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Abstract. Approximate fully homomorphic encryption (FHE) schemes such as the CKKS scheme
(Asiacrypt ’17) are popular in practice due to their efficiency and utility for machine learning ap-
plications. Unfortunately, Li and Micciancio (Eurocrypt, ’21) showed that, while achieving standard
semantic (or IND-CPA security), the CKKS scheme is broken under a variant security notion known
as IND-CPAD. Subsequently, Li, Micciancio, Schultz, and Sorrell (Crypto ’22) proved the security of
the CKKS scheme with a noise-flooding countermeasure, which adds Gaussian noise of sufficiently high
variance before outputting the decrypted value. However, the variance required for provable security is
very high, inducing a large loss in message precision.
In this work, we ask whether there is an intermediate noise-flooding level, which may not be provably
secure, but allows to maintain the performance of the scheme, while resisting known attacks. We analyze
the security with respect to different adversarial models and various types of attacks.
We investigate the effectiveness of lattice reduction attacks, guessing attacks and hybrid attacks with
noise-flooding with variance ρ2circ, the variance of the noise already present in the ciphertext as estimated
by an average-case analysis, 100 · ρ2circ, and t · ρ2circ, where t is the number of decryption queries. For
noise levels of ρ2circ and 100 · ρ2circ, we find that a full guessing attack is feasible for all parameter sets
and circuit types. We find that a lattice reduction attack is the most effective attack for noise-flooding
level t · ρ2circ, but it only induces at most a several bit reduction in the security level.
Due to the large dimension and modulus in typical FHE parameter sets, previous techniques even for
estimating the concrete security of these attacks – such as those in (Dachman-Soled, Ducas, Gong,
Rossi, Crypto ’20) – become computationally infeasible, since they involve high dimensional and high
precision matrix multiplication and inversion. We therefore develop new techniques that allow us to
perform fast security estimation, even for FHE-size parameter sets.
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1 Introduction

The notion of “approximate FHE” – fully homomorphic encryption schemes that guarantee only approxi-
mate correctness of decryption – was put forth by Cheon, Kim, Kim, and Song [13]. Their proposed scheme,
henceforth referred to as CKKS, is one of the leading schemes in terms of efficiency, in particular in terms of
suitability for Machine Learning (ML) tasks, as well as its paralellisation capabilities. Unfortunately, in [26],
it was pointed out that approximate FHE schemes come with added risks: While they indeed achieve the
standard notion of CPA-security, they can fail against a variant, IND-CPAD introduced by Li and Miccian-
cio [26], in which the adversary is given limited access to the decryption oracle. In the same work [26], the
authors show that for exact schemes (such as BGV, BFV and TFHE), the notions of IND-CPAD and IND-CPA
are equivalent.4

Noise-flooding techniques have been suggested as a practical countermeasure against IND-CPAD at-
tacks [1]. These techniques add noise (from a Gaussian distribution) to the message obtained by decrypting a
ciphertext, before it is returned to the adversary. Such countermeasures were formally analyzed in the work
of Li, Micciancio, Schultz, and Sorrell [27], and it was shown that when the noise-flooding level is sufficiently
high, they are indeed provably secure.

Nevertheless, the amount of noise required for provable security remains very high, and as a result, CKKS
may lose some of the efficiency that originally made it attractive in comparison to exact FHE schemes. The
main exact FHE schemes today are BGV [11], BFV [10,19], and TFHE [14]. A precise comparison between
the schemes is hard to provide, since these schemes all have different trade-offs in terms of latency, amortized
latency and the type of circuits that they can support. CKKS typically performs quite well in terms of
amortized latency – see for example [9]. Therefore, while quantifying exactly how CKKS relates to these
schemes with a much smaller message precision is not easily done, it certainly loses at least part of its edge
over the other schemes in terms of amortized latency when noise-flooding is introduced. To bridge this gap,
we ask whether there is an intermediate noise-flooding level, which may fault short of provable security, but
which withstands a rigorous security analysis and which affords the efficiency needed in practice.

Our goal in this work is to investigate the concrete security degradation of the CKKS scheme when an
adversary observes some number of decryptions, t, with noise flooding variance of some variance, ρ2. The
optimal setting of ρ2 in terms of message precision is to set ρ2 equal to the variance of the noise already
present in an honestly generated ciphertext, since this means that only 1 additional bit of message precision
is lost. On the other side of the spectrum is setting ρ2 as large as the variance needed for provable, statistical
security. We also investigate settings of ρ2 that fall between these two extremes. Our aim is to present
tradeoffs among (1) the number of allowed decryptions before the secret/public key must be refreshed, (2)
the variance of the noise-flooding added to the decryption (which determines the loss of precision), and (3)
the concrete security of the scheme after a number of decryptions have been observed by the adversary (e.g. a
drop of 10 or 15 bits in security for a 256-bit parameter set may still be acceptable).

In the next section, we discuss in more detail the adversarial model we consider and our methodology
for determining the concrete hardness of key-recovery after some number of decryptions have been observed.
We emphasize that prior methods for providing concrete hardness estimates such as [17], require performing
matrix operations on the covariance matrix representing the conditional distribution of the LWE secret/error.
For FHE-scale parameter sets, the covariance matrix can have dimension as high as 256K × 256K and thus
several hundred terrabytes are required to naively store the values (this is assuming 64-bit precision, whereas
in our experimental results in Section 9.2, we find that up to 2,000 bit precision is required for meaningful
results). Therefore, one of our main contributions is developing new tools to provide fast and accurate
estimates that do not require these high-dimensional matrix operations.

4 In a recent work [12], this is called into question, as the authors point out that that the proof of equivalence
between IND-CPAD and IND-CPA does not take into account the decryption failure probability of an exact scheme.
The authors of [12] exploit the fact that this decryption failure probability is rather high in implementations of
exact schemes to run an IND-CPAD attack on the BFV scheme, and remark that their attack also applies to BGV
and TFHE.
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1.1 Our Methodology

In our work, we consider several types of adversarial models and attacks. The choice of adversarial model
governs how the adversary is allowed to interact with the encryption/eval/decryption functionalities, while
the choice of attack corresponds to the way the information obtained from the decryption oracle is used
to perform key recovery. Importantly, we note that all our adversarial models are semi-honest in the sense
that the adversary obtains fresh ciphertexts sampled from the correct distribution, and only requests com-
putations on circuits whose inputs are fresh, independent, ciphertexts. Thus, the estimates of the noise
present in the ciphertext (which determine the variance for the noise-flooding) and the actual noise present
in every ciphertext submitted for decryption are consistent. Such a constraint could be enforced in practice
by requiring zero knowledge proofs of well-formedness of fresh ciphertexts and/or signatures of designated
parties to be checked before decryption is performed, or Verifiable Computation (VC) techninques [8,20,21].
This is different from attacks such as those of Guo, Nabokov, Suvanto, and Johansson [22], which work by
constructing adversarial ciphertexts with noise distribution that is far from the noise distribution estimated
during the noise flooding step.

The first adversarial model we consider allows the adversary to run the encryption algorithm honestly and
to request decryptions of “fresh” ciphertexts, i.e. the adversary queries the decryption oracle on the identity
circuit. The second adversarial model we consider allows the adversary black-box access to the encryption
algorithm, and to request decryptions of ciphertexts resulting from the evaluation of circuits from one of two
circuit classes on the encryptions. The attacks we consider are lattice reduction attacks, guessing attacks, and
hybrid attacks. We elaborate below on the adversarial models, attacks, and our methodology for analyzing
the concrete hardness of each attack.

Decryption Queries on Identity Circuits. We start by considering an attacker who submits a number t of fresh
ciphertexts for decryption. This can also be viewed as an attacker who requests a decryption of a ciphertext
corresponding to the evaluation of the identity circuit on a fresh encryption. In the original paper of Li
and Micciancio [26], these simple IND-CPAD attacks were already shown to allow full key-recovery against
CKKS. We, however, consider a strengthening of their adversarial model. They allowed the adversary only
black-box access to the encryption oracle. We assume that the adversary obtains “white-box” access to the
encryption oracle, namely the internal randomness of the encryption is returned to the adversary, along
with the ciphertext. Once the ciphertexts have been created, our attacker observes decryptions with “noise-
flooding” added before the message is returned, where the noise is a centered Gaussian of variance ρ2. After
observing this information, we consider the concrete security of a key recovery attack under three types of
attacks: (1) Lattice Reduction attacks, (2) Guessing attacks, (3) Hybrid attacks.

Lattice Reduction Attacks. Here we assume that the adversary embeds the original LWE instance and the
additional information that it obtains (which we refer to as “hints”) into a DBDD instance (introduced
by [17]), which is then transformed into a u-SVP instance. We note that the “hints” consist of noisy linear
equations on the LWE secret/error, where the noise is sampled form a Gaussian distribution. Therefore, the
conditional distribution on the LWE secret/error, given the hints, remains a Gaussian distribution and a
closed-form formula for the new distribution can be obtained from known techniques. Thus, the steps to
integrate the hints and transform the DBDD instance to a u-SVP instance follow those given in [17] for
the case of conditional, full-dimensional, approximate hints. Upon obtaining the resulting u-SVP instance,
the adversary then uses the BKZ algorithm to recover the shortest vector which corresponds to the LWE
secret/error. We provide concrete security guarantees in terms of bikz (i.e. BKZ-β) required to solve the final
u-SVP instance, as well as the bit-security.

Importantly, although the attack template proceeds as the one outlined in [17], our analysis of the attack
differs. To obtain concrete security estimates as in [17], one would need to compute the determinant of a
2n × 2n dimensional matrix that depends on the t ciphertexts submitted for decryption and the outputs
observed by the adversary. For n = 256 and t = 16, our experiments showed that this computation takes
roughly a week on a supercomputer (See Section 9.2). In contrast, typical FHE parameters sets can have
dimension up to log2(n) = 17. Thus, to provide fast estimates, we analyze the distribution of the resulting
2n × 2n dimensional matrix arising from the outlined attack. We provide a closed-form expression for the
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expected determinant of a matrix drawn from this distribution (See Section 5 and Lemma 5.1). We verify
experimentally (See Section 9.2) that the predicted and actual expected determinant match closely, even
though our prediction approximates the original secret and error distributions as Gaussian while they are in
fact a uniform ternary distribution and a discrete Gaussian distribution, respectively. We believe this type
of analysis is a crucial component for allowing concrete hardness estimates for FHE-size parameters.

Guessing Attacks. Here the attacker keeps track of the conditional multivariate Gaussian distribution on
the LWE secret/error after integrating the t hints. When the variance of individual secret/error coordinates
becomes small enough, the adversary rounds the coordinate of the mean of the multivariate Gaussian distri-
bution to the nearest integer. At some point, the adversary can guess n out of 2n coordinates correctly with
high probability, in which case it can solve the original LWE system to obtain the remaining n coordinates.
Similarly to the lattice reduction case, actually keeping track of the covariance matrix of the multivariate
Gaussian distribution requires a 2n× 2n matrix inversion and is highly computationally intensive for FHE-
scale parameters. Since we know the distribution of the matrix, we are able to derive bounds that hold
with high probability on the trace and eigenvalues of the matrix, which in turn can be used to bound the
success probability of the guessing attack, using the Gaussian correlation inequality [25] (See Section 6 and
Lemma 6.1).

Hybrid Attacks. Here the attacker guesses g < n number of coordinates as above, but cannot guess n of
them w.h.p. The attacker integrates these g guesses as “perfect hints” into the DBDD instance and finally
obtains a new u-SVP instance, which it then solves using lattice reduction. After integrating the guesses, the
information known to the adversary corresponds to a principal submatrix of the covariance matrix, whose
determinant we need to compute in order to estimate hardness. As before, we do not compute the actual
2n × 2n covariance matrix for the instance, which is highly computationally intensive, but rather use the
fact that the distribution of the covariance matrix is known. We use the Eigenvalue Interlacing Theorem (see
e.g. [23]) and bounds on the eigenvalues that hold w.h.p. in order to bound the determinant of the principal
submatrix, given the determinant of the entire matrix (See Section 7 and Lemma 7.1).

Broader Classes of Circuits. We extend our analysis to broader classes of circuits (see Section 8 for formal
definitions of these classes). Briefly, Class 1 circuits are circuits that consist of ℓ independent subcircuits
C1, . . . , Cℓ. These circuits can be completely arbitrary as long as they all have the same multiplicative
depth d ≥ 1 and they each end in a multiplication with rescale operation. The final circuit consists of the
addition of the outputs of these subcircuits. Intuitively, we require addition of ℓ ciphertexts so that the noise
coefficients, which are individually uniformly random between [−0.5, 0.5], can be well-approximated by a
Gaussian distribution. Class 2 circuits are circuits whose output corresponds to the multiplication without
rescale of the outputs of two independent Class 1 circuits. Our motivation for considering Class 2 circuits is
that in practice, a rescale is typically not performed in the final multiplication gate of the circuit, in order
to reduce the size of the top-level modulus.

For circuits in Class 1 and 2, our adversarial model is captured by the IND-CPAD-definition. I.e. the
adversary does not need to know the internal randomness used by the encryption process, and can launch
the attack with only black-box access to the encryption algorithm. The analysis in this case is facilitated
by the fact that it was shown in prior work [16,7] that after a rescale step, the rounding noise (which
can be publicly computed) dominates the noise present in the ciphertext. Upon decryption, the information
obtained by the adversary corresponds to an approximate linear equation on the secret, which induces a
conditional Gaussian distribution on the secret. Thus, the information obtained is in fact a special case of
the information obtained by decryptions of the identity circuit, which correspond to noisy linear equations
on both the LWE secret and error. As before, we consider three types of attacks for each of the two classes
of circuits: (1) Lattice Reduction attacks, (2) Guessing attacks, (3) Hybrid attacks.

1.2 Summary of Experimental Results
We performed extensive experimentation for a wide range of parameter sets proposed by the homomorphi-
cencryption.org standards [2], as well as a larger parameter set with a ring dimension of log2 n = 17. In
Section 9, we provide an experimental validation of Lemma 5.1, as well as tables detailing the effectiveness
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of each of the three attack types on fresh ciphertexts (identity circuits) at various noise-flooding levels:
ρ2circ—the noise variance already present in a ciphertext—100 · ρ2circ, and t · ρ2circ, where t is the number of
decryptions the attacker may observe. For additional tabular data on Class 1 and 2 circuits, readers may
consult with our supplementary material, section A.

In Section 10, we provide a graphical representation of our results and highlight our key findings. Most
notably, we find that with noise-flooding levels of ρ2circ and 100 · ρ2circ, full guessing attacks are feasible after
observing a sufficient number of decryption queries (at most ∼ 100K needed), for all parameter sets and
types of circuits considered. On the other hand, for noise level of t · ρ2circ, lattice reduction attacks are the
only effective attacks. Given the above, a noise-flooding magnitude of α · t · ρ2circ, where ρ2circ is the average-
case noise present in a ciphertext output by a circuit circ, appears sufficient to preserve security when t
decryptions are made available to the adversary. Tuning 0 < α ≤ 1 establishes a way to enforce security-
precision tradeoffs in concrete applications. Finally, we note that all attacks become less effective as log2(n)
increases. Establishing the “appropriate” noise-flooding values will therefore depend on the application itself,
on the number of decryption queries t that may be available to an adversary, as well as the FHE parameters,
in particular the ring dimension log2(n).

1.3 Related Work

After the advent of the CKKS scheme, Li and Micciancio [26] demonstrated it is insecure under a variant of
the IND-CPA security notion, which they called IND-CPAD. Their work left the door open as to whether noise-
flooding countermeasures, in which additional noise is added to the decrypted message before it is returned,
can patch the vulnerability. Li, Micciancio, Schultz, and Sorrell [27] proved the security of the CKKS scheme
with the noise-flooding countermeasure for Gaussian noise with sufficiently high variance. However, the
variance required for provable security is very high, inducing a large loss in message precision. Later, the
inherent noise already present in a CKKS ciphertext was analyzed closely in [15]. This analysis allows for a
better understanding of how much message precision is lost via the noise-flooding countermeasures.

The tools of incorporating side information on the LWE secret/error into a lattice reduction attack were
developed in [17] via an introduction of an intermediate problem known as Distorted Bounded Distance
Decoding (DBDD). Their framework allows the incorporation of “hints” into DBDD instances, which are
finally converted to uSVP instances via homogenization/isotropization, and can be applied to analyze the
concrete security of the CKKS scheme with noise-flooding countermeasures. However, in practice, keeping
track of the intermediate DBDD instance is not feasible for FHE-scale parameters. The security estimation
for the LWE problem was revisited in [18], but those techniques similarly do not scale to FHE-size parameter
sets.

The work of Kim, Lee, Seo, and Song [24] considered the provable security of the Hint-LWE problem, and
it can be observed that the information obtained from noisy decryptions of fresh ciphertexts can be viewed
as an instance of Hint-LWE. Theorem 1 in [24] provides a security reduction from a spherical LWE instance
to Hint-LWE. However, because the conditional Gaussian distribution arising from the Hint-LWE problem is
ellipsoidal (not spherical), the reduction is not tight (additional noise is added to convert from the spherical
to ellipsoidal distribution). This is in contrast to our approach, which provides an attack that first converts
the Hint-LWE instance to a DBDD instance. Importantly, a DBDD instance with an ellipsoidal distribution
is equivalent to another DBDD instance with a spherical distribution, and there is no loss in this reduction.
Thus, our concrete security estimates are tighter, but only apply to certain classes of attack strategies. We
also note that reduction in Theorem 1 of [24] is for decisional LWE, whereas our attacks are for the search
LWE problem, which makes the two results somewhat incomparable.

Two recent works [22,12] present a key-recovery attack on the schemes CKKS and the exact FHE schemes,
respectively. Both attacks rely on the following observation: an average-case noise analysis models all noise
terms as independent Gaussians. When that assumption fails, the noise predicted by an average-case noise
analysis will underestimate the actual noise observed. Indeed both works successfully run a key-recovery
attack by using correlated inputs. We note that, while that research direction is interesting, this does not
affect our setting. In particular, in all circuits we consider (the identity circuit, and the classes C1 and C2),
the noise terms remain independent. We note that a recent work [5] argues that those attacks amount to
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incorrect estimation of the underlying ciphertext noise, as the heuristics specifically assume that inputs are
independent, but [22,12] heavily rely on correlated inputs. The authors of [5] therefore define the notion
of application-aware homomorphic encryption, that can precisely counter these types of attacks. Our work
therefore fits well within their model.

2 Preliminaries and Notation

Notation. We use bold lower case letters to denote vectors, and bold upper case letters to denote matrices.
We use row notation for vectors, and denote by Id the identity matrix of dimension d. We denote by {ei}i∈[n]

the standard basis vectors in dimension n.
We use the notation Rq to denote the ring Z[x]/(Φm(x), q), where Φm(x) = xn + 1, and n = ϕ(m) is

a power of two. We denote ring elements by lowercase, non-bolded letters. When we employ a particular
vector representation of a ring element in the coefficient or canonical embedding, we use vector notation. [·]q
denotes modular reduction (mod q) (usually centered around 0).

We will make use of the canonical embedding and the subspace H ⊆ CZ∗
m defined as follows:

H = {x = (xi)i∈Z∗
m
∈ Cn : xi = x−i, ∀i ∈ Z∗

m}.

H is isomorphic to Rn as an inner product space via the unitary transformation

B =

(
1√
2
I i√

2
J

1√
2
J −i√

2
I

)

where I is the identity matrix of size n/2 and J is its reversal matrix.
The canonical embedding of a ∈ Q[x]/Φm(x) into Cn is the vector of evaluations of a at the roots of

Φm(x). Specifically σ(a) = [a(ζj)j∈Z∗
m
], where ζ is a primitive m-th root of unity. Due to the conjugate pairs,

σ maps into the subspace H. When a is represented as a vector of coefficients a, we can express the canonical
embedding transformation as a linear transformation aV.

We denote by N (µ,Σ) the multivariate Gaussian with mean µ and covariance Σ. We note that a mul-
tivariate Gaussian is fully determined by its mean and covariance. Thus, when the covariance of a dim
dimensional multivariate Gaussian is a multiple of Idim, the dim variables are all independent.

DBDD and concrete hardness estimates. A DBDD instance (defined in [17]) consists of a tuple (Λ, µ,Σ),
where Λ is a lattice, and (µ,Σ) are viewed as the mean and covariance of a Gaussian distribution. Informally,
the DBDD problem asks to find the unique vector in the lattice Λ that is contained in the ellipsoid defined by
(µ,Σ) (for the formal definition see [17]). The prior work of [17] showed how to transform a DBDD instance
into a uSVP instance with lattice Λ′ using the homogenization and isotropization steps, and further showed
that the secret vector of this uSVP instance has expected squared norm ||s||2 = dim(Λ′). Thus, standard
techniques can be used to estimate the hardness of the resulting uSVP instance, where hardness is measured
in terms of the “bikz” or BKZ-β required to find the unique solution. In particular, following [3,6,17], β can
be estimated as the minimum integer that satisfies√

β ≤ δ
2β−dim(Λ′)−1
β Vol(Λ′)1/dim(Λ′) (1)

for a lattice Λ′ where δ is the root-Hermite-Factor of BKZ-β.

The CKKS scheme. See Appendix 3 for a detailed description of the CKKS encryption scheme as well as a
derivation of the error terms present in the message when decrypting a fresh ciphertext, and when decrypting
after one or more multiplication steps (with or without a rescale operation). Following [15], we also present
the noise variance in a fresh CKKS ciphertext, and in a ciphertext resulting from a multiplication and rescale
operation (See Appendix 3.5).
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3 The CKKS scheme [13]
Let χ be a discrete Gaussian of standard deviation σ = 3.2. We denote by ZO(ρ) the distribution where 0 is
sampled with probability ρ, and ±1 are sampled with probability ρ/2. We denote the secret key distribution
by S. This is the uniform ternary distribution.

We assume a sequence of moduli qL, . . . , q0. After ℓ levels of multiplication, we obtain level ℓ ciphertexts
with moduli qℓ, where ℓ = L − ℓ. We note that, although we present encryption as being performed at the
“top” level L, it can be performed at any level ℓ.

SecretKeyGen(λ): Sample s← S and output sk = (1, s).
PublicKeyGen(sk): For sk = (1, s), sample a ← Rq uniformly at random and e ← χ. Output pk =

([−as+ e]qL , a).
EvaluationKeyGen(sk, w): Set s = sk. Sample a′ ← RQ, (Q = PqL) uniformly at random and e′ ← χ.

Output evk =
(
[−a′s+ e′ + Ps2]Q, a

′).
Encrypt(pk,m): For the message m ∈ R. Let pk = (p0, p1), sample v ← S and e0, e1 ← χ. Output ct =

([m+ p0v + e0]q, [p1v + e1]q).
Decrypt(sk, ct): Let ct = (c0, c1). Output m′ = [c0 + c1s]q.
Add(ct0, ct1): Given two level ℓ ciphertexts, output ct = ([ct0[0] + ct1[0]]qℓ , [ct0[1] + ct1[1]]qℓ).
Pre-Multiply(ct0, ct1): Given two level ℓ ciphertexts, set

d0 = [ct0[0]ct1[0]]qℓ
d1 = [ct0[0]ct1[1] + ct0[1]ct1[0]]qℓ
d2 = [ct0[1]ct1[1]]qℓ

Output ct = (d0, d1, d2).
Relinearize(ct, evk, P ): Given level a level ℓ ciphertext as input, let ct[0] = d0, ct[1] = d1 and ct[2] = d2.

Let evk[0] = −a′s+ e′ + Ps2 and evk[1] = a′. Set

c′0 = [d0 + ⌊P−1 · d2 · (−a′s+ e′ + Ps2)⌉]qℓ
c′1 = [d1 + ⌊P−1 · d2 · a′⌉]qℓ

Output ct′ = (c′0, c
′
1).

Rescale(ct,∆) : Given level a level ℓ ciphertext as input, let ct = (c0, c1). Set c′0 =
[⌊

c0
∆

⌉]
qℓ−1

and c′1 =[⌊
c1
∆

⌉]
qℓ−1

. Output ct = (c′0, c
′
1).

3.1 Decrypting a fresh ciphertext

Let ct be a fresh ciphertext encrypted under the public key pk, where we have pk = ([−as+ e]qL , a). Then,
decrypting ct yields

Decrypt(ct, sk) = c0 + sc1 (mod qL)

= m+ p0v + e0 + svp1 + se1

= m+ ve+ e0 + se1.

Recall that e, e0, e1 ← χ. The ephemeral key v here is drawn from the same distribution as the secret key
S, but sometimes it can be sampled from a slightly different distribution. This can for example be the
distribution ZO(ρ).
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3.2 Decrypting a multiplication, no rescale
Let ct = (c0, c1) and ct′ = (c′0, c

′
1) be two level ℓ ciphertexts that decrypt as follows.

c0 + sc1 =
m2ℓ

∆2ℓ−1
+ E

c′0 + sc′1 =
m2ℓ

∆2ℓ−1
+ E′.

Then, the output of Pre-Mult is

(d0, d1, d2) = (c0c
′
0, c0c

′
1 + c′0c1, c1c

′
1).

Note that this decrypts as

d0 + sd1 + s2d2 = (c0 + c1s)(c
′
0 + sc′1)

=
m2ℓ+1

∆2ℓ+1−2
+ Ẽ,

for some error Ẽ. Recall that the evaluation key is evk =
(
[−a′s+ e′ + Ps2]Q, a

′). Then, the output of
Relinearize is

C0 = d0 + ⌊P−1 · d2 · (−a′s+ e′ + Ps2)⌉
= d0 + P−1 · d2 · (−a′s+ e′ + Ps2) + ϵ0

C1 = d1 + ⌊P−1 · d2 · a′⌉
= d1 + P−1 · d2 · a′ + ϵ1,

where ϵi are rounding errors. Decrypting this yields

C0 + sC1 = d0 + P−1d2(−a′s+ e′ + Ps2) + ϵ0 + sd1 + sP−1d2a
′ + sϵ1

= d0 + sd1 + s2d2 + (ϵ0 + ϵ2s) + P−1d2e
′

=
m2ℓ+1

∆2ℓ+1−2
+ Ẽ + (ϵ0 + ϵ1s) + P−1d2e

′.

It has been shown that for all the FHE parameter sets we consider, the error above is dominated by
Ẽ = E · m2ℓ

∆2ℓ−1
+ E′ · m2ℓ

∆2ℓ−1
[16,7].

3.3 Decrypting a multiplication, with rescale
From the previous subsection, we have that the noise after a Pre-Mult and a Relin is

C0 + sC1 =
m2ℓ+1

∆2ℓ+1−2
+ E + (ϵ0 + ϵ1s) + P−1d2e

′.

We are going from level ℓ to level ℓ+1 and from modulus qℓ to modulus qℓ−1. Following the notation of the
previous subsection, we have the ciphertext

(C0, C1) = Relin(Pre-Mult(ct, ct′)).

Let (C ′
0, C

′
1) = Rescale(C0, C1) = (

[⌊
C0

∆

⌉]
qℓ−1

,
⌊
C1

∆

⌉
]qℓ−1

). Then
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Dec((C ′
0, C

′
1), sk) = C ′

0 + sC ′
1

=

⌊
C0

∆

⌉
+ s

⌊
C1

∆

⌉
=

C0

∆
+ s

C1

∆
+ δ0 + sδ1

=
1

∆
(C0 + sC1) + δ0 + sδ1

=
1

∆
(
m2ℓ+1

∆2ℓ+1−2
+ E + (ϵ0 + ϵ1s) + P−1d2e

′) + δ0 + sδ1

=
m2ℓ+1

∆2ℓ+1−1
+

1

∆
(E + (ϵ0 + ϵ1s) + P−1d2e

′) + δ0 + sδ1,

where δi are rounding errors, and we omit a reduction modulo qℓ−1 throughout.
It was observed in [16,7] that the error above is typically dominated by δ0 + sδ1 for most parameter sets.

When the resulting ciphertext (C ′
0, C

′
1) is a level ℓ′ ciphertext, we denote the error as Eℓ′ . Note that if an

adversary knows the evaluation key evk, then the adversary can compute δ0 and δ1 on its own. Further, each
element of δ0 and δ1 can be assumed to be independently and uniformly distributed between [−0.5, 0.5].

If the adversary does not know the evaluation key evk, then it will be unable to gain information
about the values of δ0 and δ1 as evk[1] = a′ is sampled uniformly at random. If the adversary knows
evk[0] = [−a′s+ e′+Ps2]Q but not evk[1], then it is able to calculate δ0 exactly by computing C0. However,
by the LWE assumption, it is unable to learn a′ and thus cannot determine δ1. Similarly, knowing only evk[1]
allows the adversary to compute δ1 exactly but learn nothing about δ0. In our attack model, as is standard,
we will assume the adversary knows evk.

3.4 Two or more multiplications, with no final rescale
Recall that our chain of ciphertext moduli are formed as follows. Let q0, . . . , qL be primes of roughly equal
size. We recall that the size of the scaling parameter ∆ is also roughly equal to each qi. Then, for any level
i, the ciphertext modulus Qi is Qi =

∏i
j=0 qj . We encrypt “at the top” level QL, and go “down” one level

after each multiplication.
Let ct0 and ct1 be two ciphertexts encrypting the same message m2ℓ at level ℓ, where ℓ > 0. Note

that this implies that the re-scale operation has been performed on ct0 and ct1 and so the error in each of
these ciphertexts is Eℓ,0, Eℓ,1. From the previous subsections, we know that these errors are dominated by
δ0,0 + sδ1,0, and δ0,1 + sδ1,1 respectively, for most parameter sets. Further, each element of δ0,0, δ1,0, δ0,1 and
δ1,1 can be assumed to be independently and uniformly distributed between [−0.5, 0.5].

Dec(ct0, sk) =
m2ℓ

∆2ℓ−1
+ Eℓ,0 (mod qℓ)

Dec(ct1, sk) =
m2ℓ

∆2ℓ−1
+ Eℓ,1 (mod qℓ).

Re-using the analysis from Section 3.2, we have that the error after multiplication without rescale is
dominated by:

B = Eℓ,0
m2ℓ

∆2ℓ−1
+ Eℓ,1

m2ℓ

∆2ℓ−1
+ Eℓ,0Eℓ,1.

3.5 CKKS Error Estimation
The following formulas are taken from [15] and will be useful in our work.
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3.5.1 Fresh ciphertext The variance of the error of a fresh ciphertext with error distribution N (0, σ2
eIn)

and ternary secret distribution (over domain {−1, 0, 1}) of variance 2/3 is approximated as

ρ2fresh = (
4

3
n+ 1)σ2.

3.5.2 Multiplication with rescale Multiplication of two ciphertexts with rescale results in a ciphertext
with error of the following form

Bfinal error = ∆−1(Bmult +Bks) +Bround. (2)

For the parameter sets we consider, Bround dominates the error, where Bround has variance

ρ2mult error =
n

18
+

1

12
.

4 Adversarial Model

Let us first examine the IND-CPAD adversarial model introduced by Li and Micciancio [26]. In their setting,
the adversary was a passive observer—as in the IND-CPA security game—but with the additional (limited)
power to request decryptions of evaluations of honestly generated ciphertexts. For reasons of space, we
present the definition in Appendix ??.
Definition 4.1 (IND-CPAD Security [26]). Let E = (KeyGen, Encrypt, Decrypt, Eval) be a public-key ho-
momorphic, approximate encryption scheme with plaintext space M and ciphertext space C. We define an
experiment Exprindcpa

D

b [A], parametrized by a bit b ∈ {0, 1} and involving an efficient adversary A that is
given access to the following oracles, sharing a common state S ∈ (M×M× C)∗ consisting of a sequence
of message-message-ciphertext triplets:

– An encryption oracle Encrypt(pk,m0,m1) that, given a pair of plaintext messages m0,m1, computes
ct← Encrypt(pk,mb), extends the state

S := [S; (m0,m1, ct)]

with one more triplet, and returns the ciphertext ct to the adversary.
– An evaluation oracle Hevk(g, J) that, given a function g : Mk → M and a sequence of indices J =

(j1, . . . , jk) ∈ {1, . . . , |S|}k, computes the ciphertext ct ← Eval(evk, g, S[j1].ct, . . . , S[jk].ct), extends
the state

S := [S; (g(S[j1].m0, . . . , S[jk].m1), g(S[j1].m1, . . . , S[jk].m1)), ct]
with one more triplet and returns the ciphertext ct to the adversary.

– A decryption oracle Decrypt(sk, j) that, given an index j ≤ |S|, checks whether S[j].m0 = S[j].m1, and,
if so, returns Decrypt(sk, S[j].ct) to the adversary.

The experiment is defined as

Exprindcpa
D

b [A](1κ) :(sk, pk, evk)← KeyGen(1κ)
S := [ ]

b′ ← AEncrypt(pk,·,·),H(evk,·,·),Decrypt(sk,·)(1κ, pk, evk)
return(b′)

The advantage of adversary A against the IND-CPAD security of the scheme is

AdvindcpaD [A](κ) =
∣∣∣Pr[ExprindcpaD0 [A](1κ) = 1]− Pr[Exprindcpa

D

1 [A](1κ) = 1]
∣∣∣ .

In this work, we consider two adversarial models that are variants and/or special cases of the IND-CPAD

model presented in Definition 4.1.
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The first adversarial model. We introduce a “white-box” variant of the encryption oracle, denoted
Encrypt∗(pk, ·, ·). When queried with two messages m0 = m1, this oracle returns a ciphertext ct, as well
as the internal randomness v, e0, and e1 generated during the encryption process (see the definition of the
encryption function in Section 3). If m0 ̸= m1, it returns the ciphertext only. Other than this change, the
adversarial model can be viewed as a special case of Li and Micciancio’s IND-CPAD in which the Encrypt∗

oracle is only called with m0 = m1 and the Eval oracle is called on the identity function only. Thus, the set
S consists only of fresh ciphertexts ct, and only those for which m0 = m1 may be queried to the decryp-
tion oracle. The decryption oracle we consider returns Decrypt(sk, ct) +N (0, σ2

ϵ ), for some noise-flooding
variance σ2

ϵ . The goal of our adversary will be full key recovery, at which point it can trivially break the
IND-CPAD security by performing an encryption query with m0 ̸= m1, obtaining ct, and using the recovered
key to decrypt and find the value of b. In Section 4.1, we formalize the information the adversary observes
as “hints” for this adversarial model.
The second adversarial model. This model is a special case of the IND-CPAD model. There is no “white-
box” encryption oracle and the adversary is a legal IND-CPAD adversary. The Encrypt(pk, ·, ·) oracle is only
called with m0 = m1 and the Hevk(·, ·) oracle is only called with functions g : Mk → M in Class 1 or
Class 2 and with input indices J = (j1, . . . , jk) that correspond to k distinct, fresh ciphertexts outputted
by calls to Encrypt(pk,m0,m1) with m0 = m1 and have not been included in a set J in a previous call
to Hevk(·, ·). Decryption queries are only made with ciphertexts ct corresponding to the output of calls to
Hevk(·, ·) as described above. The decryption oracle we consider returns Decrypt(sk, ct)+N (0, σ2

ϵ ), for some
noise-flooding variance σ2

ϵ . As before, the goal of our adversarial model is full key recovery, at which point
it can trivially break the IND-CPAD security by performing one more encryption query with m0 ̸= m1. In
Section 8, we extend our analysis from Section 4.1 to capture the “hints” obtained in this adversarial model.

4.1 Modeling Noisy Decryptions of Identity Circuit as Hints
We concretely consider an adversary who obtains t independently sampled encryptions and then asks for t
decryptions of the constructed ciphertexts. Instantiating this attack with the CKKS + noise-flooding scheme,
for each j ∈ [t], the adversary obtains the (noisy) polynomial ej1 · s+vj · e ≈ γj , where multiplication is over
the ring Rq. The adversary knows ej1 and vj whose coordinates are modeled as independent Gaussians with
0 mean and variance σ2

hs
and σ2

he
, respectively. (s||e) corresponds to the LWE secret/error used to construct

the public key. Since we assume that all the polynomials involved have small magnitude, there is actually no
wraparound modulo q. In this case, we can view the multiplication and addition as over the ring of integers
Z[x]/Φm(x), where Φm(x) is the m-th cyclotomic polynomial of degree n = ϕ(m), and n is a power of two.

5 Security Loss under a Lattice Reduction Attack
The matrix Σ corresponds to the original covariance matrix for the LWE secret and error. Formally, let Σ
be an 2n× 2n diagonal matrix with the first n diagonal entries set to σ2

s , the second n diagonal entries set
to σ2

e . The matrix Σε corresponds to the covariance of the noise in the set of linear equations obtained on
the LWE secret s from decrypting a ciphertext. Formally, Σε = σ2

ε · Itn. γ = γ1|| · · · ||γt corresponds to the
obtained outputs.

First, note that for j ∈ [t],
ej1 · s = sVBP

(
M(ej1)

)
P−1B−1V−1,

where V is the canonical embedding transformation into Cn, B is the matrix corresponding to the isomor-
phism between H ⊂ Cn and Rn, P is a permutation matrix, and Aj

1 := M(ej1) is a block diagonal matrix
with n/2 blocks, each of dimension 2× 2, where the i-th block is

Aj
1,i :=

[
1/
√
2wj

i,hs
1/
√
2wj

n−i,hs

−1/
√
2wj

n−i,hs
1/
√
2wj

i,hs
,

]

and wj
hs

= (wj
1,hs

, . . . , wj
n,hs

) is equal to wj
hs

= ej1VB. Since VB is an isometry (an orthogonal matrix
scaled by

√
n), we have that σ2

hs
(VB)(VB)T = nσ2

hs
· In. So the random variables [wj

i,hs
, wj

n−i,hs
]j∈[t],i∈[n/2]
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are distributed as independent Gaussians with variance nσ2
hs

. Note that R = (VBP) is a real matrix, even
though V and B themselves are complex.

Similarly, for j ∈ [t],
vj · e = eVBP

(
M(vj)

)
P−1B−1V−1.

In this case, Aj
2 := M(vj) is a block diagonal matrix with n/2 blocks, each of dimension 2 × 2, where the

i-th block is

Aj
2,i :=

[
1/
√
2wj

i,he
1/
√
2wj

n−i,he

−1/
√
2wj

n−i,he
1/
√
2wj

i,he
,

]

and wj
he

= (wj
1,he

, . . . , wj
n,he

) is equal to wj
he

= vjVB. Now for each j ∈ [t], i ∈ [n/2], wj
i,he

and wj
n−i,he

are
random variables distributed as independent Gaussians with variance nσ2

he
.

Thus, if there are t decryption queries we can represent the hint matrix H as:

H =

[
R 0
0 R

] [
A1

1 A2
1 . . . At

1

A1
2 A2

2 . . . At
2

]R
−1

. . .
R−1

 ,

where R is an orthogonal matrix scaled by
√
n.

Applying the approximate hints of [17], the transformed covariance matrix Σ′ and mean µ′ are as follows
(the dimension and lattice of the DBDD instance remain unchanged):

Σ′ = Σ−ΣH(HTΣH+Σε)
−1HTΣ (3)

µ′ = γ(HTΣH+Σε)
−1HTΣ. (4)

Our goal is to find det(Σ′). Given this, we can estimate the hardness of the new DBDD instance under a
lattice reduction attack. However, instead of computing Σ′ and then det(Σ′) exactly, which requires inversion
of a 2n× 2n matrix, we will instead compute the expected value of det(Σ′), where the expectation is taken
over the choice of the hint matrix H.

Using a generalization of the Matrix Determinant Lemma, we obtain:

E[det(Σ′∼)] = E
[
det(HTΣH+Σε)

det(Σε) det(Σ)

]
. (5)

Since Σε and Σ are diagonal matrices whose entries depend on the parameters of the FHE cryptosystem,
their determinants are constants and are easy to compute. Thus, it remains to compute E[det(HTΣH+Σε)],
which can then be plugged into (5).

Lemma 5.1. Let H,R, [Aj
1 = M(ej1),A

j
2 = M(vj)]j∈[t] be as described above. Then

E[det(HTΣH+Σϵ)] =(
σ4
sσ

4
eσ

4t−8
ϵ

(7
4
t(t− 1)n4σ4

hs
σ4
he

+ tn2σ4
ϵ (
σ4
hs

σ4
e

+
σ4
he

σ4
s

) +
(
t(t− 1)n2σ2

hs
σ2
he

+ tnσ2
ϵ (
σ2
hs

σ2
e

+
σ2
he

σ2
s

) +
σ4
ϵ

σ2
sσ

2
e

)2))n
2

,

where the expectation is taken over choice of ej1 ∼ N (0, σ2
hs
)n and vj ∼ N (0, σ2

he
)n for all j ∈ [t].

Proof. We use the fact that if A is an invertible n-by-n matrix and U,V are n-by-m matrices, then

det
(
A+UV⊤

)
= det

(
Im +V⊤A−1U

)
det(A),
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and the definition of H and Σ to rewrite det
(
HTΣH+Σϵ

)
as

det
(
HTΣH+Σϵ

)
= det

(
I2n +

1

σ2
ϵ

Σ1/2HHTΣ1/2

)
det(Σϵ)

= det

(
I2n +

1

σ2
ϵ

[
σ2
sB1,1 σsσeB1,2

σsσeB2,1 σ2
eB2,2

])
det(Σϵ)

= det

σ2
s

σ2
ϵ

∑t
j=1 A

j
1(A

j
1)

T + In
σsσe

σ2
ϵ

∑t
j=1 A

j
1(A

j
2)

T

σsσe

σ2
ϵ

∑t
j=1 A

j
2(A

j
1)

T σ2
e

σ2
ϵ

∑t
j=1 A

j
2(A

j
2)

T + In

 det(Σϵ)

= det(⋆) det(Σϵ),

where Bk,l := R
(

1
n

∑t
j=1 A

j
k(A

j
l )

T
)
RT . Exchanging two rows and two columns of ⋆ at a time, which does

not change the determinant, we obtain

det(⋆) det(Σϵ) = det


S1 0 . . . 0 0
0 S2 . . . 0 0
...

... . . . ...
...

0 0 . . . Sn
2 −1 0

0 0 . . . 0 Sn
2

 det(Σϵ) = det(~)

where

detSi = det


ai 0 ci −di
0 ai di ci
ci di bi 0
−di ci 0 bi

 = det

[
A B
C D

]
= det(AD −BC), (6)

det(AD −BC) = det

([
aibi 0
0 aibi

]
−
[
ci −di
di ci

] [
ci di
−di ci

])
= (aibi − c2i − d2i )

2,

ai =
σ2
s

2σ2
ϵ

 t∑
j=1

(
(wj

i,hs
)2 + (wj

n−i,hs
)2
)
+

2σ2
ϵ

σ2
s

 ,

bi =
σ2
e

2σ2
ϵ

 t∑
j=1

(
(wj

i,he
)2 + (wj

n−i,he
)2
)
+

2σ2
ϵ

σ2
e

 ,

ci =
σsσe

2σ2
ϵ

t∑
j=1

(
wj

i,hs
wj

i,he
+ wj

n−i,hs
wj

n−i,he

)
,

di =
σsσe

2σ2
ϵ

t∑
j=1

(
wj

i,hs
wj

n−i,he
− wj

i,he
wj

n−i,hs

)
.

Note that (6) holds because if the blocks A,B,C,D are square matrices of the same size and, for example,
C and D commute (i.e., CD = DC ), then it holds that

det

(
A B
C D

)
= det(AD −BC)
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We therefore have that

det(~) = det(Σϵ)

n/2∏
i=1

det(Si)

= σ2tn
ϵ

n/2∏
i=1

σ4
sσ

4
e

16σ8
ϵ

( t∑
j=1

(
(wj

i,hs
)2 + (wj

n−i,hs
)2
)
+

2σ2
ϵ

σ2
s

 t∑
j=1

(
(wj

i,he
)2 + (wj

n−i,he
)2
)
+

2σ2
ϵ

σ2
e


−

 t∑
j=1

(
wj

i,hs
wj

i,he
+ wj

n−i,hs
wj

n−i,he

)2

−

 t∑
j=1

(
wj

i,hs
wj

n−i,he
− wj

i,he
wj

n−i,hs

)2)2

=

(
σ4
sσ

4
e

16σ8−4t
ϵ

)n
2

n
2∏

i=1

( ∑
1≤j ̸=k≤t

((
wj

i,hs
wk

i,he

)2
+
(
wj

i,hs
wk

n−i,he

)2
+
(
wj

n−i,hs
wk

i,he

)2
+
(
wj

n−i,hs
wk

n−i,he

)2
−
(
wj

i,hs
wj

i,he
wk

i,hs
wk

i,he
+ wj

n−i,hs
wj

n−i,he
wk

n−i,hs
wk

n−i,he

+ wj
i,hs

wj
n−i,he

wk
i,hs

wk
n−i,he

+ wj
n−i,hs

wj
i,he

wk
n−i,hs

wk
n−i,he

))

+
2σ2

ϵ

σ2
s

t∑
j=1

((
(wj

i,he

)2
+
(
(wj

n−i,he

)2)
+

2σ2
ϵ

σ2
e

t∑
j=1

((
wj

i,hs

)2
+
(
wj

n−i,hs

)2)
+ 4

σ4
ϵ

σ2
sσ

2
e

)2

.

Now, to analyze the expectation E[det(~)] of the above expression, we identify

Yi :=
∑

1≤j ̸=k≤t

((
wj

i,hs
wk

i,he

)2
+
(
wj

i,hs
wk

n−i,he

)2
+
(
wj

n−i,hs
wk

i,he

)2
+
(
wj

n−i,hs
wk

n−i,he

)2
−
(
wj

i,hs
wj

i,he
wk

i,hs
wk

i,he
+ wj

n−i,hs
wj

n−i,he
wk

n−i,hs
wk

n−i,he

+ wj
i,hs

wj
n−i,he

wk
i,hs

wk
n−i,he

+ wj
n−i,hs

wj
i,he

wk
n−i,hs

wk
n−i,he

))

+
2σ2

ϵ

σ2
s

t∑
j=1

((
(wj

i,he

)2
+
(
(wj

n−i,he

)2)
+

2σ2
ϵ

σ2
e

t∑
j=1

((
(wj

i,hs

)2
+
(
(wj

n−i,hs

)2)
+ 4

σ4
ϵ

σ2
sσ

2
e

.

Since {wj
i,hs
}t;nj=1;i=1 and {wj

i,he
}t;nj=1;i=1 are mutually independent, the expectation of the product is the

product of each expectation,

E[det
(
HTΣH+Σϵ

)
] =

(
σ4
sσ

4
e

16σ8−4t
ϵ

)n
2

n
2∏

i=1

EY 2=

(
σ4
sσ

4
e

16σ8−4t
ϵ

)n
2

n
2∏

i=1

(
VarY + E2Y

)
,

where

VarY = 28t(t− 1)n4σ4
hs
σ4
he

+ 16tn2σ4
ϵ (
σ4
hs

σ4
e

+
σ4
he

σ4
s

),

E2Y =

(
4t(t− 1)n2σ2

hs
σ2
he

+ 4tnσ2
ϵ (
σ2
hs

σ2
e

+
σ2
he

σ2
s

) + 4
σ4
ϵ

σ2
sσ

2
e

)2

.
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Finally, we obtain that

E[det(HTΣH+Σϵ)] =(
σ4
sσ

4
eσ

4t−8
ϵ

(7
4
t(t− 1)n4σ4

hs
σ4
he
+ tn2σ4

ϵ (
σ4
hs

σ4
e

+
σ4
he

σ4
s

)+
(
t(t− 1)n2σ2

hs
σ2
he
+ tnσ2

ϵ (
σ2
hs

σ2
e

+
σ2
he

σ2
s

) +
σ4
ϵ

σ2
sσ

2
e

)2))n
2

.

Obtaining the final hardness estimates. One can perform homogenization/isotropization of the DBDD in-
stance (as in [17]) to obtain a uSVP instance and then estimate the BKZ-β for that instance. However, as
described in [17], one can obtain the BKZ-β estimates using only the dimension and volume of the lattice
after homogenization/isotropization, and the lattice basis itself is not required. The lattice in our DBDD
instance is a qL-ary lattice and thus has log volume n · ln(qL). After homogenization/isotropization, the log
volume of the lattice increases to n ln(qL) + ln(det(Σ′∼))/2. Using (5) and Lemma 5.1, we use the expecta-
tion of det(Σ′∼) in the above formula. The dimension remains unchanged after integrating hints. Thus, this
information is sufficient for obtaining BKZ-β estimates for the final uSVP instance.

6 Key Recovery via Guessing
When Σ′ in (3) has sufficiently small variance, then instead of running a lattice reduction attack, another
strategy is to simply guess coordinates of the LWE secret/error by rounding the mean µ′ in (4) to the nearest
integer. If n coordinates of these coordinates are guessed and all guesses are correct, then the entire LWE
secret/error can be recovered by solving a linear system modulo q. To analyze the success of the above attack
we begin with the following lemma:

Lemma 6.1. Let Σ′ be defined as in (3). Then Tr(Σ′) ≤ T = n ·

(
σ2
s ·σ2

e ·2t·n(σ2
hs

+σ2
he

)

2·σ2
ϵ

+σ2
s+σ2

e

)
B + 3

√
2n·V
B with

probability at least 0.99− 3n · e−12.25 over choice of hint vectors, where

B =
σ2
s · σ2

e · (2t− 7
√
2t)2 · n2σ2

hs
· σ2

he

4 · σ4
ϵ

+
σ2
s · (2t− 7

√
2t) · nσ2

hs

2 · σ2
ϵ

+
σ2
e · (2t− 7

√
2t)(nσ2

he
)

2 · σ2
ϵ

+ 1−
σ2
s · σ2

e · n2(σ2
hs

+ σ2
he
)2(3.5

√
2t+ 12.25)2

2 · σ4
ϵ

V =
σ4
s · σ4

e · (E[R2
1] + E[R2

2])

4 · σ4
ϵ

+ 2
σ4
s · σ4

e · E[R1] · E[R2]

4 · σ4
ϵ

+ 2
(σ4

s · σ2
e + σ2

s · σ4
e) · (E[R1] + E[R2])

2 · σ2
ϵ

+ (σ2
s + σ2

e)
2

−
(σ2

s · σ2
e · E[R1]

2 · σ2
ϵ

+
σ2
s · σ2

e · E[R2]

2 · σ2
ϵ

+ σ2
s + σ2

e

)2
E[R1] = 2t · nσ2

hs

E[R2] = 2t · nσ2
he

E[R2
1] = 4tn2σ4

hs
+ 4t2n2σ4

hs

E[R2
2] = 4tn2σ4

he
+ 4t2n2σ4

he

We note that up to parameter setting of n = 32768, the success probability in the above claim is at least
0.52.5
5 For the parameter sets with n = 131072, we increase 7 to 7.5, 3.5 to 3.75, 12.25 to 14.0625, and increase the

probability to 0.99− 3n · e−14 > 0.66.
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Proof. Recall that
Σ′ = Σ−ΣH(HTΣH+Σε)

−1HTΣ.

The eigenvalues of Σ′ consist of the set of α ∈ R such that det(Σ′ − α · I) = 0. Equivalently, det((Σ − α ·
I)−ΣH(HTΣH+Σε)

−1HTΣ) = 0.
Using the generalization of the matrix determinant lemma, this is the same as finding α such that

det(Σε +HT (Σ−Σ(Σ′ − α · I)−1Σ)H) = 0.
Let Σ̃ = Σ − Σ(Σ′ − α · I)−1. Then we must find α such that det(Σε + HT Σ̃ΣH) = 0 Then Σ̃ is a

diagonal matrix with entries −σ2
s ·α

σ2
s−α in the first n positions and entries −σ2

e ·α
σ2
e−α in the last n positions. Using

the analysis from the proof of Lemma 5.1, we have that

det(Σε +HT Σ̃ΣH) = Πi∈[n/2] = Πi∈[n/2](aibi − c2i − d2i )
2, (7)

where
ai =

−σ2
s · α

2(σ2
s − α)σ2

ϵ

R1,i + 1,

bi =
−σ2

e · α
2(σ2

e − α)σ2
ϵ

R2,i + 1,

ci =
−σs · σ3 · α

2
√
σ2
s − α ·

√
σ2
e − ασ2

ϵ

R3,i,

di =
−σs · σ3 · α

2
√
σ2
s − α ·

√
σ2
e − ασ2

ϵ

R4,i

and

R1,i =

t∑
j=1

(W j
i,hs

)2 + (W j
n−i,hs

)2

R2,i =

t∑
j=1

(W j
i,he

)2 + (W j
n−i,he

)2

R3,i =

t∑
j=1

W j
i,hs

W j
i,he

+W j
n−i,hs

W j
n−i,he

R4,i =

t∑
j=1

W j
i,hs

W j
n−i,he

−W j
i,he

W j
n−i,hs

.

So of the four eigenvalues (α4i+1, α4i+2, α4i+3, α4i+4) corresponding to the i-th block, we have that
α4i+1 = α4i+3, α4i+2 = α4i+4. Further, we can solve for α4i+1 and α4i+2 by finding the roots of the
quadratic equation (aibi− c2i − d2i ) = 0.

∑
j∈[4] α4i+j is then equal to the sum of those roots, −4qb,i

2qa,i
=

−2qb,i
qa,i

,
where

qa,i =
σ2
s · σ2

e ·R1,i ·R2,i

4 · σ4
ϵ

+
σ2
s ·R1,i

2 · σ2
ϵ

+
σ2
e ·R2,i

2 · σ2
ϵ

+ 1−
σ2
s · σ2

e ·R2
3,i

4 · σ4
ϵ

−
σ2
s · σ2

e ·R2
4,i

4 · σ4
ϵ

qb,i = −
(
σ2
s · σ2

e ·R1,i

2 · σ2
ϵ

+
σ2
s · σ2

e ·R2,i

2 · σ2
ϵ

+ σ2
s + σ2

e

)
.

Towards bounding E[−qb,i
qa,i

], we first lower bound qa,i. Using the fact that XY = 1/4(X + Y )2− 1/4(X −
Y )2, we can express R3,i as

R3,i =

2t∑
j=1

1/4(X ′
j)

2 +

2t∑
j=1

1/4(X ′′
j )

2
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where X ′
j and X ′′

j are a Gaussian random variable with variance n(σ2
hs

+ σ2
he
), X ′

1, . . . , X
′
2t are indepen-

dent and X ′′
1 , . . . , X

′′
2t are independent. The probability that either 1/4

∑2t
j=1(X

′)2j /∈ 2t·n
4 (σ2

hs
+ σ2

he
) ±

2·n(σ2
hs

+σ2
he

)(3.5
√
2t+12.25)

4 or 1/4
∑2t

j=1(X
′′)2j /∈ 2t·n

4 (σ2
hs
+σ2

he
)± 2·n(σ2

hs
+σ2

he
)(3.5

√
2t+12.25)

4 is at most 2·e−12.25.
Thus, R3,i and R4,i are both in [−n(σ2

hs
+σ2

he
)(5
√
2t+25), n(σ2

hs
+σ2

he
)(3.5

√
2t+12.25)] with all but 4·e−12.25

probability. Further, R2
3,i (and similarly R2

4,i) is at most n2(σ2
hs

+ σ2
he
)2(3.5

√
2t+ 12.25)2.

R1,i can be expressed as the sum of 2t squares of Gaussians with variance nσ2
hs

. So R1,i ≥ (2t−7
√
2t)·nσ2

hs

with probability 1− e−12.25. Similarly, R2,i ≥ (2t− 7
√
2t)(nσ2

he
) with probability 1− e−12.25.

Thus, we have that with all but 1− 6 · e−12.25 probability,

qa,i =
σ2
s · σ2

e ·R1,i ·R2,i

4 · σ4
ϵ

+
σ2
s ·R1,i

2 · σ2
ϵ

+
σ2
e ·R2,i

2 · σ2
ϵ

+ 1

−
σ2
s · σ2

e ·R2
3,i

4 · σ4
ϵ

−
σ2
s · σ2

e ·R2
4,i

4 · σ4
ϵ

≥
σ2
s · σ2

e · (2t− 7
√
2t)2 · n2σ2

hs
· σ2

he

4 · σ4
ϵ

+
σ2
s · (2t− 7

√
2t) · nσ2

hs

2 · σ2
ϵ

+
σ2
e · (2t− 7

√
2t)(nσ2

he
)

2 · σ2
ϵ

+ 1−
σ2
s · σ2

e · n2(σ2
hs

+ σ2
he
)2(3.5

√
2t+ 12.25)2

2 · σ4
ϵ

= B.

Further, the above is true for all i ∈ [n/2] with probability at least 1− 3n · e−12.25. So we have that

E
[
−2qb,i
qa,i

]
≤ E[−2qb,i]

B

= 2

(
σ2
s ·σ

2
e ·E[R1]
2·σ2

ϵ
+

σ2
s ·σ

2
e ·E[R2]
2·σ2

ϵ
+ σ2

s + σ2
e

)
B

= 2

(
σ2
s ·σ

2
e ·2t·nσ

2
hs

2·σ2
ϵ

+
σ2
s ·σ

2
e ·2t·nσ

2
he

2·σ2
ϵ

+ σ2
s + σ2

e

)
B

We next bound the variance of −qb,i (where the sum of
∑

j∈[4] α4i+j = −4qb,i). Note that E[R1,i]

(resp. E[R2,i], E[R2,i], E[R2
1,i], E[R2

2,i]) is the same for all i ∈ [n/2]. Therefore, we denote E[R1] = E[R1,i]

(resp. E[R2] = E[R2,i], E[R2] = E[R2,i], E[R2
1] = E[R2

1,i], E[R2
2] = E[R2

2,i]). We have:

E[R1] = 2t · nσ2
hs

E[R2] = 2t · nσ2
he

E[R2
1] = 4tn2σ4

hs
+ 4t2n2σ4

hs

E[R2
2] = 4tn2σ4

he
+ 4t2n2σ4

he

Further, R1 and R2 are independent.

V = E[(qb)2]− E[qb]2

=
σ4
s · σ4

e · (E[R2
1] + E[R2

2])

4 · σ4
ϵ

+ 2
σ4
s · σ4

e · E[R1] · E[R2]

4 · σ4
ϵ

+ 2
(σ4

s · σ2
e + σ2

s · σ4
e) · (E[R1] + E[R2])

2 · σ2
ϵ

+ (σ2
s + σ2

e)
2

−
(σ2

s · σ2
e · E[R1]

2 · σ2
ϵ

+
σ2
s · σ2

e · E[R2]

2 · σ2
ϵ

+ σ2
s + σ2

e

)2
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Using Chebyshev, we therefore have that Pr[|E[Tr(Σ′)]−Tr(Σ′)| > 10
√
2n·V
B ] ≤ 0.01.

Thus, putting everything together, we have that with 0.99− 3n · e−12.25 probability,

Tr(Σ′) ≤ n ·

(
σ2
s ·σ

2
e ·2t·n(σ

2
hs

+σ2
he

)

2·σ2
ϵ

+ σ2
s + σ2

e

)
B

+
10
√
2n · V
B

.

Given the above, we consider the distribution of e||s− µ′, where µ′ is the mean from equation (4). The
random variable e||s− µ′ is distributed as the multivariate Gaussian distribution N (0,Σ′). µ′ is the correct
guess for e||s as long as for all i ∈ [n] |ei − µ′

i| ≤ 0.5 and for all i ∈ [n] |si − µ′
i| ≤ 0.5. The probability that

the above occurs for each coordinate is the same as the probability weight of the hypercube corresponding
to −0.5 ≤ xi ≤ 0.5, i ∈ [n] under the multivariate Gaussian distribution N (0,Σ′). We use the following
theorem to lower bound this probability weight:

Theorem 6.2 (Special case of the Gaussian Correlation Inequality [25]). Let X be an n-dimensional
Gaussian random variable. Then for any t1, . . . , tn > 0,

P(|X1| ≤ t1, . . . , Xn ≤ tn] ≥ P(|X1| ≤ t1) · · ·P(|Xn| ≤ tn].

We instantiate the above theorem with X consisting of a subset S of size n of the coordinates of the
conditional Gaussian distribution ((s||e)− µ′) ∼ N (0,Σ′), with tj = 0.5, j ∈ S We thus have that

P(|Xj | ≤ tj , i ∈ S) ≥ Πj∈SPXj∼N (0,ejΣ′eT
j )(|Xj | ≤ tj ], (8)

where the ej are the standard basis vectors.
To analyze PrXj∼N (0,ej ·Σ′·eT

j )[Xj ≤ 0.5], we note that
∑

i∈[2n] ei ·Σ′ · eTi = Tr(Σ′). By Lemma 6.1, we
have that Tr(Σ′) ≤ T with 53% probability. Thus, the indices j corresponding to the n smallest values among
{ei ·Σ′ · eTi : i ∈ [2n]} have sum at most T

2 , and average T
2n , which we use in our estimates.6 Let S ⊆ [2n] of

size n be this set of minimum values. For each j ∈ S,

Pr
Xj∼N (0,ej ·Σ′·eT

j )
[|Xj | ≤ 0.5] ≥ −erf

 −0.5√
2 · T

2n

 . (9)

Finally, the attack is as follows: The adversary chooses to guess the values of ej or sj for these n smallest
values (corresponding to the set S), and then use the LWE instance to solve for the remaining n variables.
The probability that all of the adversary’s guesses are correct is lower bounded by the probability weight
on the hypercube corresponding to |Xj | ≤ 0.5, j ∈ I when X is drawn from the multivariate Gaussian
distribution X ∼ N (0,Σ′). Using (8) and (9), this is at most

Πj∈S − erf

 −0.5√
2 · ej ·Σ′ · eTj

 ≥ −erf
 −0.5√

2 · T
2n

n

= −erf

−0.5√
T
n

n

.

The final success probability of the attack is:7

−erf

−0.5√
T
n

n

− 3n · e−12.25 − 0.01. (10)

6 A more rigorous but looser analysis can be achieved by upperbounding the largest of the n smallest values by T
n

.
7 And for n = 131072, we replace e−12.25 with e−14.
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7 Hybrid Guessing/Lattice-Reduction Attacks
Recall the structure of the eigenvalues of Σ′: There are [n/2] blocks and for each i ∈ [n/2], the eigen-
values (α4i+1, α4i+2, α4i+3, α4i+4), where α4i+1 = α4i+3, α4i+2 = α4i+4. For each i ∈ [n/2], we say that
{α4i+1, α4i+2} and {α4i+3, α4i+4} are pairs. For each i, the adversary computes eiΣ

′eTi and guesses µi for
the g minimum values where g is the maximum value such that

−erf

−0.5√
T
n

g

≥ p, (11)

for some threshold p. These guesses are made and incorporated as perfect hints. After this process, the
covariance matrix is a principal submatrix of Σ′ of dimension (2n− g)× (2n− g), which we denote by Σ′′.
We denote by PSub2n−g(Σ

′) the set of all principal submatrices of Σ′ of dimension 2n − g. Similarly, the
lattice reduces dimension by g and its volume remains the same. The following lemma gives a bound on the
determinant of Σ′′.
Lemma 7.1. Let g ∈ {0, 1, . . . , n}. Let Σ′ be defined as in (3). Let Σ′′ = argmaxΣ̃∈PSub2n−g(Σ′)Tr(Σ̃). With
probability 0.99− 4n · e−12.25 over choice of hint vectors,8

Tr(Σ′) ≤ T and det(Σ′′) ≤ det(Σ′)(
L
U

)g ,

where T and B are defined as in Lemma 6.1, and

L =
G+

√
G2 − 4 ·B · σ2

s · σ2
e

2 ·B

U =
σ2
s · σ2

e

Bmax

G = σ2
s · σ2

e(2t+ 7
√
2t+ 24.5) · (nσ2

he
)2 · σ2

ϵ + σ2
s · σ2

e(2t+ 7
√
2t+ 24.5) · (nσ2

hs
)2 · σ2

ϵ + σ2
s + σ2

e

Bmax =
σ2
s · σ2

e · (2t+ 7
√
2t+ 24.5)2 · n2σ2

hs
· σ2

he

4 · σ4
ϵ

+
σ2
s · (2t+ 7

√
2t+ 24.5) · nσ2

hs

2 · σ2
ϵ

+
σ2
e · (2t+ 7

√
2t+ 24.5)(nσ2

he
)

2 · σ2
ϵ

+ 1.

Proof. Lemma 6.1 showed that with probability 0.99− 3n · e−12.25 over choice of hint vectors, Tr(Σ′) ≤ T.
Let α1, . . . , αg be the g minimum eigenvalues of Σ′. Using the Eigenvalue Interlacing Theorem [23], we

have that det(Σ′′) ≤ det(Σ′)
α1···αg

. We therefore need a lower bound on α1 · · ·αg.
We consider α′

1, . . . , α
′
g such that for all i ∈ [g], {αi, α

′
i} are a pair. We show an upper bound U on α′

i ≤ U
for all i ∈ [g]. We further show a lower bound L on all α′

i · αi ≥ L for all i ∈ [g] with all but 1− n · e−12.25

probability. Finally, this allows us to obtain a lower bound αi ≥ L
α′

i
≥ L

U for all i ∈ [g]. α1 · · ·αg can then be
lower bounded by

(
L
U

)g. which implies that

det(Σ′′) ≤ det(Σ′)(
L
U

)g .

Specifically, assuming the bounds from the proof of Lemma 6.1, and assuming in addition the following
upper bounds on R1,i, R2,i, which occurs with 1− 2 · e−12.25 probability,9

R1,i ≤ (2t+ 7
√
2t+ 24.5) · nσ2

hs
R2,i ≤ (2t+ 7

√
2t+ 24.5) · nσ2

he
, (12)

8 For the parameter sets with n = 131072, we increase 7 to 7.5, 24.5 to 28.125 and increase the probability to
0.99− 4n · e−14.

9 For the parameter sets with n = 131072, we increase 7 to 7.5, 24.5 to 28.125 and increase the probability to
1− 2 · e−14.
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we have that

−qbi ≤ σ2
s · σ2

e(2t+ 7
√
2t+ 24.5) · (nσ2

he
)2 · σ2

ϵ

+ σ2
s · σ2

e(2t+ 7
√
2t+ 24.5) · (nσ2

hs
)2 · σ2

ϵ + σ2
s + σ2

e

= G.

Thus,

∀i ∈ [g], α′
i =
−qb,i +

√
q2b,i − 4qa,i · qc,i
2 · qa,i

≤
G+

√
G2 − 4 ·B · σ2

s · σ2
e

2 ·B
= L.

Using the same upper bounds from (12) we also have the following upper bound on qa,i:10

qai =
σ2
s · σ2

e ·R1,i ·R2,i

4 · σ4
ϵ

+
σ2
s ·R1,i

2 · σ2
ϵ

+
σ2
e ·R2,i

2 · σ2
ϵ

+ 1−
σ2
s · σ2

e ·R2
3,i

4 · σ4
ϵ

−
σ2
s · σ2

e ·R2
4,i

4 · σ4
ϵ

≤ σ2
s · σ2

e ·R1,i ·R2,i

4 · σ4
ϵ

+
σ2
s ·R1,i

2 · σ2
ϵ

+
σ2
e ·R2,i

2 · σ2
ϵ

+ 1

≤
σ2
s · σ2

e · (2t+ 7
√
2t+ 24.5)2 · n2σ2

hs
· σ2

he

4 · σ4
ϵ

+
σ2
s · (2t+ 7

√
2t+ 24.5) · nσ2

hs

2 · σ2
ϵ

(13)

+
σ2
e · (2t+ 7

√
2t+ 24.5)(nσ2

he
)

2 · σ2
ϵ

+ 1

= Bmax. (14)

Thus,

∀i ∈ [g], α′
i · αi =

−qb,i +
√
q2b,i − 4qa,i · qc,i
2 · qa,i

·
−qb,i −

√
q2b,i − 4qa,i · qc,i
2 · qa,i

=
qc,i
qa,i

≥ σ2
s · σ2

e

Bmax
= U.

Combining Lemma 6.1 with Theorem 6.2 as before, we estimate that with at least p − 4n · e−12.25 − 0.01
probability, all g number of guesses are correct, and

det(Σ′′) ≤ det(Σ′)(
L
U

)g . (15)

We note that for up to n = 32768, 4n · e−12.5 ≤ 0.63. 11 As before, E[det(Σ′)] can be computed via
Lemma 5.1. Thus, we can use (15) to obtain a bound on the expected value of det(Σ′′) (conditioned on
events with probability at least 0.99 − 4n · e−12.25 occurring), compute the log-volume of the lattice after
homogenization/isotropization as described in Section 4.1, and use the log-volume and dimension to estimate
the hardness of the residual instance (after guesses) under a lattice reduction attack.
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(a) First Class of Circuits (b) Second Class of Circuits

Fig. 1: A pictorial representation of the two classes of circuits we consider.

8 Extending to Larger Classes of Circuits
8.1 The first class of circuits and lattice reduction attacks
In Figure 1a we present the first class of circuits we consider. The circuits C1, . . . , Cℓ that are depicted each
consist of log(r) levels of multiplications as well as any number of additions. The final gate in each of the
circuits C1, . . . , Cℓ is a multiplication with rescale. Note that the noise after multiplication with rescale in
circuit Ci is dominated by δi1 · s + δi0 (see Section 3.5.2), where δi0, δ

i
1 are distributed as uniform random

variables in the range [−0.5, 0.5].
The final gate of the entire circuit is an addition gate that adds the outputs of each of the Ci circuits.

We require ℓ subcircuits and a final addition gate in order to ensure that the linear coefficients of the noise
polynomial (which are independent and uniform random in the range in the range [−0.5, 0.5] for each of the
ℓ circuits) can be approximated by Gaussian random variables with mean 0 and variance ℓ

12 , which is the
setting for which our Lemma 5.1 applies.

Specifically, the lattice reduction attack for circuits of this class can be analyzed by instantiating
Lemma 5.1 with the following parameter settings.

– σ2
hs

= ℓ
12

– σ2
he

= 0
– σ2

ϵ is set to the noise-flooding noise. The variance of the noise already present in the ciphertext can
be computed by taking the noise in each ciphertext before addition (which Section 3.5.2 provides) and
multiplying by ℓ.

8.2 The second class of circuits and lattice reduction attacks
In Figure 1b we present the second class of circuits we consider. The circuits CL

1 , . . . , C
L
ℓ , C

R
1 , . . . , CR

ℓ that
are depicted each consist of log(r) levels of multiplications as well as any number of additions. The final
gate in each of the circuits CL

1 , . . . , C
L
ℓ , C

R
1 , . . . , CR

ℓ is a multiplication with rescale. Note that the noise after
multiplication with rescale in circuit CL

i (resp. CR
i ) is dominated by δL,i

1 · s + δL,i
0 (resp. δR,i

1 · s + δR,i
0 )

(see Section 3.5.2), where δL,i
0 , δL,i

1 (resp. δR,i
0 , δR,i

1 ) are distributed as uniform random variables in the
range [−0.5, 0.5]. Thus, after the summation gates on the second level from the top, the linear and constant
coefficients of the noise corresponding to the left and right summations can be approximated by Gaussian
random variables GL,1, GL,0, GR,1, GR,0 with mean 0 and variance ℓ

12 .
These outputs are then multiplied via a multiplication without rescale gate. For most parameter settings,

the dominating terms of the error after the final multiplication without rescale will correspond to mr

∆r−1 ·
(GL,1+GR,1) ·s. Further, the dominating linear coefficients of s are again (well approximated by) a Gaussian
of variance σ2

hs
= ℓ

6 · (
mr

∆r−1 )
2. Since the error term does not include information about e, we can set σ2

he
= 0.

10 For the parameter sets with n = 131072, we increase 7 to 7.5, and 24.5 to 28.
11 And for n = 131072, 4n · e−14 ≤ 0.44.
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We compute the noise variance that is already present in the ciphertext, as a contribution of the following
terms mr

∆r−1 · (GL,0 + GR,0), mr

∆r−1 · (GL,1 + GR,1) · s, (GL,1 · GR,1) · s2, (GL,0 · GR,1) · s, (GL,1 · GR,0) · s,
GL,0 ·GR,0. Since the covariance of the above terms is 0, the total variance is the sum of the variances each
term above. Recall that GL,1, GL,0, GR,1, GR,0 are Gaussian random variables with mean 0 and variance ℓ

12 .
Since the arithmetic is coordinate-wise on the canonical space, it suffices to consider the arithmetic of i-th

component of each vector in CZ∗
m . Specifically, we compute the variance of the real and imaginary coordinate

of each vector. Since all pairs among all the resulting real and imaginary coordinates have covariance of
0, and since there is an isometry (orthogonal transformation scaled by 1√

n
) from the vector consisting of

the real/imaginary parts of the canonical embedding multiplied by
√
2, we can obtain the coordinate-wise

variance in the coefficient embedding by scaling the results we obtain by 2
n .

Contribution of mr

∆r−1 · (GL,0 +GR,0). The variance is immediately computed as 2( mr

∆r−1 )
2 · ℓ

12 · σ
2
s .

Contribution of mr

∆r−1 · GL,1 · s. Note that the contribution of mr

∆r−1 · GR,1 · s is the same as the above. By
symmetry, we only need to compute the variance of the real part of the multiplication.

Var [GL,1,i,Resi,Re −GL,0,i,Imsi,Im]

= 2 · n
2
· ℓ

12
· nσ

2
s

2

In the coefficient domain, the total contribution will be ( mr

∆r−1 )
2 · n4 ·

ℓ
12 · σ

2
s .

Contribution of (GL,1 · GR,1) · s2. By symmetry, we only need to compute the variance of the real part of
the multiplication.

Var
[
(GL,1,i,ReGR,1,i,Re −GL,1,i,ImGR,1,i,Im)

(
s2i,Re − s2i,Im

)
− 2si,Resi,Im (GL,1,i,ReGR,1,i,Im +GL,1,i,ImGR,1,i,Re)

]
= Var[GL,1,i,ReGR,1,i,Res

2
i,Re −GL,1,i,ReGR,1,i,Res

2
i,Im −GL,1,i,ImGL,1,i,Ims

2
i,Re

+GL,1,i,ImGL,1,i,Ims
2
i,Im − 2si,Resi,ImGL,1,i,ReGR,1,i,Im − 2si,Resi,ImGL,1,i,ImGR,1,i,Re]

= 4E
[
G2

L,1,i,Re(GR,1,i,Re)
2s4i,Re

]
+ 8E

[
s2i,Res

2
i,ImG

2
L,1,i,Re(GR,1,i,Im)

2
]

= 4

(
n

2
· ℓ

12

)2

· 3n
2

4
σ4
s + 8

(n
2
σ2
s

)2(n

2
· ℓ

12

)2

=
5

4
n4

(
ℓ

12

)2

σ4
s

In the coefficient domain, the contribution will be 5
2n

3
(

ℓ
12

)2
σ4
s .

Contribution of (GL,0 ·GR,1) · s. By symmetry, we only need to compute the variance of the real part of the
multiplication.

Var
[
GL,0,i,ReGR,1,i,Resi,Re −GL,0,i,ImGR,1,i,Imsi,Re

−GL,0,i,ImGR,1,i,Resi,Im −GL,0,i,ReGR,1,i,Imsi,Im

]
= 4 ·

(
n

2
· ℓ

12

)2

· nσ
2
s

2

In the coefficient domain, the contribution will be n2
(

ℓ
12

)2
σ2
s .
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Contribution of GL,0 · GR,0. By symmetry, we only need to compute the variance of the real part of the
multiplication.

Var [GL,0,i,ReGR,0,i,Re −GL,0,i,ImGR,1,i,Im]

= 2 ·
(
n

2
· ℓ

12

)2

In the coefficient domain, the contribution will be n ·
(

ℓ
12

)2.
Total noise present. The total noise in the ciphertext has variance:

2

(
mr

∆r−1

)2

· ℓ

12
· σ2

s +

(
mr

∆r−1

)2

· n · ℓ
6
· σ2

s +
5

2
n3

(
ℓ

12

)2

σ4
s + 2n2

(
ℓ

12

)2

σ2
s + n ·

(
ℓ

12

)2

Obtaining the hardness estimates. We can now apply Lemma 5.1 with the following parameter settings:

– σ2
hs

= ℓ
6 · (

mr

∆r−1 )
2

– σ2
he

= 0

– σ2
ϵ is set to the noise-flooding noise plus an additional 5

2n
3
(

ℓ
12

)2
σ4
s + 2n2

(
ℓ
12

)2
σ2
s , the noise from

the quadratic terms and the linear but non-Guassian terms (which comes from the terms of the form
(GL,0 ·GR,1) · s).

Note that the noise-flooding noise has variance at least ( mr

∆r−1 )
2 · n·ℓ6 · σ

2
s , since the noise already in the

ciphertext is larger than this quantity. Thus, for n ∈ N, when

(
mr

∆r−1
)2 ≫ 5

2
n2 · ℓ

24
+ 2 · n · ℓ

24
>

9

2
n2 · ℓ

24
, (16)

and m achieves the maximum allowed magnitude Bmsg of each coordinate in the encoded plaintext (in which
the message is viewed as a vector in the canonical embedding and is scaled up by ∆), we have that the noise-
flooding noise dominates the additional 5

2n
3
(

ℓ
12

)2
σ4
s +2n2

(
ℓ
12

)2
σ2
s . Typically, after encoding, the maximum

allowed magnitude of m in the canonical embedding is ≈ ∆. Thus, (16) is satisfied when ∆ ≥ 3n
4 ·
√

ℓ
3 , which

is typically satisfied for most parameter settings (in fact, ∆ is typically far larger).
Thus, we can plug the above parameter settings into Lemma 5.1 to obtain the hardness estimates for

these circuits under a lattice reduction attack.

8.3 Guessing Attack for Class 1 and 2 Circuits
Now that we have determined σ2

hs
, σ2

he
, and σ2

ϵ for Class 1 and Class 2 circuits, we can use those values to
derive formulas for the concrete security for guessing and hybrid attacks as well.

Recall that for Class 1 and Class 2 circuits, the hints are only on the s coordinates. So Σ′ is a block
matrix where the lower right hand n× n submatrix is a diagonal matrix with diagonal (σ2

e , . . . , σ
2
e) and the

upper left hand n × n submatrix has n eigenvalues of the form [(α2i+1, α2i+2)]i∈[n/2] and for all i ∈ [n/2],
α2i+1 = α2i+2. Further, for each i ∈ [n/2],

α2i+1 =
σ2
s

1 +
σ2
s ·R1,i

2σ2
ϵ

.

Since with all but e−11 probability12, R1,i ≥ (2t−6.63
√
2t) ·nσ2

hs
, we have that with probability 1−n/2 ·e−11

all eigenvalues are less than

σ2
max ≤

σ2
s

1 +
σ2
s ·(2t−6.63

√
2t)·nσ2

hs

2σ2
ϵ

, (17)

12 For the parameter sets with n = 131072, we increase 6.63 below to 7.2 and decrease the probability to e−13.
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and so for every standard basis vector ei, eiΣ′
Se

T
i ≤ σ2

max.
Finally, using the same techniques as above, this means that the guessing probability is at least

−erf

(
−0.5√
2σ2

max

)n

. (18)

Thus the total success probability of the attack is −erf
(

−0.5√
2σ2

max

)n

− n/2 · e−11. We note that for up to

parameter n = 32768, n/2 · e−11 ≤ 0.28.13

8.4 Hybrid Attack for Class 1 and 2 Circuits
Again, the attack for both Class 1 and Class 2 circuits is the same, with the only difference being the settings
of σ2

hs
, σ2

he
, and σ2

ϵ in the two cases.
The guessing strategy for the hybrid attack is as follows: For each i, the adversary computes eiΣ

′eTi and
guesses µi for the g number of indices i with the minimum values of eiΣ′eTi , where g is the maximum value
such that

−erf

(
−0.5√
2σ2

max

)g

≥ p, (19)

for some probability threshold p. These guesses are made and incorporated as perfect hints. After this process,
the covariance matrix is a principal submatrix of Σ′

S of dimension (n − g) × (n − g), which we denote by
Σ′′

S . Similarly, the lattice reduces dimension by g and its volume remains the same.
Let α1, . . . , αg be the g minimum eigenvalues of Σ′

S . Using the Eigenvalue Interlacing Theorem [23],
we have that det(Σ′′

S) ≤
det(Σ′)
α1···αg

. We therefore need a lower bound on α1 · · ·αg. Since with all but e−11

probability14, R1,i ≤ (2t+ 6.63
√
2t+ 22) · nσ2

hs
, we have that with probability 1− n/2 · e−11 all eigenvalues

are greater than

L =
σ2
s

1 +
σ2
s ·(2t+6.63

√
2t+22)·nσ2

hs

2σ2
ϵ

. (20)

Combining the above, we have that with at least p − n · e−11 probability, all g number of guesses are
correct, and

det(Σ′′) ≤ det(Σ′)

Lg
. (21)

We note that for the maximum setting of parameters n = 32768, n · e−11 ≤ 0.55.15 Further, det(Σ′′) can be
computed by plugging the parameter settings from Sections 8.1 and 8.2 into Lemma 5.1. Thus, we can use
(21) to estimate the hardness of the residual instance (after guesses) under a lattice reduction attack.

9 Experiments
9.1 Experimental set-up
Parameter sets. We consider the parameter sets proposed by the homomorphicencryption.org standards [2],
which were proposed with target security levels of 128, 192 or 256 bits. We update the target estimates using
the concrete hardness given by the tool of [17].16 This is presented in the column “Original Security” in all
the tables below. An entry of x/y represents the original target security level x, and y represents the concrete
(updated) security level. The standards only consider a ring dimension of up to n = 32768, i.e. log2(n) = 15,
but some FHE applications may require a larger ring dimension, up to log2(n) = 17. We additionally provide
estimates for the concrete security of CKKS for values of log2(n) = 17 by using the parameters given in [28].
13 And for n = 131072, n/2 · e−13 ≤ 0.15.
14 For the parameter sets with n = 131072, we increase 6.63 below to 7.2 and decrease the probability to e−13.
15 And for n = 131072, n · e−13 ≤ 0.30.
16 Our analysis may give slightly different concrete hardness estimates than the LWE Estimator [4], since [17] takes

into account the ellipsoidal distribution of the original secret/error.

24



Experimental validation. Before the experiments on the concrete security estimation of CKKS, we first
provide experimental validation of Lemma 5.1, in Section 9.2. We also provide concrete security estimation
for provably secure (statistical) noise-flooding, as presented in [27]. We provide these as a baseline, and to
validate our methods. Since there is no reduction in security when applying statistical noise-flooding, the
results of those experiments are presented in Appendix A.
Concrete security experiments set-up. Then, we consider the following experiments. We consider a lattice
reduction attack, a guessing attack and a hybrid attack, as outlined in Sections 5, 6 and 7, respectively. We
consider these on three types of circuit: the identity circuit, the class of circuits C1 and the class of circuits
C2. Recall that these are described in Section 8.
Noise-flooding countermeasures. We use the results of [15] to estimate the output variance of the noise ρ2circ,
where circ is one of Identity, C1 or C2. We then consider noise-flooding by ρ2circ, 100 · ρ2circ and t · ρ2circ, where
t is the number of decryption queries. For guessing attacks, we do not include results for noise-flooding
variance of t · ρ2circ, since in this case, the guessing probability does not go above 10−200 for any parameter
set. Similarly, for hybrid attacks, we do not include results for noise-flooding variance of t · ρ2fresh, since no
coordinates can be guessed with high confidence for any parameter set, and so the attack is equivalent to a
lattice reduction attack 17

9.2 Experimental Validation of Lemma 5.1
We first provide a verification of the theoretical results from Section 5, to demonstrate that the estimations
hold in practice. In particular, Lemma 5.1 assumes that the distribution of the coefficients of ej1 and vj are
independent Gaussians, while in practice this is not the case. The quantity of interest is det(Σ′∼), as defined
in Section 5. In the proof of Lemma 5.1, we use the following fact:

det(Σ′∼) =
det(HΣHT +Σε)

det(Σε) det(Σ)
=

det
(
I2n + 1

σ2
ϵ
Σ1/2HHTΣ1/2

)
det(Σ)

. (22)

In order to validate the canonical embedding transformation used in the analysis of Lemma 5.1, we sample
a random hint matrix H, directly compute I2n +Σ1/2HHTΣ1/2/σ2

ϵ , and calculate its determinant. In order
to construct the hint matrix, we sample ej1 ← χ and vj ← S as defined in Appendix 3. We perform this
experiment for various settings for the dimension of the LWE secret and error, and for various numbers of
hints applied. For each parameter set, we perform 256 trials and take the average of the results in order to
compare to the expected value predicted by Lemma 5.1. Figure 2 reports the experimental results, which
very closely match the predictions. Notably, we see that the predictions become more accurate as the number
of applied hints increases.

We perform this experiment using the SageMath library and run the calculations on an Intel Ice Lake
XCC server. Calculating the determinant for larger parameter sets proves computationally infeasible with
our experimental setup due to the extreme scaling, as each trial requires multiplying matrices of size 2n× tn
and tn× 2n, as well as calculating the determinant of a matrix of size 2n× 2n, where n is the dimension and
t is the number of hints. Additionally, in order to accurately calculate the final determinant, the numerical
values within the matrix require increasingly high floating-point precision (e.g. hundreds or even thousands of
bits), further slowing the computation. Our experiments take roughly a week to verify the largest parameter
set in Figure 2 (n = 256, t = 16).

9.3 Concrete Security of Lattice Attacks on Identity Circuits
We begin by considering a lattice-reduction attack where the adversary may request any number of de-
cryptions of fresh ciphertexts (i.e. evaluation of the identity circuit on a fresh ciphertext) with various
noise-flooding levels. See Figure 3. To calculate the concrete hardness, we apply Lemma 5.1 to obtain the
expected volume and dimension of the lattice after hints are integrated and homogenization/isotropization
17 After ∼ 200 million decryption queries, the estimated variance does not go below 3.6 for identity circuits, and after

∼ 100 million decryption queries does not go below 0.33 and 0.36 for C1 and C2 circuits, respectively.
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Dim Num Predicted Experimental
Hints Determinant Determinant

64 16 708.60 708.76
64 32 799.19 799.28
64 64 888.87 889.14
64 128 978.08 978.10
64 256 1067.04 1067.00
64 512 1155.89 1155.87

128 16 1594.55 1591.58
128 32 1175.78 1775.55
128 64 1955.17 1954.82
128 128 2133.59 2133.49
128 256 2311.52 2311.44
128 512 2489.22 2489.23

256 16 3543.88 3539.04

Fig. 2: Summary of results for experimental validation of Lemma 5.1. Each parameter set is specified by the
dimension of the LWE secret and error (column 1) and the number of hints applied (column 2). The third column
indicates the (natural log of) the expected value of the determinant as predicted by Lemma 5.1. The final column
reports the determinant calculated by performing the experiment, as averaged over 256 trials.

is completed. As in [17], after homogenization/isotropization are performed, the hardness estimates for BKZ
require only the volume and dimension of the lattice. These are reported in the final column.

9.4 Concrete Security of Guessing Attacks on Identity Circuits
We next consider a guessing-only attack, where the adversary may request any number of decryptions of fresh
ciphertexts (i.e. evaluation of the identity circuit on a fresh ciphertext) with various noise-flooding levels. See
Figure 4. In this attack, the adversary requests enough decryptions so that n LWE secret/error coordinates
can be guessed correctly with high probability. Once these coordinates are guessed correctly, the LWE
system of equations has a unique solution which can be recovered efficiently using Gaussian elimination.
To determine the number of decryptions required to recover the LWE secret/error with some threshold
probability, we apply Lemma 6.1 and (10).

9.5 Concrete Security of Hybrid Attacks on Identity Circuits
We next consider a hybrid attack, where the adversary may request some number of decryptions of fresh
ciphertexts (i.e. evaluation of the identity circuit on a fresh ciphertext) with various noise-flooding levels. See
Figure 5. The adversary requests enough decryptions so that some number of LWE secret/error coordinates
can be guessed correctly with high probability. The adversary then integrates these guesses into its DBDD
instance as perfect hints (as in [17]). Finally, the adversary performs homogenization/isotropizaton to obtain
an SVP instance, and uses a BKZ solver to recover the LWE secret/error. For a fixed number of decryptions,
we use (11) to determine the number of guesses g that can be made such that all guesses are correct with high
probability. The dimension of the lattice reduces by g, and we compute the volume of the resulting lattice
by applying (15). As in [17], after homogenization/isotropization are performed, the hardness estimates for
BKZ require only the volume and dimension of the lattice. These are reported in the final column.

9.6 Concrete Security of Lattice Attacks on Class 1 and 2 Circuits
Class 1: This is the same attack as in Section 9.3, except the adversary requests decryptions of ciphertexts
that correspond to the evaluation of a Class 1 circuit (see Section 8.1 for the definition of this class) on
fresh ciphertexts. To calculate the concrete hardness, we apply Lemma 5.1 to obtain the expected volume
and dimension of the lattice after hints are integrated with the parameter settings for σ2

hs
, σ2

he
, σ2

ϵ given in
Section 8.1 The results are reported in Figure 10 in Appendix A.
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Parameter Original Noise Num Final
Set Security Variance Queries (t) Security

log2 n = 10, log2 qL = 25 128/102
ρ2fresh 1000 247 bikz ≈ 65 bits

100 · ρ2fresh 1000 336 bikz ≈ 89 bits
t · ρ2fresh 1000 374 bikz ≈ 99 bits

log2 n = 10, log2 qL = 17 192/170
ρ2fresh 1000 366 bikz ≈ 97 bits

100 · ρ2fresh 1000 536 bikz ≈ 142 bits
t · ρ2fresh 1000 615 bikz ≈ 163 bits

log2 n = 10, log2 qL = 13 256/234
ρ2fresh 1000 461 bikz ≈ 122 bits

100 · ρ2fresh 1000 714 bikz ≈ 189 bits
t · ρ2fresh 1000 840 bikz ≈ 223 bits

log2 n = 11, log2 qL = 51 128/97
ρ2fresh 1000 288 bikz ≈ 76 bits

100 · ρ2fresh 1000 340 bikz ≈ 90 bits
t · ρ2fresh 1000 359 bikz ≈ 95 bits

log2 n = 11, log2 qL = 35 192/162
ρ2fresh 1000 450 bikz ≈ 119 bits

100 · ρ2fresh 1000 557 bikz ≈ 148 bits
t · ρ2fresh 1000 599 bikz ≈ 159 bits

log2 n = 11, log2 qL = 27 256/226
ρ2fresh 1000 590 bikz ≈ 157 bits

100 · ρ2fresh 1000 761 bikz ≈ 201 bits
t · ρ2fresh 1000 831 bikz ≈ 220 bits

log2 n = 12, log2 qL = 101 128/97
ρ2fresh 1000 322 bikz ≈ 85 bits

100 · ρ2fresh 1000 352 bikz ≈ 93 bits
t · ρ2fresh 1000 362 bikz ≈ 96 bits

log2 n = 12, log2 qL = 70 192/161
ρ2fresh 1000 517 bikz ≈ 137 bits

100 · ρ2fresh 1000 580 bikz ≈ 154 bits
t · ρ2fresh 1000 602 bikz ≈ 160 bits

log2 n = 12, log2 qL = 54 256/227
ρ2fresh 1000 701 bikz ≈ 186 bits

100 · ρ2fresh 1000 807 bikz ≈ 214 bits
t · ρ2fresh 1000 845 bikz ≈ 224 bits

Fig. 3: Concrete security of lattice reduction attacks after observing decryptions of fresh ciphertexts.
For each parameter set, the second column provides the target security as well as the number of bits of security com-
puted by the tool of [17]. The third column indicates the noise-flooding noise added before returning the decryption.
ρ2fresh is the variance of the noise that is already present in a fresh ciphertext (see Section 3.5.1). The fourth column
indicates the number of decryptions observed by the adversary. The final column provides the reduced security level
after the attack in terms of bikz (see [17]) and bit-security.

Class 2: This is the same attack as in Section 9.3, except the adversary requests decryptions of ciphertexts
that correspond to the evaluation of a Class 2 circuit (see Section 8.2 for the definition of this class) on
fresh ciphertexts. To calculate the concrete hardness, we apply Lemma 5.1 to obtain the expected volume
and dimension of the lattice after hints are integrated with the parameter settings for σ2

hs
, σ2

he
, σ2

ϵ given in
Section 8.2. The results are reported in Figure 11 in Appendix A.

9.7 Concrete Security of Guessing Attacks on Class 1 and 2 Circuits

Class 1: This is the same attack as in Section 9.4, except the adversary requests decryptions of ciphertexts
that correspond to the evaluation of a Class 1 circuit (see Section 8.1 for the definition of this class) on
fresh ciphertexts. To determine the number of decryptions required to recover the LWE secret with high
probability, we apply (18) with the settings of σhs

, σhe
, σ2

ϵ given in Section 8.1. The results for various
noise-flooding levels are reported in Figure 12 in Appendix A.

Class 2: This is the same attack as in Section 9.4, except the adversary requests decryptions of ciphertexts
that correspond to the evaluation of a Class 2 circuit (see Section 8.2 for the definition of this class) on
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Parameter Original Noise Num Final
Set Security Variance Queries (t) Security

log2 n = 13, log2 qL = 202 128/96
ρ2fresh 1000 340 bikz ≈ 90 bits

100 · ρ2fresh 1000 356 bikz ≈ 94 bits
t · ρ2fresh 1000 361 bikz ≈ 96 bits

log2 n = 13, log2 qL = 141 192/159
ρ2fresh 1000 553 bikz ≈ 146 bits

100 · ρ2fresh 1000 587 bikz ≈ 156 bits
t · ρ2fresh 1000 598 bikz ≈ 159 bits

log2 n = 13, log2 qL = 109 256/225
ρ2fresh 1000 765 bikz ≈ 203 bits

100 · ρ2fresh 1000 823 bikz ≈ 218 bits
t · ρ2fresh 1000 843 bikz ≈ 223 bits

log2 n = 14, log2 qL = 411 128/93
ρ2fresh 1000 341 bikz ≈ 90 bits

100 · ρ2fresh 1000 349 bikz ≈ 93 bits
t · ρ2fresh 1000 352 bikz ≈ 93 bits

log2 n = 14, log2 qL = 284 192/158
ρ2fresh 1000 570 bikz ≈ 151 bits

100 · ρ2fresh 1000 587 bikz ≈ 156 bits
t · ρ2fresh 1000 593 bikz ≈ 157 bits

log2 n = 14, log2 qL = 220 256/222
ρ2fresh 1000 796 bikz ≈ 211 bits

t · ρ2fresh 1000 826 bikz ≈ 219 bits
t · ρ2fresh 1000 836 bikz ≈ 222 bits

log2 n = 15, log2 qL = 827 128/92
ρ2fresh 1000 343 bikz ≈ 91 bits

100 · ρ2fresh 1000 347 bikz ≈ 92 bits
t · ρ2fresh 1000 348 bikz ≈ 92 bits

log2 n = 15, log2 qL = 571 192/156
ρ2fresh 1000 577 bikz ≈ 153 bits

100 · ρ2fresh 1000 586 bikz ≈ 155 bits
t · ρ2fresh 1000 589 bikz ≈ 156 bits

log2 n = 15, log2 qL = 443 256/220
ρ2fresh 1000 810 bikz ≈ 215 bits

100 · ρ2fresh 1000 826 bikz ≈ 219 bits
t · ρ2fresh 1000 831 bikz ≈ 220 bits

log2 n = 17, log2 qL = 2400 140/146
ρ2fresh 1000 548 bikz ≈ 145 bits

100 · ρ2fresh 1000 550 bikz ≈ 146 bits
t · ρ2fresh 1000 551 bikz ≈ 146 bits

log2 n = 17, log2 qL = 2000 193/187
ρ2fresh 1000 703 bikz ≈ 186 bits

100 · ρ2fresh 1000 706 bikz ≈ 187 bits
t · ρ2fresh 1000 707 bikz ≈ 187 bits

Fig. 3: Concrete security of lattice reduction attacks after observing decryptions of fresh ciphertexts,
cont’d. For each parameter set, the second column provides the target security as well as the number of bits of
security computed by the tool of [17]. The third column indicates the noise-flooding noise added before returning
the decryption. ρ2fresh is the variance of the noise that is already present in a fresh ciphertext (see Section 3.5.1). The
fourth column indicates the number of decryptions observed by the adversary. The final column provides the reduced
security level after the attack in terms of bikz (see [17]) and bit-security.

fresh ciphertexts. To determine the number of decryptions required to recover the LWE secret with high
probability, we apply (18) with the settings of σhs

, σhe
, σ2

ϵ given in Section 8.2. The results for various
noise-flooding levels are reported in Figure 13 in Appendix A.

9.8 Concrete Security of Hybrid Attacks on Class 1 and 2 Circuits
Class 1: This is the same attack as in Section 9.5, except the adversary requests decryptions of ciphertexts
that correspond to the evaluation of a Class 1 circuit (see Section 8.1 for the definition of this class) on fresh
ciphertexts. For a fixed number of decryptions, we use (11), with the settings of σ2

h2
, σ2

he
, and σ2

ϵ given in
Section 8.1, to determine the number of guesses g that can be made such that all guesses are correct with
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Parameter Orig Noise Num Succ
Set Security Var Queries Prob

log2 n = 10, log2 qL = 25 128/102 ρ2fresh 1160 0.81
100 · ρ2fresh 62,180 0.80

log2 n = 10, log2 qL = 17 192/170 ρ2fresh 1160 0.81
100 · ρ2fresh 62,180 0.80

log2 n = 10, log2 qL = 13 256/234 ρ2fresh 1160 0.81
100 · ρ2fresh 62,180 0.80

log2 n = 11, log2 qL = 51 128/97 ρ2fresh 1220 0.80
100 · ρ2fresh 67,950 0.80

log2 n = 11, log2 qL = 35 192/162 ρ2fresh 1220 0.80
100 · ρ2fresh 67,950 0.80

log2 n = 11, log2 qL = 27 256/226 ρ2fresh 1220 0.80
100 · ρ2fresh 67,950 0.80

log2 n = 12, log2 qL = 101 128/97 ρ2fresh 1290 0.81
100 · ρ2fresh 73,760 0.80

log2 n = 12, log2 qL = 70 192/161 ρ2fresh 1290 0.81
100 · ρ2fresh 73,760 0.80

log2 n = 12, log2 qL = 54 256/227 ρ2fresh 1290 0.81
100 · ρ2fresh 73,760 0.80

Fig. 4: Concrete security of guessing attacks after observing decryptions of fresh ciphertexts. For each
parameter set, the second column provides the target security and the number of bits of security computed by the
tool of [17]. The third column indicates the noise-flooding variance added before returning the decryption. ρ2fresh is
the noise variance already present in a fresh ciphertext. The fourth column indicates the number of decryptions
observed by the adversary. The final column indicates the success probability of the attack, which corresponds to the
probability that all guesses are correct, conditioned on the event in Lemma 6.1 occurring.

high probability. The dimension of the lattice reduces by g, and we compute the volume of the resulting
lattice by applying (15), with the settings of σ2

h2
, σ2

he
, and σ2

ϵ given in Section 8.1. The results are reported
in Figure 14 in Appendix A.
Class 2: This is the same attack as in Section 9.5, except the adversary requests decryptions of ciphertexts
that correspond to the evaluation of a Class 2 circuit (see Section 8.2 for the definition of this class) on fresh
ciphertexts. For a fixed number of decryptions, we use (11), with the settings of σ2

h2
, σ2

he
, and σ2

ϵ given in
Section 8.2, to determine the number of guesses g that can be made such that all guesses are correct with
high probability. The dimension of the lattice reduces by g, and we compute the volume of the resulting
lattice by applying (15), with the settings of σ2

h2
, σ2

he
, and σ2

ϵ given in Section 8.2. The results are reported
in Figure 15 in Appendix A.

10 Discussion of the results
Trends for noise-flooding level of ρ2circ. Our experimental data is summarized via the graphs in Figure 6.
Figure 6(a) shows the reduction in bit security for a lattice reduction attack when considering an adversary
who obtains 1000 decryptions of identity, Class 1, and Class 2 circuits with noise-flooding level ρ2circ equal
to the noise that is already present in the ciphertext. We note that the graph exhibits a greater reduction
in bit-security for identity circuits vs. Class 1 and 2 circuits. We believe the reason for this is that the hints
in identity circuits involve all 2n coordinates in the LWE secret/error, so the variance of all 2n coordinates
is reduced after each hint. On the other hand, hints in Class 1 and Class 2 circuits involve only the n
coordinates from the LWE secret, so only the variance of these n coordinates is reduced after each hint. We
also note that there is a greater security reduction for higher target security level vs. lower target security
level. For example, for the lattice reduction attack, we see that for log2(n) = 10, identity circuits, and for
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Parameter Orig Noise Num Succ
Set Security Var Queries Prob

log2 n = 13, log2 qL = 202 128/96 ρ2fresh 1350 0.80
100 · ρ2fresh 79,600 0.80

log2 n = 13, log2 qL = 141 192/159 ρ2fresh 1350 0.80
100 · ρ2fresh 79,600 0.80

log2 n = 13, log2 qL = 109 256/225 ρ2fresh 1350 0.80
100 · ρ2fresh 79,600 0.80

log2 n = 14, log2 qL = 411 128/93 ρ2fresh 1420 0.81
100 · ρ2fresh 85,450 0.80

log2 n = 14, log2 qL = 284 192/158 ρ2fresh 1420 0.81
100 · ρ2fresh 85,450 0.80

log2 n = 14, log2 qL = 220 256/222 ρ2fresh 1420 0.81
100 · ρ2fresh 85,450 0.80

log2 n = 15, log2 qL = 827 128/92 ρ2fresh 1480 0.80
100 · ρ2fresh 91,320 0.80

log2 n = 15, log2 qL = 571 192/156 ρ2fresh 1480 0.80
100 · ρ2fresh 91,320 0.80

log2 n = 15, log2 qL = 443 256/220 ρ2fresh 1480 0.80
100 · ρ2fresh 91,320 0.80

log2 n = 17, log2 qL = 2400 140/146
ρ2fresh 1690 0.81

100 · ρ2fresh 103,360 0.80

log2 n = 17, log2 qL = 2000 193/187
ρ2fresh 1690 0.81

100 · ρ2fresh 103,360 0.82

Fig. 4: Concrete security of guessing attacks after observing decryptions of fresh ciphertexts, cont’d.
For each parameter set, the second column provides the target security and the number of bits of security computed
by the tool of [17]. The third column indicates the noise-flooding variance added before returning the decryption. ρ2fresh
is the noise variance already present in a fresh ciphertext. The fourth column indicates the number of decryptions
observed by the adversary. The final column indicates the success probability of the attack, which corresponds to the
probability that all guesses are correct, conditioned on the event in Lemma 6.1 occurring.

a security level target of 192, the value of the bit security is reduced by slightly over 70 bits. On the other
hand, for the same circuit and target security level and the same attack, for log2(n) = 15, the reduction in
the bit security level is less than 5 bits. In fact, the reduction in security seems to be highly correlated with
the setting of the modulus. When fixing the dimension n, target security level of 192 have smaller modulus
qL, compared to target security level of 128 and as the modulus qL becomes smaller, “hints” obtained from
decryption have more of an impact on the bit-security for lattice reduction attacks. The same trends can be
seen in the Hybrid attack.

Figure 6(b) shows the number of queries required for guessing n coordinates with high probability for
identity, Class 1 and Class 2 circuits. We note that guessing attacks perform significantly better for Class
1 and 2 circuits versus identity circuits. For identity circuits, there are a total of 2n eigenvalues that are
reduced by obtaining hints, but n of these eigenvalues have relatively larger expectation, while n have smaller
expectation (we believe this occurs because for identity circuits, hints correspond to linear combinations of
both the s and e variables in the LWE instance, in which the s variables have variance 2/3, while the e
variables have variance 3.22). The eigenvectors corresponding to these eigenvalues do not align with the
standard basis. Therefore, for purposes of fast estimates, we only take into account the trace (i.e. sum of
the eigenvalues) and, given trace T, we argue that the average variance of the n secret or error coordinates
with smallest variance is at most T/(2n). However, in practice, the n coordinates with the smallest variance
may have variance significantly smaller than T/(2n). On the other hand, for Class 1 and 2 circuits, hints
correspond to linear combinations of only the s variables from the LWE instance. Thus, we restrict our
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Parameter Orig Noise Num Num Succ Final
Set Security Var Queries Guess Prob Security

log2 n = 10, log2 qL = 25 128/102 ρ2fresh 1130 793 0.80 62 bikz ≈ 17 bits
100 · ρ2fresh 58,000 621 0.80 48 bikz ≈ 13 bits

log2 n = 10, log2 qL = 17 192/170 ρ2fresh 1130 793 0.80 109 bikz ≈ 29 bits
100 · ρ2fresh 58,000 621 0.80 160 bikz ≈ 42 bits

log2 n = 10, log2 qL = 13 256/234 ρ2fresh 1130 793 0.80 160 bikz ≈ 42 bits
100 · ρ2fresh 58,000 621 0.80 222 bikz ≈ 59 bits

log2 n = 11, log2 qL = 51 128/97 ρ2fresh 1130 801 0.80 154 bikz ≈ 41 bits
100 · ρ2fresh 58,000 623 0.80 184 bikz ≈ 49 bits

log2 n = 11, log2 qL = 35 192/162 ρ2fresh 1130 801 0.80 261 bikz ≈ 69 bits
100 · ρ2fresh 58,000 623 0.80 306 bikz ≈ 81 bits

log2 n = 11, log2 qL = 27 256/226 ρ2fresh 1130 801 0.80 358 bikz ≈ 95 bits
100 · ρ2fresh 58,000 623 0.80 415 bikz ≈ 110 bits

log2 n = 12, log2 qL = 101 128/97 ρ2fresh 1130 807 0.80 240 bikz ≈ 63 bits
100 · ρ2fresh 58,000 624 0.80 260 bikz ≈ 69 bits

log2 n = 12, log2 qL = 70 192/161 ρ2fresh 1130 807 0.80 395 bikz ≈ 105 bits
100 · ρ2fresh 58,000 624 0.80 427 bikz ≈ 113 bits

log2 n = 12, log2 qL = 54 256/227 ρ2fresh 1130 807 0.80 544 bikz ≈ 144 bits
100 · ρ2fresh 58,000 624 0.80 587 bikz ≈ 156 bits

Fig. 5: Concrete security of hybrid attacks after observing decryptions of fresh ciphertexts. For each
parameter set, the second column provides the target security and the number of bits of security computed by the
tool of [17]. The third column indicates the noise-flooding variance added before returning the decryption. ρ2fresh is the
noise variance that is already present in a fresh ciphertext. The fourth column indicates the number of decryptions
observed by the adversary. The fifth column indicates the number of coordinates of the LWE secret/error that are
guessed by the adversary. The sixth column indicates the success probability of the attack, which corresponds to the
probability that all guesses are correct, conditioned on the events in Lemma 6.1 and (15) occurring. The final column
provides the reduced security level after the attack in terms of bikz (see [17]) and bit-security.

attention to a subspace with only n eigenvalues that are reduced by obtaining hints. All of these eigenvalues
have the same distribution, and our proof shows that all the eigenvalues are less than maximum value σ2

max.
Figure 6(c) shows the reduction in bit-security for a hybrid attack when considering an adversary who

obtains decryptions of identity, Class 1, and Class 2 circuits. Figure 6(d) shows the number of queries obtained
in each of these attacks. We chose the number of queries for the identity, Class 1, and Class 2 circuits so that
a significant number of guesses can be made for each parameter set (otherwise the attack will be very similar
to a lattice reduction attack). Based on the discussion above, this means that the number of queries required
is far higher for identity circuits than Class 1 and Class 2 circuits. Thus, after guesses are made, the residual
instance has lower variance in the case of identity circuits (since more hints have been incorporated, with
each hint slightly reducing the variance). This explains why for approximately the same number of guesses,
the reduction in bit-security is greater for identity circuits versus Class 1 and Class 2 circuits, as can be
observed from the graph.

Trends across various noise-flooding levels. We first validate that there is no security drop in our experi-
ments when using the statistically-secure noise-flooding levels proposed in [27]. Our results are presented in
Figures 7, 8 and 9 in Appendix A. Indeed, we see in these tables that there is no reduction in either the
security level or in the bikz for any parameter setting.

Recall that we investigate the effectiveness of noise-flooding levels ρ2circ, 100 · ρ2circ, and t · ρ2circ, where t is
the number of decryption queries, circ is one of Identity, C1 or C2, and ρ2circ is the noise variance present in
the ciphertext. As expected, we see that the biggest drop in bit security is observed when noise-flooding by
ρ2circ, across all parameter sets and across all circuits.
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Parameter Orig Noise Num Num Succ Final
Set Security Var Queries Guess Prob Security

log2 n = 13, log2 qL = 202 128/96 ρ2fresh 1130 810 0.80 294 bikz ≈ 78 bits
100 · ρ2fresh 58,000 625 0.80 306 bikz ≈ 81 bits

log2 n = 13, log2 qL = 141 192/159 ρ2fresh 1130 810 0.80 482 bikz ≈ 128 bits
100 · ρ2fresh 58,000 625 0.80 502 bikz ≈ 133 bits

log2 n = 13, log2 qL = 109 256/225 ρ2fresh 1130 810 0.80 671 bikz ≈ 178 bits
100 · ρ2fresh 58,000 625 0.80 699 bikz ≈ 185 bits

log2 n = 14, log2 qL = 411 128/93 ρ2fresh 1130 813 0.80 317 bikz ≈ 84 bits
100 · ρ2fresh 58,000 625 0.80 324 bikz ≈ 86 bits

log2 n = 14, log2 qL = 184 192/158 ρ2fresh 1130 813 0.80 532 bikz ≈ 141 bits
100 · ρ2fresh 58,000 625 0.80 543 bikz ≈ 144 bits

log2 n = 14, log2 qL = 220 256/222 ρ2fresh 1130 813 0.80 745 bikz ≈ 197 bits
100 · ρ2fresh 58,000 625 0.80 760 bikz ≈ 202 bits

log2 n = 15, log2 qL = 827 128/92 ρ2fresh 1130 814 0.80 331 bikz ≈ 88 bits
100 · ρ2fresh 58,000 626 0.80 334 bikz ≈ 89 bits

log2 n = 15, log2 qL = 571 192/156 ρ2fresh 1130 814 0.80 558 bikz ≈ 148 bits
100 · ρ2fresh 58,000 626 0.80 564 bikz ≈ 149 bits

log2 n = 15, log2 qL = 443 256/220 ρ2fresh 1130 814 0.80 783 bikz ≈ 208 bits
100 · ρ2fresh 58,000 626 0.80 792 bikz ≈ 210 bits

log2 n = 17, log2 qL = 2400 140/146
ρ2fresh 1260 1557 0.80 539 bikz ≈ 143 bits

100 · ρ2fresh 65,000 1411 0.80 540 bikz ≈ 143 bits

log2 n = 17, log2 qL = 2000 193/187
ρ2fresh 1260 1557 0.80 692 bikz ≈ 183 bits

100 · ρ2fresh 65,000 1411 0.80 691 bikz ≈ 183 bits

Fig. 5: Concrete security of hybrid attacks after observing decryptions of fresh ciphertexts, cont’d. For
each parameter set, the second column provides the target security and the number of bits of security computed by
the tool of [17]. The third column indicates the noise-flooding variance added before returning the decryption. ρ2fresh is
the noise variance that is already present in a fresh ciphertext. The fourth column indicates the number of decryptions
observed by the adversary. The fifth column indicates the number of coordinates of the LWE secret/error that are
guessed by the adversary. The sixth column indicates the success probability of the attack, which corresponds to the
probability that all guesses are correct, conditioned on the events in Lemma 6.1 and (15) occurring. The final column
provides the reduced security level after the attack in terms of bikz (see [17]) and bit-security.

In contrast, we observe that noise-flooding by t · ρ2circ leads to a very low reduction in the security level, if
at all. As opposed to a 70-bit security drop seen for lattice attacks with log2(n) = 10 and 192-bit security for
identity circuits with noise level ρ2fresh, we see in Figure 3 that when noise-flooding by t · ρ2fresh, the security
level drops by only a few bits. Further, as the value of log2(n) (and thus also qL increases), the security level
drop decreases. We see for example in Figure 3 that for log2(n) = 17, there is no change in the security level.

Conclusions: The first conclusion of this work is that, in practice, it is enough to noise flood by t ·ρ2circ, where
t is the number of decryption queries available to the adversary, and rho2circ is the variance of the noise, as
predicted by an average-case noise analysis. Perhaps a less cautious approach is to noise flood by α·t·ρ, where
0 < α < 1, if it is acceptable to have the security level drop by a few bits. We note that there is no definitive
setting of α which is “best,” and one can rather think of α as a parameter to be fine-tuned depending on the
application. In particular, we note that one can think of increasing α as a way to allow for more decryption
queries. Finally, we note that the techniques developed in this paper, as well as the experimental results
presented, can be used as a way to establish key refreshing policies in a concrete application. Specifically, if
the noise level is set to α · t · ρ, the keys should be refreshed after releasing t number of decryptions. Thus,
there can be a tradeoff among frequency of key refresh, an acceptable precision loss, and an acceptable drop
in bit-security.
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(a) Lattice Reduction Attack

(b) Guessing Attack

(c) Hybrid Attack

(d) Number of Queries in Hybrid Attack

Fig. 6: Trends for the various attacks. We compare the efficacy of lattice reduction, guessing, and hybrid
attacks for various parameter sets, and for identity, Class 1, and Class 2 circuits with noise-flooding level
equal to ρ2fresh, ρ2C1, and ρ2C2, respectively. (a) Shows the reduction in bit security for a lattice reduction attack
against an adversary who obtains 1000 decryptions; (b) Shows the number of queries required for guessing
n coordinates with probability at least 0.80. (c) Shows the reduction in bit security for a hybrid attack
against an adversary who obtains a variable number of decryptions. The number of decryption queries for
each parameter set is displayed in (d).
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A Additional Experimental Results

Parameter Original Noise Final
Set Security Variance Security

log2 n = 10, log2 qL = 25 128/102.34 (386.21) ρ2stat 386.21 bikz ≈ 102.34 bits
log2 n = 10, log2 qL = 17 192/170.04 (641.65) ρ2stat 641.65 bikz ≈ 170.04 bits
log2 n = 10, log2 qL = 13 256/234.29 (884.13) ρ2stat 884.13 bikz ≈ 234.29 bits

log2 n = 11, log2 qL = 51 128/96.84 (365.43) ρ2stat 365.43 bikz ≈ 96.84 bits
log2 n = 11, log2 qL = 35 192/162.31 (612.49) ρ2stat 612.49 bikz ≈ 162.31 bits
log2 n = 11, log2 qL = 27 256/226.11 (853.25) ρ2stat 853.25 bikz ≈ 226.11 bits

log2 n = 12, log2 qL = 101 128/96.81 (365.34) ρ2stat 365.34 bikz ≈ 96.81 bits
log2 n = 12, log2 qL = 70 192/161.41 (609.11) ρ2stat 609.11 bikz ≈ 161.41 bits
log2 n = 12, log2 qL = 54 256/227.10 (856.98) ρ2stat 856.98 bikz ≈ 227.10 bits

log2 n = 13, log2 qL = 202 128/96.11 (362.66) ρ2stat 362.66 bikz ≈ 96.11 bits
log2 n = 13, log2 qL = 141 192/159.40 (601.49) ρ2stat 601.49 bikz ≈ 159.40 bits
log2 n = 13, log2 qL = 109 256/224.89 (848.63) ρ2fresh 848.63 bikz ≈ 224.89 bits

log2 n = 14, log2 qL = 411 128/93.37 (352.34) ρ2stat 352.34 bikz ≈ 93.37 bits
log2 n = 14, log2 qL = 284 192/157.62 (594.78) ρ2stat 594.78 bikz ≈ 157.62 bits
log2 n = 14, log2 qL = 220 256/222.42 (839.32) ρ2stat 839.32 bikz ≈ 222.42 bits

log2 n = 15, log2 qL = 827 128/92.37 (348.55) ρ2stat 348.55 bikz ≈ 92.37 bits
log2 n = 15, log2 qL = 571 192/156.35 (590.00) ρ2stat 590.00 bikz ≈ 156.35 bits
log2 n = 15, log2 qL = 443 256/220.52 (832.15) ρ2stat 832.15 bikz ≈ 220.52 bits

log2 n = 17, log2 qL = 2400 140/145.88 (550.51) ρ2stat 550.51 bikz ≈ 145.88 bits
log2 n = 17, log2 qL = 2000 193/187.40 (707.17) ρ2stat 707.17 bikz ≈ 187.40 bits

Fig. 7: Concrete security of lattice reduction attacks after observing 1000 decryptions of fresh cipher-
texts. For each parameter set, the second column provides the target security as well as the number of bits of security
computed by the tool of [17] (bikz are provided in parenthesis). The third column indicates the noise-flooding noise
added before returning the decryption to the adversary. ρ2stat = 12 · t · 2κ · ρ2fresh, where ρ2fresh is the variance of the noise
that is already present in a fresh ciphertext (see Section 3.5.1), and κ = 30 is the statistical security parameter. The
fourth column indicates the number of decryptions observed by the adversary. The final column provides the reduced
security level after the attack in terms of bikz (see [17]) and bit-security.
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Parameter Original Noise Final
Set Security Variance Security

log2 n = 10, log2 qL = 25 128/102.34 (386.21) ρ2stat 386.21 bikz ≈ 102.34 bits
log2 n = 10, log2 qL = 17 192/170.04 (641.65) ρ2stat 641.65 bikz ≈ 170.04 bits
log2 n = 10, log2 qL = 13 256/234.29 (884.13) ρ2stat 884.13 bikz ≈ 234.29 bits

log2 n = 11, log2 qL = 51 128/96.84 (365.43) ρ2stat 365.43 bikz ≈ 96.84 bits
log2 n = 11, log2 qL = 35 192/162.31 (612.49) ρ2stat 612.49 bikz ≈ 162.31 bits
log2 n = 11, log2 qL = 27 256/226.11 (853.25) ρ2stat 853.25 bikz ≈ 226.11 bits

log2 n = 12, log2 qL = 101 128/96.81 (365.34) ρ2stat 365.34 bikz ≈ 96.81 bits
log2 n = 12, log2 qL = 70 192/161.41 (609.11) ρ2stat 609.11 bikz ≈ 161.41 bits
log2 n = 12, log2 qL = 54 256/227.10 (856.98) ρ2stat 856.98 bikz ≈ 227.10 bits

log2 n = 13, log2 qL = 202 128/96.11 (362.66) ρ2stat 362.66 bikz ≈ 96.11 bits
log2 n = 13, log2 qL = 141 192/159.40 (601.49) ρ2stat 601.49 bikz ≈ 159.40 bits
log2 n = 13, log2 qL = 109 256/224.89 (848.63) ρ2fresh 848.63 bikz ≈ 224.89 bits

log2 n = 14, log2 qL = 411 128/93.37 (352.34) ρ2stat 352.34 bikz ≈ 93.37 bits
log2 n = 14, log2 qL = 284 192/157.62 (594.78) ρ2stat 594.78 bikz ≈ 157.62 bits
log2 n = 14, log2 qL = 220 256/222.42 (839.32) ρ2stat 839.32 bikz ≈ 222.42 bits

log2 n = 15, log2 qL = 827 128/92.37 (348.55) ρ2stat 348.55 bikz ≈ 92.37 bits
log2 n = 15, log2 qL = 571 192/156.35 (590.00) ρ2stat 590.00 bikz ≈ 156.35 bits
log2 n = 15, log2 qL = 443 256/220.52 (832.15) ρ2stat 832.15 bikz ≈ 220.52 bits

log2 n = 17, log2 qL = 2400 140/145.88 (550.51) ρ2stat 550.51 bikz ≈ 145.88 bits
log2 n = 17, log2 qL = 2000 193/187.40 (707.17) ρ2stat 707.17 bikz ≈ 187.40 bits

Fig. 8: Concrete security of lattice reduction attacks after observing 1000 decryptions of Class 1 cipher-
texts. For each parameter set, the second column provides the target security as well as the number of bits of security
computed by the tool of [17] (bikz are provided in parenthesis). The third column indicates the noise-flooding noise
added before returning the decryption to the adversary. ρ2stat = 12 · t · 2κ · ρ2C1, where ρ2C1 is the variance of the noise
that is already present in a ciphertext obtained from evaluating a Class 1 circuit on fresh encryptions, and κ = 30 is
the statistical security parameter. ρ2fresh is the variance of the noise that is already present in a fresh ciphertext (see
Section 3.5.1). The fourth column indicates the number of decryptions observed by the adversary. The final column
provides the reduced security level after the attack in terms of bikz (see [17]) and bit-security.
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Parameter Original Noise Final
Set Security Variance Security

log2 n = 10, log2 qL = 25 128/102.34 (386.21) ρ2stat 386.21 bikz ≈ 102.34 bits
log2 n = 10, log2 qL = 17 192/170.04 (641.65) ρ2stat 641.65 bikz ≈ 170.04 bits
log2 n = 10, log2 qL = 13 256/234.29 (884.13) ρ2stat 884.13 bikz ≈ 234.29 bits

log2 n = 11, log2 qL = 51 128/96.84 (365.43) ρ2stat 365.43 bikz ≈ 96.84 bits
log2 n = 11, log2 qL = 35 192/162.31 (612.49) ρ2stat 612.49 bikz ≈ 162.31 bits
log2 n = 11, log2 qL = 27 256/226.11 (853.25) ρ2stat 853.25 bikz ≈ 226.11 bits

log2 n = 12, log2 qL = 101 128/96.81 (365.34) ρ2stat 365.34 bikz ≈ 96.81 bits
log2 n = 12, log2 qL = 70 192/161.41 (609.11) ρ2stat 609.11 bikz ≈ 161.41 bits
log2 n = 12, log2 qL = 54 256/227.10 (856.98) ρ2stat 856.98 bikz ≈ 227.10 bits

log2 n = 13, log2 qL = 202 128/96.11 (362.66) ρ2stat 362.66 bikz ≈ 96.11 bits
log2 n = 13, log2 qL = 141 192/159.40 (601.49) ρ2stat 601.49 bikz ≈ 159.40 bits
log2 n = 13, log2 qL = 109 256/224.89 (848.63) ρ2fresh 848.63 bikz ≈ 224.89 bits

log2 n = 14, log2 qL = 411 128/93.37 (352.34) ρ2stat 352.34 bikz ≈ 93.37 bits
log2 n = 14, log2 qL = 284 192/157.62 (594.78) ρ2stat 594.78 bikz ≈ 157.62 bits
log2 n = 14, log2 qL = 220 256/222.42 (839.32) ρ2stat 839.32 bikz ≈ 222.42 bits

log2 n = 15, log2 qL = 827 128/92.37 (348.55) ρ2stat 348.55 bikz ≈ 92.37 bits
log2 n = 15, log2 qL = 571 192/156.35 (590.00) ρ2stat 590.00 bikz ≈ 156.35 bits
log2 n = 15, log2 qL = 443 256/220.52 (832.15) ρ2stat 832.15 bikz ≈ 220.52 bits

log2 n = 17, log2 qL = 2400 140/145.88 (550.51) ρ2stat 550.51 bikz ≈ 145.88 bits
log2 n = 17, log2 qL = 2000 193/187.40 (707.17) ρ2stat 707.17 bikz ≈ 187.40 bits

Fig. 9: Concrete security of lattice reduction attacks after observing 1000 decryptions of Class 2 ci-
phertexts. For each parameter set, the second column provides the target security as well as the number of bits of
security computed by the tool of [17] (bikz are provided in parenthesis). The third column indicates the noise-flooding
noise added before returning the decryption to the adversary. ρ2stat = 12 · t · 2κ · ρ2C2, where ρ2C2 is the variance of the
noise that is already present in a ciphertext obtained from evaluating a Class 2 circuit on fresh encryptions, and
κ = 30 is the statistical security parameter. The fourth column indicates the number of decryptions observed by
the adversary. The final column provides the reduced security level after the attack in terms of bikz (see [17]) and
bit-security. The (encoded) message magnitude is equal to n ·

√
ℓ/3 in all rows, where ℓ is set to 20.
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Parameter Original Noise Num Final
Set Security Variance Queries (t) Security

log2 n = 10, log2 qL = 25 128/102
ρ2C1 1000 298 bikz ≈ 79 bits

100 · ρ2C1 1000 352 bikz ≈ 93 bits
t · ρ2C1 1000 376 bikz ≈ 100 bits

log2 n = 10, log2 qL = 17 192/170
ρ2C1 1000 460 bikz ≈ 122 bits

100 · ρ2C1 1000 568 bikz ≈ 150 bits
t · ρ2C1 1000 619 bikz ≈ 164 bits

log2 n = 10, log2 qL = 13 256/234
ρ2C1 1000 598 bikz ≈ 158 bits

100 · ρ2C1 1000 764 bikz ≈ 202 bits
t · ρ2C1 1000 847 bikz ≈ 224 bits

log2 n = 11, log2 qL = 51 128/97
ρ2C1 1000 319 bikz ≈ 85 bits

100 · ρ2C1 1000 348 bikz ≈ 92 bits
t · ρ2C1 1000 360 bikz ≈ 95 bits

log2 n = 11, log2 qL = 35 192/162
ρ2C1 1000 513 bikz ≈ 136 bits

100 · ρ2C1 1000 575 bikz ≈ 152 bits
t · ρ2C1 1000 601 bikz ≈ 159 bits

log2 n = 11, log2 qL = 27 256/226
ρ2C1 1000 689 bikz ≈ 183 bits

100 · ρ2C1 1000 790 bikz ≈ 209 bits
t · ρ2C1 1000 834 bikz ≈ 221 bits

log2 n = 12, log2 qL = 101 128/97
ρ2C1 1000 341 bikz ≈ 90 bits

100 · ρ2C1 1000 356 bikz ≈ 94 bits
t · ρ2C1 1000 363 bikz ≈ 96 bits

log2 n = 12, log2 qL = 70 192/161
ρ2C1 1000 555 bikz ≈ 147 bits

100 · ρ2C1 1000 589 bikz ≈ 156 bits
t · ρ2C1 1000 603 bikz ≈ 160 bits

log2 n = 12, log2 qL = 54 256/227
ρ2C1 1000 764 bikz ≈ 203 bits

100 · ρ2C1 1000 823 bikz ≈ 218 bits
t · ρ2C1 1000 847 bikz ≈ 224 bits

Fig. 10: Concrete security of lattice reduction attacks after observing decryptions of Class 1 ciphertexts.
For each parameter set, the second column provides the target security as well as the number of bits of security
computed by the tool of [17]. The third column indicates the noise-flooding noise added before returning the decryption
to the adversary. ρ2C1 is the variance of the noise that is already present in a ciphertext obtained from evaluating a
Class 1 circuit on fresh encryptions. The final column provides the reduced security level after the attack in terms of
bikz (see [17]) and bit-security.
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Parameter Original Noise Num Final
Set Security Variance Queries (t) Security

log2 n = 13, log2 qL = 202 128/96
ρ2C1 1000 350 bikz ≈ 93 bits

100 · ρ2C1 1000 358 bikz ≈ 95 bits
t · ρ2C1 1000 361 bikz ≈ 96 bits

log2 n = 13, log2 qL = 141 192/159
ρ2C1 1000 574 bikz ≈ 152 bits

100 · ρ2C1 1000 592 bikz ≈ 157 bits
t · ρ2C1 1000 599 bikz ≈ 159 bits

log2 n = 13, log2 qL = 109 256/225
ρ2C1 1000 800 bikz ≈ 212 bits

100 · ρ2C1 1000 831 bikz ≈ 220 bits
t · ρ2C1 1000 844 bikz ≈ 224 bits

log2 n = 14, log2 qL = 411 128/93
ρ2C1 1000 346 bikz ≈ 92 bits

100 · ρ2C1 1000 350 bikz ≈ 93 bits
t · ρ2C1 1000 352 bikz ≈ 93 bits

log2 n = 14, log2 qL = 284 192/158
ρ2C1 1000 581 bikz ≈ 154 bits

100 · ρ2C1 1000 590 bikz ≈ 156 bits
t · ρ2C1 1000 593 bikz ≈ 157 bits

log2 n = 14, log2 qL = 220 256/222
ρ2C1 1000 815 bikz ≈ 216 bits

100 · ρ2C1 1000 831 bikz ≈ 220 bits
t · ρ2C1 1000 837 bikz ≈ 222 bits

log2 n = 15, log2 qL = 827 128/92
ρ2C1 1000 345 bikz ≈ 92 bits

100 · ρ2C1 1000 347 bikz ≈ 92 bits
t · ρ2C1 1000 348 bikz ≈ 92 bits

log2 n = 15, log2 qL = 571 192/156
ρ2C1 1000 583 bikz ≈ 154 bits

100 · ρ2C1 1000 588 bikz ≈ 156 bits
t · ρ2C1 1000 589 bikz ≈ 156 bits

log2 n = 15, log2 qL = 443 256/220
ρ2C1 1000 820 bikz ≈ 217 bits

100 · ρ2C1 1000 828 bikz ≈ 219 bits
t · ρ2C1 1000 831 bikz ≈ 220 bits

log2 n = 17, log2 qL = 2400 140/146
ρ2C1 1000 549 bikz ≈ 145 bits

100 · ρ2C1 1000 550 bikz ≈ 146 bits
t · ρ2C1 1000 551 bikz ≈ 146 bits

log2 n = 17, log2 qL = 2000 193/187
ρ2fresh 1000 705 bikz ≈ 187 bits

100 · ρ2C1 1000 706 bikz ≈ 187 bits
t · ρ2C1 1000 707 bikz ≈ 187 bits

Fig. 10: Concrete security of lattice reduction attacks after observing decryptions of Class 1 ciphertexts,
continued. For each parameter set, the second column provides the target security as well as the number of bits
of security computed by the tool of [17]. The third column indicates the noise-flooding noise added before returning
the decryption to the adversary. ρ2C1 is the variance of the noise that is already present in a ciphertext obtained from
evaluating a Class 1 circuit on fresh encryptions. The final column provides the reduced security level after the attack
in terms of bikz (see [17]) and bit-security.
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Parameter Original Noise Num Final
Set Security Variance Queries (t) Security

log2 n = 10, log2 qL = 25 128/102
ρ2C2 1000 302 bikz ≈ 80 bits

100 · ρ2C2 1000 354 bikz ≈ 94 bits
t · ρ2C2 1000 377 bikz ≈ 100 bits

log2 n = 10, log2 qL = 17 192/170
ρ2C2 1000 467 bikz ≈ 124 bits

100 · ρ2C2 1000 568 bikz ≈ 150 bits
t · ρ2C2 1000 622 bikz ≈ 165 bits

log2 n = 10, log2 qL = 13 256/234
ρ2C2 1000 609 bikz ≈ 161 bits

100 · ρ2C2 1000 772 bikz ≈ 205 bits
t · ρ2C2 1000 851 bikz ≈ 226 bits

log2 n = 11, log2 qL = 51 128/97
ρ2C2 1000 321 bikz ≈ 85 bits

100 · ρ2C2 1000 349 bikz ≈ 93 bits
t · ρ2C2 1000 361 bikz ≈ 96 bits

log2 n = 11, log2 qL = 35 192/162
ρ2C2 1000 517 bikz ≈ 137 bits

100 · ρ2C2 1000 577 bikz ≈ 153 bits
t · ρ2C2 1000 603 bikz ≈ 160 bits

log2 n = 11, log2 qL = 27 256/226
ρ2C2 1000 695 bikz ≈ 184 bits

100 · ρ2C2 1000 794 bikz ≈ 210 bits
t · ρ2C2 1000 836 bikz ≈ 222 bits

log2 n = 12, log2 qL = 101 128/97
ρ2C2 1000 342 bikz ≈ 91 bits

100 · ρ2C2 1000 357 bikz ≈ 95 bits
t · ρ2C2 1000 363 bikz ≈ 96 bits

log2 n = 12, log2 qL = 70 192/161
ρ2C2 1000 557 bikz ≈ 148 bits

100 · ρ2C2 1000 591 bikz ≈ 157 bits
t · ρ2C2 1000 604 bikz ≈ 160 bits

log2 n = 12, log2 qL = 54 256/227
ρ2C2 1000 769 bikz ≈ 204 bits

100 · ρ2C2 1000 848 bikz ≈ 225 bits
t · ρ2C2 1000 825 bikz ≈ 219 bits

Fig. 11: Concrete security of lattice reduction attacks after observing decryptions of Class 2 ciphertexts.
For each parameter set, the second column provides the target security as well as the number of bits of security
computed by the tool of [17]. The third column indicates the noise-flooding noise added before returning the decryption
to the adversary. ρ2C2 is the variance of the noise that is already present in a ciphertext obtained from evaluating a
Class 2 circuit on fresh encryptions. The fourth column indicates the number of decryptions observed by the adversary.
The final column provides the reduced security level after the attack in terms of bikz (see [17]) and bit-security. The
(encoded) message magnitude is equal to n ·

√
ℓ/3 in all rows, where ℓ is set to 20.
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Parameter Original Noise Num Final
Set Security Variance Queries (t) Security

log2 n = 13, log2 qL = 202 128/96
ρ2C2 1000 351 bikz ≈ 93 bits

100 · ρ2C2 1000 359 bikz ≈ 95 bits
t · ρ2C2 1000 362 bikz ≈ 96 bits

log2 n = 13, log2 qL = 141 192/159
ρ2C2 1000 575 bikz ≈ 152 bits

100 · ρ2C2 1000 592 bikz ≈ 157 bits
t · ρ2C2 1000 599 bikz ≈ 159 bits

log2 n = 13, log2 qL = 109 256/225
ρ2C2 1000 802 bikz ≈ 213 bits

100 · ρ2C2 1000 832 bikz ≈ 221 bits
t · ρ2C2 1000 844 bikz ≈ 224 bits

log2 n = 14, log2 qL = 411 128/93
ρ2C2 1000 346 bikz ≈ 92 bits

100 · ρ2C2 1000 350 bikz ≈ 93 bits
t · ρ2C2 1000 352 bikz ≈ 93 bits

log2 n = 14, log2 qL = 284 192/158
ρ2C2 1000 581 bikz ≈ 154 bits

100 · ρ2C2 1000 590 bikz ≈ 156 bits
t · ρ2C2 1000 594 bikz ≈ 157 bits

log2 n = 14, log2 qL = 220 256/222
ρ2C2 1000 816 bikz ≈ 216 bits

100 · ρ2C2 1000 831 bikz ≈ 220 bits
t · ρ2C2 1000 837 bikz ≈ 222 bits

log2 n = 15, log2 qL = 827 128/92
ρ2C2 1000 346 bikz ≈ 92 bits

100 · ρ2C2 1000 348 bikz ≈ 92 bits
t · ρ2C2 1000 348 bikz ≈ 92 bits

log2 n = 15, log2 qL = 571 192/156
ρ2C2 1000 583 bikz ≈ 155 bits

100 · ρ2C2 1000 588 bikz ≈ 156 bits
t · ρ2C2 1000 589 bikz ≈ 156 bits

log2 n = 15, log2 qL = 443 256/220
ρ2C2 1000 820 bikz ≈ 217 bits

100 · ρ2C2 1000 828 bikz ≈ 219 bits
t · ρ2C2 1000 831 bikz ≈ 220 bits

log2 n = 17, log2 qL = 2400 140/146
ρ2C2 1000 549 bikz ≈ 145 bits

100 · ρ2C2 1000 550 bikz ≈ 146 bits
t · ρ2C2 1000 551 bikz ≈ 146 bits

log2 n = 17, log2 qL = 2000 193/187
ρ2C2 1000 705 bikz ≈ 187 bits

100 · ρ2C2 1000 706 bikz ≈ 187 bits
t · ρ2C2 1000 707 bikz ≈ 187 bits

Fig. 11: Concrete security of lattice reduction attacks after observing decryptions of Class 2 ciphertexts,
continued. For each parameter set, the second column provides the target security as well as the number of bits
of security computed by the tool of [17]. The third column indicates the noise-flooding noise added before returning
the decryption to the adversary. ρ2C2 is the variance of the noise that is already present in a ciphertext obtained from
evaluating a Class 2 circuit on fresh encryptions. The fourth column indicates the number of decryptions observed
by the adversary. The final column provides the reduced security level after the attack in terms of bikz (see [17]) and
bit-security. The (encoded) message magnitude is equal to n ·

√
ℓ/3 in all rows, where ℓ is set to 20.
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Parameter Orig Noise Num Succ
Set Security Var Queries Prob

log2 n = 10, log2 qL = 25 128/102 ρ2C1 77 0.81
100 · ρ2C1 3850 0.80

log2 n = 10, log2 qL = 17 192/170 ρ2C1 77 0.81
100 · ρ2C1 3850 0.80

log2 n = 10, log2 qL = 13 256/234 ρ2C1 77 0.81
100 · ρ2C1 3850 0.80

log2 n = 11, log2 qL = 51 128/97 ρ2C1 82 0.82
100 · ρ2C1 4200 0.80

log2 n = 11, log2 qL = 35 192/162 ρ2C1 82 0.82
100 · ρ2C1 4200 0.80

log2 n = 11, log2 qL = 27 256/226 ρ2C1 82 0.82
100 · ρ2C1 4200 0.80

log2 n = 12, log2 qL = 101 128/97 ρ2C1 86 0.80
100 · ρ2C1 4570 0.80

log2 n = 12, log2 qL = 70 192/161 ρ2C1 86 0.80
100 · ρ2C1 4570 0.80

log2 n = 12, log2 qL = 54 256/227 ρ2C1 86 0.80
100 · ρ2C1 4570 0.80

Fig. 12: Concrete security of guessing attacks after observing decryptions of Class 1 ciphertexts. For
each parameter set, the second column provides the target security as well as the number of bits of security computed
by the tool of [17]. The third column indicates the noise-flooding noise added before returning the decryption to the
adversary. ρ2C1 is the variance of the noise that is already present in a ciphertext obtained by evaluating a Class 1
circuit on fresh encryptions. The fourth column indicates the number of decryptions observed by the adversary. The
final column indicates the success probability of the attack, which corresponds to the probability that all guesses are
correct, conditioned on the event in (17) occurring.
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Parameter Orig Noise Num Succ
Set Security Var Queries Prob

log2 n = 13, log2 qL = 202 128/96 ρ2C1 91 0.81
100 · ρ2C1 4930 0.80

log2 n = 13, log2 qL = 141 192/159 ρ2C1 91 0.81
100 · ρ2C1 4930 0.80

log2 n = 13, log2 qL = 109 256/225 ρ2C1 91 0.81
100 · ρ2C1 4930 0.80

log2 n = 14, log2 qL = 411 128/93 ρ2C1 96 0.82
100 · ρ2C1 5290 0.80

log2 n = 14, log2 qL = 284 192/158 ρ2C1 96 0.82
100 · ρ2C1 5290 0.80

log2 n = 14, log2 qL = 220 256/222 ρ2C1 96 0.82
100 · ρ2C1 5290 0.80

log2 n = 15, log2 qL = 827 128/92 ρ2C1 100 0.80
100 · ρ2C1 5660 0.80

log2 n = 15, log2 qL = 571 192/156 ρ2C1 100 0.80
100 · ρ2C1 5660 0.80

log2 n = 15, log2 qL = 443 256/220 ρ2C1 100 0.80
100 · ρ2C1 5660 0.80

log2 n = 17, log2 qL = 2400 140/146
ρ2C1 115 0.80

100 · ρ2C1 6420 0.80

log2 n = 17, log2 qL = 2000 193/187
ρ2C1 115 0.80

100 · ρ2C1 6420 0.80

Fig. 12: Concrete security of guessing attacks after observing decryptions of Class 1 ciphertexts, con-
tinued. For each parameter set, the second column provides the target security as well as the number of bits of
security computed by the tool of [17]. The third column indicates the noise-flooding noise added before returning
the decryption to the adversary. ρ2C1 is the variance of the noise that is already present in a ciphertext obtained by
evaluating a Class 1 circuit on fresh encryptions. The fourth column indicates the number of decryptions observed by
the adversary. The final column indicates the success probability of the attack, which corresponds to the probability
that all guesses are correct, conditioned on the event in (17) occurring.
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Parameter Orig Noise Num Succ
Set Security Var Queries Prob

log2 n = 10, log2 qL = 25 128/102 ρ2C2 97 0.81
100 · ρ2C2 4620 0.80

log2 n = 10, log2 qL = 17 192/170 ρ2C2 97 0.81
100 · ρ2C2 4620 0.80

log2 n = 10, log2 qL = 13 256/234 ρ2C2 97 0.81
100 · ρ2C2 4620 0.80

log2 n = 11, log2 qL = 51 128/97 ρ2C2 103 0.81
100 · ρ2C2 5050 0.80

log2 n = 11, log2 qL = 35 192/162 ρ2C2 103 0.81
100 · ρ2C2 5050 0.80

log2 n = 11, log2 qL = 27 256/226 ρ2C2 103 0.81
100 · ρ2C2 5050 0.80

log2 n = 12, log2 qL = 101 128/97 ρ2C2 110 0.82
100 · ρ2C2 5490 0.80

log2 n = 12, log2 qL = 70 192/161 ρ2C2 110 0.82
100 · ρ2C2 5490 0.80

log2 n = 12, log2 qL = 54 256/227 ρ2C2 110 0.82
100 · ρ2C2 5490 0.80

Fig. 13: Concrete security of guessing attacks after observing decryptions of Class 2 ciphertexts. For
each parameter set, the second column provides the target security as well as the number of bits of security computed
by the tool of [17]. The third column indicates the noise-flooding noise added before returning the decryption to the
adversary. ρ2C2 is the variance of the noise that is already present in a ciphertext obtained from evaluating a Class 2
circuit on fresh encryptions. The fourth column indicates the number of decryptions observed by the adversary. The
final column indicates the success probability of the attack, which corresponds to the probability that all guesses are
correct, conditioned on the event in (17). The (encoded) message magnitude is equal to n ·

√
ℓ/3 in all rows, where ℓ

is set to 20.
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Parameter Orig Noise Num Succ
Set Security Var Queries Prob

log2 n = 13, log2 qL = 202 128/96 ρ2C2 116 0.81
100 · ρ2C2 5930 0.80

log2 n = 13, log2 qL = 141 192/159 ρ2C2 116 0.81
100 · ρ2C2 5930 0.80

log2 n = 13, log2 qL = 109 256/225 ρ2C2 116 0.81
100 · ρ2C2 5930 0.80

log2 n = 14, log2 qL = 411 128/93 ρ2C2 122 0.80
100 · ρ2C2 6370 0.80

log2 n = 14, log2 qL = 284 192/158 ρ2C2 122 0.80
100 · ρ2C2 6370 0.80

log2 n = 14, log2 qL = 220 256/222 ρ2C2 122 0.80
100 · ρ2C2 6370 0.80

log2 n = 15, log2 qL = 827 128/92 ρ2C2 129 0.82
100 · ρ2C2 6810 0.80

log2 n = 15, log2 qL = 571 192/156 ρ2C2 129 0.82
100 · ρ2C2 6810 0.80

log2 n = 15, log2 qL = 443 256/220 ρ2C2 129 0.82
100 · ρ2C2 6810 0.80

log2 n = 17, log2 qL = 2400 140/146
ρ2C2 147 0.80

100 · ρ2C2 7720 0.80

log2 n = 17, log2 qL = 2000 193/187
ρ2C2 147 0.80

100 · ρ2C2 7720 0.80

Fig. 13: Concrete security of guessing attacks after observing decryptions of Class 2 ciphertexts, con-
tinued. For each parameter set, the second column provides the target security as well as the number of bits of
security computed by the tool of [17]. The third column indicates the noise-flooding noise added before returning the
decryption to the adversary. ρ2C2 is the variance of the noise that is already present in a ciphertext obtained from
evaluating a Class 2 circuit on fresh encryptions. The fourth column indicates the number of decryptions observed by
the adversary. The final column indicates the success probability of the attack, which corresponds to the probability
that all guesses are correct, conditioned on the event in (17). The (encoded) message magnitude is equal to n ·

√
ℓ/3

in all rows, where ℓ is set to 20.
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Parameter Orig Noise Num Num Succ Final
Set Security Var Queries Guess Prob Security

log2 n = 10, log2 qL = 25 128/102 ρ2C1 75 821 0.80 72 bikz ≈ 19 bits
100 · ρ2C1 3500 531 0.80 150 bikz ≈ 40 bits

log2 n = 10, log2 qL = 17 192/170 ρ2C1 75 821 0.80 159 bikz ≈ 42 bits
100 · ρ2C1 3500 531 0.80 273 bikz ≈ 72 bits

log2 n = 10, log2 qL = 13 256/234 ρ2C1 75 821 0.80 248 bikz ≈ 66 bits
100 · ρ2C1 3500 531 0.80 394 bikz ≈ 104 bits

log2 n = 11, log2 qL = 51 128/97 ρ2C1 75 825 0.80 178 bikz ≈ 47 bits
100 · ρ2C1 3500 534 0.80 231 bikz ≈ 61 bits

log2 n = 11, log2 qL = 35 192/162 ρ2C1 75 825 0.80 314 bikz ≈ 83 bits
100 · ρ2C1 3500 534 0.80 395 bikz ≈ 105 bits

log2 n = 11, log2 qL = 27 256/226 ρ2C1 75 825 0.80 447 bikz ≈ 118 bits
100 · ρ2C1 3500 534 0.80 553 bikz ≈ 147 bits

log2 n = 12, log2 qL = 101 128/97 ρ2C1 75 827 0.80 258 bikz ≈ 68 bits
100 · ρ2C1 3500 535 0.80 291 bikz ≈ 77 bits

log2 n = 12, log2 qL = 70 192/161 ρ2C1 75 827 0.80 436 bikz ≈ 115 bits
100 · ρ2C1 3500 535 0.80 487 bikz ≈ 129 bits

log2 n = 12, log2 qL = 54 256/227 ρ2C1 75 827 0.80 615 bikz ≈ 163 bits
100 · ρ2C1 3500 535 0.80 683 bikz ≈ 181 bits

Fig. 14: Concrete security of hybrid attacks after observing decryptions of Class 1 ciphertexts. For each
parameter set, the second column provides the target security as well as the number of bits of security computed
by the tool of [17]. The third column indicates the noise-flooding noise added before returning the decryption to the
adversary. ρ2C1 is the variance of the noise that is already present in a ciphertext obtained from evaluating a Class
1 circuit on fresh encryptions. The fourth column indicates the number of decryptions observed by the adversary.
The fifth column indicates the number of coordinates of the LWE secret that are guessed by the adversary. The
sixth column indicates the success probability of the attack, which corresponds to the probability that all guesses are
correct, conditioned on the events in (17) and (20) occurring. The final column provides the reduced security level
after the attack in terms of bikz (see [17]) and bit-security.
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Parameter Orig Noise Num Num Succ Final
Set Security Var Queries Guess Prob Security

log2 n = 13, log2 qL = 202 128/96 ρ2C1 75 828 0.80 305 bikz ≈ 81 bits
100 · ρ2C1 3500 535 0.80 323 bikz ≈ 86 bits

log2 n = 13, log2 qL = 141 192/159 ρ2C1 75 828 0.80 508 bikz ≈ 135 bits
100 · ρ2C1 3500 535 0.80 537 bikz ≈ 142 bits

log2 n = 13, log2 qL = 109 256/225 ρ2C1 75 828 0.80 716 bikz ≈ 190 bits
100 · ρ2C1 3500 535 0.80 756 bikz ≈ 200 bits

log2 n = 14, log2 qL = 411 128/93 ρ2C1 75 828 0.80 323 bikz ≈ 86 bits
100 · ρ2C1 3500 536 0.80 333 bikz ≈ 88 bits

log2 n = 14, log2 qL = 284 192/158 ρ2C1 75 828 0.80 547 bikz ≈ 145 bits
100 · ρ2C1 3500 536 0.80 562 bikz ≈ 149 bits

log2 n = 14, log2 qL = 220 256/222 ρ2C1 75 828 0.80 770 bikz ≈ 204 bits
100 · ρ2C1 3500 536 0.80 791 bikz ≈ 210 bits

log2 n = 15, log2 qL = 827 128/92 ρ2C1 75 829 0.80 334 bikz ≈ 88 bits
100 · ρ2C1 3500 536 0.80 339 bikz ≈ 90 bits

log2 n = 15, log2 qL = 571 192/156 ρ2C1 75 829 0.80 565 bikz ≈ 150 bits
100 · ρ2C1 3500 536 0.80 573 bikz ≈ 152 bits

log2 n = 15, log2 qL = 443 256/220 ρ2C1 75 829 0.80 797 bikz ≈ 211 bits
100 · ρ2C1 3500 536 0.80 808 bikz ≈ 214 bits

log2 n = 17, log2 qL = 2400 140/146
ρ2C1 85 1722 0.80 540 bikz ≈ 143 bits

100 · ρ2C1 4000 1334 0.80 542 bikz ≈ 144 bits

log2 n = 17, log2 qL = 2000 193/187
ρ2C1 85 1722 0.80 693 bikz ≈ 184 bits

100 · ρ2C1 4000 1334 0.80 696 bikz ≈ 184 bits

Fig. 14: Concrete security of hybrid attacks after observing decryptions of Class 1 ciphertexts, con-
tinued. For each parameter set, the second column provides the target security as well as the number of bits of
security computed by the tool of [17]. The third column indicates the noise-flooding noise added before returning the
decryption to the adversary. ρ2C1 is the variance of the noise that is already present in a ciphertext obtained from
evaluating a Class 1 circuit on fresh encryptions. The fourth column indicates the number of decryptions observed
by the adversary. The fifth column indicates the number of coordinates of the LWE secret that are guessed by the
adversary. The sixth column indicates the success probability of the attack, which corresponds to the probability that
all guesses are correct, conditioned on the events in (17) and (20) occurring. The final column provides the reduced
security level after the attack in terms of bikz (see [17]) and bit-security.
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Parameter Orig Noise Num Num Succ Final
Set Security Var Queries Guess Prob Security

log2 n = 10, log2 qL = 25 128/102 ρ2C2 95 892 0.80 53 bikz ≈ 14 bits
100 · ρ2C2 4300 620 0.80 125 bikz ≈ 33 bits

log2 n = 10, log2 qL = 17 192/170 ρ2C2 95 892 0.80 134 bikz ≈ 36 bits
100 · ρ2C2 4300 620 0.80 235 bikz ≈ 62 bits

log2 n = 10, log2 qL = 13 256/234 ρ2C2 95 892 0.80 216 bikz ≈ 57 bits
100 · ρ2C2 4300 620 0.80 345 bikz ≈ 91 bits

log2 n = 11, log2 qL = 51 128/97 ρ2C2 95 896 0.80 166 bikz ≈ 44 bits
100 · ρ2C2 4300 622 0.80 214 bikz ≈ 57 bits

log2 n = 11, log2 qL = 35 192/162 ρ2C2 95 896 0.80 297 bikz ≈ 79 bits
100 · ρ2C2 4300 622 0.80 370 bikz ≈ 98 bits

log2 n = 11, log2 qL = 27 256/226 ρ2C2 95 896 0.80 424 bikz ≈ 112 bits
100 · ρ2C2 4300 622 0.80 521 bikz ≈ 138 bits

log2 n = 12, log2 qL = 101 128/97 ρ2C2 95 897 0.80 251 bikz ≈ 67 bits
100 · ρ2C2 4300 623 0.80 281 bikz ≈ 74 bits

log2 n = 12, log2 qL = 70 192/161 ρ2C2 95 897 0.80 425 bikz ≈ 113 bits
100 · ρ2C2 4300 623 0.80 471 bikz ≈ 125 bits

log2 n = 12, log2 qL = 54 256/227 ρ2C2 95 897 0.80 601 bikz ≈ 159 bits
100 · ρ2C2 4300 623 0.80 664 bikz ≈ 176 bits

Fig. 15: Concrete security of hybrid attacks after observing decryptions of Class 2 ciphertexts. For each
parameter set, the second column provides the target security as well as the number of bits of security computed
by the tool of [17]. The third column indicates the noise-flooding noise added before returning the decryption to the
adversary. ρ2C2 is the variance of the noise that is already present in a ciphertext obtained from evaluating a Class
2 circuit on fresh encryptions. The fourth column indicates the number of decryptions observed by the adversary.
The fifth column indicates the number of coordinates of the LWE secret that are guessed by the adversary. The
sixth column indicates the success probability of the attack, which corresponds to the probability that all guesses are
correct, conditioned on the events in (17) and (20) occurring. The final column provides the reduced security level
after the attack in terms of bikz (see [17]) and bit-security. The (encoded) message magnitude is equal to n ·

√
ℓ/3 in

all rows, where ℓ is set to 20.
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Parameter Orig Noise Num Num Succ Final
Set Security Var Queries Guess Prob Security

log2 n = 13, log2 qL = 202 128/96 ρ2C2 95 898 0.80 301 bikz ≈ 80 bits
100 · ρ2C2 4300 624 0.80 318 bikz ≈ 84 bits

log2 n = 13, log2 qL = 141 192/159 ρ2C2 95 898 0.80 502 bikz ≈ 133 bits
100 · ρ2C2 4300 624 0.80 529 bikz ≈ 140 bits

log2 n = 13, log2 qL = 109 256/225 ρ2C2 95 898 0.80 709 bikz ≈ 188 bits
100 · ρ2C2 4300 624 0.80 745 bikz ≈ 197 bits

log2 n = 14, log2 qL = 411 128/93 ρ2C2 95 898 0.80 321 bikz ≈ 85 bits
100 · ρ2C2 4300 624 0.80 330 bikz ≈ 87 bits

log2 n = 14, log2 qL = 284 192/158 ρ2C2 95 898 0.80 543 bikz ≈ 144 bits
100 · ρ2C2 4300 624 0.80 557 bikz ≈ 148 bits

log2 n = 14, log2 qL = 220 256/222 ρ2C2 95 898 0.80 766 bikz ≈ 203 bits
100 · ρ2C2 4300 624 0.80 786 bikz ≈ 208 bits

log2 n = 15, log2 qL = 827 128/92 ρ2C2 95 899 0.80 333 bikz ≈ 88 bits
100 · ρ2C2 4300 624 0.80 337 bikz ≈ 89 bits

log2 n = 15, log2 qL = 571 192/156 ρ2C2 95 899 0.80 564 bikz ≈ 149 bits
100 · ρ2C2 4300 624 0.80 571 bikz ≈ 151 bits

log2 n = 15, log2 qL = 443 256/220 ρ2C2 95 899 0.80 795 bikz ≈ 211 bits
100 · ρ2C2 4300 624 0.80 805 bikz ≈ 213 bits

log2 n = 17, log2 qL = 2400 140/146
ρ2C2 110 2508 0.80 535 bikz ≈ 142 bits

100 · ρ2C2 4900 1551 0.80 541 bikz ≈ 143 bits

log2 n = 17, log2 qL = 2000 193/187
ρ2C2 110 2508 0.80 688 bikz ≈ 182 bits

100 · ρ2C2 4900 1551 0.80 695 bikz ≈ 184 bits

Fig. 15: Concrete security of hybrid attacks after observing decryptions of Class 2 ciphertexts, con-
tinued. For each parameter set, the second column provides the target security as well as the number of bits of
security computed by the tool of [17]. The third column indicates the noise-flooding noise added before returning the
decryption to the adversary. ρ2C2 is the variance of the noise that is already present in a ciphertext obtained from
evaluating a Class 2 circuit on fresh encryptions. The fourth column indicates the number of decryptions observed
by the adversary. The fifth column indicates the number of coordinates of the LWE secret that are guessed by the
adversary. The sixth column indicates the success probability of the attack, which corresponds to the probability that
all guesses are correct, conditioned on the events in (17) and (20) occurring. The final column provides the reduced
security level after the attack in terms of bikz (see [17]) and bit-security. The (encoded) message magnitude is equal
to n ·

√
ℓ/3 in all rows, where ℓ is set to 20.
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