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ABSTRACT
To resist the regimes of ubiquitous surveillance imposed upon us

in every facet of modern life, we need technological tools that

subvert surveillance systems. Unfortunately, while cryptographic

tools frequently demonstrate how we can construct systems that

safeguard user privacy, there is limited motivation for corporate

entities engaged in surveillance to adopt these tools, as they often

clash with profit incentives. This paper demonstrates how, in one

particular aspect of everyday life – customer loyalty programs

– users can subvert surveillance and attain anonymity, without
necessitating any cooperation or modification in the behavior of

their surveillors.

We present the CheckOut system, which allows users to coor-

dinate large anonymity sets of shoppers to hide the identity and

purchasing habits of each particular user in the crowd. CheckOut

scales up and systematizes past efforts to subvert loyalty surveil-

lance, which have been primarily ad-hoc and manual affairs where

customers physically swap loyalty cards to mask their real iden-

tities. CheckOut allows increased scale while ensuring that the

necessary computing infrastructure does not itself become a new

centralized point of privacy failure.

Of particular importance to our scheme is a protocol for loy-

alty programs that offer reward points, where we demonstrate

how CheckOut can assist users in paying each other back for loy-

alty points accrued while using each others’ loyalty accounts. We

present two different mechanisms to facilitate redistributing re-

wards points, offering trade-offs in functionality, performance, and

security.

1 INTRODUCTION
A great deal of recent research and deployed technology have fo-

cused on addressing the challenge of building increasingly private

mechanisms for financial transactions [2, 10, 26, 39, 40, 52]. How-

ever, merely making financial exchanges private does not suffice as

a means to protect user privacy in important everyday transactions.

Many businesses operate deeply invasive loyalty programs that

give customers financial incentives in the form of discounts and

rewards in exchange for tracking their purchasing behavior over

time [41, 51]. Previous works have demonstrated the feasibility of

various privacy-preserving loyalty systems [4, 6, 27, 33, 35, 37, 49],

but these systems often clash with companies’ interests in not only

promoting customer loyalty, but also profiting from the data they

collect from their customers.

Meanwhile, outside the security research community, various

ad-hoc efforts have attempted to protect privacy in the presence of

unavoidable surveillance. Of particular interest to us are efforts to

Figure 1: An outline of the solution architecture. From the retailer’s
perspective, a normal transaction occurs, and the customer provides
a loyalty account at checkout time. But because the loyalty account
is selected from a third-party anonymity set, the seller is unable
to track customer purchasing habits. The customer then relays the
number of loyalty points earned, so the third party can keep tally of
who owes whom loyalty points.

subvert tracking of customer behavior via loyalty cards, which typ-

ically operate by having customers scan a barcode on a loyalty card

when making a purchase. These efforts include Rob’s Giant Bonus-

Card SwapMeet [13], where participants would manually exchange

loyalty barcodes to masquerade as each other while shopping, and

The Ultimate Shopper [19], where an individual encouraged oth-

ers to collectively use his loyalty barcode when shopping, thus

concealing the true identity of the purchaser. These efforts have

been described by Nissenbaum and Brunton as instances of obfusca-

tion [8, 9] and constitute a valiant grassroots effort at undermining

surveillance.

Unfortunately, previous loyalty obfuscation efforts have been

limited in scale and effectiveness, both as a means of protest and of

protecting privacy, by their ad-hoc nature. Manual card swapping,

for instance, remains constrained by its capacity to accommodate

only a limited number of participants, and the frequent swapping

needed to assume a different identity for each shopping trip re-

quires a great deal of effort. Conversely, a collective adoption of a

single barcode may offer scalability; however, it invariably grants

a single individual the opportunity to reap all the benefits of the

loyalty program, such as accruing exclusive rewards points that

can be redeemed for discounts, thereby diminishing the program’s

inherent value for others.

Inspired by the manual loyalty obfuscation efforts of the past,

this paper introduces the CheckOut system for obfuscating loyalty

card transactions, which scales up and systematizes card-swapping

operations while offering mechanisms for users to fairly benefit

from their participation in loyalty programs.

CheckOut allows users to contribute to a database of loyalty

cards and retrieve a new, random loyalty card identity for each

purchasing transaction at the store. In this sense, it is a directly

scaled-up version of manual card swaps. However, introducing the

technological infrastructure needed to facilitate card swapping at

scale opens the door to new privacy challenges. In particular, the



card swapping infrastructure could itself become a point of failure

for user privacy.We investigate the sometimes subtle ways in which

privacy could be compromised by such a system (or its operator),

and we design CheckOut to avoid the privacy risks introduced by

a potentially malicious card swap operator.

Since many loyalty programs offer rewards points whose values

can easily be mapped to dollars, CheckOut includes features for

users to keep track of how many loyalty points they have received

while using others’ identities, facilitating repayment of these re-

wards. This aspect of the system requires careful consideration.

Given the lack of “ground-truth” data about what transactions ac-

tually happened at the store, it is not immediately clear what kinds

of security and integrity properties can be achieved. For example,

a user can always misreport the amount of a transaction, and a

fraudulently claimed transaction cannot be falsified without access

to information about real transactions at the merchant.

Nonetheless, we show how to define appropriate confidentiality

and integrity notions to provide reliable and internally consistent

private bookkeeping for scalable loyalty card swaps. We show that

CheckOut enables strong confidentiality protections against the

server while protecting against disruptive clients who may wish

to compromise the system. We present two different approaches

to redistributing reward points – one for a semihonest server and

one for a fully malicious server – and explore the functionality and

performance trade-offs between them.

CheckOut’s core functionality relies only on standard crypto-

graphic primitives – hash functions, digital signatures, and public

key encryption – and the private reward point tracking feature addi-

tionally requires the use of non-interactive zero-knowledge proofs

(NIZKs) of statements about users’ hidden balances and transaction

amounts. [5, 21, 28–30] To demonstrate the feasibility of deploying

CheckOut at scale, we have implemented each component of the

protocol and report on the computational costs of the cryptographic

protocols involved.

In summary, this paper makes the following contributions.

• A scheme for scalable swapping of loyalty card identities

that is secure against a malicious server operator.

• Twomechanisms for users to privately keep track of reward

points accrued while using each other’s loyalty accounts,

offering security, functionality, and performance trade-offs.

• An implementation and evaluation of the CheckOut algo-

rithms, which realizes the new protocols introduced here.

The CheckOut source code and evaluation data are open source

and publicly available at https://github.com/MatthewGregoire42/L

oyaltyPointsCrypto.

2 OVERVIEW AND SECURITY GOALS
This section gives an overview of the CheckOut system and de-

scribes our overall security goals. CheckOut is run on a server

operated independently of the loyalty program, which it augments,

and does not require any cooperation with a business offering a loy-

alty program in order to function. In practice, one server could run

multiple instances of CheckOut, one for each of several different

loyalty programs, each offered by a different merchant.

2.1 CheckOut for Users
Users interact with CheckOut by installing an app on their mobile

devices. During an initial setup phase, users submit their loyalty

account barcode to the system. Then, whenever a user wishes to

scan their loyalty card when making a purchase, instead of taking

out their loyalty card, they open the CheckOut app on their phones.

The app will display a barcode which they will use as their loyalty

card for that purchase. For loyalty schemes that allow users to earn

rewards points in addition to receiving discounts at the time of

purchase, the user can also take a photo of the receipt or enter

the total amount of points gained in the purchase to record their

reward credit on the app as well. The app also allows users to check

the balance of rewards they have accrued through the CheckOut

system.

We describe our implementation of CheckOut in Section 6. Apart

from the fairly simple pattern of interaction with the app described

here, all functions included in the description of the scheme are

carried out between the app and the server without additional user

input or interaction. Our aim is for CheckOut to provide a user

experience comparable to a typical loyalty program after the initial

setup, allowing users to earn discounts and rewards as they would

without CheckOut, while also protecting their privacy.

2.2 System Components
The CheckOut system is composed of two core parts. We give a brief

overview of the functionality of each part here before addressing

them in greater detail in Sections 4 and 5. Apart from the overall

design of the system, our core technical contributions are in the

mechanism for point redistribution described in Section 5.

Barcode distribution. The barcode distribution scheme forms the

heart of CheckOut. This protocol ensures that a malicious server

cannot unduly influence the loyalty card swapping process, ensur-

ing that the CheckOut card swap does indeed behave as a scaled-up

version of manual card swapping. We prevent the server from tam-

pering with the randomness of the chosen cards via a coin-flipping

protocol between the client and server to choose the barcode for

each transaction.

In order to use CheckOut, a client must first register with the

CheckOut server. To register, the client will need a valid loyalty

account number at the store in question. For convenience, we dis-

play this account number as a barcode, and we will refer to it as a

barcode throughout in this paper. The client registration step is also

where the user is assigned a user ID by the server, and when the

client generates any cryptographic secret key material needed. If a

deployment also implements point redistribution, users generate

long-term cryptographic secrets, as described in Section 5.

As internal state, the server keeps a list of (user ID, barcode,

public key) tuples that form the leaves of a Merkle tree [47]. The

root of this Merkle tree serves as a binding commitment to the

contents of the loyalty card database, and an up-to-date version of

the root is regularly distributed to CheckOut clients. Similar to other

protocols that use Merkle trees to commit to lists of information,

e.g., Certificate Transparency [20, 42, 43], the clients can gossip

among themselves to ensure they have up-to-date Merkle roots.

The same proofs used in Certificate Transparency can also be used
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to ensure that new versions of the Merkle root are append-only

extensions of previous versions.

Point redistribution. We describe mechanisms for users to pri-

vately record and repay rewards points that they have earned while

using others’ loyalty card barcodes. These schemes may not be

applicable to all loyalty programs, but they often make for a useful

addition. While these points are not always easily mapped to dollar

values, there exist some programs where it is easy to think of the

points as being easily exchanged for money. For example, in the

loyalty program at Giant Food, every 100 points earned can be used

for $1 off a future purchase, so each point can directly be assigned

a value of 1 cent [1]. When the point redistribution feature is used,

we augment the core card swapping protocol with additional steps

to record the number of points earned in a given transaction, and

we add a new settling protocol that allows users to retrieve how

much they owe to, or are owed by, the system.

In our first of two schemes, providing security against a semi-

honest server, the server will keep a list of user’s point balances.

Whenever user 𝑖 makes use of the loyalty card of another user 𝑗

to buy 𝑥 points worth of products, the server increases user 𝑖’s

balance by 𝑥 and reduces user 𝑗 ’s balance by 𝑥 . The idea is that,

since user 𝑖 spent 𝑥 points, they should be entitled to 𝑥 points worth

of rewards, but these rewards were actually given to user 𝑗 , whose

card was used. Thus, the system records that user 𝑗 owes the system

𝑥 reward points, while user 𝑖 is owed 𝑥 points. Our scheme will

allow the server to handle this process privately, maintaining user

balances and ensuring their integrity in the face of disruptive users,

all without ever seeing the transaction values (that is, the values 𝑥 )

themselves.

In order to prevent amalicious server from having clients decrypt

arbitrary messages during balance settling, we also need to change

the clients’ bookkeeping process when recording transactions, so

clients can verify that they only decrypt correctly-computed bal-

ances. To facilitate this, each transaction will produce a crypto-

graphic “receipt” that the server sends to the barcode owner when

it next comes online. A client now keeps a local record of all its

receipts in parallel with the server-recorded balance, and clients

only reveal balances that match the one recorded locally.

2.3 Security Goals
The primary security goal for our system is to ensure that CheckOut

allows users to receive random loyalty card barcodes from the

server while minimizing the impact the server can have on the

choice of barcode given to the user. Additional security goals also

become relevant if CheckOut is used to track and repay reward

point balances. This section describes these two sets of security

requirements.

Ensuring random card swapping. It is important to ensure that

neither a user nor the server can tamper with random barcode

selection, lest malicious behavior cause the system to subtly pro-

vide different privacy guarantees to different users. For example,

a malicious server could act as an honest card swapper for some

users, while giving other users the same card every time, thereby

not anonymizing their transactions. A more subtle attack would

be for the server to partition the users of the system so that some

users benefit from a large anonymity set while others have a smaller

one. In a financially motivated attack, a server operator could more

often give users the barcode for their own loyalty card, thereby

potentially gaining more reward points than other users. On the

other hand, a user who can bias which barcodes they receive can

reduce the frequency with which some other user’s barcodes are

selected.

Our scheme will use a combination of a coin-flipping protocol

to randomly select a barcode from a database of registered users

and a transparency mechanism to ensure that the server does not

tamper with the database. This suffices to ensure that, as long as

the protocol completes, the choice of barcode given to each user

will be random.

Note that our approach only achieves “security with abort,” in

that a party to the protocol who does not like the outcome can

always abort. In our actual protocol, the client will learn the index

𝑖 of the barcode selected prior to the server, meaning that clients

can feasibly detect a server that regularly avoids distributing the

barcode of some index 𝑖∗. We will discuss how to achieve stronger

notions of security in Section 4.2 after presenting our core card

swapping protocol.

Point redistribution. When CheckOut is deployed for loyalty

programs that support reward point balances, we require two addi-

tional properties.

• Point Confidentiality: the server will not know the num-

ber of loyalty points used in any transaction, even if it

maliciously deviates from the protocol. We will separately

consider definitions and corresponding constructions that

achieve point confidentiality for a semihonest and mali-

cious server.

• Balance Integrity: the sum of balances across users of

the system will always sum to zero, even in the presence

of disruptive users. This means that it is always possible

for users of the system to collectively settle their balances

such that every user could be repaid the loyalty points they

should have received while using others’ loyalty barcodes.

Moreover, malicious users should not be able to affect the

balances of honest users whose loyalty cards they have not

used.

While simple to state informally, it turns out that a great deal

of care must be taken to formalize these definitions in a way that

achieves meaningful security without relying on access to informa-

tion held by the operator of the loyalty program. We formalize our

definitions in Section 3.

Confidentiality and settling balances. Because users do not

necessarily have a mechanism for directly exchanging money with

each other, CheckOut can be used as a medium of exchange for

settling balances. But in order to do this, the CheckOut server

needs to see users’ balances. While this is not necessarily a privacy

problem, as the user’s balance is the sum of various transaction

values from when others used the user’s loyalty barcode, it does

introduce a potential security concern. A malicious server could

tamper with balances, exploiting the settling feature to uncover

user transactions of its choosing. Without information on the actual

transactions taking place within the loyalty program and their

timing, this kind of attack becomes difficult to mitigate.
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Our approach addresses this challenge by introducing the con-

cept of a receipt generated for each transaction entered into the

CheckOut system. For each transaction, the owner of the barcode

must verify the receipt before permitting updates to their balance.

This added layer of security reduces the server’s ability to arbitrarily

tamper with user balances, but adds some bookkeeping complexity

to the scheme. Thus, we have semi-honest and malicious secure

versions of our scheme, depending on whether or not receipts are

included. These two schemes satisfy different security definitions,

as presented in Section 3.

2.4 Limitations and Deployment Considerations
This section addresses deployment considerations for the CheckOut

system, including a discussion of what kinds of loyalty programs

are appropriate candidates for a CheckOut deployment, as well

as general limitations of CheckOut and potential strategies for

mitigating them in practice.

CheckOut balances and real-world balances. CheckOut’s secu-
rity properties enforce that balances in CheckOut always remain

internally consistent with users’ inputs. They do not, however, pre-

vent a malicious user from simply lying about the value spent at

a store and introducing incorrect, yet internally consistent, data

into the system. We have no way of ensuring that balances input

to CheckOut correspond to the amounts that users actually spent

in real life. This is an inherent limitation of approaches that do not

externally verify the value of users’ purchases at a store to prevent

incorrect inputs, which would require cooperation and integration

with the store. We explicitly aim to avoid such kind of cooperation

and must therefore deal with this limitation.

In light of this inherent limitation, CheckOut can instead provide

usability features that nudge and encourage users to participate

honestly, even if the protocol cannot fundamentally do anything

to defend against liars. For example, receipt values can be read

off of receipts via OCR, making it harder to simply type in a fake

number. Regardless of how users input transaction information,

CheckOut aims to provide users with a reliable bookkeeping aid,

and real-world disagreements about what numbers are entered

need to be handled out-of-band. We present one potential approach

for handling this kind of abuse in Appendix E.

Balance settling and repayment in practice. To entirely avoid

issues with point confidentiality, clients could simply record their

balances using CheckOut and handle settling out of band, therefore

not revealing aggregate balances to the server. But this may be

difficult in settings where strangers who live very far from each

other use the same instance of the CheckOut system, which is the

ideal setting for building a large anonymity set of users. To address

this, CheckOut includes settling functionality that requires users

to reveal aggregate balances to the server.

Because CheckOut is deployed without cooperation from the

retailer in question, we have no way of transferring loyalty points

between users directly, and we handle repayments by, e.g., equat-

ing numbers of points to dollar amounts. Since this feature re-

quires more knowledge of user balances, as well as integration with

some kind of payment processing mechanism, some deployments

of CheckOut may wish to turn this feature off and just rely on the

randomness of card swaps to allow for a best-effort balancing of

point balances over time. But in this case, over time heavy spenders

will tend to be undercompensated by CheckOut, and light spenders

will tend to be overcompensated.

An important parameter in the CheckOut system is how fre-

quently balance settling occurs. Longer windows increase ease of

use, and also allow time for more transactions to enter the system,

increasing the degree to which any given transaction’s impact on a

user’s balance is masked. However, because balances can increase

in magnitude over time, longer windows are also associated with

higher risk. Malicious users can simply walk away with positive

balances, and a malicious server responsible for payment process-

ing can fail to deliver payouts. As no technical solution to this

problem exists, the balance settling interval must be set such that

the benefits of deciding to defect are sufficiently low.

Appropriate loyalty program structures.What can be achieved

with card swapping depends, to some extent, on the structure of the

underlying loyalty program. For example, some loyalty programs al-

low users to both accrue and spend points by simply scanning their

card. In such a program, allowing others to make purchases with a

user’s card also means permitting them to spend that user’s loyalty

points, as no additional credential is required for point redemption.

On the other hand, certain programs allow users to accrue points

using a card but have a separate online portal for spending points.

The latter category of loyalty programs are amenable to schemes

that handle redistribution of loyalty points, while the best we can

hope for in the former category is a scheme that redistributes cards

without addressing the points. Although CheckOut’s more techni-

cal contributions are focused on facilitating point redistribution,

the system as described here can be used for either kind of loyalty

program.

Clients’ trust in the database. The security of CheckOut relies

on clients trusting that updates to the server’s database represent

valid user registrations. If, for example, a malicious server operator

simply floods the database with many user records sharing one

barcode, they can funnel a large portion of transactions into one

account. In some cases, this can be solved easily by publishing the

database of user records publicly. Clients can also mitigate this

issue by observing the distribution of barcodes they receive, as our

system ensures that each barcode is selected uniformly at random

from all accounts in the system.

3 FORMALIZING SECURITY DEFINITIONS
This section formalizes the syntax of card swapping schemes and

introduces the definitions of point confidentiality and balance in-

tegrity that our card swapping schemes will seek to meet.

Notation. Before we continue, we briefly summarize the notation

used throughout this paper. By 𝑥 ← 𝑓 (𝑦) we denote assignment

to 𝑥 of the value of 𝑓 (𝑦), and by 𝑥 ←R 𝑆 we denote assignment

to 𝑥 of a value chosen uniformly at random from a set 𝑆 . Tables,

denoted with capital letters and initialized as 𝑇 ← {}, act as key-
value stores, where values can be accessed by 𝑇 [key]. Vectors,
denoted ®𝑣 and initialized as ®𝑣 ← [], are ordered lists of values.

Elements can be added to vectors via ®𝑣 .add(val). A function negl(𝑥)
is negligible if, for all 𝑐 > 0, there exists an 𝑥0 such that, for all
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𝑥 > 𝑥0, negl(𝑥) < 1

𝑥𝑐 . We use ⊥ as a special character indicating

protocol failure.

In addition, many functionalities we introduce will rely heavily

on state relating to a shopper who is processing a transaction, and

the barcode owner, who supplies the loyalty account barcode. By

convention, we suffix variables related to these two parties with “s”
and “b”, respectively (e.g. pks and pkb). Finally, for interactive pro-
tocols between a client and server, we will denote each party’s view

of the protocol transcript as optional additional outputs, named

View𝐶 and View𝑆 , respectively.

3.1 Syntax
A point tracking scheme is a collection of four interactive protocols,

(RegUser,CardSwap, TxProcess,BalSettle), and five algorithms,

(ClientInit, ServerInit, ProcessRct,UpdateBalClient,
UpdateBalServer). It is defined with respect to a barcode space B,
public and private key spacesKEnc andKDec, a ciphertext space C,
a hash spaceH , signing and verifying key spaces KSign and KVer,

a signature space S, a random seed space R, and a masked balance

spaceM.

• ClientInit(bc, 1_) → (pk, sk, bal): takes a loyalty account

barcode bc ∈ B and a security parameter, and outputs an

encryption key pair (pk, sk) ∈ KEnc × KDec, as well as bal,
a balance representation initialized to zero.

• ServerInit(1_) → (𝑘sig, vk,DB,MTree): takes a security

parameter and outputs a signature key pair (𝑘sig, vk) ∈
KSign ×KVer. It also outputs an empty database DB of user

records (uid, bc, pk,mbal) ∈ N × B × KEnc × M, where

mbal is each user’s masked balance, and an empty merkle

treeMTree which stores hashes of (uid, bc, pk) entries.
• RegUser⟨𝐶 (bc, pk), 𝑆 (DB,MTree)⟩
→ ⟨uid, (DB′,MTree′)⟩: the client inputs a barcode 𝑏𝑐 and
a public key pk ∈ KEnc, and receives a user ID uid ∈ N.
The server inputs their database DB of users and aMTree
computed over the user database, and receives an updated

database DB′ and merkle tree MTree′ where the new user

has been added.

• CardSwap⟨𝐶, 𝑆 (DB,MTree)⟩ →
⟨(uidb, bc, pkb), uidb⟩: the client has no input, and receives
a randomly chosen barcode owner’s record: (uidb, bc, pkb).
The server inputs its database DB and MTree, and receives

uidb (and can recover bc and pkb via database lookups).

• TxProcess⟨𝐶 (𝑥, pks, pkb), 𝑆 (𝑘sig, pks, pkb)⟩ → ⟨ptrct, rct⟩:
the shopper client inputs a number of spent points 𝑥 , the

agreed upon barcode owner’s public key pkb, and its public
key pks. It receives a plaintext receipt ptrct from the server.

The structure of ptrct and rct is explained in detail in Sec-

tion 5. The server takes as inputs its signing key 𝑘sig, and

receives a masked rct as output.
• ProcessRct(sk, rct, vk) → (𝑥, ptrct)/⊥: takes as input the

client’s secret key sk, a transaction receipt rct and the

server’s verification key vk. If the transaction is accepted,

this algorithm outputs the number of points 𝑥 used in the

transaction. It also outputs a plaintext representation of

the receipt, to be used at settling time. If the transaction is

rejected, this algorithm outputs ⊥.

• UpdateBalClient(bal, 𝑥, rct) → (bal′): takes as input a client’s
balance bal, a number 𝑥 of points used, and a corresponding

transaction receipt rct. It outputs an updated bal′.
• UpdateBalServer(DB, uids, uidb, rct) → DB′: takes as in-

put the server’s database of user records DB, shopper and
barcode owner user IDs uids and uidb, and a transaction re-

ceipt rct. This algorithm outputs an updated database where

both users’ balances are updated to reflect the transaction.

• BalSettle⟨𝐶 (sk, bal, ®ptrct),
𝑆 (DB, vk, uid)⟩ → ⟨⊥, 𝑥/⊥⟩: the client inputs its secret

key sk, its balance bal, and a vector of plaintext receipts

®𝑝𝑡𝑟𝑐𝑡 . The server takes as input its database DB, signature
verification key vk, and the uid of the client settling. The

server outputs an accepted balance value 𝑥 , or rejects and

outputs ⊥. The client receives no output.

Note that this syntax captures all three protocols: card-swapping

only, semihonest-secure point tracking, and malicious-secure point

tracking, although schemes targeting different security and func-

tionality goals may not use certain aspects of it.

3.2 Security Definitions
We now describe definitions for the security notions introduced

informally in Section 2. We defer the full definitions to Appendix A.

Point confidentiality. Both our semihonest and malicious secure

point confidentiality games allow the adversary to control a set of

malicious users of its choosing. After a setup phase, the adversary

can compel users of its choosing to run the card swapping pro-

tocol with the server, using transaction values of the adversary’s

choosing. If both the shopper and barcode owner in a transaction

are honest users, the adversary specifies two potential transaction

values (𝑥0, 𝑥1), and the challenger executes the transaction with

the value 𝑥𝑏 specified by its input 𝑏. If either party is malicious,

the challenger always executes the transaction with the value 𝑥0,

as otherwise the adversary could simply learn the value of 𝑏 by

revealing which point value was processed.

After completing as many transactions as the adversary wants,

the confidentiality games allow the adversary to perform a settling

operation, where each user settles with the server. The games en-

force the condition that

∑
𝑥0 =

∑
𝑥1 over all transactions where

each honest user’s loyalty account was used, as otherwise the ad-

versary can simply infer 𝑏 from the balances. After the settling

phase, the adversary outputs a distinguishing bit 𝑏′, its guess at the
challengers input 𝑏.

The difference between the semihonest and malicious games

depends largely on who controls the server during the transaction

and settling phases. In the semihonest game, the challenger always

controls the server and runs the card swapping protocol honestly,

but it sends the adversary all server secrets and the view of the

server in each protocol it runs with any client, as well as the view of

adversary-controlled clients. In the malicious game, after an honest

setup phase, the adversary is sent all server secrets and directly

controls the server and malicious clients throughout the rest of

the game. The malicious game also includes additional bookkeep-

ing to deal with handling receipts, which are not relevant to the

semihonest setting. We present the full semihonest and malicious

definitions as Definitions A.1 and A.2, respectively, in Appendix A.
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Balance integrity. In the balance integrity experiment, the adver-

sary controls a set of malicious users, and the experiment controls

the remaining users, as well as the server.

The adversary is allowed to make transactions of its choosing

with the server (playing the role of a malicious user) or compel

honest users to make transactions with values of the adversary’s

choosing. It can also compel all users to settle their balances with

the server.

The goal of the adversary is to break the integrity of the scheme

in one of two ways:

• Break the invariant that all balances in the system always

sum to zero.

• Unduly modify the balance of an honest client.

There are thus two ways for the adversary to win the experiment,

and both of these conditions are checked when settling. The first is

if the sum of all users’ balances does not come out to zero when

users settle. Meeting this condition means that the adversary has

violated the condition that the overall system must remain solvent,

so it is not possible for all users’ debts to be repaid.

The second way for the adversary to win is to illegally modify

the balance of any individual honest user, regardless of the sum of

all balances. Formalizing this notion is tricky, as the adversary is
allowed to modify the balance of an honest user in the course of

the honest protocol when a malicious user is given the barcode of

an honest user and records the value of the transaction made with

that barcode. Our definition handles this situation by considering

an honest user’s balance “tainted” when a malicious user is given

the honest user’s barcode. In these cases, the adversary is expected

to be able to subtract an arbitrary amount from the user’s balance,

and the relevant security consideration is the first condition, that

balances remain consistent overall. However, for those users whose

balances are not directly touched by the adversary, the experiment

separately keeps track of their expected balance according to honest

transactions with other users. The adversary wins if it can cause the

balance of one of these users to deviate from the expected amount

when settling, or if it can cause any user to fail to settle their balance,

i.e., make the settling protocol output⊥. We also define a weakened

version of balance integrity that does not count settling failure as an

adversary winning because it has not caused a client to output an

incorrect balance. These definitions are presented in Definition A.3

in Appendix A.

4 SCALING CARD SWAPS
This section describes the core CheckOut system, including both

the client registration and card swapping processes, but excluding

point redistribution. We will describe the process of requesting and

retrieving a loyalty barcode with respect to a fixed Merkle tree with

root 𝑅 that commits to a list of 𝑁 barcodes bc𝑖 for 𝑖 ∈ {1, . . . , 𝑁 }.

4.1 Retrieving a Loyalty Barcode
A naïve way to implement CardSwap, given a database of loyalty

cards, would be for the server to choose one at random each time

a client requests a barcode. But this allows a malicious server to

preferentially choose certain barcodes or provide different levels of

anonymity to different users, as described in Section 2. Allowing

the client to choose the barcode presents a similar problem. Thus,

our CardSwap implementation ensures that each client receives

a random barcode by having the index of the barcode chosen via

randomness jointly selected by the client and server via a commit-

and-reveal protocol. Once the index of the barcode is fixed, the

server can provide a Merkle inclusion proof relative to Merkle root

𝑅 that it has provided the client with the correct barcode.

More precisely, the CardSwap protocol begins with a client hello

message where the client sends a commitment to a random value

𝑟𝑐 ←R {1, . . . , 𝑁 }. We instantiate our commitments using a hash

function 𝐻 : {1, . . . , 𝑁 } × {0, 1}_ → {0, 1}2_ modeled as a random

oracle, where _ is a security parameter. The client computes

𝑟𝑐 ←R {1, . . . , 𝑁 }

𝑟 ←R {0, 1}_

com← 𝐻 (𝑟𝑐 , 𝑟 )

and sends com to the server. The server responds by choosing and

sending server randomness 𝑟𝑠 ←R {1, . . . , 𝑁 }.
The client’s second message is an opening of the commitment,

which is achieved by sending the server 𝑟𝑐 and 𝑟 , allowing the

server to verify that com = 𝐻 (𝑟𝑐 , 𝑟 ), and for both parties to compute

𝑖 ← 𝑟𝑐 + 𝑟𝑠 mod 𝑁 .

Finally, the server responds to the client with the user entry

𝐶𝑖 = (uid, bc, pk), and a Merkle inclusion proof that 𝐶𝑖 is the 𝑖th

element committed to by 𝑅. After verifying the proof, the client can

present bc as the barcode to be used at the grocery store checkout.

All communication in the barcode selection protocol incurs con-

stant (O(1)) communication size complexity, with the exception of

the generated Merkle inclusion proofs. These scale with the depth

of the Merkle tree, or logarithmically (O(log(𝑁 ))) with the number

of users of CheckOut.

A formal diagram of this CardSwap functionality is deferred to

Figure 11 in Appendix B. By implementing this, as well asClientInit,
ServerInit, and RegUser as described above, we can model our card

swapping protocol as a point swapping scheme, where all other

functionalities are null protocols.

Intuitively, this scheme ensures that neither the client nor the

server can affect the randomness of barcode selection. A malicious

client cannot affect the random choice of barcode because the

client’s randomness 𝑟𝑐 is chosen before that of the server, and

if the client could change the randomness it reveals when open-

ing the commitment com, this would break the binding property

of the commitment scheme. A malicious server cannot affect the

choice of barcode because the server’s randomness 𝑟𝑠 is chosen

before the server sees 𝑟𝑐 , by the hiding property of the commitment.

Moreover, once 𝑖 is selected, the server cannot change the corre-

sponding choice of barcode because of the binding of the Merkle

tree commitment.

4.2 Extension: Security Against Aborts
Our scheme ensures that the distribution of loyalty barcodes output

by the protocol is uniformly random, even if the client or server

maliciously deviate from the protocol. However, an adversary can

still abort the protocol. In the case of the client, this is the best we

can hope for, because a user who does not like the barcode they

have received can simply not use the barcode to make their store
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purchase and try again later. Features external to the protocol, such

as rate limiting of client requests, can mitigate this kind of behavior.

On the server side, we can achieve stronger security, albeit at a

higher cost. In our current protocol, since the client learns the final

index 𝑖 before the server does, this means that clients can detect

servers who repeatedly abort when presented with a particular

index. However, we may wish to strengthen the scheme so that the

server’s decision to abort cannot depend on the randomly selected

index 𝑖 .

We can achieve this stronger security notion by introducing

PIR into the scheme [18]. A PIR scheme allows a client to retrieve

an element from a database held by the server without the server

learning which element the client retrieved. If the client retrieves

the user record 𝐶𝑖 using PIR, then it does not need to reveal 𝑟𝑐 or 𝑖

to the server and the server cannot base its decision to abort on this

information. If we wish to further ensure that the client retrieves𝐶𝑖
from the database and does not learn additional information, e.g.,

other barcodes other than the one held in 𝐶𝑖 , we could instead use

a symmetric PIR (SPIR) scheme [34], which extends PIR to place

limits on what the client learns from the protocol as well.

Adding PIR (or SPIR) to the protocol requires two other changes.

First, since the server will not know 𝑖 , it will not know the index for

which it must provide a Merkle inclusion proof. To get around this,

the server precomputes an inclusion proof 𝜋𝑖 for each 𝐶𝑖 ∈ DB,
and the server’s PIR database includes tuples of the form (bc𝑖 , 𝜋𝑖 ).
This increases server storage costs from 𝑂 (𝑁 ) in the database size

to 𝑂 (𝑁 log𝑁 ) because the server now needs to hold 𝑁 inclusion

proofs, each of which consist of 𝑂 (log𝑁 ) hashes.
The second addition to the protocol is a more elaborate proof

from the client. Since the client no longer needs to tell the server

𝑟𝑐 or 𝑖 , there is nothing in the protocol as described to prevent

the client from picking an 𝑖 of its choice. While this may be an

acceptable trade-off, we can also avoid this problem by having the

client provide the server with a proof 𝜋𝑐 that the PIR query it sends

is to an index 𝑖 that is computed honestly from 𝑟𝑐 and 𝑟𝑠 . This proof

can be constructed from generic composition of sigma protocols or

other zero knowledge proof systems for general circuits [21, 22, 31],

but it would lead to a significant increase in the concrete costs of

the protocol.

We do not explore this direction further because hiding which

user’s barcode is used from the server also prevents the redistri-

bution of loyalty points, which is the focus of the next section. A

deployment of CheckOut focusing solely on card swapping, how-

ever, may wish to adopt this PIR approach. Our implementation

uses the simpler scheme that allows servers to abort based on the

value of 𝑖 , but ensures that the intended value of 𝑖 is visible to clients

before this happens, allowing for out-of-band auditing of this kind

of server misbehavior.

5 PRIVATE REDISTRIBUTION OF LOYALTY
POINTS

In this section, we show how to expand the CheckOut system

to handle tracking and repayment of loyalty rewards points for

programs that offer such a feature. As all information exchanged

in the point tracking scheme described below is constant size, we

incur O(1) communication overhead for this protocol extension.

Figure 2: Alice requests a barcode from the server and allows the
server to update its balances.

Figure 3: To settle balances, the server sends each user their en-
crypted balance. The users respond with their decrypted balances,
and corresponding proofs that the decryptions are correct.

5.1 A Semihonest Solution
We begin by describing a solution that provides weak balance in-

tegrity against malicious clients but only provides point confiden-

tiality against a semihonest server. This scheme trades weaker secu-

rity properties for a simpler functionality, improved performance,

and reduced client-side storage. We defer a formal description of

our semihonest CheckOut scheme to Figure 12 in Appendix B. In

Section 5.2, we describe a scheme that builds on the intuition of this

scheme and achieves point confidentiality against a fully malicious

server.

Additional client registration requirements. The only change

needed to support reward points in the registration phase of Check-

Out is that users additionally generate a key pair for an additively

homomorphic public key encryption scheme and upload the public

key to the server during the RegUser protocol.

Privately recording transactions. When recording point bal-

ances, the server keeps a database of 𝑁 balances, where balance

𝑖 is encrypted under the public key of user 𝑖 using an additively

homomorphic encryption scheme. The server additionally keeps

users’ public keys in the Merkle tree, and sends the public key of

the barcode owner along with the barcode when a user requests

one.

A view of processing a transaction while privately recording

loyalty point balances is shown in Figure 2. To add support for
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Figure 4: The complete semihonest CheckOut protocol summarized.
Shown counter-clockwise from the top left: user registration, trans-
action processing, and balance settling. Protocol components only
included when supporting loyalty points tracking are shown in red.

privately recording reward point values, a user additionally up-

loads the following to the server after scanning their barcode and

checking out.

• The negated transaction loyalty point total −𝑥 , encrypted
under their own public key.

• The transaction loyalty point total 𝑥 , encrypted under the

barcode owner’s public key.

• A zero-knowledge proof asserting that one of these cipher-

texts encrypts the additive inverse of the other.

The server then verifies this proof and adds each ciphertext to

the respective users’ encrypted balances. This reflects the fact that,

after each transaction, the barcode owner will owe the shopper

the number of loyalty points acquired. If a proof fails to verify, the

server responds to the client with the message ⊥.
We now describe the details of how to instantiate the encryption

scheme and proofs needed to formalize the protocol sketched above.

Encryption scheme. We instantiate our additively homomorphic

public key encryption scheme with multiplicative El-Gamal encryp-

tion [25]. To encrypt a point total, a client will generate a ciphertext

of the form (𝑔𝑦, 𝑔𝑚ℎ𝑦), where 𝑔 is a public parameter, 𝑦 is a ran-

dom mask, ℎ = 𝑔𝑥 is a public key with corresponding private key

𝑥 , and𝑚 is the message. Decryption will reveal the value 𝑔𝑚 , not

𝑚. But in our application,𝑚 is a relatively small integer represent-

ing the number of loyalty points used, so given 𝑔 we can quickly

compute the discrete logarithm of 𝑔𝑚 via the baby-step giant-step

algorithm [55]. In addition, this scheme is additively homomorphic:

given ciphertexts (𝑔𝑦1 , 𝑔𝑚1ℎ𝑦1 ) and (𝑔𝑦2 , 𝑔𝑚2ℎ𝑦2 ), we can compute

(𝑔𝑦1 , 𝑔𝑚1ℎ𝑦1 ) · (𝑔𝑦2 , 𝑔𝑚2ℎ𝑦2 ) = (𝑔𝑦1+𝑦2 , 𝑔𝑚1+𝑚2ℎ𝑦1+𝑦2 ), (5.1)

which is an encryption of𝑚1 +𝑚2.

Proof of plaintext equality. At transaction time, the client sends

two ciphertexts to the server: (𝐶11,𝐶12) = (𝑔𝑦𝑠 , 𝑔𝑚
′
ℎ
𝑦𝑠
𝑠 ) encrypted

under the shopper’s public key ℎ𝑠 , and (𝐶21,𝐶22) = (𝑔𝑦𝑏 , 𝑔𝑚ℎ
𝑦𝑏
𝑏
),

encrypted under the barcode owners public key ℎ𝑏 . The client

must prove to the server it knows𝑚,𝑚′, 𝑦𝑠 , and 𝑦𝑏 such that the

following hold.

𝐶11 = 𝑔𝑦𝑠 (5.2)

𝐶12 = 𝑔𝑚
′
ℎ
𝑦𝑠
𝑠 (5.3)

𝐶21 = 𝑔𝑦𝑏 (5.4)

𝐶22 = 𝑔𝑚ℎ
𝑦𝑏
𝑏

(5.5)

𝐶12𝐶22 = ℎ
𝑦𝑠
𝑠 ℎ

𝑦𝑏
𝑏

(5.6)

The first four relations ensure that the ciphertext is well-formed.

The fifth holds if and only if𝑚′ = −𝑚.

In order to construct this proof, we use the “generic linear” gen-

eralization of Schnorr’s protocol [53, 54] as described in [7], made

non-interactive with the Fiat-Shamir transform [28].

Settling Balances. The implementation ofBalSettle is diagrammed

in Figure 3. To settle, the server sends each user their encrypted

balance. That is, the server sends the client a ciphertext of the form

(𝐶1,𝐶2) = (𝑔𝑦, 𝑔𝑚ℎ𝑦), where ℎ = 𝑔𝑥 , and 𝑥 is the client’s private

key. The users then decrypt their balance and send it back to the

server, along with a zero-knowledge proof that they are providing

the correct decryption of the ciphertext. Note that when the client

reveals the decryption 𝑔𝑚 , the server can compute

𝐶2/𝑔𝑚 = ℎ𝑦 = (𝑔𝑥 )𝑦 = (𝑔𝑦)𝑥 = 𝐶𝑥
1
.

The client’s supplied decryption is correct if and only if it can

prove knowledge of an 𝑥 such that its public key pk = 𝑔𝑥 and

𝐶2/𝑔𝑚 = 𝐶𝑥
1
. Thus, the client’s zero-knowledge proof is simply a

proof that (𝐶1, pk,𝐶2/𝑔𝑚) is a valid Diffie-Hellman triple, which

can be proven via a Chaum-Pedersen proof [17]. The server verifies

the proof, outputting ⊥ if the proof fails to verify. As all messages

sent are constant size, this operation incurs O(1) communication

overhead.

For ease of reference, we summarize the full semihonest protocol

in Figure 4.

Security. The point confidentiality of this scheme follows from the

semantic security of the El-Gamal public key encryption scheme

and the zero knowledge property of the NIZK used, as these two

properties ensure that everything sent to the server during the card

swapping protocol reveals nothing about the underlying transac-

tion amounts. Weak balance integrity relies on the soundness of

the NIZKs used during transactions and at settling time to prevent

users from lying about the well-formedness of their transactions

or deceiving the server about their balances. The balance integrity

is weak only because the client needs to compute a small discrete

logarithm to decrypt their balance. If a malicious user makes a

transaction value of astronomically large size, the client will not

be able to complete this operation efficiently. The scheme can be

strengthened to avoid this possibility by introducing range proofs

into transactions to limit the size of a given transaction, but we do

not include this to avoid the additional performance cost, as our sec-

ond construction will meet the more demanding balance integrity

definition. We prove the following theorems in Appendix C.

Theorem 5.1 (Semihonest Point Confidentiality). Assuming the
semantic security of El-Gamal encryption and the zero-knowledge
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property of the NIZKs used, our semihonest loyalty card swapping pro-
tocol with private redistribution of loyalty points satisfies semihonest
point confidentiality (Definition A.1).

Theorem 5.2 (Weak Balance Integrity). Assuming the NIZKs used
are proofs of knowledge, our semihonest loyalty card swapping proto-
col with private redistribution of loyalty points satisfies weak balance
integrity (Definition A.3).

Malicious attack on point confidentiality. Observe that this
scheme does nothing to verify that a balance sent by the server

to a client is the actual balance of points that client has accrued

over time. A malicious server can take advantage of this by asking

clients to decrypt arbitrary ciphertexts, claiming that the provided

ciphertext is the client’s balance. In particular, the server could take

the ciphertexts produced in individual transactions and ask clients

to decrypt them, thereby breaking point confidentiality.

5.2 Achieving Malicious Security
At a high level, our malicious security scheme proceeds as follows.

Instead of keeping an encrypted balance for each client, the server

keeps a group element mbal that represents a masked balance for

each client. During the TxProcess protocol, the client and server

agree upon a barcode owner ID in the same way as the semihonest

protocol. However, instead of uploading a transaction encrypted

under two different keys, the client notes the transaction amount

locally, and sends a masked version of the transaction amount to

the server. The receipt generated by this transaction is stored by

the server until the barcode owner comes online, at which point

the server relays the receipt and the barcode owner verifies its

correctness in ProcessRct. The server then updates the masked

balances for the accounts involved in the transaction. The server

also informs the shopper client that its transaction was successful,

and the shopper updates its own plaintext and masked balances.

Finally, during BalSettle, each client reveals their balance to the

server, and provides receipts to prove that it knows all transaction

and mask values used in creating the masked balance held by the

server. The full scheme is formalized in Figure 5.

Note that our version of CheckOut that provides malicious se-

curity differs from the one outlined in Section 5.1 in that each

transaction is processed by both the shopper and loyalty account

owner, and the transaction is not complete until the barcode owner

successfully executes ProcessRct. By introducing this extra client-

side overhead, we are able to ensure that amalicious server is unable

to tamper with balances in a way that breaks point confidentiality.

In particular, the server cannot generate false transactions as a

function of previous transactions. We present the scheme in more

detail below.

Client registration and server data. During ServerInit, in addi-

tion to initializing a DB of users and corresponding merkle tree, the

server generates a long-term signature key. As in the semihonest

scheme, the client generates an encryption key pair in ClientInit,
and shares the public key in RegUser, but now the encryption

scheme used must satisfy CCA security.

Transaction processing. Our implementation of TxProcess pro-
ceeds as follows. In each run of the protocol, the client provides

the server with a masked transaction value 𝑔𝑚𝑥
𝑖

where 𝑔𝑖 ∈ 𝐺 is a

random generator of the group 𝐺 and𝑚 ∈ F𝑞 is a random mask

on the transaction value 𝑥 . To pick 𝑔𝑖 , the server selects a random

bit string 𝑠 to share with the client. Both parties hash this string

to the group element, 𝐻 (𝑠) = 𝑔𝑖 , where 𝐻 is modeled as a random

oracle. The client then selects a random mask exponent𝑚 ←R F𝑞
and encrypts the mask𝑚, point value 𝑥 , and bit string 𝑠 under a

CCA secure encryption scheme, using the barcode owner’s public

key pk𝑏 , to get a ciphertext ct = Enc(pk𝑏 , (𝑚, 𝑥, 𝑠)). The shopper
then computes the values hm← ℎ𝑚 and the masked transaction

value mval← 𝑔𝑚𝑥
𝑖

which, together with ct, serve as a receipt for
the transaction. Here, ℎ ∈ G is an additional public parameter such

that the discrete log between 𝑔 and ℎ is unknown.

Since 𝑔𝑖 is the output of a random oracle, 𝑔𝑖 and ℎ are group

elements between which the discrete logarithm is unknown. Us-

ing the generic zero-knowledge protocol for non-linear relations

presented in [7, 53, 54], made non-interactive by the Fiat-Shamir

transform [28], the shopper can prove knowledge of𝑚 and 𝑥 to

show that the values it has sent the server are well-formed accord-

ing to the protocol specification.

The server verifies this proof and generates a signature 𝜎 on

(hm, 𝑠), which it sends to the shopper to be presented at balance

settling time. The server stores the values ct, hm,mval, 𝑠 as a receipt
for the transaction, to be communicated to the account owner when

they come online. Later, when the shopper client gets word from

the server that the receipt was processed successfully, it adds 𝑥

points to its local balance, and updates its local copy of the masked

server-side balance.

Receipt bookkeeping.When a client comes online, it checks with

the server if there are any unprocessed receipts associated with its

account. If so, it performs theRctProcess protocol in Figure 5. In this
protocol, the server forwards the receipt, along with the signature 𝜎 .

The client then decrypts ct to recover the values (𝑚, 𝑥, 𝑠), computes

𝑔𝑖 = 𝐻 (𝑠), and checks that hm = ℎ𝑚 andmval = 𝑔𝑚𝑥
𝑖

, rejecting any

malformed transactions. The client then notifies the server that it

accepts the receipt, subtracts 𝑥 from its local balance bookkeeping,

and updates its copy of the masked server-side balance. The client

retains a plaintext receipt ptrct of its decrypted values𝑚, 𝑥, 𝑠 , as

well as mval, hm, and 𝜎 for each transaction, until settling time.

Once notified that a client has accepted a transaction, the server

updates the shopper’s and barcode owner’s balances as follows.

Shopper bal← Shopper bal ·mval

Barcode owner bal← Barcode owner bal · (mval)−1

The server also informs the shopper that the transaction was

successful, at which point the shopper adds 𝑥 to its plaintext bal-

ance and updates its masked balance copy. UpdateBalClient and
UpdateBalServer are detailed in Figure 5.

Balance settling. Our BalSettle protocol is as follows. The goal of
the protocol is to reveal a user’s aggregate balance to the server,

without revealing any 𝑚𝑖 or 𝑥𝑖 values for each transaction 𝑖 ∈
{1, . . . , 𝑛}. Here, 𝑛 represents the number of transactions that use

that user’s loyalty account. At settling time, each user has a balance

𝑥 , consisting of transactions {𝑥𝑖 }, such that 𝑥 = Σ𝑛
𝑖=1

𝑥𝑖 . To settle,

each user sends the following information: their balance 𝑥 , a tuple
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ClientInit(bc, 1_)

pk, sk← KeyGen(1_ )
bal← (0, 𝑔0 )
return (pk, sk, bal)

ServerInit(1_)

sk, vk← ∅;DB← {};MTree← {}
return sk, vk,DB,MTree

RegUser

C(bc, pk) S(DB,MTree)

bc, pk uid← |DB |

mbal← 𝑔0

DB[uid] ← (bc, pk,mbal)

uid MTree← MTree.add( (uid, bc, pk) )

return uid return DB,MTree

TxProcess

C(𝑥, pks, pkb) S(sk, pks, pkb)

𝑠
𝑠 ←R {0, 1}𝑛 ;𝑔𝑖 ← 𝐻 (𝑠 )

𝑔𝑖 ← 𝐻 (𝑠 )
𝑚 ←R F𝑞, hm← ℎ𝑚

ct← Enc(pkb, (𝑚,𝑥, 𝑠 ) )
mval← 𝑔𝑚𝑥

𝑖

rct← (ct, hm,mval)
𝜋 ← PoK{ (𝑥,𝑚) : hm = ℎ𝑚 ∧mval = 𝑔𝑚𝑥

𝑖 }

rct, 𝜋 ZK.Verify(𝜋, hm,mval)

𝜎
𝜎 ← Sig.Sign(sk, (hm, 𝑠 ) )

ptrct← (𝑚,𝑥, 𝑠, hm,mval, 𝜎 ) rct← (rct, 𝜎 )
return ptrct return rct

ProcessRct(sk, rct, vk)

ct, hm,mval, 𝜎 ← rct

(𝑚,𝑥, 𝑠 ) ← Dec(sk, ct)
𝑔𝑖 ← 𝐻 (𝑠 )
Check hm = ℎ𝑚 ∧mval = 𝑔𝑚𝑥

𝑖

Sig.Verify(vk, (hm, 𝑠 ), 𝜎 )
ptrct← (𝑚,𝑥, 𝑠, hm,mval, 𝜎 )
return (𝑥, ptrct)

UpdateBalClient(bal, 𝑥, rct)

_, _,mval, _← rct

cbal,mbal← bal

cbal′ ← cbal + 𝑥
mbal′ ← mbal · mval

return (cbal′,mbal′ )

UpdateBalServer(DB, uids, uidb, rct)

bcs, pks,mbals← DB[uids]
bcb, pkb,mbalb← DB[uidb]
_, _,mval, _← rct

DB[uids] ← mbals · mval

DB[uidb] ← mbalb · mval−1

return DB

BalSettle

C(sk, bal, ®ptrct) S(DB, vk, uid)
𝑥,mbal← bal

cbal← 𝑔𝑥

𝑚𝑖 , 𝑥𝑖 , 𝑠𝑖 , hm𝑖 , 𝜎𝑖 ← ptrct𝑖
𝑔𝑖 ← 𝐻 (𝑠𝑖 ) cbal← 𝑔𝑥

𝜋 ← PoK{∀𝑖, (𝑚𝑖 , 𝑥𝑖 ) : hm𝑖 = ℎ𝑚𝑖
_, _,mbal← DB[uid]

∧ cbal = 𝑔𝑥1+···+𝑥𝑛∧ Sig.Verify(vk, (hm𝑖 , 𝑠𝑖 ), 𝜎𝑖 )∀𝑖
mbal = 𝑔

𝑚1𝑥1
1

· · · 𝑔𝑚𝑛𝑥𝑛
𝑛 } 𝑔𝑖 ← 𝐻 (𝑠𝑖 )∀𝑖

𝜋, ®𝑠, ®hm, ®𝜎, 𝑥 ZK.Verify(𝜋,mbal, cbal)

Figure 5: Malicious security scheme formalization.

(hm𝑖 , 𝑠𝑖 , 𝜎𝑖 ) for 𝑖 ∈ {1, . . . , 𝑛}, and a proof 𝜋settle of the correctness

of the provided balance.

Since, for each user, the server can compute bal = 𝑔𝑥 = 𝑔𝑥1+···+𝑥𝑛

for a public generator 𝑔, and holds a masked balance mbal of the
form

mbal = 𝑔
𝑚1𝑥1
1
· · ·𝑔𝑚𝑛𝑥𝑛

𝑛 ,

the goal of the proof 𝜋settle is to show the server that the client-

provided balance 𝑥 is consistent with what the server holds. To this

end, the client provides a zero knowledge proof of knowledge for

the statement

{(𝑥1, . . . , 𝑥𝑛,𝑚1, . . . ,𝑚𝑛),hm1, . . . , hm𝑛,mbal :

bal = 𝑔𝑥1+···+𝑥𝑛

mbal = 𝑔
𝑚1𝑥1
1
· · ·𝑔𝑚𝑛𝑥𝑛

𝑛

hm𝑖 = ℎ𝑚𝑖 , for 𝑖 ∈ {1, . . . , 𝑛}}.
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The server verifies all the signatures 𝜎𝑖 , as well as the proof 𝜋 ,

before accepting the client’s claimed balance 𝑥 as authentic.

Security. The malicious point confidentiality of this scheme fol-

lows from (1) CCA security of the underlying encryption scheme,

which ensures confidentiality and integrity for (𝑚, 𝑥, 𝑠), (2) the
zero-knowledge property of the NIZKs used, which reveals nothing

about𝑚 or 𝑥 , and (3) the hardness of DDH in the group 𝐺 , which

ensures hardness of computing discrete logs between random or-

acle hash outputs in 𝐺 . Balance integrity relies on the soundness

of the NIZKs used, which ensures that receipts and balances are

well-formed, and the existential unforgeability of the signature

scheme and hardness of DDH in 𝐺 , which ensures balances pre-

sented at settle time are composed of real transactions. We prove

the following theorems in Appendix D.

Theorem 5.3 (Malicious Point Confidentiality). Assuming the CCA
security of the encryption scheme, the zero-knowledge property of the
NIZKs used, and the hardness of DDH in the group 𝐺 , our malicious
loyalty card swapping protocol with private redistribution of loyalty
points satisfies malicious point confidentiality (Definition A.2) in the
random oracle model.

Theorem 5.4 (Malicous Scheme Balance Integrity). Assuming that
the NIZKs used are proofs of knowledge, the signature scheme is
existentially unforgeable, and that the discrete logarithm problem is
hard in the group 𝐺 , our malicious loyalty card swapping protocol
with private redistribution of loyalty points satisfies balance integrity
(Definition A.3) in the random oracle model.

6 IMPLEMENTATION AND EVALUATION
We implemented both our semihonest and malicious point redistri-

bution protocols from Section 5, as well as our base barcode swap-

ping protocol, in Rust. We use the curve25519-dalek crate [23] for
group operations in its implementation of the curve25519 Ristretto

group [3, 32]. We instantiate our CCA secure encryption scheme

using hashed El-Gamal encryption [7, 25] with AES-GCM.

In our evaluation, we grouped point tracking scheme operations

into four components: user registration, transaction processing,

receipt distribution, and balance settling. User registration includes

ClientInit and RegUser, transaction processing includes TxProcess,
UpdateBalClient, and UpdateBalServer, receipt processing refers
to ProcessRct, and balance settling refers to BalSettle. We then

analyzed the time taken to perform each component of the Check-

Out protocol. We also benchmarked registration and transaction

processing for our basic barcode swapping protocol described in

Section 4. We measured performance of client-side operations on

a Moto G Stylus 5G phone running Android 12, and measured

performance of server-side operations on an Intel Core i7-11700K

processor @ 3.60 GHz running Ubuntu 20.04.6 LTS.

Computation costs. Execution times for each protocol step are

reported in Table 1. We recorded computation costs only, not in-

cluding any network latency. The slowest constant-time step of

our malicious protocol required 4 milliseconds of computation on

the client device, and under 0.6 milliseconds on the server. Because

transaction processing involves generating and verifying a Merkle

proof for the server and client, respectively, execution time should

scale logarithmically with the number of users. This effect is visible

in the base swapping protocol, shown in Figure 6a. However, in

the point tracking protocols this difference was small, so we report

transaction times as constant. Similarly, server-side computation for

client registration involves inserting user records into a Merkle tree,

so this scales logarithmically as well. This relationship is shown in

Figure 7.

In the semihonest setting, balance settling requires computing

a discrete logarithm. We implement the baby-step giant-step algo-

rithm [55], which has𝑂 (𝑁 ) time complexity in size of the exponent

or, in our case,𝑂 (𝑁 ) in the number of points, as shown in Figure 6c.

In the malicious setting, computational overhead is greater, par-

ticularly for clients, as balance settling requires generation and

verification of a NIZK that grows linearly with the number of trans-

actions. This is demonstrated in Figure 6b. In practice, if clients

settle regularly enough to accrue less than 20-30 transactions be-

fore settling, the combined server and client settling overhead of

our malicious scheme is under 100 milliseconds. In addition, re-

ceipt processing adds approximately 1ms of processing for each

transaction.

Communication costs. Using the primitives provided by our cryp-

tographic libraries and the protocol specifications as described in

Sections 4 and 5, overheads for each step of communication are pro-

vided in Table 2. The sizes of all primitives are listed in Table 3. As

standard barcodes are as long as 13 decimal digits [50], we assume

barcodes are encoded as 64-bit integers (up to 19 decimal digits).

Communication overheads are the same for client setup across

both point swapping protocols. We also find similar communication

overheads in transaction processing. This is because the two proto-

cols only differ in the last few messages exchanged, and the NIZKs

exchanged are of similar size in both protocols: in a system with

100,000 users, transaction processing incurs 556 bytes of overhead

in the semihonest setting and 656 bytes in the malicious setting. In

the balance settling phase, however, the malicious setting requires

an extra 544 bytes to be sent by the client for every transaction

using their account. This is because each transaction adds secret

values𝑚𝑖 , 𝑥𝑖 which the client needs to prove knowledge of in order

to settle. In practice, if balance settling occurs often enough to ex-

pect 20 transactions in each user’s account, settling requires 10,948

bytes of overhead in the malicious setting.

7 RELATEDWORK

Private loyalty programs. A great deal of research explores how

to build privacy-preserving systems that can, in principle, be ap-

plied to customer loyalty programs. Anonymous credentials can

give customers unlinkable identities that they can present when

checking out at the store [11, 12, 16]. Privacy-preserving points can

be distributed and redeemed using ecash [2, 10] or the uCentive

system [49], which is specifically designed for loyalty programs.

A long line of works starting with the notion of black-box accu-

mulation by Jager and Rupp [37] studies how to design efficient

privacy-preserving incentives [4, 6, 27, 33, 35].

Obfuscation.Unfortunately, most cryptographic privacy-preserving

systems are designed with the assumption that the server is making

an effort to protect users’ privacy, even if it may later maliciously
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Registration Transaction Processing Receipt Processing Balance Settling

Swap only

Client 0.1 33 N/A N/A

Server — 1.3 N/A N/A

Semihonest

Client 72 1959 N/A —

Server — 323 N/A 131

Malicious

Client 108 3948 977 —

Server — 579 16 —

Table 1: Average execution times for each component of both protocols, measured in microseconds (`𝑠). Elements of the point tracking scheme
syntax are divided into these components as described above. Receipt processing is not defined in the semihonest setting. Registration and
balance settling times are excluded because execution time varies (see Figures 6c, 6b). Transaction times in our swapping protocol are show in
more detail in Figure 6a.

Registration Transaction Processing Receipt Processing Balance Settling

Swap only

Client 8 68 N/A N/A

Server 0 16 + 32 ·
⌈
log

2
(𝑁𝑐 )

⌉
N/A N/A

Semihonest

Client 40 708 N/A 228

Server 0 44 + 32 ·
⌈
log

2
(𝑁𝑐 )

⌉
N/A 64

Malicious

Client 40 768 0 68 + 544 ·𝑁𝑡

Server 0 144 + 32 ·
⌈
log

2
(𝑁𝑐 )

⌉
272 0

Table 2: Communication costs for each CheckOut component, measured in bytes. Elements of the point tracking scheme syntax are divided
into these components as described above. Each row specifies howmany bytes of data are sent from either the client or server in each operation.
Here 𝑁𝑐 is the number of clients registered in the system, and 𝑁𝑡 is the number of transactions in the client’s balance.

Primitive Bytes

Barcode 8

Integer 4

Hash digest 32

Nonce 64

Group element 32

Group scalar 32

Nonce 12

Ciphertext 148

Table 3: Sizes of objects sent between client and server. A ciphertext
always consists of an ElGamal encryption of a key, followed by an
AES-GCM encryption of a 68-byte plaintext.

deviate from its declared intentions. This approach often fails to

align with the reality where users are constantly surveilled with

little apparent remorse on the part of surveillors. Nissenbaum and

Brunton introduce the notion of obfuscation [8, 9], which they

initially define as “producing misleading, false, or ambiguous data

to make data gathering less reliable and therefore less valuable,”

to refer to a broad family of approaches to protecting privacy in

the context of an adversarial and uncooperative surveillor. This in-

cludes diverse approaches ranging from physical world protections,

like wartime pilots deploying chaff to deceive radar, to technical

defenses like the celebrated Tor network [24].

The examples of obfuscation most relevant to this work in their

motivation are the previous attempts at manual loyalty card swap-

ping [13, 19] mentioned in Section 1. More similar in their approach,

however, are those obfuscation schemes that create technological

tools to combat privacy challenges. FaceCloak [45] prevents over-

sharing of personal data on social media. It shares fake data with

social media platforms and makes the real data available only to

those whom the user explicitly permits. This is achieved by encrypt-

ing and storing the real data on a third party server. CacheCloak [48]

uses caching and carefully chosen cover traffic to offer its users a

degree of location privacy. Vortex [44], conceived as an art project,

allows users to explore the web through the eyes of others by

swapping their locations and cookies, causing them to appear as

someone else to the sites they visit. We see CheckOut as a new

entry in this genre of obfuscation technologies that pry privacy

back where possible in a world saturated with surveillance.

Private payment systems. Since loyalty points can be thought

of as a proxy for dollars or other currency, another relevant set of

tools are those used for privacy in digital payment systems. This

includes the early works of Chaum [14–16] and subsequent work

on e-cash mentioned above, as well as private transaction systems

based on cryptocurrencies, e.g., Zcash, confidential transactions,

etc. [36, 38, 46, 52]. While these systems achieve greater security

in processing transactions, they do not achieve private assignment

of aggregate repayment duties as CheckOut does. In principle, one

could build a loyalty point redistribution system by using a privacy-

preserving cryptocurrency to handle payment processing after

settling balances, as CheckOut stops short of specifying how re-

payment of points due is implemented. Our CheckOut protocol

could also be run entirely in a smart contract ecosystem such as

Ethereum [56]. In either case, the privacy benefits of CheckOut
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would be independent of the benefits of the underlying payment

system.

8 CONCLUSION
We have presented CheckOut, a system for scaling up loyalty card

swapping as a mechanism to help anonymize loyalty card programs

without requiring merchant involvement. CheckOut belongs to a

family of obfuscation techniques [8, 9] that aim to subvert surveil-

lance, both to reclaim privacy and to build technology as a form of

protest. CheckOut offers a scalable and secure mechanism for loy-

alty card swapping while additionally allowing users to track and

repay rewards points they should have accrued while using others’

identities. We have developed a free and open-source prototype

implementation of the algorithms underlying CheckOut, available

at https://github.com/MatthewGregoire42/LoyaltyPointsCrypto.
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A DEFERRED DEFINITIONS
We now formalize the semihonest point confidentiality, malicious

point confidentiality, and balance integrity definitions introduced

in Section 3.

Definition A.1 (Semihonest Point Confidentiality). The semihon-

est point confidentiality experimentCONF[S,A, 𝑁 , _, 𝑏] is defined
with respect to a point tracking scheme S, an efficient adversary

A, a number 𝑁 of system users, a security parameter _, and a bit

𝑏 ∈ {0, 1}. The experiment is described in Figure 8.

We say that a scheme S has semihonest point confidentiality if,

for any choice of 𝑁 and any security parameter _, no probabilistic

polynomial time (PPT) adversaryA can win the point confidential-

ity game with greater than negligible advantage. In other words,���Pr[CONF[S,A, 𝑁 , _, 1] = 1

]
− Pr

[
CONF[S,A, 𝑁 , _, 0] = 1

] ��� ≤ negl(_) .

Definition A.2 (Malicious Point Confidentiality). The malicious

point confidentiality experiment, denoted CONFMAL[S,A, _, 𝑏],
is defined with respect to a point tracking scheme S, an efficient

adversaryA, a number 𝑁 of user accounts, a security parameter _,

and a bit 𝑏 ∈ {0, 1}. The experiment is described in Figure 9.

We say that a scheme S has malicious point confidentiality if,

for any choice of DB and any security parameter _, no probabilistic

polynomial time (PPT) adversaryA can win the point confidential-

ity game with greater than negligible advantage. In other words,���Pr[CONFMAL[S,DB,A, _, 1] = 1

]
− Pr

[
CONFMAL[S,DB,A, _, 0] = 1

] ��� ≤ negl(_).

Definition A.3 (Balance Integrity). The (weak) balance integrity

experiment BALINT[S,A, 𝑁 , _,𝑄O] is defined with respect to a

point tracking scheme S, an efficient adversary A, a number 𝑁 of

system users, a security parameter _, and a list of numbers , 𝑄O
setting upper limits on the number of queries A makes to each of

its oracles. The experiment is described in Figure 10.
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CONF[S,A, 𝑁 , _, 𝑏]

𝑈hon ← {};𝑈mal ← {}

𝑘sig, vk,DB,MTree← ServerInit(1_ )
𝑀 ← A(𝑁 ) , where𝑀 ⊆ {1, . . . , 𝑁 }
for 𝑖 = 1..𝑁 :

bc←R B

𝐶𝑖 ← ClientInit(bc, 1_ )
(pk, sk, bal) ← 𝐶𝑖

DB,MTree← RegUser⟨𝐶 (bc, pk), 𝑆 (DB,MTree) ⟩
txs← {}
if 𝑖 ∈ 𝑀 :

𝑈mal [𝑖 ] ← (𝐶𝑖 , txs)
else :

𝑈hon [𝑖 ] ← (𝐶𝑖 , txs)
𝑈 ← 𝑈hon ∪𝑈mal

𝑏′ ← A𝑂 (𝑈mal, 1
_ )

return 𝑏′

HonTx(uids, 𝑥0, 𝑥1)

transcript← {}
if uid ∉ 𝑈hon :

abort, return 0

( (pks, sks, bals), txss) ← 𝑈 [uids]
txss← txss ∪ { (𝑥0, 𝑥1 ) }
uidb,View𝑆 ← CardSwap⟨𝐶, 𝑆 (DB,MTree) ⟩
transcript← transcript ∪ {View𝑆 }
( (pkb, skb, balb), txsb) ← 𝑈 [uidb]
if uidb ∈ 𝑈hon :

txsb← txsb ∪ { (−𝑥0, −𝑥1 ) }
rct,View𝑆 ← TxProcess⟨𝐶 (𝑥𝑏 , pks, pkb),
𝑆 (𝑘sig, pks, pkb) ⟩

transcript← transcript ∪ {View𝑆 }
DB← UpdateBalServer(DB, uids, uidb, rct)
return transcript

MalTx(uids)

transcript← {}
if uids ∉ 𝑈mal :

abort, return 0

( (pks, sks, bals), txss) ← 𝑈 [uids]
uidb,View𝑆 ← CardSwap⟨𝐶, 𝑆 (DB,MTree) ⟩
transcript← transcript ∪ {View𝑆 }
(pkb, skb, balb) ← 𝑈 [uidb]
rct,View𝑆 ← TxProcess⟨A, 𝑆 (𝑘sig, pks, pkb) ⟩
transcript← transcript ∪ {View𝑆 }
DB← UpdateBalServer(DB, uids, uidb, rct)
return transcript

Settle()

bals← {}; transcript← {}
for uid ∈ 𝑈hon :

( (pk, sk, bal), txs) ← 𝑈 [uid]
𝑆𝑖 = {𝑥𝑖 | (𝑥0, 𝑥1 ) ∈ txs}

if
∑︁

𝑆0 =
∑︁

𝑆1 :

𝑥,View𝑆 ← BalSettle⟨𝐶 (sk, bal, [ ] ), 𝑆 (DB, vk, uid) ⟩
if 𝑥 = ⊥ :

abort, return 0

bals[uid] ← 𝑥

transcript← transcript ∪ {View𝑆 }
return bals, transcript

Figure 8: Semihonest point confidentiality experiment.

We say that a scheme S has balance integrity if, for all efficient

adversaries A, any 𝑁 ∈ N, and any security parameter _,

Pr [BALINT[S,A, 𝑁 , _,𝑄O] = 1] ≤ negl(_) .

B DEFERRED CONSTRUCTION DETAILS
Figure 11 formalizes our approach to card swapping (without point

redistribution). This approach is used for the card swapping com-

ponent of all our schemes. Figure 12 formalizes the semihonest

scheme described in Section 5.1.

C SECURITY PROOFS FOR SEMIHONEST
SCHEME

We now repeat the security theorems for the semihonest construc-

tion that were stated in the body of the paper and then provide

proof sketches for each.

Theorem C.1 (Semihonest Point Confidentiality). Assuming the
semantic security of El-Gamal encryption and the zero-knowledge
property of the NIZKs used, our semihonest loyalty card swapping pro-
tocol with private redistribution of loyalty points satisfies semihonest
point confidentiality (Definition A.1).

Proof Sketch. The proof of point confidentiality follows a se-

ries of hybrids.

• H0: This hybrid is the security experiment CONF[S,A,

𝑁 , _, 0].
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CONFMAL[S,A, 𝑁 , _, 𝑏]

𝑈hon ← {};𝑈mal ← {};𝑇sent ← {};𝑇rec ← {}

sk, vk,DB,MTree← ServerInit(1_ )
𝑀 ← A(𝑁 ) , where𝑀 ⊆ {1, . . . , 𝑁 }
for 𝑖 = 1..𝑁 :

bc←R N

𝐶𝑖 ← ClientInit(bc, 1_ )
(pk, sk, bal) ← 𝐶𝑖

DB,MTree← RegUser⟨𝐶 (bc, pk),A⟩
txs← {}; ptrcts← []

if 𝑖 ∈ 𝑀 :

𝑈mal [𝑖 ] ← (𝐶𝑖 , txs, ptrcts)
else :

𝑈hon [𝑖 ] ← (𝐶𝑖 , txs, ptrcts)
𝑇sent [𝑖 ] ← {}

𝑈 ← 𝑈hon ∪𝑈mal

𝑏′ ← A𝑂 (sk, vk,DB,MTree,𝑈mal, 1
_ )

return 𝑏′

HonTx(uids, 𝑥0, 𝑥1)

if uids ∉ 𝑈hon :

abort, return 0

(pks, sks, bals, txss) ← 𝑈 [uids]
txss← txss ∪ { (𝑥0, 𝑥1 ) }
uidb← A()
if uidb ∈ 𝑈hon :

𝑥 ← 𝑥𝑏

else :

𝑥 ← 𝑥0

(pkb, . . . ) ← 𝑈 [uidb]
rct← TxProcess⟨𝐶 (𝑥, pks, pkb),A⟩
𝑇sent [uidb] ← 𝑇sent [uidb] ∪ { (rct, 𝑥0, 𝑥1 ) }
return rct

SendRct(uids, uidb, rct)

if rct ∉ 𝑇sent [uidb] :
abort, return ⊥

else :

_, 𝑥0, 𝑥1 ← 𝑇sent [rct]
(_, sks, bals, . . . , ptrctss) ← 𝑈 [uids]
(_, skb, balb, . . . , ptrctsb) ← 𝑈 [uidb]
out← ProcessRct(skb, rct, vk)
if out = ⊥ : abort, return ⊥
𝑥, ptrct← out

ptrctss← ptrctss ∪ {ptrct}
ptrctsb← ptrctsb ∪ {ptrct}
bals← UpdateBalClient(bals, 𝑥, rct)
balb← UpdateBalClient(balb, 𝑥, rct)
𝑇rec [uids] ← 𝑇rec [uids] ∪ { (𝑥0, 𝑥1 ) }
𝑇rec [uidb] ← 𝑇rec [uidb] ∪ { (−𝑥0, −𝑥1 ) }
return bals, balb

Settle()

bals = {}
for uid ∈ 𝑈hon :

pk, sk, bal, txs← 𝑈 [uid]
𝑆𝑖 = {𝑥𝑖 | (𝑥0, 𝑥1 ) ∈ txs}

if
∑︁

𝑆0 =
∑︁

𝑆1 ∧ |𝑇sent [uid] | = |𝑇rec [uid] | :
𝑥 ← BalSettle⟨𝐶 (sk, bal, ptrcts), 𝑆 (DB, vk, uid) ⟩
if 𝑥 = ⊥ :

abort, return 0

bals[uid] ← 𝑥

return bals

Figure 9: Malicious point confidentiality experiment.

• H1: This hybrid is identical to the preceding one, except

that for each transaction processed in theHonTx oracle, the
experiment replaces the proof 𝜋 of equal ciphertexts with a

simulated proof. This hybrid is indistinguishable from the

preceding one by the zero knowledge property of the NIZK.

The hybrid is made up of a series of subhybrids, one for

each query to the HonTx oracle.

• H2: This hybrid is identical to the preceding one, except

that each time an honest client settles in the Settle ora-

cle, the experiment replaces the Chaum-Pedersen proof of

knowledge of the plaintext with a simulated proof. This

hybrid is indistinguishable from the preceding one by the

zero knowledge property of the NIZK. The hybrid is made

up of a series of subhybrids, one for each settle operation.

Observe that in this hybrid, the view of the adversary is

independent of the challenger’s input 𝑏 because the proofs
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BALINT[S,A, 𝑁 , _,𝑄O]

win← 0

𝑈hon ← {};𝑈mal ← {};𝑇bal ← {};𝑇taint ← {}

𝑘sig, vk,DB,MTree← ServerInit(1_ )
𝑀 ← A(𝑁 ) , where𝑀 ⊆ {1, . . . , 𝑁 }
for 𝑖 = 1..𝑁 :

bc←R B

𝐶𝑖 ← ClientInit(bc, 1_ )
rcts← []; xs← []
(pk, sk, bal) ← 𝐶𝑖

DB,MTree← RegUser⟨𝐶 (bc, pk), 𝑆 (DB,MTree) ⟩
if 𝑖 ∈ 𝑀 :

𝑈mal [𝑖 ] ← (𝐶𝑖 , rcts, xs)
else :

𝑇bal [𝑖 ] ← 0; 𝑇taint [𝑖 ] ← false

𝑈hon [𝑖 ] ← (𝐶𝑖 , rcts, xs)
𝑈 ← 𝑈hon ∪𝑈mal

A𝑂 (𝑈mal, 1
_ )

return win

HonTx(uids, 𝑥)

if uids ∉ 𝑈hon :

abort, return 0

( (pks, sks, bals), rctss, xss) ← 𝑈 [uids]
uidb,View𝑆 ← CardSwap⟨𝐶, 𝑆 (DB,MTree) ⟩
( (pkb, skb, balb), rctsb, xsb) ← 𝑈 [uidb]
rct,View𝑆 ← TxProcess⟨𝐶 (𝑥, pks, pkb),

𝑆 (𝑘sig, uidb, pks, pkb) ⟩
negx, ptrct← ProcessRct(skb, rct, vk)
balb← UpdateBalClient(balb, negx, rct)
𝑇bal [uidb] ← 𝑇bal [uidb] − 𝑥
bals← UpdateBalClient(bals, 𝑥, rct)
DB← UpdateBalServer(DB, uids, uidb, rct)
rctss.add[ptrct]; rctsb.add[ptrct]
xss.add(𝑥 ) ; xsb.add(−𝑥 )
𝑇bal [uids] ← 𝑇bal [uids] + 𝑥

MalTx(uids)

if 𝑖 ∉ 𝑈mal :

abort, return 0

( (pks, sks, bals), rctss, xss) ← 𝑈 [uids]
uidb,View𝐶 ,View𝑆 ← CardSwap⟨A, 𝑆 (DB,MTree) ⟩
𝑇taint [uidb] ← true

(pkb, skb, . . . ) ← 𝑈 [uidb]
rct,View𝐶 ,View𝑆 ← TxProcess⟨A, 𝑆 (𝑘sig, pks, pkb) ⟩
if uidb ∈ 𝑈hon :

out← ProcessRct(skb, rct, vk)
if out = ⊥ : abort

𝑥, ptrct← out

balb← UpdateBalClient(balb, 𝑥, rct)
rcts.add(ptrct)

else :

cont← A()
if ¬cont : abort

DB← UpdateBalServer(DB, uids, uidb, rct)

Settle()

bals = {}
for uid ∈ 𝑈hon :

( (pk, sk, bal), rcts, . . . ) ← 𝑈 [uid]
𝑥 ← BalSettle⟨𝐶 (sk, bal, rcts), 𝑆 (DB, vk, uid) ⟩
if 𝑥 = ⊥ :

abort, win← 1 //win← 0 in weak version

if ¬𝑇taint [uid] ∧𝑇bal [uid] ≠ 𝑥 :

abort, win← 1

bals← bals ∪ {𝑥 }
for uid ∈ 𝑈mal :

𝑥 ← BalSettle⟨A, 𝑆 (DB, vk, uid) ⟩
if 𝑥 = ⊥ : abort, win← 0

bals← bals ∪ {𝑥 }

if
∑︁

bal∈bals
bal = 0 :

win← 0

else :

win← 1

Figure 10: Balance integrity experiment.

throughout the experiment reveal nothing about the trans-

action values 𝑥𝑏 or the honest users’ secret keys.

• H3: This hybrid is identical to the preceding one, except

that, for each transaction where the barcode owner 𝑢 𝑗 is

honest, ciphertexts encrypting some 𝑥0 are replaced with

ciphertexts encrypting the corresponding 𝑥1.

This hybrid is indistinguishable from the preceding one by

the CPA security of El-Gamal encryption.

• H4: This hybrid undoes the change made in H2, replacing
simulated Chaum-Pedersen proofs during the Settle oracle
with real proofs. This hybrid is indistinguishable from the

preceding one by the zero knowledge property of the NIZK.
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C( ) S(DB,MTree)

𝑖𝑐 ←R {1, . . . , 𝑁 } 𝑁, root
𝑁 ← |DB | ; root← MTree.root( )

𝑟 ←R 𝑅

com← Commit(𝑖𝑐 , 𝑟 ) com
𝑖𝑠 ←R {1, . . . , 𝑁 }

𝑖 ← 𝑖𝑐 + 𝑖𝑠 mod 𝑁
𝑖𝑠

𝑖𝑐 , 𝑟 𝑖 ← 𝑖𝑐 + 𝑖𝑠 mod 𝑁

bc, pk← DB[𝑖 ]

bc, pk, 𝜋
𝜋 ← Merkle.Prove(MTree, (𝑖, bc, pk) )

Merkle.Verify(𝜋, root, (𝑖, bc, pk) )
return (𝑖, bc, pk) return 𝑖

Figure 11: CardSwap algorithm for all implementations.

ClientInit(bc, 1_)

pk, sk← ElGamal.KeyGen(1_ )
bal← ∅
return (pk, sk, bal)

ServerInit(1_)

sk, vk← ∅;DB← {};MTree← {}
return sk, vk,DB,MTree

UpdateBalServer(DB, uids, uidb, rct)

bcs, pks,mbals← DB[uids]
bcb, pkb,mbalb← DB[uidb]
cts, ctb← rct

DB[uids] ← (bcs, pks,mbals · cts)
DB[uidb] ← (bcb, pkb,mbalb · ctb)
return DB

RegUser

C(bc, pk) S(DB,MTree)

bc, pk uid← |DB |

mbal← ElGamal.Enc(pk, 0)
DB[uid] ← (bc, pk,mbal)

uid MTree← MTree.add( (uid, bc, pk) )

return uid return DB,MTree

TxProcess

C(𝑥, pks, pkb) S(sk, pks, pkb)

cts← ElGamal.Enc(pks, 𝑥 ; 𝑟𝑥 )
ctb← ElGamal.Enc(pkb, −𝑥 ; 𝑟−𝑥 )
𝜋 ← PoK{𝑥, −𝑥, 𝑟𝑥 , 𝑟−𝑥 : 𝜙Tx}

cts, ctb, 𝜋

ZK.Verify(𝜋 )
return (cts, ctb) return (cts, ctb)

BalSettle

C(sk, bal, ®rct, ®𝑥 ) S(DB, vk, uid)

pk,mbal← DB[uid]

bal← ElGamal.Dec(sk,mbal) mbal

𝜋 ← PoK{sk, bal : 𝜙Settle} bal, 𝜋

ZK.Verify(𝜋 )
return bal

Figure 12: Semihonest scheme. We use 𝜙Tx and 𝜙Settle as shorthand for the proof statements described in Section 5.1.
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The hybrid is made up of a series of subhybrids, one for

each settle operation.

• H5: This hybrid undoes the change made in H1, replacing
the simulated proofs 𝜋 in theHonTx oracle with real proofs.

This hybrid is indistinguishable from the preceding one by

the zero knowledge property of the NIZK. The hybrid is

made up of a series of subhybrids, one for each transaction

in calls to the HonTx oracle.

Note that the final hybrid is precisely the adversary’s view of

the experiment CONF[S,DB,A, _, 1]. Since each hybrid is indis-

tinguishable from the last, the proof of the theorem follows from

this series of hybrids and the triangle inequality. □

Theorem C.2 (Weak Balance Integrity). Assuming the NIZKs used
are proofs of knowledge, our semihonest loyalty card swapping proto-
col with private redistribution of loyalty points satisfies weak balance
integrity (Definition A.3).

Proof Sketch. The proof of this theorem follows a series of

hybrids.

• H0: This is the original balance integrity experiment.

• H1: This hybrid is identical to the preceding one, except

that when each adversary-controlled user settles its balance

in a call to the Settle oracle, we run the extractor guaranteed
to exist by the proof of knowledge property of the Chaum-

Pedersen NIZK, aborting if any extractor fails.

This hybrid is indistinguishable from the preceding one by

the proof of knowledge property of the Chaum-Pedersen

NIZK. This hybrid consists of 𝑄Settle · |𝑀 | subhybrids (one
for each malicious user each time it settles), where the 𝑖th

hybrid runs the extractor for the 𝑖th call to the Settle oracle.
• H2: This hybrid is identical to the preceding one, except

that for in each call to theMalTx oracle, the experiment runs

the extractor guaranteed to exist by the proof of knowledge

property of the NIZK, aborting if any extractor fails. This

hybrid is indistinguishable from the preceding one by the

proof of knowledge property of the NIZK. It consists of

𝑄MalTx subhybrids, where the 𝑖th hybrid runs the extractor

for the 𝑖th call to theMalTX oracle.

We now show that the hybrid experimentH2 never outputs 1.

The proof of the theorem thus follows from the preceding hybrid

argument and the triangle inequality.

Observe that one condition of balance integrity – that the balance

of an honest user is not unduly modified – is satisfied quite easily.

The only time a balance 𝑇bal [uid] is modified but 𝑇taint [uid] is not
true is when a given uid only appears as an input or output to a

protocol in theHonTx or Settle oracles, and not in theMalTx oracle.
But in these cases, by the correctness of the additive homomorphism

and decryption for the El-Gamal encryption scheme, the numbers

held in 𝑇bal [uid] exactly match the ones that will be returned by

BalSettle. This is the case because these balances are only affected

by honest calls to the protocol functions, and no adversary-provided

values are ever multiplied into them.

It remains to prove that the other condition of balance integrity

– that all balances sum to zero when settling – is satisfied. We argue

that each call to MalTx must result in a transaction consisting of

encryptions of inverse values 𝑚 and −𝑚 under the public keys

of the two users involved. The proof of the well-formedness of

the ciphertexts follows immediately from statements 5.2-5.5. From

statement 5.6, we have that 𝐶12𝐶22 = ℎ
𝑦𝑠
𝑠 ℎ

𝑦𝑏
𝑏
. But since we know

that 𝐶12 = 𝑔𝑚
′
ℎ
𝑦𝑠
𝑠 and 𝐶22 = 𝑔𝑚ℎ

𝑦𝑏
𝑏

, we have

𝐶12𝐶22 = 𝑔𝑚
′
ℎ
𝑦𝑠
𝑠 𝑔𝑚ℎ

𝑦𝑏
𝑏

= 𝑔𝑚+𝑚
′
ℎ
𝑦𝑠
𝑠 ℎ

𝑦𝑏
𝑏

.

So statement 5.6 requires that

𝑔𝑚+𝑚
′
ℎ
𝑦𝑠
𝑠 ℎ

𝑦𝑏
𝑏

= ℎ
𝑦𝑠
𝑠 ℎ

𝑦𝑏
𝑏
,

which implies that𝑚 +𝑚′ = 0.

Next, we argue that the decryptions in calls to Settle are always
honest decryptions of the balances held by the server. The experi-

ment has a group element 𝑔𝑚
′
from the client and has extracted a

secret 𝑥 such that for the client’s public key ℎ = 𝑔𝑥 and encrypted

balance (𝑐1, 𝑐2), 𝑐2/𝑔𝑚
′
= 𝑐𝑥

1
. Now, since all the ciphertexts used in

calls toMalTx were well-formed, the ciphertext has the structure

(𝑐1 = 𝑔𝑦, 𝑐2 = 𝑔𝑚ℎ𝑦), which means that

𝑐2/𝑔𝑚
′
= 𝑔𝑚ℎ𝑦/𝑔𝑚

′
= 𝑔𝑚+𝑥𝑦−𝑚

′

and 𝑐𝑥
1
= 𝑔𝑦𝑥 . Thus, we have that

𝑔𝑚+𝑥𝑦−𝑚
′
= 𝑔𝑦𝑥 ,

which is only true when𝑚 =𝑚′.
Finally, since we have shown that every transaction adds𝑚 to the

balance of one user and subtracts𝑚 from the balance of another,

this means that the change in the sum of balances between the

two users in a given transaction is always zero. This satisfies the

remaining condition of balance integrity, completing the proof. □

D SECURITY PROOFS FOR MALICIOUS
SCHEME

We now repeat the security theorems for the malicious construction

that were stated in the body of the paper and then provide proof

sketches for each.

TheoremD.1 (Malicious Point Confidentiality). Assuming the CCA
security of the encryption scheme, the zero-knowledge property of the
NIZKs used, and the hardness of DDH in the group 𝐺 , our malicious
loyalty card swapping protocol with private redistribution of loyalty
points satisfies malicious point confidentiality (Definition A.2) in the
random oracle model.

Proof Sketch. The proof of point confidentiality proceeds via

a series of hybrids.

• H0: This hybrid is the security experiment MALCONF[S,
DB,A, _, 0].

• H1: This hybrid replaces the ciphertexts produced in trans-

actions where users 𝑖, 𝑗 are both honest with encryptions

of zero, using a lookup table to recover the plaintexts cor-

responding to these ciphertexts when needed. It consists

of a series of subhybrids, one for each honest user, and it

is indistinguishable from the preceding hybrid by the CCA

security of the encryption scheme.

The reduction for each subhybrid works by playing the

role of the adversary in the CCA security game and the

challenger in the confidentiality game. It sets the public key

for one honest user to the public key in the CCA security
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game. It then plays the role of the challenger as described

in H0, except whenever the value 𝑥0 is to be encrypted in

a transaction between two honest users, it sends the CCA

challenger the two plaintexts 𝑥0, 0. Decryption of known

challenge ciphertexts is completed via a lookup table. Ci-

phertexts not found in the table are decrypted via the CCA

decryption oracle. Note that if the CCA challenger’s input

bit is 𝑏 = 0, the reduction behaves as in H0, and if 𝑏 = 1,

it behaves as in H1. Thus, the adversary wins the CCA se-

curity game with the same advantage that it distinguishes

between H0 and H1.
Note that in this hybrid, intuitively, it becomes impossi-

ble for the adversary to create new transactions that are a

function of transactions between honest users. It’s always

impossible to simply replay a transaction because the client

checks for duplicate ciphertexts, and since the contents of

all ciphertexts between honest users are just zeros, modify-

ing ciphertexts is no longer potentially useful.

• H2: This hybrid is identical to the preceding one, except

that for each call to the HonTx oracle where both uids and
uidb correspond to honest users, the experiment replaces

the proof 𝜋 in the transaction with a simulated proof. This

hybrid is indistinguishable from the preceding one by the

zero knowledge property of the NIZK. The hybrid is made

up of a series of subhybrids, one for each such transaction

in calls to the HonTx oracle.
• H3: This hybrid is identical to the preceding one, except that

each time an honest user participates in the settling protocol

in a call to the Settle oracle, we replace the settling proof

𝜋 with a simulated proof. This hybrid is indistinguishable

from the preceding one by the zero knowledge property of

the NIZK. The hybrid is made up of a series of subhybrids,

one for each honest user.

• H4: In this hybrid, for receipts in transactions between

honest users, the challenger computes the value mval by
sampling a random group element 𝑅 ←R 𝐺 and setting

mval← 𝑅𝑥0 . This hybrid consists of a series of subhybrids,

one for each such transaction. It is indistinguishable from

the preceding one under the DDH assumption in 𝐺 in the

random oracle model.

The reduction for each subhybrid works by playing the role

of the DDH adversary and the confidentiality challenger. It

first receives a DDH challenge (𝑔,𝑋,𝑌, 𝑍 ) where 𝑋 = 𝑔𝑥DH ,

𝑌 = 𝑔𝑦DH , and either 𝑍 = 𝑔𝑥DH𝑦DH or 𝑍 = 𝑔𝑧DH where

𝑥DH, 𝑦DH, 𝑧DH ←R Z𝑞 . The reduction samples 𝛼 ←R Z𝑞 and

sets the public parametersℎ,𝑔 for the loyalty card swapping

scheme as ℎ ← 𝑔𝛼 .

When responding to a random oracle query 𝐻 (𝑠𝑖 ), the re-
duction samples 𝑟𝑖 ←R Z𝑞 and sets 𝐻 (𝑠𝑖 ) ← 𝑌 𝑟𝑖

. When

handling a transaction between two honest users, instead

of choosing𝑚𝑖 ←R Z𝑞 , hm𝑖 ← ℎ𝑚𝑖
, the reduction chooses

𝑟 ′
𝑖
←R Z𝑞 and sets hm𝑖 ← 𝑋𝛼𝑟 ′𝑖 . It then retrieves the value of

𝑟𝑖 from the RO programming for the corresponding string

𝑠𝑖 and sets mval ← 𝑍𝑟 ′𝑖 𝑟𝑖𝑥𝑏 . Since the value of 𝑚𝑖 is not

explicitly known by the challenger anymore, the checks

conducted after decrypting the ciphertext in these trans-

actions simply check that the same group elements have

been sent as were sent in the original transaction.

Observe that the value of 𝑚𝑖 is now implicitly set to be

𝑥DH𝑟
′
𝑖
, and the value of𝐻 (𝑠𝑖 ) is 𝑔𝑦DH𝑟𝑖 . Moreover, the value

ofmval is now either 𝑔𝑥DH𝑦DH𝑟
′
𝑖 𝑟𝑖𝑥𝑏 (if 𝑍 = 𝑔𝑥DH𝑦DH ) or it is

𝑔𝑧DH𝑟
′
𝑖 𝑟𝑖𝑥𝑏 (if 𝑍 = 𝑔𝑧DH ). But the former is exactly the value

ofmval as described inH3, whereas the latter is the value of
mval in H4. Thus, reduction wins the DDH security game

with the same advantage that the confidentiality adversary

distinguishes between these two hybrids.

• H5: This hybrid is identical to the preceding one, except

that, for each transaction where the barcode owner 𝑢 𝑗 is

honest, we replace the transaction value 𝑥0 with 𝑥1. This

hybrid is identical to the preceding one because the only

time the value 𝑥𝑏 still appears in the view of the adversary

is in the exponent of the random group element mval.

From this point, additional hybridsH6−H9 undo the changes made

in hybrids H1 −H4 in reverse order. The final hybrid is precisely

the adversary’s view of the experimentMALCONF[S,DB,A, _, 1].
Since each hybrid is indistinguishable from the last, the proof of

the theorem follows from this series of hybrids and the triangle

inequality. □

Theorem D.2 (Malicous Scheme Balance Integrity). Assuming
that the NIZKs used are proofs of knowledge, the signature scheme
is existentially unforgeable, and that the discrete logarithm problem
is hard in the group 𝐺 , our malicious loyalty card swapping protocol
with private redistribution of loyalty points satisfies balance integrity
(Definition A.3) in the random oracle model.

Proof Sketch. Observe that one condition of balance integrity

– that the balance of an honest user is not unduly modified – is

satisfied quite easily. The only time a balance 𝑇bal [uid] is modified

but 𝑇taint [uid] is not true is when a given uid only appears as an

input or output to a protocol in the HonTx or Settle oracles, and
not in the MalTx oracle. But in these cases, by the correctness of

our scheme, the numbers held in 𝑇bal [uid] exactly match the ones

that will be returned by BalSettle. This is the case because these
balances are only affected by honest calls to the protocol functions,

and no adversary-provided values are ever multiplied into them.

The adversary can also never cause an honest user to fail to settle

because the only opportunities for the client to fail to settle are if

a signature 𝜎𝑖 fails to verify or if the proof 𝜋 fails to verify. But

signature verification will always accept by the correctness of the

signature scheme, and the proof that the server checks during the

BalSettle protocol is simply a proof of the properties that the client

verifies (in the clear) via the ProcessRct algorithm during calls to

HonTx or MalTx. Thus any attempted malicious transaction that

would put a client in an “un-settleable” state will be filtered out by

the ProcessRct function.
Thus the rest of our proof focuses on the other condition, that

users’ balances sum to zero when settling. The proof of the second

condition follows a series of hybrids.

• H0: This is the original balance integrity experiment.

• H1: This hybrid is identical to the preceding one, except

the experiment aborts and outputs 0 if values hm𝑖 , 𝑠𝑖 that
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do not appear together in any run of the TxProcess protocol
do appear during a successful run of the Settle protocol. An
adversary who reaches this abort condition can be used to

break the unforgeability of the signature scheme because

the integrity challenger will not have issued a signature

on such an hm𝑖 , 𝑠𝑖 . Thus, this abort condition is reached

with negligible probability, due to the unforgeability of the

signature scheme, and this hybrid is indistinguishable from

the preceding one.

• H2: This hybrid is identical to the preceding one, except

that in each call toMalTx, the experiment runs the extractor

guaranteed to exist by the proof of knowledge property of

the NIZK, aborting if any extractor fails. This hybrid is

indistinguishable from the preceding one by the proof of

knowledge property of the NIZK. Since the extractor must

be run for each transaction, this hybrid must include𝑄MalTx
subhybrids.

• H3: This hybrid is identical to the preceding one, except

that for each Settle operation and for each uid ∈ 𝑈mal,

the experiment runs the extractor guaranteed to exist by

the proof of knowledge property of the NIZK, aborting if

any extractor fails. This hybrid is indistinguishable from

the preceding one by the proof of knowledge property of

the NIZK. Since the extractor must be run for each settle

operation, this hybrid must include𝑄Settle · |𝑀 | subhybrids
(one for each malicious user each time it settles).

• H4: This hybrid is identical to the preceding one, except it

aborts if the hash function 𝐻 is ever queried on two strings

𝑠, 𝑠′, 𝑠 ≠ 𝑠′, 𝐻 (𝑠) = 𝐻 (𝑠′), i.e., if a collision is found for

the hash function. This event unconditionally occurs with

negligible probability in the random oracle model, so this

hybrid is statistically indistinguishable from the preceding

one.

We now show that an adversary who wins the game by causing

all settled balances to sum to something other than zero in H4 can

be used to break discrete logarithm in 𝐺 . The proof of the theorem

thus follows from this proof, the preceding hybrid argument, and

the triangle inequality.

We build a reduction that plays the role of the adversary for

discrete log in𝐺 , receiving a discrete log challenge (𝑔,𝑔𝑐 ), and who
plays the role of the challenger in H4. Our reduction responds to

random oracle queries 𝐻 (𝑠𝑖 ) by sampling values 𝛼𝑖 , 𝛽𝑖 ←R Z𝑞 and

setting 𝐻 (𝑠𝑖 ) ← 𝑔𝛼𝑖𝑔
𝛽𝑖
𝑐 .

Observe that at the end of the experiment, the reduction has all

the values𝑚𝑖 , 𝑥𝑖 , 𝑖 ∈ {1, ..., 𝑛tx} used during runs of the TxProcess
protocol, as well as all the values 𝑚′

𝑗
, 𝑥 ′

𝑗
, 𝑗 ∈ {1, ..., 𝑛settle} used

during calls to Settle(). Here 𝑛tx and 𝑛settle represent the number

of transactions or receipts included in a balances, respectively. As

a notational shorthand, we will always use the subscript 𝑖 to refer

to values extracted from transactions and the subscript 𝑗 to refer to

values extracted during settling.

Since the reduction has kept a representation of each user’s

balance during the experiment, it can also take the product 𝑃 of

all users’ balances, and find a representation of 𝑃 using the𝑚𝑖 , 𝑥𝑖
values it has extracted or saved from calls to malTx and HonTX,

respectively. Because the server always updates balances by mul-

tiplying mval into one balance and mval−1 into another balance,

we know that 𝑃 = 𝑔0 = 1. Moreover, because of the statements

proven during the BalSettle protocol, we know that the extracted

or saved values of 𝑥 ′
𝑗
,𝑚′

𝑗
are also a representation of 𝑃 because

proofs provided while settling are made with respect to the masked

balances produced during transactions.

Let 𝑦𝑖 = 𝑥𝑖𝑚𝑖 and 𝑦
′
𝑗
= 𝑥 ′

𝑗
𝑚′

𝑗
for convenience. By the reasoning

above, we have that

𝑃 = Π𝑖𝐻 (𝑠𝑖 )𝑦𝑖 = Π 𝑗𝐻 (𝑠 𝑗 )𝑦
′
𝑗 ,

where the first equality follows from the statements proved during

transactions and the second follows from the statements proved

during settling.

Substituting in 𝐻 (𝑠𝑖 ) = 𝑔𝛼𝑖𝑔
𝛽𝑖
𝑐 , we can solve for 𝑔𝑐 as follows.

Π𝑖 (𝑔𝛼𝑖𝑔𝛽𝑖𝑐 )𝑦𝑖 = Π 𝑗 (𝑔𝛼 𝑗𝑔
𝛽 𝑗

𝑐 )
𝑦′𝑗

𝑔Σ𝑖𝛼𝑖𝑦𝑖𝑔
Σ𝑖𝛽𝑖𝑦𝑖
𝑐 = 𝑔

Σ 𝑗𝛼 𝑗 𝑦
′
𝑗𝑔

Σ 𝑗 𝛽 𝑗 𝑦
′
𝑗

𝑐

𝑔
Σ𝑖𝛽𝑖𝑦𝑖−Σ 𝑗 𝛽 𝑗 𝑦

′
𝑗

𝑐 = 𝑔
Σ 𝑗𝛼 𝑗 𝑦

′
𝑗−Σ𝑖𝛼𝑖𝑦𝑖

𝑔𝑐 = 𝑔
(Σ 𝑗𝛼 𝑗 𝑦

′
𝑗−Σ𝑖𝛼𝑖𝑦𝑖 )/(Σ𝑖𝛽𝑖𝑦𝑖−Σ 𝑗 𝛽 𝑗 𝑦

′
𝑗 )

Now it only remains to show that

Σ𝑖𝛽𝑖𝑦𝑖 − Σ 𝑗 𝛽 𝑗𝑦
′
𝑗 ≠ 0,

which would mean that the quotient

Σ 𝑗𝛼 𝑗𝑦
′
𝑗
− Σ𝑖𝛼𝑖𝑦𝑖

Σ𝑖𝛽𝑖𝑦𝑖 − Σ 𝑗 𝛽 𝑗𝑦
′
𝑗

is the discrete log between 𝑔𝑐 and 𝑔.

First, observe that it is not possible for the adversary to win the

balance integrity game if the sets of {𝑥𝑖 } and {𝑥 ′𝑗 } values used in

these representations to be the same, or else the balances during

settling (the 𝑥 ′
𝑗
values) would sum to zero, and the adversary would

not win the balance integrity game.

Now, there are two cases we need to cover.

(1) The set of strings {𝑠𝑖 }, {𝑠′𝑗 } used in the two representations

of 𝑃 are the same.

(2) The set of strings {𝑠𝑖 }, {𝑠′𝑗 } used in the two representations

of 𝑃 are different.

Case 1. In the first case, the sets {𝛽𝑖 }, {𝛽 𝑗 } are also the same,

as they are fully determined by the choice of 𝑠 . This means we

need to show that the values of {𝑦𝑖 }, {𝑦′𝑖 } differ in order for the

denominator of the discrete log value to be non-zero.

Suppose toward contradiction that these sets are the same. We

know that the 𝑥𝑖 and 𝑥 ′
𝑗
values cannot be the same, so it must

be that the 𝑚𝑖 and 𝑚′
𝑗
values must also not be the same if their

products are to form sets of the same values. But then since all the

signatures used during Settle() verify as being signatures used in

calls to TxProcess, each hm used in settling must also have been

used during a transaction (as the hms are tied to values of 𝑠 by the

signatures 𝜎). But since hm uniquely determines𝑚, this means that

the extracted values of𝑚 are also the same values of𝑚 that appeared

in a transaction alongside the corresponding values of 𝑠 (as choices

of 𝑠 are never repeated except with negligible probability). From
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this we conclude that all the values𝑚𝑖 used in transactions match

the values𝑚′
𝑗
used in settling, except with negligible probability.

This is a contradiction because we previously concluded that these

values must not match.

Case 2. In this case, since the choices of {𝑠𝑖 }, {𝑠 𝑗 } differ, the values
of {𝛽𝑖 }, {𝛽 𝑗 } will differ except with negligible probability, as they

are sampled uniformly at random and independently of each other.

Moreover, these values are perfectly hidden in 𝑔𝛼𝑖𝑔
𝛽𝑖
𝑐 , so the view

of the adversary is independent of {𝛽𝑖 }, {𝛽 𝑗 }. This means that the

probability that Σ𝑖𝛽𝑖𝑦𝑖 − Σ 𝑗 𝛽 𝑗𝑦
′
𝑗
= 0 is simply 1/𝑞.

We have now shown how to calculate the discrete log of 𝑔𝑐
and demonstrated that the calculated value is defined with all but

negligible probability. This completes the proof of the theorem. □

E DETECTING INCORRECT INPUTS
There are many loyalty programs that allow users to check their

balances online, or even look at the values of individual transac-

tions. We can use this to allow users to detect when someone using

their loyalty card has entered an incorrect input, and identify the

offending transaction(s).

Our idea is simple. A user can check their outstanding loyalty

balance online. This balance baldebt represents the user’s total debts
incurred when others used their card. CheckOut can also record the

total amount of loyalty points balcredit a user is owed from using

others’ cards. If all users correctly enter data into CheckOut, then

we expect that for each user’s overall balance bal,

bal = balcredit − baldebt .
Users can perform this verification out-of-band at settle time. If

this expression does not hold, an honest user knows that someone

who has used their card has entered an incorrect value, resulting

in an inaccurate balcredit. To facilitate identifying the offending

transaction, the server can keep logs of each transaction sent, and—

since the value of each transaction can be unmasked by the user

whose account is used—the user can check which one does not

align with the expected transactions it can see through the online

interface to the loyalty program. From the user ID associated with

this transaction in the server’s logs, the malicious user can be

identified and dealt with by the server.
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