𝑆ℎ−1, and the parent checkpoint 𝐶ℎ−1. As we
demonstrate later in the evaluation, this approach, while correct,

faces significant scalability issues. Because the light client has to

retrieve block states that are increasingly growing.

Given the impracticality of handling the full state due to its

massive size, often in the hundreds of GB, the light clients should

only request a tiny subset of the full state necessary for the current
transaction execution. Using the properties of Verkle Tree, our key

insight is to compute the full state’s checkpoint from a subset of

states that are modified, effectively turning the original stateful

computation into its stateless version.

Definition 1 (Critical State). For a block at a given height ℎ,
a critical state 𝛿 at ℎ is a subset of all Keys {𝐾0, 𝐾1, ..., 𝐾𝑚} that are
either read or written by the transactions in block ℎ.

Therefore, we propose an effective and stateless computation for

checkpoints based on critical states:

checkpoint∗ (𝛿,𝐶ℎ−1) → 𝐶ℎ,

which dramatically reduces the amount of data on the light clients.

4 IMPLEMENTATION

We implemented the proposed ideas in a tool called Indecure,

which contains two components, namely, themodular-indexer

and the light-clent. In particular, the modular indexer’s main

branch comprises 3,964 lines of code and the light client’s main

branch contains 3,687 lines of code. Both components are developed

in Golang, which is an ideal language for blockchain-related pro-

gramming involving concurrent operations and low-level memory

management.

4.1 Optimization Strategies

In addition to the main ideas in our technical sections, our imple-

mentation incorporates several optimizations to enhance perfor-

mance and reliability in a Bitcoin blockchain environment.

Handling BitcoinReorganizations. One of the key challenges

in working with Bitcoin blockchain is handling reorganizations,

where recent blocks might be replaced, requiring a rollback of state

changes. To address this, we’ve implemented a novel approach

using an array structure to store state differences (statediffs) at
each block height. This method allows for efficient rollbacks up to

six blocks, aligning with Bitcoin’s maximum reorganization depth.

By preparing for reorganizations, modular indexer system can

quickly adjust to changes in the blockchain without extensive re-

calculations. Meanwhile, instead of storing entire state histories or

multiple versions of the Verkle Tree, only the differences are stored,

significantly reducing the storage overhead.

Verkle Tree Storage Optimization. Further optimizations

were implemented in the storage mechanism of the Verkle Tree,

particularly in handling key-value (KV) pairs with large values.

Given the constraints of the Verkle Tree structure where large val-

ues might span multiple slots, we optimized the storage of such KV

pairs by modifying their key encoding.

The key alteration involves appending an increment to the last bit

of keys that are associated with large values. This method ensures

that these values are split and sequentially stored within the same

leaf node.

This optimization offers several advantages:

(1) Computational Efficiency: By storing related large-value KV

pairs in the same leaf node, we minimize the computational

overhead of generating multiple commitments for disparate

nodes.

(2) Space Optimization: Sequential storage reduces the need for

additional space that would otherwise be required to store

metadata about node locations or additional leaf nodes,

thus minimizing space wastage and maximizing the use of

allocated space.
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Figure 6: Integration with meta-protocols.

Honesty Tracking. To reduce overhead and data transmission

size during state attestation procedure, Indecure tracks the hon-

esty status for every modular indexer it has interacted with, which

we refer to as honesty tracking. As an optimization, honesty track-

ing happens after a state is successfully attested by a light client.

By maintaining a white list of modular indexers, Indecure can

effectively choose to only prioritize or block certain indexers, thus

reducing communication overhead with those tagged as malicious.

4.2 Integration with Meta-protocols

We further elaborate on how to integrate Indecure with existing

meta-protocols:

• Modular Indexer: The indexer independently stores and

indexes each meta-protocol, thus calculating and publish-

ing checkpoints for each meta-protocol. For example, if an

indexer chooses to serve both BRC-20 and Bitmap protocols,

it needs to publish the current state commitment tuple:

⟨blockheight ℎ, blockhash 𝑝, checkpoint 𝐶⟩

separately to the DA Layer for BRC-20 and Bitmap. Here,

checkpoints from different meta-protocols are stored in

different namespace in the DA layer.

• Meta-Protocols: On each ⟨block height ℎ, block hash 𝑝 ,

checkpoint⟩, the indexer maintains a Verkle Tree storing

all the state variables of the meta-protocol. This Verkle

tree uses a 32-byte storage identifier as the key and the

current value of the state variable as the value. The meta-

protocol is responsible for defining how to generate the

storage identifier and ensure its uniqueness. For example,

in the BRC-20 meta-protocol, a state variable that needs to

be maintained is the user’s current available balance under

a certain instance. Therefore, the meta-protocol needs to

define how each user’s available balance under each BRC-20

instance is mapped/hashed to a unique storage identifier.

In terms of state correctness, as shown in Figure 6, any changes

in a state variable will lead to a change in the meta-protocol check-

point. Upon detecting inconsistency in the meta-protocol check-

points, the light clients can verify and determine the trustworthy

indexers through the verification process described in Section 3.2.

Figure 7: Comparison between Indecure and the base system

on the cumulative state size required for proof generation at

each block.

5 EVALUATION

In this section, we describe the results of the experimental eval-

uation of Indecure. Our evaluation is designed to answer the

following key research questions:

• RQ1 (Effectiveness): Is Indecure’s trustless infrastructure

with stateless computation and attestation effective?

• RQ2 (Generality): Can Indecure be effectively general-

ized to different protocols?

• RQ3 (Robustness): Can Indecure prevent real-world at-

tacks caused from malicious nodes in the network?

Evaluation setup. Indecure is deployed within AWS cloud en-

vironment for testing and evaluation purpose, with four machines

each running a equal number of modular indexers. These indexers

are deployed on compute instance of type "R6i 4xlarge", and oper-

ate in Ubuntu 22.04 operating system with 16 vCPUs, 128 GiB of

memory and 2TB SSD storage.

We instantiate a state in the system as a set of key-value pairs.

Each modular indexer node starts processing at the Bitcoin block

height of 779,832, which is the height marks the initial deployment

of inscription on the Bitcoin blockchain. Processing has contin-

ued up to a block height of 830,000 at the time of reporting. This

corresponds to a total of 50,168 blocks processed.

All evaluations are conducted on a private testnet forked from

Bitcoin blockchain, with large-scale real-world user participation.

5.1 Comparison on Effectiveness

We evaluate the effectiveness of Indecure from two perspectives,

namely transmission size and system recovery time.

Data size in network transmission. As the size of data re-

quired for communication between nodes of a system in the net-

work is an important indicator to measure a system’s effectiveness,

we measure the total size of data transmitted between nodes during

system runtime for BRC20 protocol.

Figure 7 shows the cumulative number of key-value pairs trans-

mitted between nodes as the block height grows. Compared with

8
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Figure 8: Size of generated proof in Indecure as block height

grows.

the base system whose data transmission cost grows nearly ex-

ponentially with an average of 650k pairs, Indecure’s growth is

close to linear with an average of 1k pairs, demonstrating a strong

evidence of the effectiveness its stateless computation design as

Indecure saves more than 99% of required data during computation

and validation. Even though Indecure requires an additional proof

on top of a checkpoint for state validation, as shown by Figure 8,

Indecure only needs an average of 0.03MB of proof for state vali-

dation. In addition, the proof size does not grow as the total size of

the entire state grows, due to the design of critical state that only

keeps track of changes rather than a state’s entire data structure.

System recovery time. Besides data size in network transmis-

sion, we further measure the time spent for a light client to attest

the current state and recognize honest indexers when inconsisten-

cies between states and checkpoints are detected, which we denote

as system recovery time 𝑇𝑟 :

𝑇𝑟 = 𝑇𝑠 +𝑇ℎ

where 𝑇𝑠 denotes time spent on state recovery and 𝑇ℎ denotes

time spent on honesty tracking. System recovery time evaluates a

network’s effectiveness in resolving state inconsistencies.

We conduct the experiments in a network with in total 100

modular indexers. We then measure the system recovery time of

Indecure under different levels of trustless assumption, ranging

from a preset of 1% to 99% malicious indexers in the network. We

assume that malicious indexers only appear in the current block

height that the client queries. Figure 9 shows the distribution of

the system’s state recovery time and honesty tracking time as the

percentage of the network’s malicious indexers grows. As we can

see, Indecure’s state recovery time is a constant (0.5s) since the

client needs to query the state at the last block height in order to

compute and recover the correct state, which is agnostic to number

of malicious indexers. That is, Indecure can terminate immediately

regardless of degree of inconsistency. For honesty tracking, since

the client needs to compare the correct state with all the states

proposed by different indexers, the honest tracking time naturally

grows in a linear way.

Figure 9: System recovery time in the presence of malicious

indexers.

Figure 10: Checkpoint time.

Result for RQ1: Indecure transmits significantly smaller sizes

of data as block height grows, demonstrating a more effective

way of stateless computation over the base system.

5.2 Ablation Study

To find out how the stateless computation in Indecure contribute

to its performance, we conduct a ablation study. In particular, we

create an ablative version of the system that we denote as Inde-

cure
𝑜
which enables stateful instead of stateless computation. That

is, we remove the computation of critical state in Indecure
𝑜
, and

it only relies on full states for checkpoint computation. Figure 10

shows a comparison between the full-fledged version Indecure and

the ablative version Indecure
𝑜
on the time spent for checkpoint

computation. As we take logarithm of the reported time, we can

clearly see that, with critical state incorporated, Indecure is about

100× faster than Indecure
𝑜
, indicating that stateless computation

is effective in saving both data in network transmission and com-

plexity of checkpoint computation. We believe this also provides

an evidence towards answering RQ1 in a positive way.
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Figure 11: Comparison between Indecure and the base sys-

tem on the cumulative data size transmitted for proof gener-

ation as block height grows when running BRC20 protocol.

5.3 Generalizing for Different Protocols

As the trustless computation architecture of Indecure does not

assume any preconditions of the protocols applied, besides BRC20,
we also deploy other two representative decentralized protocols on

top of Indecure:

• Bitmap is a consensus standard that allows anybody to

claim the geospatial digital real estate of a Bitcoin Block,

which takes advantage of the nature of data’s unique ability

to be parsed from multiple angels.

• SatsNames is a standard for writing human-readable Web3

usernames to Bitcoin using ordinals. The goal is to build a

name ecosystem for Bitcoin, that is built by Bitcoiners, and

developed entirely on Bitcoin.

Figures 11 to 13 show the comparisons between Indecure and

the base system for running the three protocols BRC20, bitmap and
satsnames respectively. The three figures all demonstrate a consis-

tent and significant trend of better cost effectiveness of Indecure

over the base system.

Result for RQ2: Indecure’s computation and validation archi-

tecture generalizes to different protocols with consistent cost

effectiveness.

5.4 Case Study: Mitigation of Real-World

Attacks from Malicious Indexers

In this evaluation, we simulate Indecure in the context of a real-

world incident [50] caused by inconsistent states from different

indexers.

The problem: OnNov 26th, 2023, the Bitcoin native wallet, UniSat,
returned two inconsistent results for one of the user’s address

4
.

There appeared to be a major discrepancy in the supply of BRC-20

on Binance due to this issue. Binance holds around more ORDI

( $100m) than what should exist. In particular, three indexers (i.e.,

UniSat, OKX, andOrdinalscan) return a balance of 7,250,285.19634297

4
bc1qhuv3dhpnm0wktasd3v0kt6e4aqfqsd0uhfdu7d

Figure 12: Comparison between Indecure and the base sys-

tem on the cumulative data size transmitted for proof gener-

ation as block height grows when running bitmap protocol.

Figure 13: Comparison between Indecure and the base sys-

tem on the cumulative data size transmitted for proof genera-

tion as block height grows when running satsnames protocol.

$ORDI while the fourth indexer (i.e., ordiscan) returns a balance of

only 2,304,693 $ORDI.

Root cause: It turns out that the balance from the last indexer (i.e.,

ordiscan) is incorrect due to mishandling an edge case in decimals.

Simulation: Together with regular and benign nodes, we re-

played the incident by deploying a “malicious indexer" that de-

liberately returns the wrong balance to light clients. After that, we

monitored the behavior of light clients and see whether any of them

will accept the wrong balance from the malicious clients. Through

our entire testnet phase that lasted for one week, all light clients

were able to accept the correct balance as expected.

Result for RQ3: Indecure is effective in mitigating real-world

attacks from malicious indexers.

6 RELATEDWORK

Scaling Bitcoin through execution layers and data storage layers

is an emerging research topic. In what follows, we discuss prior

work that is most closely related to our proposed approach.
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Light clients. The most related topic of our design was the

light client. Light clients enabled resource-constrained devices to

participate in transaction submissions and queries without main-

taining the entire blockchain, while still guaranteeing security and

liveness. The earliest known light client was Simplified Payment

Verification (SPV) [40] for Bitcoin. It was achieved by verifying the

hash chain and requesting Merkle proofs for specific transactions.

However, it required full synchronization of the light clients. In

addition, ecology-specific light clients (or similar schemes) were

proposed for other ecologies such as Ethereum [1], Algorand [34],

Cosmos IBC [27], ZCash [17], Cardano [21], Mina [16], etc.. Fur-
thermore, efforts were devoted to understanding and developing

general light clients. Zephyr [29] provided metrics for evaluating

blockchain bridge performance of zero-knowledge light clients.

SNACKs [10] presented a novel cryptographic primitive that allows

light client constructions. Glimpse [47] applied a novel light client

with only constant on-chain overhead for PoW-based blockchains.

Lu et al. [37] proposed a generic light client in the game-theoretic

model. In particular, Chatzigiannis et al. [22] provided a detailed

and comprehensive survey. However, none of the above solutions

was applicable to general layer-two Bitcoin applications.

Vector commitments. Vector commitment is the crucial build-

ing block of our data security. The earlist vector commitment was

the direct application of a Merkle tree. However, it incured long

proof size due to its binary nature. Recent advances showed that the

proof size of vector commitments could be constant [20, 33, 35, 36].

In particular, Papamanthou et al. [42] offered a constant setup size

with logarithmic proof size and verification time. However, due

to its underlying lattice-based building blocks, its proof size was

significantly larger than that of the KZG-based solution. Besides,

other schemes above required at least a linear-size setup or linear

verification time. Noticeably, some recent works traded efficiency

for simpler aggregations or subvector commitments. However, they

required either (super)linear verification time [11, 15, 19, 28, 49] or

linear setup [48]. Based on the observations above, our modular

indexer adopts a solution by leveraging the Verkle tree [4, 18] to
store states. Its underlying vector commitments are realized by

interpolating the vector into a polynomial and committing this

polynomial by the KZG commitment [32].

Execution layers of Bitcoin. Before the emergency of generic

Bitcoin execution layers, off-chain transaction execution was pro-

vided by payment channel networks (PCN) [24, 25, 30], especially

the Lightning network [43], and improved by recent advances [13,

26, 44]. In existing bilateral PCN users, data availability was re-

quired to prevent sudden withdrawal of other nodes with an early

state and loss of deposit. Watchover services [14, 39] were provided

to solve the issue, which required the liveness of additional server

nodes. Luckily, such an issue of data availability could be solved by

modular indexers.

Also, solutions were provided to enable generic layer-two plat-

forms. Stacks [9] and CKB [8] offered scalability improvements

through off-chain transactions. Also, inscriptions [52] and ordinal

protocols [3] enabled indivisible assets and embedded data for the

Bitcoin layer-two ecology. In particular, applications and variants

are built on top of the ordinal protocol [5–7, 45]. With our modu-

lar indexer, light clients are allowed to participate in the schemes

mentioned above in an efficient and secure manner.

7 CONCLUSION

In this paper, we have explored the transformative potential of the

Bitcoin ecosystem, where innovations such as Layer-2 solutions

and unique protocols like inscriptions and ordinals are paving the

way for more scalable, efficient, and robust applications. Our work

has particularly focused on addressing the limitations of Bitcoin’s

Turing-incompleteness by proposing a modular indexer architec-

ture, Indecure, which ensures the integrity and availability of

off-chain data processing. This architecture not only mitigates vul-

nerabilities inherent in decentralized systems, such as Sybil attacks,

but also reduces the operational overhead associated with main-

taining and verifying large volumes of blockchain data.

The evaluation of Indecure across different indexer protocols

has demonstrated significant improvements in efficiency and data

integrity, proving the viability of our system in a real-world setting.

By implementing a decentralized procedure for data attestation and

utilizing a trustless modular execution layer, Indecure stands as a

pioneering solution in the realm of the Bitcoin ecosystem, offering

a scalable and secure framework that could revolutionize the way

digital assets are managed and verified on Bitcoin.
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