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Abstract

We present a succinct polynomial commitment scheme for multilinears over tiny binary fields, includ-
ing that with just 2 elements. To achieve this, we develop two main ideas. Our first adapts Zeilberger,
Chen and Fisch’s BaseFold (’23) PCS to the binary setting; it uses FRI (ICALP ’18)’s lesser-known
binary variant, and reveals a new connection between that work and Lin, Chung and Han (FOCS ’14)’s
additive NTT. We moreover present a novel large-field-to-small-field compiler for polynomial commitment
schemes. Using a technique we call “ring-switching”, our compiler generically bootstraps any multilinear
PCS over a large, power-of-two degree extension field into a further PCS over that field’s ground field.
The resulting small-field PCS lacks “embedding overhead”, in that its commitment cost is identical to
that of the large-field scheme on each input size (measured in bits). We attain concretely small proofs for
enormous binary multilinears, shrinking the proofs of Diamond and Posen (’23) by an order of magnitude.

1 Introduction

In recent work, Diamond and Posen [DP23] introduce a sublinear argument designed to capture certain
efficiencies available in towers of binary fields. Using a “block-level encoding” technique, that work evades,
at least during its commitment phase, the embedding overhead prone to arise whenever tiny fields are
used, especially in those protocols that critically use Reed–Solomon codes. That work’s key polynomial
commitment scheme features opening proofs whose size and verifier complexity both grow on the order of
the square root of the size (i.e., measured in total data bits) of the committed polynomial.

In this work, we present a multilinear polynomial commitment scheme—again designed for small binary
fields—whose proof size and verifier complexity grow only polylogarithmically in the size of the committed
polynomial. Our starting point is Zeilberger, Chen and Fisch’s BaseFold PCS [ZCF23, § 5], a multilinear
PCS for large prime fields. BaseFold’s polynomial commitment scheme [ZCF23, § 5] identifies a new connec-
tion between Ben-Sasson, Bentov, Horesh and Riabzev’s [BBHR18] celebrated FRI IOP of proximity and
multilinear polynomials. Specifically, that work observes that, in the setting of prime-field FRI, when the
FRI folding arity is fixed at 2, the constant value of the prover’s final FRI oracle relates to the univariate
coefficients of its FRI message just as a multilinear’s evaluation relates to its multilinear coefficients in the
monomial basis. This fact underlies BaseFold’s use of FRI within its multilinear polynomial commitment
scheme. On the other hand, since the scheme’s evaluation point is typically known in advance to the prover,
whereas FRI’s folding challenges of course must not be, BaseFold moreover interleaves into its FRI fold-
ing phase an execution of the sumcheck protocol, thereby reducing the evaluation of the multilinear at the
known query point to its evaluation at the random point sampled during FRI. We describe BaseFold further
in Subsection 1.2 below.

We note that FRI has figured in both univariate and multilinear commitment schemes previously. All
prior such uses of FRI, however—with the exception of [ZCF23, § 5]—invoke “quotienting”, and so suffer
from embedding overhead, a phenomenon described at length in [DP23]. We refer to Haböck [Hab22] for a
description of FRI’s use as a univariate commitment scheme. In the multilinear setting, we note briefly an
approach proposed by Chen, Bünz, Boneh and Zhang [CBBZ23, § B], which itself makes blackbox use of a
univariate commitment scheme such as FRI. Interestingly, that scheme—assuming the FRI-based univariate
scheme—resembles [ZCF23, § 5], at least during its commitment phase. Its evaluation phase, however,
generically invokes the underlying univariate scheme’s evaluation protocol logarithmically many times.
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1.1 Our Contributions

To make something like BaseFold PCS [ZCF23, § 5] work in our setting, we must overcome two main
obstacles. Firstly, while BaseFold accepts any large field and any “foldable” code, that work emphasizes
the odd-characteristic case, and especially that of Reed–Solomon codes over large prime fields. It does not
examine the case of binary fields. Though FRI itself works over binary fields—and was in fact originally
presented in that setting [BBHR18, § 3]—the even–odd coefficient-folding behavior essential to [ZCF23, § 5]
fails to persist in the binary arena, at least for FRI-folding maps chosen generically. In Section 3 below,
we discuss how to choose those maps in such a way as to cause the desired folding behavior to reemerge.
Our treatment makes necessary a careful analysis of Lin, Chung and Han’s additive NTT [LCH14], and
demonstrates a hitherto-unremarked connection between those two works.

Our second main obstacle pertains to the fact that BaseFold is designed for large-field multilinears.
Indeed, as the work [DP23] explains in detail, it is difficult—given only a large-field scheme—to define a small-
field scheme that inherits the “right” security and efficiency guarantees. Specifically, the small-field scheme
should commit polynomials as efficiently as the large-field scheme commits equally-sized polynomials (i.e.,
in bits). (In particular, embedding the small-field polynomial coefficient-wise into the large field wouldn’t
suffice.) In Section 4 below, we describe a generic and extremely efficient reduction from large-field schemes to
small-field schemes. Given an extension L/K of degree 2κ, our technique reduces the problem of committing
an ℓ-variate multilinear over K to that of committing an ℓ := ℓ−κ-variate multilinear over L (which contains
the “same amount of data”). Our scheme’s commitment phase leverages a packing technique present already
in [DP23]. Its evaluation phase introduces a new idea that we call “ring-switching”, loosely inspired by
Ron-Zewi and Rothblum [RR24, Fig. 2]’s “code-switching” technique. We roughly describe our approach as
follows, deferring our full treatment to Section 4. Informally, we observe that the evaluation of the given
K-polynomial at a desired point can be reduced to that of its packed L-polynomial at a random point, up to
the execution of an ℓ-round sumcheck in the tensor algebra L⊗K L, a ring which contains L in “two different
ways”. (That object can be viewed as a generalization of the tower algebra data structure of [DP23, § 3.4].)

In Section 5 below, we combine the ideas of Sections 3 and 4 into a single, streamlined construction.
That construction yields an extremely efficient small-field PCS for binary multilinears. In Subsection 5.2
below, we benchmark our combined scheme in detail, showing that its proofs are smaller than those of [DP23,
Cons. 3.11] by between fourfold and a hundredfold.

1.2 Technical Overview

We sketch in advance various aspects of our technical approach.

Remarks on FRI-folding. Each honest FRI prover begins with the evaluation of some polynomial

P (X) :=
∑2ℓ−1

j=0 aj · Xj over the initial domain S(0). Under certain mild conditions—specifically, if the
folding factor η divides ℓ, and the recursion is carried out to its end—the prover’s final oracle will be identi-
cally constant over its domain (and in fact, the prover will rather send the verifier this latter constant in the
clear). What will the value of this constant be, as a function of P (X) and of the verifier’s folding challenges?

In the setting of prime field multiplicative FRI, the folding maps q(i) all take the especially simple form
X 7→ X2η . BaseFold [ZCF23, § 5] makes the interesting observation whereby—again, in the prime field
setting, for η now moreover set to 1, and for q(0), . . . , q(ℓ−1) defined in just this way—the prover’s final FRI
response will be nothing other than a0 + a1 · r0 + a2 · r1 + · · · + a2ℓ−1 · r0 · · · · rℓ−1, where r0, . . . , rℓ−1 are
the verifier’s FRI folding challenges. That is, it will be exactly the evaluation of the multilinear polynomial
a0 + a1 ·X0 + a2 ·X1 + · · ·+ a2ℓ−1 ·X0 · · · ·Xℓ−1 at the point (r0, . . . , rℓ−1).

What about in the binary field setting? In this setting, the simple folding maps X 7→ X2η no longer
suffice, as [BBHR18, § 2.1] already remarks; rather, we must choose for the maps q(i) a certain sequence
of linear subspace polynomials of degree 2η. FRI does not suggest precise values for these polynomials,
beyond merely demanding that they feature the right linear-algebraic syntax. Roughly, each q(i)’s kernel
must reside entirely inside the domain S(i); we discuss this requirement further in Subsection 2.4 below.
Given syntactically valid subspace polynomials q(i) chosen otherwise arbitrarily—and, we emphasize, FRI
does not suggest a choice—the constant value of the prover’s final oracle will relate in a complicated way to
the coefficient vector (a0, . . . , a2ℓ−1) and to the verifier’s folding challenges ri.
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The additive NTT and FRI. We recall briefly the “additive NTT” of Lin, Chung, and Han [LCH14] (we
refer to Subsection 2.3 below for a thorough description). We fix a binary field L of degree more than ℓ. The

work [LCH14] defines a “novel polynomial basis” (Xj(X))
2ℓ−1
j=0 of the L-vector space consisting of polynomials

over L of degree less than 2ℓ (which, of course, is not the standard monomial L-basis
(
Xj
)2ℓ−1

j=0
of that

space). The work [LCH14] then gives an algorithm which, on input a polynomial P (X) :=
∑2ℓ−1

j=0 aj ·Xj(X)
expressed with respect to the novel basis, computes P (X)’s “additive NTT”. That is, the algorithm computes
from P (X)’s coefficient vector (a0, . . . , a2ℓ−1) the set of P (X)’s evaluations over some appropriately chosen
affine F2-vector subspace S ⊂ L, and in quasilinear time in the size of S, no less.

We recover as follows the “classical” FRI folding pattern identified above in the binary-field setting. For
expository purposes, we fix η = 1 (though cf. Subsection 3.2 below). We stipulate first of all that the prover
use the coefficients (a0, . . . , a2ℓ−1) of its input multilinear as the coefficients in Lin, Chung and Han [LCH14]’s

novel polynomial basis of its initial univariate FRI polynomial P (X) :=
∑2ℓ−1

j=0 aj ·Xj(X). (This choice of basis

has the crucial additional effect of making the prover’s evaluation of P (X) over S(0) computable in quasilinear
time.) Essentially, our insight is that, if we choose the FRI subspace maps q(0), . . . , q(ℓ−1) appropriately, then
the prover’s final FRI oracle becomes meaningfully related to P (X)’s initial coefficient vector (a0, . . . , a2ℓ−1);
that is, it becomes once again a0+a1 ·r0+a2 ·r1+· · ·+a2ℓ−1 ·r0 ·· · · rℓ−1. Specifically, our construction—which
we explain in detail in Subsection 3.1 below—opts to define the maps q(0), . . . , q(ℓ−1) precisely so that they

factor Lin, Chung and Han [LCH14, § II. C.]’s “normalized subspace vanishing polynomials”
(
Ŵi(X)

)ℓ
i=0

,

in the sense that Ŵi(X) = q(i−1) ◦ · · · ◦ q(0) holds for each i ∈ {0, . . . , ℓ} (see Corollary 3.4).
Upon defining the maps q(0), . . . , q(ℓ−1) in this way, we recover a familiar, Fourier-theoretic characteri-

zation of the novel basis polynomials (Xj(X))
2ℓ−1
j=0 , as well as a reinterpretation of Lin, Chung and Han’s

algorithm [LCH14, § III.] along more classical lines (see Remark 3.15). We reproduce here this Fourier-
theoretic identity, which appears as (2) below:

P (i)(X) = P
(i+1)
0 (q(i)(X)) +X · P (i+1)

1 (q(i)(X)).

Here, the index i ∈ {0, . . . , ℓ−1} is arbitrary. We write P (i)(X) =
∑2ℓ−i−1

j=0 aj ·X(i)
j (X) for an arbitrary poly-

nomial expressed with respect to the basis
(
X

(i)
j (X)

)2ℓ−i−1

j=0
, a so-called ith-order analogue of the novel poly-

nomial basis (we refer to Theorem 3.12 below for a thorough definition of our “higher-order” polynomial bases,

as well as to Remark 3.14 for further discussion). The polynomials P
(i+1)
0 (X) and P

(i+1)
1 (X) are P (i)(X)’s

even and odd refinements (these are expressed with respect to the i+1st-order basis
(
X

(i+1)
j (X)

)2ℓ−i−1−1

i=0
).

Our particular choice of the maps q(0), . . . , q(ℓ−1) serves to recover the coefficient-folding behavior of
prime-field FRI (i.e., which was exploited by [ZCF23, § 5]). Indeed, by using the polynomial identity above,
and by expressing each polynomial at hand with respect to the appropriate higher-order novel polynomial
basis, we are able to establish the required FRI folding pattern (see in particular Lemma 3.13).

A new FRI folding mechanism. As it happens, we opt moreover to modify FRI itself, so as to induce
a Lagrange-style, as opposed to a monomial-style, folding pattern in the coefficient domain. In our FRI
variant, the value of the prover’s final oracle becomes a0 · (1− r0) · · · · · (1− rℓ−1) + · · ·+ a2ℓ−1 · r0 · · · · rℓ−1,
the evaluation at (r0, . . . , rℓ−1) of the polynomial whose coefficients in the multilinear Lagrange basis are
(a0, . . . , a2ℓ−1). We moreover introduce a multilinear style of many-to-one FRI folding, which contrasts with
FRI’s univariate approach [BBHR18, § 3.2]. We describe our FRI folding variant in Subsection 3.2 below
(see in particular Definitions 3.6 and 3.8, as well as Remark 3.7). Interestingly, our FRI-folding variant
necessitates a sort of proximity gap different from that invoked by the original FRI protocol. Indeed, while
the soundness proof [Ben+23, § 8.2] of FRI uses the proximity gap result [Ben+23, Thm. 1.5] for low-degree
parameterized curves, our security treatment below instead uses a tensor-folding proximity gap of the sort
recently established by Diamond and Posen [DP24, Thm. 2] (see also Theorem 2.4 below).
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Miscellanea. Throughout Subsection 3.1, we examine in detail various further aspects of binary-field
FRI. For example—even in the abstract IOP model—we must necessarily fix F2-bases of the respective
Reed–Solomon domains S(i), in order to interpret committed functions f (i) : S(i) → L as L-valued strings
(that is, must implicitly lexicographically “flatten” each domain S(i) using some ordered F2-basis of it,
known to both the prover and the verifier). The choice of these bases matters. Indeed, for F2-bases of
S(i) and S(i+1) chosen arbitrarily, the fundamental operation which associates to each y ∈ S(i+1) its fiber

q(i)
−1

({y}) ⊂ S(i)—which both the prover and the verifier must perform repeatedly—could come to assume

complexity on the order of dim
(
S(i)

)2
bit-operations, even after a linear-algebraic preprocessing phase.

We moreover suggest a family of bases for the respective domains S(i) with respect to which the maps
q(i) come to act simply by projecting away their first η coordinates. In particular, the application of each

map q(i)—in coordinates—becomes free; the preimage operation q(i)
−1

({y}) comes to amount simply to
that of prepending η arbitrary boolean coordinates to y’s coordinate representation. While bases with these
properties can of course be constructed in FRI even for maps q(i) chosen arbitrarily, our procedure yields
a basis of the initial domain S(0) which coincides with that expected by the additive NTT of [LCH14]. In
particular, our prover may use as is the output of the additive NTT as its 0th FRI oracle, without first
subjecting that output to the permutation induced by an appropriate change-of-basis transformation on
S(0). We believe that these observations stand to aid all implementers of binary-field FRI.

Ring-switching. We sketch in slightly more detail our ring-switching technique (we again refer also to Sec-
tion 4 below). We fix an input multilinear t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]

⪯1 overK and a desired evalua-
tion point (r0, . . . , rℓ−1) ∈ Lℓ; we moreover set ℓ′ := ℓ− κ, and write t′(X0, . . . , Xℓ′−1) ∈ L[X0, . . . , Xℓ′−1]

⪯1

for t(X0, . . . , Xℓ−1)’s packed polynomial in the sense of Definition 2.1. (We recall from [DP23, § 3] that
t′(X0, . . . , Xℓ′−1)’s vector of Lagrange coefficients arises from t(X0, . . . , Xℓ−1)’s by a process which inter-
prets each successive chunk consisting of 2κ of that latter vector’s components as a single L-element.) To
learn the desired datum t(r0, . . . , rℓ−1), it certainly doesn’t suffice merely to learn the single evaluation
t′(r′0, . . . , r

′
ℓ′−1), either for (r′0, . . . , r

′
ℓ′−1) := (rκ, . . . , rℓ−1) or else for (r′0, . . . , r

′
ℓ′−1) otherwise chosen. In-

deed, to learn that latter quantity alone would entail a sort of information loss, as is noted in [DP23, § 3].
To mitigate this information loss, we work in a ring which contains L as a subring. Specifically, we work

in the ring A := L ⊗K L, the tensor product of L with itself over K (we view here L as a K-algebra).
Concretely, this ring represents a sort of two-dimensional data structure, which contains two isomorphic
copies of L (in its leftmost column and its topmost row, respectively); we refer also to Figure 1 below. We
first examine in detail the structure of A := L⊗K L (see also Subsection 2.5). Indeed, we note the “vertical”
and “horizontal” embeddings φ0 : L → A and φ1 : L → A of L into A; we also argue that the images of
these subrings act on the algebra respectively “column-wise” and “row-wise”.

Using these observations, we argue further that the desired evaluation t(r0, . . . , rℓ−1) can be obtained—
up to a Θ(2κ)-time postprocessing step on the part of the verifier—instead from the A-element
φ1(t

′)(φ0(rκ), . . . , φ0(rℓ−1)). Indeed, we explain this complicated expression as follows. The point is that we
embed t′(X0, . . . , Xℓ′−1)’s coefficients horizontally into the algebra, and embed the components (rκ, . . . , rℓ−1)
vertically. Exploiting the ring structure of A, we conclude that this latter sort of embedding captures exactly
the partial evaluation of our original multilinear t(X0, . . . , Xℓ−1) at the trailing suffix (rκ, . . . , rℓ−1) ∈ Lℓ′ .
(Our detailed correctness proof appears as Theorem 4.2 below.)

Though this maneuver doesn’t alone solve our problem, it makes applicable the sumcheck protocol over
the ring A. In the second step of our reduction, we take exactly this step, drawing our sumcheck challenges
from the horizontal copy of L in A. In this way, we reduce the desired evaluation φ1(t

′)(φ0(rκ), . . . , φ0(rℓ−1))
to the further evaluation φ1(t

′)
(
φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)

)
= φ1

(
t′(r′0, . . . , r

′
ℓ′−1)

)
, for random coordinates

(r′0, . . . , r
′
ℓ′−1) ∈ Lℓ′ . The key point is that this latter expression depends solely on the horizontal sub-

ring φ1(L) ⊂ A, and so has nothing to do with A proper. To learn the desired quantity t′(r′0, . . . , r
′
ℓ′−1), we

may thus make black-box use of the underlying large-field PCS over L.
We note a final benefit of our technique. Our ring-switching compiler reduces the problem ofK-evaluation

to that of L-evaluation. Applied to simultaneously to many instances—which themselves pertain to different
subfields K of L, say—our compiler thus reduces its initial batch of claims to a set of further claims over
the single field L. These latter claims can then be batch-evaluated. Informally, our ring-switching technique
makes possible batching “across different fields”. We discuss batching further in Subsection 5.3 below.
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Performance. In Subsection 5.2 below, we thoroughly benchmark our scheme, measuring both its proof
size and its prover and verifier complexities. Though our scheme’s commitment and proving times still
lag behind those of the state-of-the-art Plonky3 scheme on polynomials with 32-bit coefficients, our scheme
outperforms that one by a factor of roughly ten on 1-bit polynomials. Our scheme’s proof sizes are comparable
to those of Plonky3, and beat those of [DP23] by an order of magnitude.

1.3 Prior Work

The works most relevant to this one are Zeilberger, Chen and Fisch’s BaseFold [ZCF23] and Diamond and
Posen [DP23]. BaseFold’s PCS [ZCF23, § 5] introduces the connection between FRI folding and multilinear
evaluation upon which our large-field PCS rests. That work uses only prime-field FRI, and does not attempt
to support small fields (with or without embedding overhead).

The work [DP23] initiates the use of towers of binary fields in SNARKs, and moreover develops several
ideas which presage ours, including its tower algebra [DP23, Def. 3.8]. That work moreover isolates the
notion of small-field polynomial commitment schemes, and supplies a key instantiation [DP23, Cons. 3.11].
We note that [DP23] presents not just a multilinear polynomial commitment scheme, but moreover an entire
toolbox of “virtual polynomial protocols” [DP23, § 4] and a high-level SNARK [DP23, § 5]. This work
presents only an improved polynomial commitment scheme. The higher-level content of [DP23] remains
perfectly applicable in our setting; indeed, our scheme serves as a drop-in replacement for that of [DP23,
§ 3], and serves the purposes of [DP23, §§ 4–5] exactly as [DP23, § 3] does.

During our large-field scheme’s security proof (see Theorems 3.16), we draw variously on the works
[BBHR18] and [Ben+23]. Neither of those works contain results which serve as stated to achieve our purposes;
rather, we must instead selectively extract and adapt their ideas. Indeed, our soundness proof must concern
itself not merely with the prover’s oracles’ proximity, but moreover with their consistency. In any case,
the essential ideas of our Lemmas 3.24 and 3.25 below are implicit in [BBHR18, § 4.2.2]; moreover, our
Proposition 3.20 below can be viewed as an adaptation to our setting of a technique of [Ben+23, § 8.2].

Our ring-switching reduction (see Construction 4.1 below) is loosely inspired by Ron-Zewi and Rothblum
[RR24, Fig. 2]’s “code-switching” technique, as we now explain. Indeed, our respective techniques share a
few structural similarities. Both begin with an encoding procedure on the part of the prover. That work,
which aims throughout to bring the total length of its oracles close to that of its witness, uses a high-rate
tensor code; we simply use a standard, low-rate Reed–Solomon code (albeit in conjunction with our “packing”
technique). During its inner IOPP, [RR24, Fig. 2] uses a special “sumcheck”-like protocol for high-rate tensor
codes [RR24, Fig. 4]. Finally, both our protocol and [RR24, Fig. 2] decide the appropriate reduction target
using a suitable “internal” protocol. Informally, both our protocol and Ron-Zewi and Rothblum [RR24,
Fig. 2]’s uses a sumcheck to translate an “unfavorable” environment into a “favorable” one. We believe that
that the analogy between that work’s sumcheck and ours is loose; our sumcheck much-more-closely resembles
the standard sumcheck for multilinear polynomials (though it operates over an unusual ring).

We do not yet, in this work, use the list-decoding proximity gap [Ben+23, Thm. 5.1]. We leave as a
future research direction the adaptation of this work to the list-decoding regime.

Acknowledgements. We would like to acknowledge our colleagues at Irreducible for their insights and
contributions to the Binius implementation of these techniques. We would like to gratefully thank Guillermo
Angeris, Alex Evans, Angus Gruen, Ulrich Haböck, Gyumin Roh, Justin Thaler and Benjamin Wilson, whose
collective comments and suggestions contributed significantly to this work. We thank Ron Rothblum for
patiently explaining code-switching to us.

2 Background and Notation

We write N for the nonnegative integers. All fields in this work are finite. We fix a binary field L. For each
ℓ ∈ N, we write Bℓ for the ℓ-dimensional boolean hypercube {0, 1}ℓ ⊂ Lℓ. We occasionally identify Bℓ with

the integer range {0, . . . 2ℓ − 1} by mapping v 7→ {v} :=
∑ℓ−1

i=0 2
i · vi. The rings we treat are nonzero and

commutative with unit. For our purposes, an algebra A over a field L is a commutative ring A together with

an embedding of rings L ↪→ A. For L a field and R ⊂ Lϑ a subset, we write µ(R) := |R|
|L|ϑ .
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2.1 Lagrange and Monomial Forms

We review various normal forms for multilinear polynomials, following [DP23, § 2.1]. An ℓ-variate polynomial
in K[X0, . . . , Xℓ−1] is multilinear if each of its indeterminates appears with individual degree at most 1; we
write K[X0, . . . , Xℓ−1]

⪯1 for the set of multilinear polynomials over K in ℓ indeterminates. Clearly, the set
of monomials (1, X0, X1, X0 · X1, . . . , X0 · · · · · Xℓ−1) yields a K-basis for K[X0, . . . , Xℓ−1]

⪯1; we call this
basis the multilinear monomial basis in ℓ variables.

We introduce the 2 · ℓ-variate polynomial

ẽq(X0, . . . , Xℓ−1, Y0, . . . , Yℓ−1) :=

ℓ−1∏
i=0

(1−Xi) · (1− Yi) +Xi · Yi.

It is essentially the content of Thaler [Tha22, Fact. 3.5]) that the set (ẽq(X0, . . . , Xℓ−1, v0, . . . , vℓ−1))v∈Bℓ

yields a K-basis of the space K[X0, . . . , Xℓ−1]
⪯1.

For each fixed (r0, . . . , rℓ−1) ∈ Lℓ, the vector (ẽq(r0, . . . , rℓ−1, v0, . . . , vℓ−1))v∈Bℓ
takes the form(

ℓ−1∏
i=0

ri · vi + (1− ri) · (1− vi)

)
v∈Bℓ

= ((1− r0) · · · · · (1− rℓ−1), . . . , r0 · · · · · rℓ−1).

We call this vector the tensor product expansion of the point (r0, . . . , rℓ−1) ∈ Lℓ, and denote it by
⊗ℓ−1

i=0(1−
ri, ri). We note that this latter vector can be computed in Θ(2ℓ) time (see e.g. [Tha22, Lem. 3.8]).

As a notational device, we introduce the further 2 · ℓ-variate polynomial:

m̃on(X0, . . . , Xℓ−1, Y0, . . . , Yℓ−1) :=

ℓ−1∏
i=0

1 + (Xi − 1) · Yi;

we note that (m̃on(X0, . . . , Xℓ−1, v0, . . . , vℓ−1))v∈Bℓ
yields the multilinear monomial basis in ℓ indeterminates.

2.2 Error-Correcting Codes

We recall details on codes, referring throughout to Guruswami [Gur06]. A code of block length n over the
alphabet Σ is a subset of Σn. In Σn, we write d for the Hamming distance between two vectors (i.e., the
number of components at which they differ). We fix a field L. A linear [n, k, d]-code over L is a k-dimensional
linear subspace C ⊂ Ln for which d(v0, v1) ≥ d holds for each unequal pair of elements v0 and v1 of C. The
unique decoding radius of the [n, k, d]-code C ⊂ Ln is

⌊
d−1
2

⌋
; indeed, we note that, for each word u ∈ Ln, at

most one codeword v ∈ C satisfies d(u, v) < d
2 (this fact is a direct consequence of the triangle inequality).

For u ∈ Ln arbitrary, we write d(u,C) := minv∈C d(u, v) for the distance between u and the code C.
Given a linear code C ⊂ Ln and an integer m ≥ 1, we have C’s m-fold interleaved code, defined as the

subset Cm ⊂ (Ln)
m ∼= (Lm)

n
. We understand this latter set as a length-n block code over the alphabet

Lm. In particular, its elements are essentially matrices in Lm×n each of whose rows is a C-element. We
write matrices (ui)

m−1
i=0 ∈ Lm×n row-wise. By definition of Cm, two matrices in Lm×n differ at a column if

they differ at any of that column’s components. That a matrix (ui)
m−1
i=0 ∈ Lm×n is within distance e to the

code Cm—in which event we write dm
(
(ui)

m−1
i=0 , Cm

)
≤ e—thus entails precisely that there exists a subset

D := ∆m
(
(ui)

m−1
i=0 , Cm

)
, say, of {0, . . . , n− 1}, of size at most e, for which, for each i ∈ {0, . . . ,m− 1}, the

row ui admits a codeword vi ∈ C for which ui|{0,...,n−1}\D = vi|{0,...,n−1}\D.

We recall Reed–Solomon codes (see [Gur06, Def. 2.3]). For notational convenience, we consider only
Reed–Solomon codes whose message and block lengths are powers of two. We fix nonnegative message

length and rate parameters ℓ and R, as well as a subset S ⊂ L of size 2ℓ+R. We write C ⊂ L2ℓ+R
for

the Reed–Solomon code RSL,S [2
ℓ+R, 2ℓ] is defined to be the set

{
(P (x))x∈S

∣∣∣ P (X) ∈ L[X]≺2ℓ
}
; that is,

RSL,S [2
ℓ+R, 2ℓ] is the set of those 2ℓ+R-tuples which arise as the evaluations of some polynomial of degree

less than 2ℓ over S. The distance of RSL,S [n, k] is d = 2ℓ+R − 2ℓ + 1. We write Enc : L[X]≺2ℓ → LS for the
encoding function which maps a polynomial P (X) of degree less than 2ℓ to its tuple of evaluations over S.
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We recall the Berlekamp–Welch algorithm for Reed–Solomon decoding within the unique decoding radius
(see [Gur06, Rem. 4]).

Algorithm 1 (Berlekamp–Welch [Gur06, Rem. 4].)

1: procedure DecodeReedSolomon
(
(f(x))x∈S

)
2: allocate A(X) and B(X) of degrees

⌊
d−1
2

⌋
and 2ℓ+R−

⌊
d−1
2

⌋
−1; write Q(X,Y ) := A(X) ·Y +B(X).

3: interpret the equalities Q(x, f(x)) = 0, for x ∈ S, as a system of 2ℓ+R equations in 2ℓ+R+1 unknowns.
4: by finding a nonzero solution of this linear system, obtain values for the polynomials A(X) and B(X).
5: if A(X) ∤ B(X) then return ⊥.
6: write P (X) := −B(X)/A(X).
7: return P (X).

We note that the unknown polynomial Q(X,Y ) above indeed has
⌊
d−1
2

⌋
+1+ 2ℓ+R −

⌊
d−1
2

⌋
= 2ℓ+R +1

coefficients, as required.
Upon being given an input word f : S → L for which d(f, C) < d

2 , Algorithm 1 necessarily returns the

unique polynomial P (X) of degree less than 2ℓ for which d(f,Enc(P (X))) < d
2 holds. Indeed, this is simply

the correctness of Berlekamp–Welch algorithm on input assumed to reside within the unique decoding radius;
we refer to [Gur06, Rem. 4] for a thorough treatment. We discuss this algorithm further in Remark ?? below.

2.3 The Novel Polynomial Basis

We recall in detail the novel polynomial basis of Lin, Chung and Han [LCH14, § II.]. We fix again a
binary field L, of degree r, say, over F2. For our purposes, a subspace polynomial over L is a polynomial
W (X) ∈ L[X] which splits completely over L, and whose roots, each of multiplicity 1, form an F2-linear
subspace of L. For a detailed treatment of subspace polynomials, we refer to Berlekamp [Ber15, § 11]. We
recall that, for each subspace polynomial W (X) ∈ L[X], the evaluation map W : L→ L is F2-linear.

For each fixed ℓ ∈ {0, . . . , r−1}, the set L[X]≺2ℓ of polynomials of degree less than 2ℓ is a 2ℓ-dimensional

vector space over L. Of course, the set (1, X,X2, . . . , X2ℓ−1) yields a natural L-basis of L[X]≺2ℓ . Lin,

Chung and Han define a further L-basis of L[X]≺2ℓ—called the novel polynomial basis—in the following
way. We fix once and for all an F2-basis (β0, . . . , βr−1) of L (which we view as an r-dimensional vector
space over its subfield F2). For each i ∈ {0, . . . , ℓ − 1}, we write Ui := ⟨β0, . . . , βi−1⟩ for the F2-linear span
of the prefix (β0, . . . , βi−1), and define the subspace vanishing polynomial Wi(X) :=

∏
u∈Ui

X − u, as well

as its normalized variant Ŵi(X) := Wi(X)
Wi(βi)

(we note that βi ̸∈ Ui, so that Wi(βi) ̸= 0). In words, for each

i ∈ {0, . . . , ℓ − 1}, Wi(X) vanishes precisely on Ui ⊂ L; Ŵi(X) moreover satisfies Ŵi(X)(βi) = 1. Finally,

for each j ∈ {0, . . . , 2ℓ− 1}, we write (j0, . . . , jℓ−1) for the bits of j—so that j =
∑ℓ−1

k=0 2
k · jk holds—and set

Xj(X) :=
∏ℓ−1

i=0 Ŵi(X)ji . We note that, for each j ∈ {0, . . . , 2ℓ−1}, Xj(X) is of degree j. We conclude that

the change-of-basis matrix from (1, X, . . . ,X2ℓ−1) to (X0(X), X1(X), . . . , X2ℓ−1(X)) is triangular (with an

everywhere-nonzero diagonal), so that this latter list indeed yields a L-basis of L[X]≺2ℓ .
As in Subsection 2.4 above, we now fix moreover a rate parameter R ∈ {1, . . . , r− ℓ} and an F2-subspace

S ⊂ L of dimension ℓ +R; now, we require moreover that S contain the F2-subspace Uℓ := ⟨β0, . . . , βℓ−1⟩.
For each subspace S ⊂ L of this form, Lin, Chung and Han [LCH14, § III.]’s Θ(ℓ·2ℓ+R)-time algorithm serves

to compute, on input the polynomial P (X) :=
∑2ℓ−1

j=0 aj ·Xj(X) (expressed in coordinates with respect to
the novel polynomial basis), its encoding (P (x))x∈S .

In Remark 3.15 below, we suggest a new interpretation of Lin, Chung and Han’s algorithm [LCH14, § III.],
based on the techniques of this paper. For now, for self-containedness, we record here the key algorithm in
full, in our notation. We note that Algorithm 2’s equivalence with [LCH14, § III.] is not obvious; we explain
the correctness of our description in Remark 3.15 below. In what follows, we fix as above the degree and

rate parameters ℓ and R. We finally fix a polynomial P (X) =
∑2ℓ−1

j=0 aj ·Xj(X); we write b : Bℓ+R → L for

(aj)
2ℓ−1
j=0 ’s 2R-fold tiling; in other words, for each v ∈ Bℓ+R, we set b(v0, . . . , vℓ+R−1) := a{(v0,...,vℓ−1)}.

7



Algorithm 2 (Lin–Chung–Han [LCH14, § III.].)

1: procedure AdditiveNTT
(
(b(v))v∈Bℓ+R

)
2: for i ∈ {ℓ− 1, . . . , 0} (i.e., in downward order) do
3: for (u, v) ∈ Bℓ+R−i−1 × Bi do
4: define the twiddle factor t :=

∑ℓ+R−i−2
k=0 uk · Ŵi(βi+1+k).

5: overwrite first b(u ∥ 0 ∥ v) += t · b(u ∥ 1 ∥ v) and then b(u ∥ 1 ∥ v) += b(u ∥ 0 ∥ v).
6: return (b(v))v∈Bℓ+R

.

We note that the twiddle factor t above depends only on u, and not on v, and can be reused accordingly.
Finally, in the final return statement above, we implicitly identify Bℓ+R ∼= S using the standard basis
β0, . . . , βℓ+R−1 of the latter space (see also Subsection 3.1 below).

2.4 FRI

We recall Ben-Sasson, Bentov, Horesh and Riabzev’s [BBHR18] Fast Reed–Solomon Interactive Oracle Proof
of Proximity (FRI). For L a binary field, and size and rate parameters ℓ and R fixed, FRI yields an IOP of
proximity for the Reed–Solomon code RSL,S [2

ℓ+R, 2ℓ]; here, we require that S ⊂ L be an F2-linear subspace
(of dimension ℓ + R, of course). That is, FRI yields an IOP for the claim whereby some oracle [f ]—i.e.,

representing a function f : S → L—is close to a codeword (P (x))x∈S (here, P (X) ∈ L[X]≺2ℓ represents

a polynomial of degree less than 2ℓ). FRI’s verifier complexity is polylogarithmic in 2ℓ. We abbreviate
ρ := 2−R, so that RSL,S [2

ℓ+R, 2ℓ] is of rate ρ.
Internally, FRI makes use of a folding constant η—which we fix to be 1—as well as a fixed, global sequence

of subspaces and maps of the form:

S = S(0) q(0)−−→ S(1) q(1)−−→ S(2) q(2)−−→ · · · q(ℓ−1)

−−−−→ S(ℓ). (1)

Here, for each i ∈ {0, . . . , ℓ − 1}, q(i) is a subspace polynomial of degree 2η = 2, whose kernel, which is
1-dimensional, is moreover contained in S(i). By linear-algebraic considerations, we conclude that S(i+1)’s
F2-dimension is 1 less than S(i)’s is; inductively, we conclude that each S(i) is of dimension ℓ+R− i.

2.5 Tensor Products of Fields

We record algebraic preliminaries, referring throughout to Lang [Lan02, Ch. XVI]. We fix a field extension
L / K. We define the tensor product A := L ⊗K L of L with itself over K as in [Lan02, Ch. XVI § 6].
Here, we view L as a K-algebra; the resulting object A := L ⊗K L is likewise a K-algebra. We would like
to sincerely thank Benjamin Wilson for first suggesting to us this tensor-theoretic perspective on the tower
algebra [DP23, § 3.4].

We recall from [Lan02, Ch. XVI, § 1] the natural K-bilinear mapping φ : L× L→ L⊗K L which sends
φ : (α0, α1) 7→ α0⊗α1. We write φ0 and φ1 for φ’s restrictions to the subsets L×{1} and {1}×L of L×L,
and moreover identify these latter subsets with L. That is, we write φ0 : α 7→ α⊗1 and φ1 : α 7→ 1⊗α, both
understood as maps L→ A. We claim that these maps are injective (i.e., that they’re not identically zero).
We follow Lang [Lan02, Ch. XVI, § 2, Prop. 2.3]. The mapping f : L×L→ L sending f : (α0, α1) 7→ α0 ·α1

is K-bilinear; by the universal property of the tensor product, f induces a K-linear map h : L ⊗K L → L,
for which, for each α ∈ L, h(α⊗ 1) = f(α, 1) = α · 1 = α holds; we see that α⊗ 1 = 0 if and only if α = 0.

We assume once and for all that deg(L /K) is a power of 2, say 2κ. We fix a K-basis (βv)v∈Bκ
of L. We

moreover impose the simplifying assumption whereby β(0,...,0) = 1. By [Lan02, Ch. XVI, § 2, Cor. 2.4], the
set (βu ⊗ βv)(u,v)∈Bκ×Bκ

yields a K-basis of A. We thus see that each A-element is, concretely, a 2κ × 2κ

array of K-elements. For each a ∈ A given, there is a unique 2κ-tuple of L-elements (av)v∈Bκ for which
a =

∑
v∈Bκ

av ⊗ βv holds. (Indeed, this is just [Lan02, Ch. XVI, § 2, Prop. 2.3].) Similarly, there is a
unique 2κ-tuple of L-elements (au)u∈Bκ

for which a =
∑

u∈Bκ
βu ⊗ au holds. We call the tuples (av)v∈Bκ

and (au)u∈Bκ
a’s column and row representations, respectively.

We depict the tensor algebra in Figure 1 below.
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A2κ

⟨1 ⊗ 1⟩ ⟨1 ⊗ β1⟩ ⟨1 ⊗ β2κ−1⟩

⟨1 ⊗ 1⟩

⟨β1 ⊗ 1⟩

⟨β2κ−1 ⊗ 1⟩

φ0(L)

φ1(L)

2κ

K K K

K

...

K · · · K


Figure 1: A depiction of our “tensor algebra” data structure.

The maps φ0 and φ1 respectively embed L into A’s left-hand column and top row. That is, the image
of φ0 : L ↪→ A is the set of K-arrays which are 0 except in their respective left-most columns; the image of
φ1 : L ↪→ A is the set of K-arrays which are 0 outside of their top rows. We finally characterize concretely
the products φ0(α) · a and φ1(α) · a, for elements α ∈ L and a ∈ A arbitrary. It is a straightforward to
show that φ0(α) · a =

∑
v∈Bκ

(α · av) ⊗ βv and φ1(α) · a =
∑

u∈Bκ
βu ⊗ (α · au) both hold; here, we again

write (av)v∈Bκ
and (au)u∈Bκ

for a’s column and row representations. That is, φ0(α) · a differs from a by
column-wise multiplication by α; φ1(α) · a differs from a by row-wise multiplication by α. In short, φ0

operates on columns; φ1 operates on rows.
Below, the tensor algebra A := L⊗K L plays a critical role in our “ring-switching” technique (see Section

4). For now, we record a simple polynomial-packing operation, which is implicit in [DP23, § 3.4]. We obtain
a natural K-isomorphism K2κ → L via the basis combination procedure (αv)v∈Bκ

→
∑

v∈Bκ
αv · βv. By

applying this map in “chunks”, we can replace any ℓ-variate K-polynomial by an ℓ−κ-variate L-polynomial.

Definition 2.1. For each extension L/K, withK-basis (βv)v∈Bκ
say, and each multilinear t(X0, . . . , Xℓ−1) ∈

K[X0, . . . , Xℓ−1]
⪯1, we write ℓ′ := ℓ − κ, and define the packed polynomial t′(X0, . . . , Xℓ′−1) ∈

L[X0, . . . , Xℓ′−1]
⪯1 by declaring, for each v ∈ Bℓ′ , that t′ : v 7→

∑
u∈Bκ

t(u0, . . . , uκ−1, v0, . . . , vℓ′−1) · βu.

Definition 2.1 replaces each little-endian chunk—consisting of 2κ adjacent K-elements—of
t(X0, . . . , Xℓ−1)’s Lagrange coefficient vector with a single L-element, by basis-combining that chunk.

We emphasize that Definition 2.1’s packing procedure is reversible (see also [DP23, Thm. 3.9]); that is,
t′(X0, . . . , Xℓ′−1) can be “unpacked”. We note that Definition 2.1 is essentially the same as [DP23, § 4.3].

We finally write φ1(t
′)(X0, . . . , Xℓ′−1) ∈ A[X0, . . . , Xℓ′−1] for the result of embedding t′(X0, . . . , Xℓ′−1),

componentwise, along the inclusion φ1 : L ↪→ A.

2.6 Binary Towers

We recall towers of binary fields, referring throughout to [DP23, § 2.3]. For simplicity, we present only
Wiedemann’s tower [Wie88]; on the other hand, our results go through without change on other binary
towers (cf. e.g. the Cantor tower given in Li et al. [Li+18, § 2.1]). That is, we set T0 := F2 and T1 :=
F2[X0]/(X

2
0 + X0 + 1), as well as, for each ι > 1, Tι := Tι−1/(X

2
ι−1 + Xι−2 · Xι−1 + 1). Fan and Paar

[FP97] observe that the multiplication and inversion operations in Wiedemann’s tower admit O
(
2log(3)·ι

)
-

time algorithms.
The monomial F2-basis of the binary tower Tτ is (βv)v∈Bτ

:= (m̃on(X0, . . . , Xτ−1, v0, . . . , vτ−1))v∈Bτ
.

More generally, for each pair of integers ι ≥ 0 and τ ≥ ι, the set (m̃on(Xι, . . . , Xτ−1, v0, . . . , vτ−ι−1)v∈Bτ−ι

likewise yields a Tι-basis of Tτ ; we again write (βv)v∈Bτ−ι
for this basis.

The tower algebra data structure of Diamond and Posen [DP23, § 3.4] is essentially nothing other than
Tτ ⊗Tι Tι+κ. We use tensor-notation in this work; we thus avoid referring to that algebra directly. In this
work, we moreover only consider “square” tensors (i.e., of the same field with itself). That work’s “constant”
and “synthetic” embeddings correspond to our embeddings φ0 and φ1, respectively.
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2.7 Proximity Gaps

We turn to proximity gaps, following Ben-Sasson, et al. and [Ben+23] and Diamond and Posen [DP24]. As
above, we fix a Reed–Solomon code C := RSL,S [2

ℓ+R, 2ℓ]; we moreover write d := 2ℓ+R − 2ℓ + 1 for C’s
distance. In the following results, for notational convenience, we abbreviate n := 2ℓ+R for the Reed–Solomon
code C’s block length.

Theorem 2.2. Fix a proximity parameter e ∈
{
0, . . . ,

⌊
d−1
2

⌋}
. If the words u0 and u1 in L2ℓ+R

satisfy

Pr
r∈L

[d((1− r) · u0 + r · u1, C) ≤ e] >
n

|L|
,

then d2
(
(ui)

1
i=0, C

2
)
≤ e.

Proof. This result is exactly [Ben+23, Thm. 4.1], though we use a slightly different parameterization; that
is, our line is of the form (1− r0) · u0 + r0 · u1, while that result considers lines of the form u′

0 + r0 · u′
1. The

difference between these conventions is immaterial, up to the reparameterization which sets u′
0 := u0 and

u′
1 := u1 − u0 (this reparameterization moreover doesn’t affect the conclusion).

In the following result, we fix an integer ϑ > 1. The following analogue of Theorem 2.2 takes place in the

interleaved code C2ϑ−1

.

Theorem 2.3. Fix a proximity parameter e ∈
{
0, . . . ,

⌊
d−1
2

⌋}
. If the words U0 and U1 in L2ϑ−1×2ℓ+R

satisfy

Pr
r∈L

[
d2

ϑ−1
(
(1− r) · U0 + r · U1, C

2ϑ−1
)
≤ e
]
>

n

|L|
,

then d2
(
(Ui)

1
i=0,

(
C2ϑ−1

)2)
≤ e.

Proof. The theorem’s hypothesis implies that at least two parameters r ∈ L—say, r∗0 and r∗1—satisfy

d2
ϑ−1
(
(1− r) · U0 + r · U1, C

2ϑ−1
)
≤ e. We may therefore assume, up to replacing U0 := (1−r∗0) ·U0+r∗0 ·U1

and U1 := (1 − r∗1) · U0 + r∗1 · U1, that d2
ϑ−1
(
U0, C

2ϑ−1
)
≤ e and d2

ϑ−1
(
U1, C

2ϑ−1
)
≤ e both hold. We fix

interleaved codewords V0
∗ and V1

∗ in C2ϑ−1

for which d2
ϑ−1

(U0, V0
∗) ≤ e and d2

ϑ−1

(U1, V1
∗) ≤ e hold; we

moreover write E∗
0 := ∆2ϑ−1

(U0, V0
∗) and E∗

1 := ∆2ϑ−1

(U1, V1
∗).

We write U0 = (u0,i)
2ϑ−1−1
i=0 and U1 = (u1,i)

2ϑ−1−1
i=0 for the rows of the matrices of the theorem’s hypothesis.

For each individual row i ∈ {0, . . . , 2ϑ−1−1}, the theorem’s hypothesis implies a fortiori that the hypothesis
of Theorem 2.2 is fulfilled with respect to the affine line (1−r) ·u0,i+r ·u1,i. That theorem yields codewords

v0,i and v1,i in C and a subset Ei := ∆2
(
(uk,i)

1
k=0, C

2
)
of {0, . . . , 2ℓ+R − 1}, of cardinality at most e, for

which, for each j ̸∈ Ei (u0,i)j = (v0,i)j and (u1,i)j = (v1,i)j both hold. We write V0 := (v0,i)
2ϑ−1−1
i=0 and

V1 = (v1,i)
2ϑ−1−1
i=0 . Certainly, ∆2

(
(Ui)

1
i=0, (Vi)

1
i=0

)
⊂
⋃2ϑ−1−1

i=0 Ei holds; indeed, for each j ̸∈
⋃2ϑ−1−1

i=0 Ei,

by definition of the sets Ei, we have (ub,i)j = (vb,i)j for each b ∈ {0, 1} and each i ∈ {0, . . . , 2ϑ−1 − 1}.

On the other hand, we claim that
⋃2ϑ−1−1

i=0 Ei ⊂ E∗
0 ∩ E∗

1 . This claim suffices to prove the theorem, since
|E∗

0 ∩ E∗
1 | ≤ e.

To prove the claim, we first argue that both V0 = V0
∗ and V1 = V1

∗ hold. To this end, we fix indices b ∈
{0, 1} and i ∈ {0, . . . , 2ϑ−1 − 1} arbitrarily. The triangle inequality implies that d(vb,i, vb,i

∗) ≤ d(vb,i, ub,i) +
d(ub,i, vb,i

∗); the former distance is at most |Ei| ≤ e, while the latter distance is at most |E∗
b | ≤ e. We

conclude that d(vb,i, vb,i
∗) ≤ 2 · e < d, so that vb,i = vb,i

∗, as required.
We now let b ∈ {0, 1} be arbitrary; we moreover fix an index j ̸∈ E∗

b . By definition of E∗
b , j satisfies

(ub,i)j = (vb,i
∗)j for each i ∈ {0, . . . , 2ϑ−1 − 1}; exploiting the equality Vb = Vb

∗ just proven, we conclude

in turn that (ub,i)j = (vb,i)j holds for each i ∈ {0, . . . , 2ϑ−1 − 1}. By definition of the sets Ei, we conclude

finally in turn that j ̸∈
⋃2ϑ−1−1

i=0 Ei holds; this argument proves that
⋃2ϑ−1−1

i=0 Ei ⊂ E∗
b , as required.
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We note that the doubly interleaved code
(
C2ϑ−1

)2
of Theorem 2.3’s conclusion is the same as C2ϑ .

Theorem 2.4. Fix a proximity parameter e ∈
{
0, . . . ,

⌊
d−1
2

⌋}
. If the words u0, . . . , u2ϑ−1 in L2ℓ+R

satisfy

Pr
(r0,...,rϑ−1)∈Lϑ

d
[ ⊗ϑ−1

i=0 (1− ri, ri)
]
·

 u0

...

u2ϑ−1

, C
 ≤ e

 > ϑ · n

|L|
,

then dm
(
(ui)

2ϑ−1
i=0 , C2ϑ

)
≤ e.

Proof. We prove the result by induction on ϑ. In the base case ϑ = 1, the theorem’s statement is exactly
Theorem 2.2. We turn to the case ϑ > 1. That the case ϑ = 1 of the theorem implies the case ϑ > 1 is
essentially the content of [DP24, Thm. 2]. We present a variant of that result which eliminates a certain
factor of 2 present in that result’s soundness bound (see also [DP24, Rem. 3]). We would like to sincerely
thank Guillermo Angeris, Alex Evans and Gyumin Roh for suggesting to us this argument.

We write U0 and U1 for (ui)
2ϑ−1
i=0 ’s lower and upper halves. We first note a variant of the recursive

substructure given in [DP24, Thm. 2]:

[ ⊗ϑ−1
i=0 (1− ri, ri)

]
·

 u0

...

u2ϑ−1

 =
[ ⊗ϑ−2

i=0 (1− ri, ri)
]
·

(1− rϑ−1) · U0

+

rϑ−1 · U1

.

For each rϑ−1 ∈ L, we moreover abbreviate:

p(rϑ−1) := Pr
(r0,...,rϑ−2)∈Lϑ−1

d
[ ⊗ϑ−2

i=0 (1− ri, ri)
]
·

(1− rϑ−1) · U0 + rϑ−1 · U1

, C
 ≤ e

.
we finally write R∗ :=

{
rϑ−1 ∈ L

∣∣∣ p(rϑ−1) > (ϑ− 1) · n
|L|

}
. We first claim that |R∗| > n holds. Indeed,

under the hypothesis of the theorem, we have the following probability decomposition, which evokes [DP24,
Lem. 2] (though it proceeds in the “opposite direction”):

ϑ · n

|L|
< Pr

(r0,...,rϑ−1)∈Lϑ

d
[ ⊗ϑ−1

i=0 (1− ri, ri)
]
·

 u0

...

u2ϑ−1

, C
 ≤ e


= Pr

(r0,...,rϑ−1)∈Lϑ

d
[ ⊗ϑ−2

i=0 (1− ri, ri)
]
·

(1− rϑ−1) · U0 + rϑ−1 · U1

, C
 ≤ e


≤ (ϑ− 1) · n

|L|
+ Pr

rϑ−1∈L
[rϑ−1 ∈ R∗].

By subtraction, this calculation clearly implies that µ(R∗) > n
|L| , as required. To achieve the final step, we

slice the space Lϑ along its last coordinate rϑ−1. For each slice rϑ−1 ∈ L, we upper-bound the proportion

of elements (r0, . . . , rϑ−2) ∈ Lϑ−1 for which d
(⊗ϑ−2

i=0 (1− ri, ri) · ((1− rϑ−1) · U0 + rϑ−1 · U1), C
)
≤ e holds,

either trivially by 1 (if rϑ−1 ∈ R∗) or else by (ϑ− 1) · n
|L| (if rϑ−1 ̸∈ R∗).

We let r∗ϑ−1 ∈ R∗ be arbitrary. By definition of R∗, we note that the hypothesis of this theorem is fulfilled
with respect to the parameter ϑ − 1 and the half-length matrix (1 − r∗ϑ−1) · U0 + r∗ϑ−1 · U1. Applying the

theorem inductively to that matrix, we conclude that d2
ϑ−1
(
(1− r∗ϑ−1) · U0 + r∗ϑ−1 · U1, C

2ϑ−1
)
≤ e holds

for each r∗ϑ−1 ∈ R∗. In view of our above guarantee whereby |R∗| > n, this fact in turn implies that the
hypothesis of Theorem 2.3 is fulfilled with respect to the matrices U0 and U1. Applying that theorem, we

conclude finally that the conclusion of this theorem holds with respect to (ui)
2ϑ−1
i=0 , as required.
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2.8 Security Definitions

We record security definitions. We begin by defining various abstract oracle machines, following [DP23].

FUNCTIONALITY 2.5 (FL
Vec—vector oracle).

An arbitrary alphabet L is given.

• Upon receiving (submit,m, f) from P, where m ∈ N and f ∈ LBm , output (receipt, L, [f ]) to all
parties, where [f ] is some unique handle onto the vector f .

• Upon receiving (query, [f ], v) from V, where v ∈ Bm, send V (result, f(v)).

FUNCTIONALITY 2.6 (Fλ,ℓ
Poly—polynomial oracle).

A security parameter λ ∈ N and a number-of-variables parameter ℓ ∈ N are given. The functionality
constructs and fixes a field L (allowed to depend on λ and ℓ).

• Upon receiving (submit, t) from P, where t(X0, . . . , Xℓ−1) ∈ L[X0, . . . , Xℓ−1]
⪯1, output

(receipt, [t]) to all parties, where [t] is some unique handle onto the polynomial t.

• On input (query, [t], r) from V, where r ∈ Lℓ, send V (result, t(r0, . . . , rℓ−1)).

FUNCTIONALITY 2.7 (Fλ,K,ℓ
SFPoly—small-field polynomial oracle).

A security parameter λ ∈ N, a number-of-variables parameter ℓ ∈ N, and a ground field K are given.
The functionality constructs and fixes a field extension L / K (allowed to depend on λ, ℓ and K).

• Upon receiving (submit, t) from P, where t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]
⪯1, output

(receipt, [t]) to all parties, where [t] is some unique handle onto the polynomial t.

• On input (query, [t], r) from V, where r ∈ Lℓ, send V (result, t(r0, . . . , rℓ−1)).

An IOP, by definition, is a protocol in which P and V may make free use of the abstract Functionality
2.5; in a PIOP, the parties may instead use Functionality 2.6. Interactive oracle polynomial commitment
schemes (IOPCSs) serve to bridge these two models. They’re IOPs; that is, they operate within the abstract
computational model in which Functionality 2.5 is assumed to exist. On the other hand, they “emulate” the
more-powerful Functionality 2.6, in the sense that each given PIOP—by inlining in place of each of its calls
to Functionality 2.6 an execution of the IOPCS—stands to yield an equivalently secure IOP.

Our approach contrasts with that taken by various previous works (we note e.g. Diamond and Posen
[DP23] and Setty [Set20]). Those works opt to define polynomial commitment schemes in the plain (random
oracle) model, noting that a plain PCS, upon being inlined into a secure PIOP, yields a sound argument.
This latter approach absorbs the Merklization process both into the PCS and into the composition theorem.
Our approach bypasses this technicality, and separates the relevant concerns. Indeed, given a PIOP, we
may first inline our IOPCS into it; on the resulting IOP, we may finally invoke generically the compiler
of Ben-Sasson, Chiesa and Spooner [BCS16]. This “two-step” compilation process serves to transform any
secure PIOP into a secure argument in the random oracle model.

We also define the security of IOPCS differently than do [Set20, Def. 2.11] and [DP23, § 3.5]; our definition
is closer to Marlin’s [Chi+20, Def. 6.2]. Our definition below requires that E extract t immediately after seeing
A’s commitment (that is, before seeing r, or observing any evaluation proofs on the part of A). This work’s
IOPCS constructions indeed meet this stricter requirement, owing essentially to their use of Reed–Solomon
codes, which are efficiently decodable. (In the setting of general—that is, not-necessarily-decodable—codes,
extraction becomes much more complicated, and requires rewinding.) On the other hand, our strict rendition
of the IOPCS notion makes its key composability property—that is, the fact whereby a secure IOPCS, upon
being inlined into a secure PIOP, yields a secure IOP—easier to prove. (We believe that this composability
property should, on the other hand, nonetheless hold even under various weakenings of Definition 2.9.)

12



Definition 2.8. An interactive oracle polynomial commitment scheme (IOPCS) is a tuple of algorithms
Π = (Setup,Commit,P,V) with the following syntax:

• params← Π.Setup(1λ, ℓ). On input the security parameter λ ∈ N and a number-of-variables parameter
ℓ ∈ N, outputs params, which includes, among other things, a field L.

• [f ] ← Π.Commit(params, t). On input params and a multilinear polynomial t(X0, . . . , Xℓ−1) ∈
L[X0, . . . , Xℓ−1]

⪯1, outputs a handle [f ] to a vector.

• b ← ⟨P([f ], s, r; t),V([f ], s, r)⟩ is an IOP, in which the parties may jointly leverage the machine FL
Vec.

The parties have as common input a vector handle [f ], an evaluation point (r0, . . . , rℓ−1) ∈ Lℓ, and
a claimed evaluation s ∈ L. P has as further input a multilinear polynomial t(X0, . . . , Xℓ−1) ∈
K[X0, . . . , Xℓ−1]

⪯1. V outputs a success bit b ∈ {0, 1}.

The IOPCS Π is complete if the obvious correctness property holds. That is, for each multilin-
ear polynomial t(X0, . . . , Xℓ−1) ∈ L[X0, . . . , Xℓ−1]

⪯1 and each honestly generated commitment [f ] ←
Π.Commit(params, t), it should hold that, for each r ∈ Lℓ, setting s := t(r0, . . . , rℓ−1), the honest prover
algorithm induces the verifier to accept with probability 1, so that ⟨P([f ], s, r; t),V([f ], s, r)⟩ = 1.

We now define the security of IOPCSs.

Definition 2.9. For each interactive oracle polynomial commitment scheme Π, security parameter λ ∈ N,
and number-of-variables parameter ℓ ∈ N, PPT query sampler Q, PPT adversary A, and PPT emulator E ,
we define the following experiment:

• The experimenter samples params← Π.Setup(1λ, ℓ), and gives params, including L, to A and E .

• The adversary, after interacting arbitrarily with the vector oracle, outputs a handle [f ]← A(params).

• On input A’s record of interactions with the oracle, E outputs t(X0, . . . , Xℓ−1) ∈ L[X0, . . . , Xℓ−1]
⪯1.

• The query sampler outputs (r0, . . . , rℓ−1)← Q(params); A responds with an evaluation claim s← A(r).

• The experimenter defines the following two random bits:

– By running the evaluation IOP with A as V, obtain the bit b← ⟨A(s, r),V([f ], s, r)⟩.

– Obtain the further bit b′ := t(r0, . . . , rℓ−1)
?
= s.

The IOPCS Π is secure if, for each PPT adversary A, there is a PPT emulator E and a negligible function
negl such that, for each λ ∈ N, each ℓ ∈ N, and each PPT query sampler Q, Pr[b = 1 ∧ b′ = 0] ≤ negl(λ).

We finally record a variant of Definition 2.8 in which the parties may fix a small coefficient field K.

Definition 2.10. A small-field interactive oracle polynomial commitment scheme (small-field IOPCS) is a
tuple of algorithms Π = (Setup,Commit,P,V) with the following syntax:

• params← Π.Setup(1λ, ℓ,K). On input the security parameter λ ∈ N, a number-of-variables parameter
ℓ ∈ N and a field K, outputs params, which includes, among other things, a field extension L / K.

• [f ] ← Π.Commit(params, t). On input params and a multilinear polynomial t(X0, . . . , Xℓ−1) ∈
K[X0, . . . , Xℓ−1]

⪯1, outputs a handle [f ] to a vector.

• b ← ⟨P([f ], s, r; t),V([f ], s, r)⟩ is an IOP, in which the parties may jointly leverage the machine FL
Vec.

The parties have as common input a vector handle [f ], an evaluation point (r0, . . . , rℓ−1) ∈ Lℓ, and
a claimed evaluation s ∈ L. P has as further input a multilinear polynomial t(X0, . . . , Xℓ−1) ∈
K[X0, . . . , Xℓ−1]

⪯1. V outputs a success bit b ∈ {0, 1}.

We define the security of small-field IOPCSs Π exactly as in Definition 2.9, except that we require that
E output a polynomial t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]

⪯1.
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3 Simple Binary-Field IOPCS

In this section, we develop a basic form of our main IOPCS (see Definition 2.8). This section’s IOPCS does
not operate over small fields; its goal is essentially to make BaseFold’s IOPCS [ZCF23, § 5] work in the binary
setting. To achieve this, we must develop a degree of machinery. Indeed, we must first use FRI’s binary-field
variant [BBHR18]. In the binary setting, in order to recover the even–odd FRI folding behavior essential
to BaseFold, we must further specialize binary-field FRI. That is, we must carefully choose that protocol’s
codeword domains S(i) ⊂ L (for i ∈ {0, . . . , l}) and its two-to-one collapsing maps q(i) : S(i) → S(i+1) (for
i ∈ {0, . . . , l− 1}). Our choice serves to make FRI compatible with Lin, Chung and Han’s [LCH14] additive
NTT.

3.1 Using FRI in Novel Polynomial Basis

We begin by proposing a specific construction of those subspace polynomials q(0), . . . , q(ℓ−1) invoked internally
by FRI.

Throughout this section, we fix a binary field L, with F2-basis (β0, . . . , βr−1), say, as well as a size
parameter ℓ ∈ {0, . . . , r− 1} and a rate parameter R ∈ {1, . . . , r− ℓ}. We finally recall the (non-normalized)
subspace vanishing polynomials Wi(X) ∈ L[X], for i ∈ {0, . . . , ℓ− 1}, which we now view as F2-linear maps
Wi : L→ L (see Subsection 2.3).

Definition 3.1. We initialize S(0) := ⟨β0, . . . , βℓ+R−1⟩. Moreover, for each i ∈ {0, . . . , ℓ− 1}, we set

q(i) :=
Wi(βi)

2

Wi+1(βi+1)
·X · (X + 1),

as well as, inductively, S(i+1) := im
(
q(i)
∣∣
S(i)

)
.

The following lemma demonstrates that this construction fulfills the template demanded by (1).

Lemma 3.2. For each i ∈ {0, . . . , ℓ− 1}, ker
(
q(i)
)
⊂ S(i) holds.

Proof. We note that, trivially, ker
(
q(i)
)
= {0, 1} for each i ∈ {0, . . . , ℓ − 1}. For each i ∈ {0, . . . , ℓ − 1}, we

claim in fact that the inductive invariant S(i) = im
(
Ŵi

∣∣∣
S(0)

)
holds. Assuming this invariant, the conclusion

of the lemma certainly follows; indeed, we see immediately that 1 = Ŵi(βi), while of course βi ∈ S(0).
It thus suffices to argue that the inductive invariant holds throughout. In the base case i = 0, the

claim is a triviality, since Ŵ0(X) = X is the identity. We thus fix an index i ∈ {0, . . . , ℓ − 1}, and show
that the assignment S(i+1) := im

(
q(i)
∣∣
S(i)

)
preserves the inductive invariant; in other words, we must show

that S(i+1) := im
(
q(i)
∣∣
S(i)

) ?
= im

(
Ŵi+1

∣∣∣
S(0)

)
. Unrolling the assumed inductive invariant on this equality’s

left-hand side, we reduce it in turn to the equality im
(
q(i) ◦ Ŵi

∣∣∣
S(0)

)
?
= im

(
Ŵi+1

∣∣∣
S(0)

)
. This latter equality

itself follows from the following direct calculation:(
q(i) ◦ Ŵi

)
(X) =

Wi(βi)
2

Wi+1(βi)
· Ŵi(X) ·

(
Ŵi(X) + 1

)
(by definition of q(i).)

=
Wi(βi)

2

Wi+1(βi+1)
· Wi(X)

Wi(βi)
· Wi(X) +Wi(βi)

Wi(βi)
(by definition of Ŵi.)

=
Wi(X) · (Wi(X) +Wi(βi))

Wi+1(βi+1)
(cancellation of Wi(βi)

2.)

=
Wi+1(X)

Wi+1(βi+1)
(recursive characterization of Wi+1(X).)

= Ŵi+1(X) (by definition of Ŵi+1(X).)

in the second-to-last step, we exploit the recursive identity Wi+1(X) = Wi(X) · (Wi(X) +Wi(βi)), itself a
basic consequence of the definitions of Wi+1 and Wi and of the linearity of Wi.
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Lemma 3.2 shows that the maps q(0), . . . , q(ℓ−1) and the spaces S(0), . . . , S(ℓ) yield a valid global param-
eterization, suitable for use in FRI.

We extract and state separately a few corollaries of the proof of Lemma 3.2.

Corollary 3.3. For each i ∈ {0, . . . , ℓ}, S(i) = im
(
Ŵi

∣∣∣
S(0)

)
.

Proof. This fact is shown explicitly in the course of Lemma 3.2.

As a further side effect, Lemma 3.2 shows that the polynomials q(0), . . . , q(ℓ−1) collectively “factor” the
normalized subspace polynomials Ŵ0, . . . , Ŵℓ−1, in the following sense:

Corollary 3.4. For each i ∈ {0, . . . , ℓ}, Ŵi = q(i−1) ◦ · · · ◦ q(0).

Proof. This fact admits a simple inductive proof. In the base case i = 0, there’s nothing to prove (the empty
composition is the identity). Letting i ∈ {0, . . . , ℓ − 1} be arbitrary, the proof of Lemma 3.2 shows that

Ŵi+1 = q(i) ◦ Ŵi. Applying induction, we conclude that this latter map in turn equals q(i) ◦ · · · ◦ q(0).

We note finally the following result.

Corollary 3.5. For each i ∈ {0, . . . , ℓ}, the set
(
Ŵi(βi), . . . , Ŵi(βℓ+R−1)

)
is an F2-basis of the space S(i).

Proof. Indeed, the subspace Vi := ⟨βi, . . . , βℓ+R−1⟩ clearly satisfies Vi ⊂ S(0), so that Ŵi(Vi) ⊂ Ŵi(S
(0)),

which itself equals S(i) (by Corollary 3.3). On the other hand, the restriction of Ŵi to Vi is necessarily

injective, since Ŵi’s kernel ⟨β0, . . . , βi−1⟩ intersects Vi trivially. Since S(i) is ℓ + R − i-dimensional, we

conclude by a dimension count that
(
Ŵi(βi), . . . , Ŵi(βℓ+R−1)

)
spans S(i).

The bases
〈
Ŵi(βi), . . . , Ŵi(βℓ+R−1)

〉
= S(i), for i ∈ {0, . . . , ℓ}, allow us to simplify various aspects of

our protocol’s implementation. For example, expressed in coordinates with respect to these bases, each
map q(i) : S(i) → S(i+1) acts simply by projecting away its 0th-indexed component (indeed, for each i ∈
{0, . . . , ℓ − 1}, q(i) maps (Ŵi(βi), . . . , Ŵi(βℓ+R−1)) to (0, Ŵi+1(βi+1), . . . , Ŵi+1(βℓ+R−1))). Similarly, for
each i ∈ {0, . . . , ℓ − 1} and each y ∈ S(i+1), the two L-elements x ∈ S(i) for which q(i)(x) = y differ
precisely at their 0th components, and elsewhere agree with y’s coordinate representation. Below, we often
identify S(i) ∼= Bℓ+R−i as sets, using these bases; moreover, where possible, we eliminate altogether the maps
q(0), . . . , q(ℓ−1) from our descriptions. These measures make our protocol’s description and implementation
more transparent.

3.2 FRI Folding, Revisited

We now introduce a new FRI-like folding mechanism. We recall that FRI [BBHR18, § 3.2] makes use of
a folding arity constant η. FRI stipulates that, to fold a given oracle, the prover interpolate a univariate
polynomial of degree less than 2η on each coset of the given oracle, and finally evaluate the resulting
polynomials collectively at the verifier’s challenge point. We introduce a new, multilinear folding mechanism
as follows. Informally, we stipulate that the verifier send a fixed and positive—and yet arbitrary—number ϑ of
folding challenges, and that the prover fold its oracle, again coset-wise, using a length-2ϑ tensor combination
(in the sense of Subsection 2.1) of the verifier’s challenges over each coset. Below, we again write L for a
binary field.

Definition 3.6. We fix an index i ∈ {0, . . . , ℓ− 1} and a map f (i) : S(i) → L. For each r ∈ L, we define the
map fold

(
f (i), r

)
: S(i+1) → L by setting, for each y ∈ S(i+1):

fold
(
f (i), r

)
: y 7→

[
1− r r

]
·

x1 −x0

−1 1

 ·
f (i)(x0)

f (i)(x1)

,
where we write (x0, x1) := q(i)

−1
({y}) for the fiber of q(i) over y ∈ S(i+1).
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Remark 3.7. Definition 3.6’s quantity fold
(
f (i), r

)
(y) is closely related—and yet not equivalent—to FRI’s

expression interpolant
(
f (i)
∣∣
q(i)−1({y})

)
(r). (FRI’s variant, however, admits a similar matrix expression.) The

essential point is that FRI’s variant induces a monomial fold, as opposed to a Lagrange fold; that is, if we
were to use FRI’s variant instead of our own, then our Lemma 3.13 below would remain true, albeit with

the alternate conclusion P (i+1)(X) =
∑2ℓ−i−1−1

j=0 (a2j + r′i · a2j+1) · X(i+1)
j (X). Our entire theory admits a

parallel variant in this latter setting, though that variant introduces further complications.

We finally record the following iterated extension of Definition 3.6.

Definition 3.8. We fix a positive folding factor ϑ, an index i ∈ {0, . . . , ℓ − ϑ}, and a map f (i) : S(i) → L.
For each tuple (r0, . . . , rϑ−1) ∈ Lϑ, we abbreviate fold

(
f (i), r0, . . . , rϑ−1

)
:= fold

(
· · · fold

(
f (i), r0

)
, · · · , rϑ−1

)
.

We have the following mathematical characterization of this iterated folding operation:

Lemma 3.9. For each positive folding factor ϑ, each index i ∈ {0, . . . , ℓ− ϑ}, and each y ∈ S(i+ϑ), there is
a 2ϑ×2ϑ invertible matrix My,which depends only on y ∈ S(i+ϑ), such that, for each function f (i) : S(i) → L
and each tuple (r0 . . . , rϑ−1) ∈ Lϑ of folding challenges, we have the matrix identity:

fold
(
f (i), r0, . . . , rϑ−1

)
(y) =

[ ⊗ϑ−1
j=0 (1− rj , rj)

]
·

 My

 ·


f (i)(x0)
...

f (i)(x2ϑ−1)

,
where the right-hand vector’s values (x0, . . . , x2ϑ−1) represent the fiber

(
q(i+ϑ−1) ◦ · · · ◦ q(i)

)−1
({y}) ⊂ S(i).

Proof. We prove the result by induction on ϑ. In the base case ϑ = 1, the claim is a tautology, in view of

Definition 3.6. We note that that definition’s matrix

x1 −x0

−1 1

 is invertible, since its determinant x1−x0

is nonzero (and in fact equals 1, a fact we shall use below).
We thus fix a folding factor ϑ > 1, and suppose that the claim holds for ϑ − 1. We write (z0, z1) :=

q(i+ϑ−1)−1
({y}), as well as (x0, . . . , x2ϑ−1) :=

(
q(i+ϑ−1) ◦ · · · ◦ q(i)

)−1
({y}). Unwinding Definition 3.8, we

recursively express the relevant quantity fold
(
f (i), r0, . . . , rϑ−1

)
(y)—which, for typographical reasons, we call

f—in the following way:

f =
[
1− rϑ−1 rϑ−1

]
·

[
z1 −z0

−1 1

]
·

[
fold

(
f (i), r0, . . . , rϑ−2

)
(z0)

fold
(
f (i), r0, . . . , rϑ−2

)
(z1)

]

=
[
1− rϑ−1 rϑ−1

]
·
 z1 −z0

−1 1

 ·

 ⊗ϑ−2
j=0 (1− rj , rj) ⊗ϑ−2

j=0 (1− rj , rj)


︸ ︷︷ ︸

these matrices may be interchanged.

·


Mz0

Mz1

 ·


f (i)(x0)

..

.

f (i)(x2ϑ−1)

.
In the second step above, we apply the inductive hypothesis on both z0 and z1. That hypothesis fur-
nishes the nonsingular, 2ϑ−1 × 2ϑ−1 matrices Mz0 and Mz1 ; we note moreover that the union of the fibers(
q(i+ϑ−2) ◦ · · · ◦ q(i)

)−1
({z0}) and

(
q(i+ϑ−2) ◦ · · · ◦ q(i)

)−1
({z1}) is precisely

(
q(i+ϑ−1) ◦ · · · ◦ q(i)

)−1
({y}). In-

terchanging the two matrices bracketed above, we further reexpress this quantity as:

=
[
1− rϑ−1 rϑ−1

]
·

[ ⊗ϑ−2
j=0 (1− rj , rj) ⊗ϑ−2

j=0 (1− rj , rj)

]
·


diag(z1) diag(−z0)

diag(−1) diag(1)

 ·


Mz0

Mz1

 ·


f (i)(x0)

...

f (i)(x2ϑ−1)

.
By the standard recursive substructure of the tensor product, the product of the left-hand two matrices
equals exactly

⊗ϑ−1
j=0 (1 − rj , rj). On the other hand, the product of the two 2ϑ × 2ϑ nonsingular matrices

above is itself nonsingular, and supplies the required 2ϑ × 2ϑ matrix My.
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We emphasize that, in Lemma 3.9, the matrix My depends only on y ∈ S(i+ϑ)—and of course on ϑ and
i ∈ {0, . . . , ℓ− ϑ}—but not on the map f (i) or the folding challenges (r0, . . . , rϑ−1) ∈ Lϑ.

Remark 3.10. Interestingly, the matrix My of Lemma 3.9 is nothing other than that of the inverse additive
NTT [LCH14, § III. C.] on the coset (x0, . . . , x2ϑ−1); i.e., it’s the matrix which, on input the evaluations of
some polynomial of degree less than 2ϑ on the set of elements (x0, . . . , x2ϑ−1), returns the coefficients—with
respect to the ith-order novel basis (see Remark 3.14 below)—of that polynomial.

3.3 Simple IOPCS

We now present our “simple” IOPCS construction, an instantiation of Definition 2.8 based on BaseFold’s
IOPCS [ZCF23, § 5] and on the material of our Subsections 3.1 and 3.2 above. In order to present a
notationally simpler variant of our protocol, we assume below that ϑ | ℓ; this requirement is not necessary.

CONSTRUCTION 3.11 (Simple Large-Field IOPCS).
We define Π = (Setup,Commit,P,V) as follows.

• params ← Π.Setup(1λ, ℓ). On input 1λ and ℓ, choose a constant, positive rate parameter R ∈ N
and a binary field L/F2 whose degree r (say) over F2 satisfies r = ω(log λ) and r ≥ ℓ+R. Initialize
the vector oracle FL

Vec. Fix a folding factor ϑ | ℓ and a repetition parameter γ = ω(log λ). Fix
an arbitrary F2-basis (β0, . . . , βr−1) of L. Write (X0(X), . . . , X2ℓ−1(X)) for the resulting novel

L-basis of L[X]≺2ℓ , and fix the domains S(0), . . . , S(ℓ) and the polynomials q(0), . . . , q(ℓ−1) as in

Subsection 3.1. Write C(0) ⊂ L2ℓ+R
for the Reed–Solomon code RSL,S(0) [2ℓ+R, 2l].

• [f ] ← Π.Commit(params, t). On input t(X0, . . . , Xℓ−1) ∈ L[X0, . . . , Xℓ−1]
⪯1, use t’s Lagrange

coefficients (t(v))v∈Bℓ
as the coefficients, in the novel polynomial basis, of a univariate polynomial

P (X) :=
∑

v∈Bℓ
t(v) · X{v}(X), say. Using Algorithm 2, compute the Reed–Solomon codeword

f : S(0) → L defined by f : x 7→ P (x). Submit (submit, ℓ+R, f) to the vector oracle FL
Vec. Upon

receiving (receipt, ℓ+R, [f ]) from FL
Vec, output the handle [f ].

We define (P,V) as the following IOP, in which both parties have the common input [f ], s ∈ L, and
(r0, . . . , rℓ−1) ∈ Lℓ, and P has the further input t(X0, . . . , Xℓ−1) ∈ L[X0, . . . , Xℓ−1]

⪯1.

• P writes h(X0, . . . , Xℓ−1) := t(X0, . . . , Xℓ−1) · ẽq(r0, . . . , rℓ−1, X0, . . . , Xℓ−1).

• P and V both abbreviate f (0) := f and s0 := s, and execute the following loop:

1: for i ∈ {0, . . . , ℓ− 1} do
2: P sends V the univariate polynomial hi(X) :=

∑
v∈Bℓ−i−1

h(r′0, . . . , r
′
i−1, X, v0, . . . , vℓ−i−2).

3: V requires si
?
= hi(0) + hi(1). V samples r′i ← L, sets si+1 := hi(r

′
i), and sends P r′i.

4: P defines f (i+1) : S(i+1) → L as the function fold
(
f (i), r′i

)
of Definition 3.6.

5: if i+ 1 = ℓ then P sends c := f (ℓ)(0, . . . , 0) to V.
6: else if ϑ | i+ 1 then P submits (submit, ℓ+R− i− 1, f (i+1)) to the oracle FL

Vec.

• V requires sℓ
?
= c · ẽq(r0, . . . , rℓ−1, r

′
0, . . . , r

′
ℓ−1).

• V executes the following querying procedure:

1: for γ repetitions do
2: V samples v ← Bℓ+R randomly.
3: for i ∈ {0, ϑ, . . . , ℓ− ϑ} (i.e., taking ϑ-sized steps) do
4: for each u ∈ Bϑ, V sends

(
query, [f (i)], (u0, . . . , uϑ−1, vi+ϑ, . . . , vℓ+R−1)

)
to the oracle.

5: if i > 0 then V requires ci
?
= f (i)(vi, . . . , vℓ+R−1).

6: V defines ci+ϑ := fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
(vi+ϑ, . . . , vℓ+R−1).

7: V requires cℓ
?
= c.
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In our commitment procedure above, we give meaning to the commitment of f by implicitly identifying
S(0) ∼= Bℓ+R as sets (as discussed above); similarly, in the prover’s line 6 above, we identify Bℓ+R−i−1

∼=
S(i+1). Conversely, in its lines 4 and 6 above, the verifier must implicitly identify the Bℓ+R−i-elements
(u0, . . . , uϑ−1, vi+ϑ, . . . , vℓ+R−1)u∈Bϑ

with S(i)-elements—and the Bℓ+R−i−ϑ-element (vi+ϑ, . . . , vℓ+R−1)

with an S(i+ϑ)-element—in order to appropriately apply Definition 3.8. We note that, in line 6, V has
precisely the information it needs to compute fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

)
(vi+ϑ, . . . , vℓ+R−1) (namely, the values

of f (i) on the fiber (u0, . . . , uϑ−1, vi+ϑ, . . . , vℓ+R−1)u∈Bϑ

∼=
(
q(i+ϑ−1) ◦ · · · ◦ q(i)

)−1
({(vi+ϑ, . . . , vℓ+R−1)).

The completness of Construction 3.11’s evaluation IOP is not straightforward. For instance, it is simply
not obvious what the folding operation of line 4 does to the coefficients of the low-degree polynomial P (i)(X)
underlying f (i). (Though our folding operation departs slightly from FRI’s—we refer to Remark 3.7 for a
discussion of this fact—the conceptual obstacle is essentially the same.) Indeed, the completeness proof of
generic FRI [BBHR18, § 4.1.1] tells us that the folded function f (i+1) represents the evaluations of some
polynomial P (i+1)(X) of appropriate degree on the domain S(i+1). But which one? The proof of [BBHR18,
§ 4.1.1] fails to constructively answer this question, in that it invokes the generic characteristics of the
multivariate reduction—called Q(i)(X,Y )—of P (i)(X) by Y − q(i)(X). (We refer to e.g. von zur Gathen and
Gerhard [GG13, Alg. 21.11] for a thorough treatment of multivariate division.) It seems simply infeasible to
analyze by hand the execution of the multivariate division algorithm with sufficient fidelity as to determine
with any precision the result P (i+1)(Y ) = Q(i)(r′i, Y ) (though we don’t rule out that a proof could in principle
be achieved by this means).

Instead, we introduce certain, carefully-selected L-bases of the spaces L[X]≺2ℓ−i

, for i ∈ {0, . . . , ℓ} (so-
called “higher-order” novel polynomial bases). As it turns out, the respective coefficients of P (i)(X) and
P (i+1)(X) with respect to these bases are tractably related; their relationship amounts to an even–odd tensor-
fold by the FRI challenge r′i. Proceeding by induction, we obtain the desired characterization of c.

Theorem 3.12. The IOPCS Π = (Setup,Commit,P,V) of Construction 3.11 is complete.

Proof. Provided that P is honest, s = t(r0, . . . , rℓ−1) will hold. Since t(r0 . . . , rℓ−1) =
∑

v∈Bℓ
h(v), this guar-

antee in turn implies that s = s0 =
∑

v∈Bℓ
h(v) will hold, so that, by the completeness of the sumcheck, V’s

checks si
?
= hi(0)+hi(1) will pass. Finally, sℓ = h(r′0, . . . , r

′
ℓ−1) = t(r′0, . . . , r

′
ℓ−1)·ẽq(r0, . . . , rℓ−1, r

′
0, . . . , r

′
l−1)

too will hold. To argue the completeness of V’s check sℓ
?
= c · ẽq(r0, . . . , rℓ−1, r

′
0, . . . , r

′
ℓ−1) above, it thus

suffices to argue that, for P honest, c = t(r′0, . . . , r
′
ℓ−1) will hold.

We introduce a family of further polynomial bases. For each i ∈ {0, . . . , ℓ − 1}, we define the ith-order

subspace vanishing polynomials Ŵ
(i)
0 , . . . , Ŵ

(i)
ℓ−i−1 as the polynomials X, q(i), q(i+1) ◦q(i), . . . , q(ℓ−2) ◦ · · · ◦q(i),

respectively (that is, Ŵ
(i)
k := q(i+k−1)◦· · ·◦q(i), for each k ∈ {0, . . . , ℓ−i−1}). Finally, we define the ith-order

novel polynomial basis by setting X
(i)
j :=

∏ℓ−i−1
k=0 Ŵ

(i)
k

jk
, for each j ∈ {0, . . . , 2ℓ−i−1} (here, again, we write

(j0, . . . , jℓ−i−1) for the bits of j). We adopt the notational convention whereby the ℓth basis consists simply

of the constant polynomial X
(ℓ)
0 (X) = 1. Our lemma below relies on the following inductive relationship

between the bases
(
X

(i)
j (X)

)2ℓ−i−1

j=0
and

(
X

(i+1)
j (X)

)2ℓ−i−1−1

j=0
. Indeed, for each j ∈ {0, . . . , 2ℓ−i−1 − 1}, the

polynomials X
(i)
2j (X) and X

(i)
2j+1(X) respectively equal X

(i+1)
j

(
q(i)(X)

)
and X ·X(i+1)

j

(
q(i)(X)

)
.

Lemma 3.13. Fix an index i ∈ {0, . . . , ℓ − 1}. If f (i) : S(i) → L is exactly the evaluation over S(i) of the

polynomial P (i)(X) =
∑2ℓ−i−1

j=0 aj ·X(i)
j (X), then, under honest prover behavior, f (i+1) : S(i+1) → L is exactly

the evaluation over S(i+1) of the polynomial P (i+1)(X) =
∑2ℓ−i−1−1

j=0 ((1− r′i) · a2j + r′i · a2j+1) ·X(i+1)
j (X).

Proof. Given P (i)(X) as in the hypothesis of the lemma, we introduce the even and odd refinements

P
(i+1)
0 (X) :=

∑2ℓ−i−1−1
j=0 a2j · X(i+1)

j (X) and P
(i+1)
1 (X) :=

∑2ℓ−i−1−1
j=0 a2j+1 · X(i+1)

j (X) of P (i)(X). We
note the following key polynomial identity:

P (i)(X) = P
(i+1)
0 (q(i)(X)) +X · P (i+1)

1 (q(i)(X)); (2)

This identity is a direct consequence of the definitions of the higher-order novel polynomial bases.
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We turn to the proof of the lemma. We claim that f (i+1)(y) = P (i+1)(y) holds for each y ∈ S(i+1), where
P (i+1)(X) is as in the lemma’s hypothesis. To this end, we let y ∈ S(i+1) be arbitrary; we moreover write

(x0, x1) := q(i)
−1

({y}) for the fiber of q(i) over y. We begin by examining the values P (i)(x0) and P (i)(x1).
For each b ∈ {0, 1} we have:

P (i)(xb) = P
(i+1)
0

(
q(i)(xb)

)
+ xb · P (i+1)

1

(
q(i)(xb)

)
(by the identity (2).)

= P
(i+1)
0 (y) + xb · P (i+1)

1 (y). (using q(i)(xb) = y.)

Using now our assumption whereby f (i)(xb) = P (i)(xb) for each b ∈ {0, 1}, and unwinding the prescription
of Definition 3.6, we obtain:

f (i+1)(y) =
[
1− r′i r′i

]
·

x1 −x0

−1 1

 ·
P (i)(x0)

P (i)(x1)

 (by our hypothesis on f (i), and by Definition 3.6.)

=
[
1− r′i r′i

]
·

x1 −x0

−1 1

 ·
1 x0

1 x1

 ·
P (i+1)

0 (y)

P
(i+1)
1 (y)

 (by the calculation just performed above.)

=
[
1− r′i r′i

]
·

P (i+1)
0 (y)

P
(i+1)
1 (y)

 (cancellation of inverse matrices.)

= P (i+1)(y). (by the definitions of P
(i+1)
0 (X), P

(i+1)
1 (X), and P (i+1)(X).)

To achieve the third equality above, we note that the matrices

x1 −x0

−1 1

 and

1 x0

1 x1

 are inverses; there,

we use the guarantee x1 − x0 = 1, a basic consequence of Definition 3.1 (or rather of ker
(
q(i)
)
= {0, 1}).

Applying Corollary 3.4, we note finally that
(
Ŵ

(0)
k

)ℓ−1

k=0
and

(
X

(0)
j

)2ℓ−1

j=0
themselves yield precisely the

standard subspace vanishing and novel basis polynomials, respectively. It follows that in the base case
i = 0 of Lemma 3.13—and again assuming honest behavior by the prover—we have that f (0) will equal the

evaluation over S(0) of P (0)(X) := P (X) =
∑

v∈Bℓ
t(v) · X(0)

{v}(X). Applying Lemma 3.13 repeatedly, we

conclude by induction that f (ℓ) will equal the evaluation over S(ℓ) of the constant polynomial
∑

v∈Bℓ
t(v) ·

ẽq(r′0, . . . , r
′
ℓ−1, v0, . . . , vℓ−1) = t(r′0, . . . , r

′
ℓ−1), so that c = t(r′0, . . . , r

′
ℓ−1) will hold, as desired.

The completeness of the verifier’s query phase is self-evident (and is just as in [BBHR18, § 4.1.1]); we
note that V applies to each oracle f (i) the same folding procedure that P does. This completes the proof of
completeness.

Remark 3.14. Though it seems inessential to the proof of Theorem 3.12, it is interesting to note that, for

each i ∈ {0, . . . , ℓ − 1}, the ith-order basis
(
X

(i)
j

)2ℓ−i−1

i=0
is itself a novel polynomial basis in its own right,

namely that attached to the set of vectors
(
Ŵi(βi), . . . , Ŵi(βℓ−1)

)
. Equivalently, the ith-order subspace

vanishing polynomials
(
Ŵ

(i)
k

)ℓ−i−1

k=0
are simply the subspace vanishing polynomials attached to this latter

set of vectors. Indeed, for each k ∈ {0, . . . , ℓ − i − 1},
〈
Ŵi(βi), . . . , Ŵi(βi+k−1)

〉
⊂ ker

(
Ŵ

(i)
k

)
certainly

holds, since Ŵ
(i)
k ◦ Ŵi = q(i+k−1) ◦ · · · ◦ q(i) ◦ Ŵi = Ŵi+k, which annihilates ⟨β0, . . . , βi+k−1⟩ (here, we use

the definition of Ŵ
(i)
k and Corollary 3.4). On the other hand, Ŵ

(i)
k = q(i+k−1) ◦ · · · ◦ q(i)’s kernel can be of

dimension at most k (say by degree considerations), while the vectors Ŵi(βi), . . . , Ŵi(βi+k−1) are linearly
independent (a consequence of Corollary 3.5). We conclude that the above containment is an equality.

Finally, the subspace polynomials
(
Ŵ

(i)
k

)ℓ−i−1

k=0
are normalized. Indeed, using Corollary 3.4 again, we see

that, for each k ∈ {0, . . . , ℓ− i− 1}, Ŵ (i)
k

(
Ŵi(βi+k)

)
=
(
q(i+k−1) ◦ · · · ◦ q(i) ◦ Ŵi

)
(βi+k) = Ŵi+k(βi+k) = 1.
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Remark 3.15. Using the techniques of Subsection 3.1 and of Theorem 3.12 above, we are able to suggest a
new explanation of the additive NTT algorithm of Lin, Chung and Han [LCH14, § III.], and of its correctness;
we note also our Algorithm 2 above. (We refer finally to Li, et al. [Li+18, Alg. 2] for a further perspective.) We

fix an index i ∈ {0, . . . , ℓ−1} and a polynomial P (i)(X) :=
∑2ℓ−i−1

j=0 aj ·X(i)
j (X), expressed with respect to the

ith-order novel basis. The key idea is that the values of P (i)(X) on the domain S(i) can be derived—using only

Θ
(
2ℓ+R−i

)
K-operations—given the values of P (i)(X)’s even and odd refinements P

(i+1)
0 (X) and P

(i+1)
1 (X)

(as in the proof of Lemma 3.13) over the domain S(i+1). This is a direct consequence of the identity (2) above.

Indeed, applying that identity, we see that, for y ∈ S(i+1) arbitrary, with fiber (x0, x1) := q(i)
−1

({y}), say, we
have the equalities P (i)(x0) := P

(i+1)
0 (y) + x0 ·P (i+1)

1 (y) and P (i)(x1) := P
(i+1)
0 (y) + x1 ·P (i+1)

1 (y). Since x0

and x1 in fact differ by exactly 1, we see that P (i)(x1) can be computed from P (i)(x0) using a single further
K-addition. We recover the key butterfly diagram of [LCH14, Fig. 1. (a)] (see also Algorithm 2 above) upon
carrying out this procedure recursively, with the convention whereby we flatten (using the space’s canonical
basis) and interleave the two copies of S(i+1) at each instance. The base case of the recursion consists of
the 2ℓ-fold interleaving of the domain S(ℓ), into which P (0)’s coefficients are tiled 2R times. The final stage
of the butterfly diagram yields the desired evaluation of P (0)(X) on S(0). Algorithm 2’s twiddle factors in
its ith stage, then, are nothing other than the respective first lifts x0 of y, as the image y = q(i)(x0) varies

throughout S(i+1). These latter elements x0, in turn, take precisely the form
∑ℓ+R−i−2

k=0 uk · Ŵi(βi+1+k), for

u ∈ Bℓ+R−i−1
∼= S(i+1) arbitrary; indeed, we suppress throughout the 0th canonical basis element Ŵi(βi) = 1

of S(i), since that element is subsumed into each butterfly. We find it interesting that the same polynomial
identity underlies both the correctness of [LCH14, § III.] and our above analysis of FRI’s folding.

We now prove the security of Construction 3.11. Our key technical results below (see Propositions 3.20
and 3.23), essentially, jointly constitute a variant of FRI’s soundness statement [BBHR18, § 4.2.2]. Our
proofs of these results incorporate—in an attenuated form—various ideas present in [BBHR18, § 4.2.2] and
[Ben+23, § 8.2]. We also introduce a number of new ideas, which, by and large, pertain to our new folding
technique (see Subsection 3.2).

Theorem 3.16. The IOPCS Π = (Setup,Commit,P,V) of Construction 3.11 is secure (see Definition 2.9).

Proof. We define a straight-line emulator E as follows.

1. By inspecting A’s messages to the vector oracle, E immediately recovers the function f : S(0) → L
underlying the handle [f ] output by A.

2. E runs the Berlekamp–Welch decoder (i.e., Algorithm 1) on the word f : S(0) → L. If that algorithm
outputs P (X) = ⊥ or if deg(P (X)) ≥ 2ℓ, then E sets t(X0, . . . , Xℓ−1) := 0. Otherwise, E expresses
P (X) =

∑
v∈Bℓ

t(v) · X{v}(X) in coordinates with respect to the novel polynomial basis. E writes

t(X0, . . . , Xℓ−1) ∈ L[X0, . . . , Xℓ−1]
⪯1 for the multilinear whose Lagrange coordinates are (t(v))v∈Bℓ

.

3. E outputs t(X0, . . . , Xℓ−1) and terminates.

We now argue that E fulfills the requirements of Definition 2.9 with respect to the protocol Π. We write
(r0, . . . , rℓ−1) ∈ Lℓ for the evaluation point output by Q and s ∈ L for A’s response. We must show
that the probability with which s ̸= t(r0, . . . , rℓ−1) and V accepts is negligible. It suffices to assume that
s ̸= t(r0, . . . , rℓ−1), and to argue conditionally that V accepts with negligible probability. We thus assume
that s ̸= t(r0, . . . , rℓ−1).

As in Construction 3.11, we write h(X0, . . . , Xℓ−1) := t(X0, . . . , Xℓ−1) · ẽq(r0, . . . , rℓ−1, X0, . . . , Xℓ−1).
Since, as before, t(r0, . . . , rℓ−1) =

∑
v∈Bℓ

h(v), our assumption s ̸= t(r0, . . . , rℓ−1) amounts to the condition
s ̸=

∑
v∈Bℓ

h(v). The soundness analysis of the sumcheck (we refer to Thaler [Tha22, § 4.1]) states that,

under this very assumption, the probability that the verifier accepts its checks si
?
= hi(0) + hi(1) and

sℓ = h(r′0, . . . , r
′
ℓ−1) holds is at most 2·ℓ

|L| over V’s choice of its folding challenges (r′0, . . . , r
′
ℓ−1). We thus

assume that sℓ ̸= h(r′0, . . . , r
′
ℓ−κ−1) = t(r′0, . . . , r

′
ℓ−1) · ẽq(r0, . . . , rℓ−1, r

′
0, . . . , r

′
ℓ−1).

This assumption implies that V will reject its check sℓ
?
= c · ẽq(r0, . . . , rℓ−1, r

′
0, . . . , r

′
ℓ−1) so long as c =

t(r′0, . . . , r
′
ℓ−1) holds. We argue that, conditioned on s ̸= t(r0, . . . , rℓ−1) as above and on c = t(r′0, . . . , r

′
ℓ−1),

V will accept its FRI-querying phase with negligible probability. To this end, we turn to FRI.
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We begin by defining various notions, adapting [BBHR18, § 4.2.1]. For each i ∈ {0, ϑ, . . . , ℓ} (i.e.,

ascending in ϑ-sized steps), we write C(i) ⊂ L2ℓ+R−i

for the Reed–Solomon code RSL,S(i) [2ℓ+R−i, 2ℓ−i]. We

recall that C(i) is of distance di := 2ℓ+R−i−2ℓ−i+1. We write f (0), f (ϑ), . . . , f (ℓ−ϑ) for the oracles committed
by A; we moreover write f (ℓ) : S(ℓ) → L for the identically-c function (here, c ∈ L is A’s final FRI message).
For each i ∈ {0, ϑ, . . . , ℓ − ϑ}, we write ∆

(
f (i+ϑ), g(i+ϑ)

)
⊂ S(i+ϑ) for the disagreement set between the

elements f (i+ϑ) and g(i+ϑ) of L2ℓ+R−i−ϑ

; that is, ∆
(
f (i+ϑ), g(i+ϑ)

)
is the set of elements y ∈ S(i+ϑ) for which

f (i+ϑ)(y) ̸= g(i+ϑ)(y). We moreover write ∆(i)
(
f (i), g(i)

)
⊂ S(i+ϑ) for the fiber-wise disagreement set of the

elements f (i) and g(i) of L2ℓ+R−i

. That is, ∆(i)
(
f (i), g(i)

)
⊂ S(i+ϑ) denotes the set of elements y ∈ S(i+ϑ)

for which the respective restrictions of f (i) and g(i) to the fiber
(
q(i+ϑ−1) ◦ · · · ◦ q(i)

)−1
({y}) ⊂ S(i) are not

identically equal. We define d(i)
(
f (i), C(i)

)
:= ming(i)∈C(i)

∣∣∆(i)
(
f (i), g(i)

)∣∣. We note that, if d(i)
(
f (i), C(i)

)
<

di+ϑ

2 , then d
(
f (i), C(i)

)
< di

2 a fortiori holds. (Each offending fiber contributes at most 2ϑ errors; on the other

hand, 2ϑ ·
⌊
di+ϑ−1

2

⌋
≤
⌊
di−1
2

⌋
.) In any case, in case the oracle f (i) : S(i) → L is such that d

(
f (i), L(i)

)
< di

2

happens to hold, we write f (i) ∈ L(i) for the unique codeword for which d
(
f (i), f (i)

)
< di

2 .
We record the following key compliance condition:

Definition 3.17. For each index i ∈ {0, ϑ, . . . , ℓ − ϑ}, we say that A’s ith oracle f (i) is compliant if the

conditions d(i)
(
f (i), C(i)

)
< di

2 , d
(
f (i+ϑ), C(i+ϑ)

)
< di+ϑ

2 , and f (i+ϑ) = fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
all hold.

We first argue that if A submits oracles which are all compliant—and assuming, as usual, that
s ̸= t(r0, . . . , rℓ−1)—then V will reject. Indeed, under this assumption, we note first that d

(
f (0), C(0)

)
< d0

2
will hold. We see that Algorithm 1 will terminate successfully in step 2 above; we write t(X0, . . . , Xℓ−1) ∈
L[X0, . . . , Xℓ−1]

⪯1 for the polynomial output by E in that step. We now apply Definition 3.17 repeatedly. In

the base case i = 0, we note that f (0) will be the encoding of P (0)(X) =
∑

v∈Bℓ
t(v) ·X(0)

{v}(X), precisely by

E ’s construction of (t(v))v∈Bℓ
. On the other hand, for each i ∈ {0, ϑ, . . . , ℓ−ϑ}, writing P (i)(X) ∈ L[X]≺2ℓ−i

for the polynomial for which Enc(P (i)) = f (i) holds, our assumption f (i+ϑ) = fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
implies that f (i+ϑ) will be exactly the encoding of that polynomial P (i+ϑ)(X) ∈ L[X]≺2ℓ−i−ϑ

which
results from repeatedly applying to P (i)(X) the conclusion of Lemma 3.13 (with the folding chal-
lenges r′i, . . . , r

′
i+ϑ−1). Carrying out the induction, we see that f (ℓ) will itself be identically equal to∑

v∈Bℓ
t(v) · ẽq

(
r′0, . . . , r

′
ℓ−1, v0, . . . , vℓ−1

)
= t(r′0, . . . , r

′
ℓ−1), so that c = t(r′0, . . . , r

′
ℓ−1) will hold. We have

just seen above that, in precisely this setting, V will reject.
It thus suffices to argue that if any among A’s oracles i ∈ {0, ϑ, . . . , ℓ− ϑ} is not compliant, then V will

again reject (except perhaps with negligible probability). This is exactly Proposition 3.23 below. In order to
prepare for that proposition, we record a sequence of lemmas. We begin with the following elementary fact.

Lemma 3.18. For each i ∈ {0, ϑ, . . . , ℓ− ϑ}, if d
(
f (i), C(i)

)
< di

2 , then, for each tuple of folding challenges

(r′i, . . . , r
′
i+ϑ−1) ∈ Lϑ, we have that ∆

(
fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
, fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

))
⊂ ∆(i)

(
f (i), f (i)

)
.

Proof. We proceed by contraposition; we fix an element y ̸∈ ∆(i)
(
f (i), f (i)

)
. By definition of that latter set,

we conclude immediately that the restrictions f (i)
∣∣
(q(i+ϑ−1)◦···◦q(i))

−1
({y}) = f (i)

∣∣
(q(i+ϑ−1)◦···◦q(i))

−1
({y}) are

identically equal. Applying Definition 3.8, we see under this guarantee that, regardless of the challenges
(r′i, . . . , r

′
i+ϑ−1), fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

)
(y) = fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

)
(y) necessarily also holds.

We now define a sequence of bad folding events. Our definition of Ei is case-based, and depends on the
status of f (i). If f (i) is within the (fiber-wise) unique decoding radius, then Ei captures the event whereby the
generic inclusion of Lemma 3.18 becomes strict. Otherwise, Ei captures the “bad batching” event whereby
fold(f (i), r′i, . . . , r

′
i+ϑ−1) becomes close to C(i+ϑ).

Definition 3.19. For each i ∈ {0, ϑ, . . . , ℓ − ϑ}, we define the bad subset Ei ⊂ Lϑ as the set of tuples
(r′i, . . . , r

′
i+ϑ−1) ∈ Lϑ for which, as the case may be:

in case d(i)
(
f (i),C(i)

)
<

di+ϑ

2
: ∆(i)

(
f (i), f (i)

)
̸⊂ ∆

(
fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
, fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

))
.

in case d(i)
(
f (i),C(i)

)
≥ di+ϑ

2
: d
(
fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
, C(i+ϑ)

)
< di+ϑ

2 .
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We now bound the bad subsets Ei of Definition 3.19. We recall that µ(Ei) :=
|Ei|
|L|ϑ denotes the probability

mass of the set Ei ⊂ Lϑ.

Proposition 3.20. For each i ∈ {0, ϑ, . . . , ℓ− ϑ}, µ(Ei) ≤ ϑ · |S
(i+ϑ)|
|L| holds.

Proof. We treat separately the two cases of Definition 3.19.
We begin with the first case. We fix an element y ∈ ∆(i)

(
f (i), f (i)

)
, we moreover write Ey

i ⊂ Lϑ for

the set of tuples (r′i, . . . , r
′
i+ϑ−1) ∈ Lϑ for which y ̸∈ ∆

(
fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
, fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

))
.

We argue that µ(Ey
i ) ≤ ϑ

|L| . This latter claim suffices to complete the proof of the first case; indeed, since

Ei =
⋃

y∈∆(i)(f(i),f(i))E
y
i , assuming the claim, we conclude that µ(Ei) ≤

∣∣∆(i)
(
f (i), f (i)

)∣∣ · ϑ
|L| ≤ |S

(i+ϑ)| · ϑ
|L| .

For y ∈ ∆(i)
(
f (i), f (i)

)
chosen as above, we apply Lemma 3.9 to the words f (i) and f (i). Applying that

lemma, we see that (r′i, . . . , r
′
i+ϑ−1) ∈ Ey

i holds if and only if we have the following matrix identity:

0 =
[ ⊗ϑ−1

j=0 (1− r′i+j , r
′
i+j)

]
·

 My

 ·


f (i)(x0)− f (i)(x0)
...

f (i)(x2ϑ−1)− f (i)(x2ϑ−1)

, (3)

where we again write (x0, . . . , x2ϑ−1) :=
(
q(i+ϑ−1) ◦ · · · ◦ q(i)

)−1
({y}). Our hypothesis y ∈ ∆(i)

(
f (i), f (i)

)
entails precisely that the right-hand vector of (3) is not identically zero. By Lemma 3.9, My is non-
singular; we conclude that the image of the right-hand vector of (3) under My is likewise not identi-
cally zero. Writing (a0, . . . , a2ϑ−1) for this latter vector—which, we repeat, is not zero—we conclude
that Ey

i ⊂ Lϑ is precisely the vanishing locus in Lϑ of the ϑ-variate polynomial s(X0, . . . , Xϑ−1) :=∑
v∈Bϑ

a{v} · ẽq(X0, . . . , Xϑ−1, v0, . . . , vϑ−1) over L. Since s(X0, . . . , Xϑ−1)’s values on the cube {0, 1}ϑ ⊂ Lϑ

are exactly (a0, . . . , a2ϑ−1), s(X0, . . . , Xϑ−1) is certainly not zero. Applying the Schwartz–Zippel lemma to
s(X0, . . . , Xϑ−1), we conclude that the relevant locus Ey

i ⊂ Lϑ is of mass at most µ(Ey
i ) ≤ ϑ

|L| , as required.

We turn to the second case of Definition 3.19; in particular, we assume that d(i)
(
f (i), C(i)

)
≥ di+ϑ

2 . We

define an interleaved word
(
f
(i+ϑ)
j

)2ϑ−1

j=0
—i.e., a 2ϑ × 2ℓ+R−i−ϑ matrix, with entries in L—in the following

way. For each y ∈ S(i+ϑ), writing My for the matrix guaranteed to exist by Lemma 3.9, we define the
column: 

f
(i+ϑ)
0 (y)

...

f
(i+ϑ)

2ϑ−1
(y)

 :=

 My

 ·


f (i)(x0)
...

f (i)(x2ϑ−1)

. (4)

We note that the resulting 2ϑ × 2ℓ+R−i−ϑ matrix
(
f
(i+ϑ)
j

)2ϑ−1

j=0
—i.e., that whose columns are given by the

respective left-hand sides of (4), for y ∈ S(i+ϑ)—satisfies, for each (r′i, . . . , r
′
i+ϑ−1) ∈ Lϑ,

fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
=
[ ⊗i+ϑ−1

j=i (1− r′j , r
′
j)

]
·


f
(i+ϑ)
0

...

f
(i+ϑ)

2ϑ−1

. (5)

Indeed, this is essentially the content of Lemma 3.9, which we apply here jointly to all elements y ∈ S(i+ϑ).

We claim that the interleaved word
(
f
(i+ϑ)
j

)2ϑ−1

j=0
constructed in this way is far from the interleaved code

C(i+ϑ)2
ϑ

.

Lemma 3.21. Under our hypothesis d(i)
(
f (i), C(i)

)
≥ di+ϑ

2 , we have d2
ϑ

((
f
(i+ϑ)
j

)2ϑ−1

j=0
, C(i+ϑ)2

ϑ
)
≥ di+ϑ

2 .
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Proof. We fix an arbitrary interleaved codeword
(
g
(i+ϑ)
j

)2ϑ−1

j=0
∈ C(i+ϑ)2

ϑ

. We define a “lift” g(i) ∈ C(i)

of
(
g
(i+ϑ)
j

)2ϑ−1

j=0
in the following way. Writing, for each j ∈ {0, . . . , 2ϑ − 1}, P (i+ϑ)

j (X) :=
∑2ℓ−i−ϑ−1

k=0 aj,k ·

X
(i+ϑ)
k (X) for the polynomial—expressed in coordinates with respect to the i+ ϑth-order novel polynomial

basis—for which g
(i+ϑ)
j = Enc(P

(i+ϑ)
j ) holds, we define

P (i)(X) :=

2ϑ−1∑
j=0

2ℓ−i−ϑ−1∑
k=0

aj,k ·X(i)

k·2ϑ+j
;

that is, P (i)’s list of ith-order coefficients is precisely the 2ϑ-fold interleaving of the polynomials

P
(i+ϑ)
0 (X), . . . , P

(i+ϑ)

2ϑ−1
(X)’s respective lists of i+ ϑth-order coefficients. Finally, we define g(i) := Enc(P (i)).

We argue that the codeword g(i) ∈ C(i) constructed in this way stands in relation to
(
g
(i+ϑ)
j

)2ϑ−1

j=0
just

as f (i) does to
(
f
(i+ϑ)
j

)2ϑ−1

j=0
(i.e., it also satisfies a matrix identity analogous to (4) for each y ∈ S(i+ϑ)). To

prove this, we fix an arbitrary element y ∈ S(i+ϑ); we moreover fix a row-index j ∈ {0, . . . , 2ϑ−1}. We write

(j0, . . . , jϑ−1) for the bits of j (i.e., so that j =
∑ϑ−1

k=0 2
k ·jk holds). We first note that the functions g

(i+ϑ)
j and

fold
(
g(i), j0, . . . , jϑ−1

)
agree identically over the domain S(i+ϑ). Indeed, this is a direct consequence of Lemma

3.13 and of the construction of g(i) (g
(i+ϑ)
j (y)’s underlying polynomial’s coefficients are the jth refinement

of g(i)’s underlying polynomial’s). On the other hand, applying Lemma 3.9 to y ∈ S(i+ϑ) and g(i), with the
folding tuple (j0, . . . , jϑ−1), we see that the dot product between My’s j

th row and
(
g(i)(x0), . . . , g

(i)(x2ϑ−1)
)

is exactly fold
(
g(i), j0, . . . , jϑ−1

)
(y) = g

(i+ϑ)
j (y), where the latter equality was just argued.

Since g(i) ∈ C(i) is a codeword, our hypothesis d(i)
(
f (i), C(i)

)
≥ di+ϑ

2 applies to it. That hypothesis

entails precisely that, for at least di+ϑ

2 elements y ∈ S(i+ϑ), the restrictions f (i)
∣∣
(q(i+ϑ−1)◦···◦q(i))

−1
({y}) and

g(i)
∣∣
(q(i+ϑ−1)◦···◦q(i))

−1
({y}) are not identically equal. For each such y ∈ S(i+ϑ), since My is nonsingular (and

since both f (i) and g(i) satisfy (4)), we conclude that the columns
(
f
(i+ϑ)
j (y)

)2ϑ−1

j=0
and

(
g
(i+ϑ)
j (y)

)2ϑ−1

j=0
are in

turn unequal. Since
(
g
(i+ϑ)
j

)2ϑ−1

j=0
was arbitrary, we conclude that d2

ϑ

((
f
(i+ϑ)
j

)2ϑ−1

j=0
, C(i+ϑ)2

ϑ
)
≥ di+ϑ

2 .

Applying Lemma 3.21, we conclude directly that the contraposition of Theorem 2.4 is fulfilled with

respect to the code C(i+ϑ) ⊂ L2ℓ+R−i−ϑ

, the proximity parameter e :=
⌊
di+ϑ−1

2

⌋
, and the interleaved word(

f
(i+ϑ)
j

)2ϑ−1

j=0
. That theorem’s contraposition immediately implies that the set Ei ⊂ Lϑ consisting of those

tuples (r′i, . . . , r
′
i+ϑ−1) ∈ Lϑ for which d

(
fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
, C(i+ϑ)

)
< di+ϑ

2 holds—and here, we use

(5)—is of mass at most µ(Ei) ≤ ϑ · 2
ℓ+R−i−ϑ

|L| = ϑ · |S
(i+ϑ)|
|L| , as required.

Proposition 3.22. The probability that any among the bad events E0, Eϑ, . . . , Eℓ−ϑ occurs is at most 2ℓ+R

|L| .

Proof. Applying Proposition 3.20, we upper-bound the quantity of interest as:

ϑ

|L|
· (|Sϑ|+ · · ·+ |Sℓ|) =

ϑ

|L|
·
(
2ℓ+R−ϑ + · · ·+ 2R

)
≤ ϑ

|L|
· 2ϑ

2ϑ − 1
· 2ℓ+R−ϑ ≤ 2ℓ+R

|L|
,

which completes the proof. In the last two steps, we use the geometric series formula and the inequality
ϑ

2ϑ−1
≤ 1 (which holds for each ϑ ≥ 1), respectively.

In light of Proposition 3.22, we freely assume that none of the events E0, Eϑ, . . . , Eℓ−ϑ occurs. Under
this assumption, we finally turn to the following key proposition.
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Proposition 3.23. If any of A’s oracles is not compliant, then V accepts with at most negligible probability.

Proof. We suppose that at least one of A’s oracles is not compliant; we write i∗ ∈ {0, ϑ, . . . , ℓ − ϑ} for A’s
highest-indexed noncompliant oracle.

Lemma 3.24. For i∗ ∈ {0, ϑ, . . . , ℓ− ϑ} as above, we have d
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
, f (i∗+ϑ)

)
≥ di∗+ϑ

2 .

Proof. Assuming first that d(i
∗)
(
f (i∗), C(i∗)

)
<

di∗+ϑ

2 , we write f (i∗) ∈ C(i∗) for the codeword for which∣∣∆(i∗)
(
f (i∗), f (i∗)

)∣∣ < di∗+ϑ

2 . We note that d
(
f (i∗), f (i∗)

)
< di∗

2 a fortiori holds; by Definition 3.17 and our

choice of i∗, we thus must have in turn f (i∗+ϑ) ̸= fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
. On the other hand, by Lemma

3.18,
∣∣∆(i∗)

(
f (i∗), f (i∗)

)∣∣ < di∗+ϑ

2 implies that d
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
, fold

(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

))
<

di∗+ϑ

2 . Finally, by the reverse triangle inequality, d
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
, f (i∗+ϑ)

)
is at least:

d
(
f (i∗+ϑ), fold

(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

))
− d
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
, fold

(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

))
.

Since f (i∗+ϑ) and fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
are unequal codewords in C(i∗+ϑ), this quantity in turn is

greater than di∗+ϑ − di∗+ϑ

2 ≥ di∗+ϑ

2 , and the proof of the first case is complete.

In the case d(i
∗)
(
f (i∗), C(i∗)

)
≥ di∗+ϑ

2 , our assumption whereby Ei∗ didn’t occur implies, by def-

inition, that d
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
, C(i∗+ϑ)

)
≥ di∗+ϑ

2 . Since f (i∗+ϑ) ∈ C(i∗+ϑ) is a codeword,

d
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
, f (i∗+ϑ)

)
≥ di∗+ϑ

2 in particular holds, and the proof is again complete.

Lemma 3.25. Whenever its suffix (vi∗+ϑ, . . . , vℓ+R−1) ∈ ∆
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i+ϑ−1

)
, f (i∗+ϑ)

)
, V rejects.

Proof. We fix an iteration of the query phase’s outer loop for which the lemma’s hypothesis holds. We fix
an arbitrary index i ∈ {i∗, i∗+ϑ, . . . , ℓ−ϑ}. If V rejects before finishing the inner loop 3’s ith iteration, then
there’s nothing to prove. We argue that, conditioned on V reaching the end of its ith iteration, we have the
inductive conclusion ci+ϑ ̸= f (i+ϑ)(vi+ϑ, . . . , vℓ+R−1) as of the end of that iteration.

In the base case i = i∗, V assigns ci∗+ϑ := fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
(vi∗+ϑ, . . . , vℓ+R−1) inline on line 6.

On the other hand, the hypothesis of the lemma is precisely fold
(
f (i∗), r′i∗ , . . . , r

′
i+ϑ−1

)
(vi∗+ϑ, . . . , vℓ+R−1) ̸=

f (i∗+ϑ)(vi∗+ϑ, . . . , vℓ+R−1); we conclude immediately that ci∗+ϑ ̸= f (i∗+ϑ)(vi∗+ϑ, . . . , vℓ+R−1) will hold as of
the end of the i∗th iteration, as desired.

We fix an index i ∈ {i∗+ϑ, . . . , ℓ−ϑ}. As of the beginning of the ith iteration, by induction, we have the hy-
pothesis ci ̸= f (i)(vi, . . . , vℓ+R−1). If f

(i)(vi, . . . , vℓ+R−1) = f (i)(vi, . . . , vℓ+R−1) moreover holds, then we see
immediately that V will reject on line 5; indeed, in this case ci ̸= f (i)(vi, . . . , vℓ+R−1) = f (i)(vi, . . . , vℓ+R−1)
will hold. We conclude that, conditioned on V reaching the end of its ith iteration, we necessarily have
f (i)(vi, . . . , vℓ+R−1) ̸= f (i)(vi, . . . , vℓ+R−1), or in other words (vi, . . . , vℓ+R−1) ∈ ∆

(
f (i), f (i)

)
. This guar-

antee implies a fortiori that (vi+ϑ, . . . , vℓ+R−1) ∈ ∆(i)
(
f (i), f (i)

)
, by definition of this latter set. Us-

ing our assumption whereby the event Ei didn’t occur, we conclude in turn that (vi+ϑ, . . . , vℓ−1) ∈
∆
(
fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
, fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

))
. Since f (i+ϑ) = fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

)
(a conse-

quence of the maximality of i∗), this latter set itself equals ∆
(
fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
, f (i+ϑ)

)
. We conclude

that fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
(vi+ϑ, . . . , vℓ+R−1) ̸= f

(i+ϑ)
(vi+ϑ, . . . , vℓ+R−1), so that, after its assignment on

line 6, V will obtain ci+ϑ ̸= f (i+ϑ)(vi+ϑ, . . . , vℓ+R−1), thereby preserving the inductive hypothesis.
Carrying through the induction, we see finally that either V will abort before finishing its inner loop 3

or else it will have cℓ ̸= f (ℓ)(vℓ, . . . , vℓ+R−1) as of its final check 7. Since c = f (ℓ)(vℓ, . . . , vℓ+R−1) holds

identically for each v ∈ BR (by definition of this latter oracle), we see that V will reject its check cℓ
?
= c.

We return to the proposition. Lemma 3.24 guarantees (i.e., assuming Ei∗ doesn’t occur) that ci∗+ϑ ∈
∆
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
, f (i∗+ϑ)

)
will hold with probability at least 1

|S(i∗+ϑ)| ·
di∗+ϑ

2 ≥ 1
2 −

1
2·2R in each

of the verifier’s query iterations. By Lemma 3.25, the verifier will reject in each such iteration (i.e., assuming
none of the events Ei∗+ϑ, . . . , Eℓ−ϑ occurs). We see that V will accept with probability at most

(
1
2 + 1

2·2R
)γ
,

which is negligible (we recall that R is constant). This completes the proof of the proposition.

Our proof of Proposition 3.23 completes the proof of the theorem.
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We postpone our analysis of Construction 3.11’s efficiency to Section 5, in which we present our unified
small-field scheme. For now, we remark that Construction 3.11’s commitment phase entails a Reed–Solomon
encoding on the part of the prover; using the additive NTT (see Algorithm 2 above), the prover can compute
this encoding in Θ(ℓ · 2ℓ) time. Construction 3.11’s evaluation phase entails, for both parties, an execution
of ℓ-variate FRI and of an ℓ-variate sumcheck, both over L. In view of standard algorithms (we refer to
[BBHR18, § 4.4] Thaler [Tha22, Lem. 4.5]), these tasks amount collectively to Θ(2ℓ) L-operations for the
prover and Θ(ℓ) L-operations for the verifier. The BCS-compiled [BCS16] variant of the protocol imposes
rather Θ(λ · log2(ℓ)) work on the verifier.

4 Ring-Switching

In this section, we introduce a generic small-field-to-large-field compiler, suitable for any finite field K and
any extension L / K of power-of-two degree (not necessarily of characteristic 2). Our reduction technique
serves to “bootstrap” any standard interactive oracle polynomial commitment scheme over L (in the sense
of Definition 2.8) into a small-field scheme over K (in the sense of Definition 2.10).

It would certainly be possible, on input a small-field polynomial t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]
⪯1,

simply to embed t(X0, . . . , Xℓ−1) along K ⊂ L and to use a large-field IOPCS generically on the result. This
strategy, however, would suffer from at least two defects. (We refer to [DP23] for a thorough discussion of
this matter, and merely summarize it here.) For one, it would be inefficient; it would treat each K-element
as an L-element, thereby blowing up by a factor of deg(L / K) the sizes of the witness data and of the
various other internal values at play. Further, it would yield an inadequate security guarantee. Indeed, it
would allow the emulator to extract an L-polynomial, as opposed to a K-polynomial; that is, it would fail
to guarantee to the verifier that the prover actually committed a polynomial defined over K.

Our approach, in contrast, reduces the problem of committing a K-polynomial to that of committing
an L-polynomial of identical size in bits (i.e., on fewer variables). Moreover, our K-polynomial evaluation
protocol adds to that of the underlying L-polynomial only a small, logarithmic overhead. We informally
summarize our approach. We write κ ≥ 0 for the integer for which 2κ = deg(L / K) holds, and write
ℓ′ := ℓ − κ. We take for granted the contents of Subsection 2.5 above. In particular, we recall the tensor
algebra A := L ⊗K L, as well as the two embeddings φ0 : L ↪→ A and φ1 : L ↪→ A. We finally fix a
polynomial t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]

⪯1, and write t′(X0, . . . , Xℓ′−1) ∈ L[X0, . . . , Xℓ′−1]
⪯1 for its

packed polynomial in the sense of Definition 2.1. During our commitment phase, we stipulate simply that
the prover commit to the packed polynomial t′(X0, . . . , Xℓ′−1) over L.

Our evaluation phase is based on two reductions. The first is that, in order to learn t(r0, . . . , rℓ−1),
for some evaluation point (r0, . . . , rℓ−1) ∈ Lℓ given, it suffices—up to a small, Θ(2κ)-time postprocess-
ing step on the part of the verifier—instead to learn φ1(t

′)(φ0(rκ), . . . , φ0(rℓ−1)). Here, we again write
φ1(t

′)(X0, . . . , Xℓ′−1) for the coefficientwise horizontal embedding of t′(X0, . . . , Xℓ′−1) along φ1 : L ↪→ A.
That is, we may chunk and horizontally embed t(X0, . . . , Xℓ−1)’s coordinates, and moreover vertically embed
all but κ of (r0, . . . , rℓ−1)’s components, and evaluate the resulting thing over A. By dotting the columns of

the resulting A-element φ1(t
′)(φ0(rκ), . . . , φ0(rℓ−1)) with

⊗κ−1
i=0 (1−ri, ri), V may learn its desired evaluation

t(r0, . . . , rℓ−1). (We rigorously demonstrate the correctness of this reduction in Theorem 4.2 below.)
Our second reduction begins with the standard multilinear expansion

φ1(t
′)(φ0(rκ), . . . , φ0(rℓ−1)) =

∑
v∈Bℓ′

φ1(t
′)(v0, . . . , vℓ′−1) · ẽq(φ0(rκ), . . . , φ0(rℓ−1), v0, . . . , vℓ′−1),

and observes that—up to an execution of a special sort of sumcheck, which we explain presently—the desired
evaluation of φ1(t

′)(φ0(rκ), . . . , φ0(rℓ−1)) may in turn be reduced to that of φ1(t
′)(φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)),

for random elements (r′0, . . . , r
′
ℓ′−1) ∈ Lℓ′ sampled during the sumcheck. Indeed, our sumcheck is of the

polynomial h(X0, . . . , Xℓ′−1) := φ1(t
′)(X0, . . . , Xℓ′−1) · ẽq(φ0(rκ), . . . , φ0(rℓ−1), X0, . . . , Xℓ′−1)) over A. On

the other hand, we draw our sumcheck challenges from the subring φ1(L) ⊂ A. The essential point is that
the final reduction target φ1(t

′)(φ1(r
′
0), . . . , φ1(r

′
ℓ′−1)) = φ1

(
t′(r′0, . . . , r

′
ℓ′−1)

)
of this latter sumcheck “lives”

entirely in the subring φ1(L) ⊂ A, which is itself isomorphic to L. To learn φ1(t
′)(φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)),

the parties may thus finally make blackbox use of the large-field scheme over L. (The verifier can compute
ẽq(φ0(rκ), . . . , φ0(rℓ−1), φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)) itself, by performing just Θ(ℓ′) local work.)
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4.1 Ring-Switching Protocol

We now record our ring-switching reduction.

CONSTRUCTION 4.1 (Ring-Switching Compiler).
A large-field scheme Π′ =

(
Setup′,Commit′,P ′,V ′) is given. We define the small-field scheme Π =

(Setup,Commit,P,V) as follows.

• params← Π.Setup(1λ, ℓ,K). On input 1λ, ℓ, and K, run and output Π′.Setup′(1λ, ℓ′), where ℓ′ is
such that the field L / K returned by that routine, of degree 2κ over K say, satisfies ℓ′ = ℓ− κ.

• [f ]← Π.Commit(params, t). On input t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]
⪯1, fix the packed poly-

nomial t′(X0, . . . , Xℓ′−1) ∈ L[X0, . . . , Xℓ′−1]
⪯1 as in Definition 2.1; output Π′.Commit′(params, t′).

We define (P,V) as the following IOP, in which both parties have the common input [f ], s ∈ L, and
(r0, . . . , rℓ−1) ∈ Lℓ, and P has the further input t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]

⪯1.

• P again writes t′(X0, . . . , Xℓ′−1) ∈ L[X0, . . . , Xℓ′−1]
⪯1 for t(X0, . . . , Xℓ−1)’s packed polynomial; P

moreover sets h(X0, . . . , Xℓ′−1) := φ1(t
′)(X0, . . . , Xℓ′−1) · ẽq(φ0(rκ), . . . , φ0(rℓ−1), X0, . . . , Xℓ′−1).

• P computes s0 := φ1(t
′)(φ0(rκ), . . . , φ0(rℓ−1)) and sends V s0.

• V writes (s0,v)v∈Bκ
for s0’s column representation (see Subsection 2.5). V requires s

?
=
∑

v∈Bκ
s0,v ·

ẽq(r0, . . . , rκ−1, v0, . . . , vκ−1).

• P and V execute the following loop:

1: for i ∈ {0, . . . , ℓ′ − 1} do
2: P sends V the polynomial hi(X) :=

∑
w∈Bℓ′−i−1

h
(
φ1(r

′
0), . . . , φ1(r

′
i−1), X,w0, . . . , wℓ′−i−2

)
.

3: V requires si
?
= hi(0) + hi(1). V samples r′i ← L, sets si+1 := hi(φ1(r

′
i)), and sends P r′i.

• P computes s′ := t′(r′0, . . . , r
′
ℓ′−1) and sends V s′.

• V requires sℓ′
?
= φ1(s

′) · ẽq
(
φ0(rκ), . . . , φ0(rℓ−1), φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)

)
.

• P and V engage in the evaluation protocol b← ⟨P ′([f ], s′, r′; t′),V ′([f ], s′, r′)⟩; V outputs b.

In our completeness proof below, we rely on the content of Subsection 2.5. In particular, we use the fact
whereby, for a ∈ A arbitrary, with column representation (av)v∈Bκ

say, and for α ∈ L also arbitrary, the
column representation of φ0(α) · a is (α · av)v∈Bκ

.

Theorem 4.2. If Π′ =
(
Setup′,Commit′,P ′,V ′) is complete, then Π = (Setup,Commit,P,V) also is.

Proof. If P operates as prescribed, then its initial message s0 ∈ A will satisfy:

s0 := φ1(t
′)(φ0(rκ), . . . , φ0(rℓ−1)) =

∑
w∈Bℓ′

φ1(t
′)(w) · ẽq(φ0(rκ), . . . , φ0(rℓ−1), w0, . . . , wℓ′−1). (6)

By the definitions of t′(X0, . . . , Xℓ′−1) and of φ1, for each w ∈ Bℓ′ , the A-element φ1(t
′)(w) has the col-

umn representation (t(v0, . . . , vκ−1, w0, . . . , wℓ′−1))v∈Bκ
(these coordinates are a posteriori K-elements, not

L-elements). On the other hand, for each w ∈ Bℓ′ , we have ẽq(φ0(rκ), . . . , φ0(rℓ−1), w0, . . . , wℓ′−1) =
φ0(ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1)). We thus see that for each w ∈ Bℓ′ , the column representation of the
wth term φ0(ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1)) · φ1(t

′)(w) of the sum (6) above is exactly

(ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1) · t(v0, . . . , vκ−1, w0, . . . , wℓ′−1))v∈Bκ
. (7)

For each arbitrary v ∈ Bκ, upon adding the respective vth components of (7) across all summands w ∈ Bℓ′

of (6), we obtain:

s0,v =
∑

w∈Bℓ′

ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1) · t(v0, . . . , vκ−1, w0, . . . , wℓ′−1) = t(v0, . . . , vκ−1, rκ, . . . , rℓ−1).
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We conclude finally that V will itself compute∑
v∈Bκ

s0,v · ẽq(r0, . . . , rκ−1, v0, . . . , vκ−1) =
∑
v∈Bκ

t(v0, . . . , vκ−1, rκ, . . . , rℓ−1) · ẽq(r0, . . . , rκ−1, v0, . . . , vκ−1)

= t(r0, . . . , rℓ−1),

which itself equals s, provided that P’s initial claim s
?
= t(r0, . . . , rℓ−1) is true. We thus see that V will

accept its check s
?
=
∑

v∈Bκ
s0,v · ẽq(r0, . . . , rκ−1, v0, . . . , vκ−1).

We note moreover that, by construction of h(X0, . . . , Xℓ′−1),∑
w∈Bℓ′

h(w) =
∑

w∈Bℓ′

φ1(t
′)(w) · ẽq(φ0(rκ), . . . , φ0(rℓ−1), w0, . . . , wℓ′−1) = φ1(t

′)(φ0(rκ), . . . , φ0(rℓ−1))

holds. Assuming again that P computes s0 := φ1(t
′)(φ0(rκ), . . . , φ0(rℓ−1)) honestly, we see, by the

completeness of the sumcheck, that V will accept its checks si
?
= hi(0) + hi(1). Finally, V will set

sℓ′ := hℓ′−1(r
′
ℓ′−1) = h

(
φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)

)
. By definition of this latter function, we see in turn that:

sℓ′ = φ1(t
′)(φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)) · ẽq

(
φ0(rκ), . . . , φ0(rℓ−1), φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)

)
will hold. Since φ1(s

′) = φ1(t
′(r′0, . . . , r

′
ℓ′−1)) = φ1(t

′)(φ1(r
′
0), . . . , φ1(r

′
ℓ′−1)) will further hold for P honest,

we conclude finally that

sℓ′ = φ1(s
′) · ẽq

(
φ0(rκ), . . . , φ0(rℓ−1), φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)

)
will hold, and that V will accept its final check. Finally, assuming again that s′ = t′(r′0, . . . , r

′
ℓ′−1), by the

completeness of Π′, V ′—and hence V—will necessarily accept its sub-evaluation protocol.

Remark 4.3. We explain in slightly more rigorous terms the “information loss” which would result if the
parties merely evaluated t′(rκ, . . . , rℓ−1), as opposed to using the tensor algebra. It is shown during the
proof of Theorem 4.2 above that the prover’s quantity s0 := φ1(t

′)(φ0(rκ), . . . , φ0(rℓ−1)) is such that, for
each v ∈ Bκ, s0,v = t(v0, . . . , vκ−1, rκ, . . . , rℓ−1) holds. On the other hand,

t′(rκ, . . . , rℓ−1) =
∑

w∈Bℓ′

t′(w) · ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1)

=
∑

w∈Bℓ′

(∑
v∈Bκ

t(v0, . . . , vκ−1, w0, . . . , wℓ′−1) · βv

)
· ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1)

=
∑
v∈Bκ

 ∑
w∈Bℓ′

t(v0, . . . , vκ−1, w0, . . . , wℓ′−1) · ẽq(rκ, . . . , rℓ−1, w0, . . . , wℓ′−1)

 · βv

=
∑
v∈Bκ

t(v0, . . . , vκ−1, rκ, . . . , rℓ−1) · βv

=
∑
v∈Bκ

s0,v · βv.

We see that while the information contained in s0 = (s0,v)v∈Bκ
suffices to derive t(r0, . . . , rℓ−1)—as the proof

of Theorem 4.2 above demonstrates—the datum t(rκ, . . . , rℓ−1) would yield, rather, the basis-combination∑
v∈Bκ

s0,v · βv of s0’s columns. Since the basis (βv)v∈Bκ
is certainly not linearly independent over L, this

latter combination reflects s0 only “lossfully”. We note that, interestingly,
∑

v∈Bκ
s0,v · βv = h(s0) holds;

here, h : L ⊗K L → L is the canonical K-linear map defined on simple tensors by multiplication (we recall
Subsection 2.5 above). That is, t(rκ, . . . , rℓ−1) relates to φ1(t

′)(φ0(rκ), . . . , φ0(rℓ−1)) exactly by the map h,
which is of course not injective. We would like to thank Raju Krishnamoorthy for explaining this fact.

We now prove the security of ring-switching.
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Theorem 4.4. If Π′ =
(
Setup′,Commit′,P ′,V ′) is secure, then Π = (Setup,Commit,P,V) also is.

Proof. We write E ′ for the emulator for Π′ (guaranteed to exist by assumption). We define an emulator E
for Π as follows.

1. On input A’s record of interactions with the vector oracle, E internally runs t′(X0, . . . , Xℓ′−1)← E ′.

2. By reversing Definition 2.1, E obtains t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]
⪯1, which it outputs.

We argue that the emulator E defined in this way is secure. In particular, the probability with which
s ̸= t(r0, . . . , rℓ−1) holds and V accepts is negligible. We suppose that s ̸= t(r0, . . . , rℓ−1), and argue,
conditioned on this assumption, that V will accept with at most negligible probability.

We first note that we may assume that P’s message s0 ̸= φ1(t
′)(φ0(rκ), . . . , φ0(rℓ−1)). Indeed, it is shown

directly in the course of our proof of Theorem 4.2 above that, if s0 = φ1(t
′)(φ0(rκ), . . . , φ0(rℓ−1)) holds,

then
∑

v∈Bκ
s0,v · ẽq(r0, . . . , rκ−1, v0, . . . , vκ−1) = t(r0, . . . , rℓ−1) too will hold; under our above assumption

whereby s ̸= t(r0, . . . , rℓ−1), we see that s ̸= t(r0, . . . , rℓ−1) =
∑

v∈Bκ
s0,v · ẽq(r0, . . . , rκ−1, v0, . . . , vκ−1) in

turn will hold, so that V will reject and we’re done. We thus assume that s0 ̸= φ1(t
′)(φ0(rκ), . . . , φ0(rℓ−1)).

We write h(X0, . . . , Xℓ′−1) := φ1(t
′)(X0, . . . , Xℓ′−1) · ẽq(φ0(rκ), . . . , φ0(rℓ−1), X0, . . . , Xℓ′−1) as above;

since φ1(t
′)(φ0(rκ), . . . , φ0(rℓ−1)) =

∑
w∈Bℓ′

h(w), our assumption s0 ̸= φ1(t
′)(φ0(rκ), . . . , φ0(rℓ−1)) en-

tails exactly that s0 ̸=
∑

w∈Bℓ′
h(w). We argue that, by the soundness of the sumcheck, sℓ′ ̸=

h
(
φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)

)
in turn will hold, except with low probability. Since our sumcheck is slightly

nonstandard, we prove this result explicitly (though our proof is the same as the usual one, up to its
use of Lemma 4.5). We go through the details now. Indeed, we fix an index i ∈ {0, . . . , ℓ′ − 1}, and
assume by induction that si ̸=

∑
w∈Bℓ′−i

h
(
φ1(r

′
0), . . . , φ1(r

′
i−1), w0, . . . , wℓ′−i−1

)
holds. Under this as-

sumption, we may ignore the case in which the prover constructs its ith univariate polynomial hi(X) =∑
w∈Bℓ′−i−1

h
(
φ1(r

′
0), . . . , φ1(r

′
i−1), X,w0, . . . , wℓ′−i−2

)
as prescribed. Indeed, if it does, then we immedi-

ately obtain, under our inductive assumption, that

si ̸=
∑

w∈Bℓ′−i

h
(
φ1(r

′
0), . . . , φ1(r

′
i−1), w0, . . . , wℓ′−i−1

)
= hi(0) + hi(1)

will hold, so that V will reject outright and we’re done. We thus assume the polynomial inequal-
ity hi(X) ̸=

∑
w∈Bℓ′−i−1

h
(
φ1(r

′
0), . . . , φ1(r

′
i−1), X,w0, . . . , wℓ′−i−2

)
; here, both sides of this inequality

are degree-two, univariate polynomials with coefficients in A. We argue that, under this assumption,
except with probability at most 2

|L| over V’s choice of r′i ← L, we will in turn have hi(φ1(r
′
i)) ̸=∑

w∈Bℓ′−i−1
h(φ1(r

′
0), . . . , φ1(r

′
i), w0, . . . , wℓ′−i−2). Since V sets si+1 := hi(φ1(r

′
i)) by definition, this lat-

ter inequality implies that si+1 ̸=
∑

w∈Bℓ′−i−1
h(φ1(r

′
0), . . . , φ1(r

′
i), w0, . . . , wℓ′−i−2) will in turn hold; this is

exactly the claim we need in order to preserve the inductive hypothesis.
It thus suffices to argue that each nonzero polynomial of degree at most 2 in A[X] has at most 2 roots in

the subring φ1(L) ⊂ A. While the standard univariate factorization result [Lan02, Ch. IV, § 1, Thm. 1.4]
can fail spectacularly, in general, for commutative rings which aren’t integral domains, we below salvage that
result in our more-general setting, granting that we consider only roots in a subfield of the algebra.

Lemma 4.5. Each nonzero p(X) ∈ A[X] of degree at most d has at most d zeros in the subring φ1(L) ⊂ A.

Proof. We adapt [Lan02, Ch. IV, § 1, Thm. 1.4]. For contradiction, we fix distinct elements a0, . . . , ad of
φ1(L) ⊂ A, each satisfying p(ai) = 0. Applying [Lan02, Ch. IV, § 1, Thm. 1.1], we see that there exist
polynomials q(X) and r(X) in A[X], where r(X) is of degree less than 1, for which p(X) = (X−a0) ·q(X)+
r(X) holds. Since 0 = p(a0) = r(a0), we see that r(X) is in fact identically zero, so that (X − a0) · q(X) =
p(X). On the other hand, for each i ∈ {1, . . . , d}, we moreover have 0 = p(ai) = (ai − a0) · q(ai). Since
ai−a0 ∈ φ1(L) is a unit in A, we deduce further that q(ai) = 0. We conclude that q(X) vanishes identically
on each of the points a1, . . . , ad. This fact justifies our use of induction on q(X). Proceeding in exactly that
way, we establish the divisibility (X−a1) · · · · · (X−ad) | q(X), which implies (X−a0) · · · · · (X−ad) | p(X).
By degree considerations, we finally conclude that p(X) is identically zero, contradicting our hypothesis.
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This lemma proves as desired that, except with probability at most 2
|L| over V’s choice of r′i ← L, we

have si+1 ̸=
∑

w∈Bℓ′−i−1
h(φ1(r

′
0), . . . , φ1(r

′
i), w0, . . . , wℓ′−i−2). Carrying through the induction, we conclude

that the probability with which V accepts and sℓ′ = h
(
φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)

)
holds is at most ℓ′ · 2

|L| . We

thus ignore those executions, and assume instead that sℓ′ ̸= h
(
φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)

)
, or in other words that:

sℓ′ ̸= φ1(t
′)(φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)) · ẽq

(
φ0(rκ), . . . , φ0(rℓ−1), φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)

)
.

Under this latter assumption, we argue further that if P correctly sends s′ = t′(r′0, . . . , r
′
ℓ′−1), then V will

again reject. Indeed, if it does, then φ1(s
′) = φ1(t

′(r′0, . . . , r
′
ℓ′−1)) = φ1(t

′)(φ1(r
′
0), . . . , φ1(r

′
ℓ′−1)) will hold;

using our assumption above, we see in turn that

sℓ′ ̸= φ1(s
′) · ẽq

(
φ0(rκ), . . . , φ0(rℓ−1), φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)

)
will hold, so that V will reject. We thus assume that s′ ̸= t′(r′0, . . . , r

′
ℓ′−1). Under exactly this assumption,

the probability with which V ′ accepts is negligible, under our hypothesis whereby Π′ is secure.

We defer our analysis of the efficiency of Construction 4.1 to Section 5. We note informally that it has
no commitment overhead whatsoever; its evaluation overhead consists of an ℓ′-variate sumcheck, of degree
2, over the ring A. As we explain in Subsection 5.2 below, the ideas of Gruen [Gru24, § 3] serve to further
reduce the effective degree of that protocol’s sumcheck from 2 to 1.

5 Small-Field IOPCS

In this section, we describe a “combined” small-field protocol, which combines the simple scheme of Section
3 with the ring-switching reduction of Section 4. We moreover streamline and optimize the resulting com-
bination, by unifying Construction 3.11’s sumcheck with that required within Construction 4.1. That is, we
move the algebra-element sumcheck of Construction 4.1 inline into Construction 3.11. We also concretely
benchmark this combined scheme.

5.1 Combined Small-Field Protocol

We present our full combined protocol below. Our protocol directly instantiates the generic small-field
template of Definition 2.10; we slightly specialize that template by requiring that the ground field K = Tι
be a binary tower field.

We again use the tensor algebra A := Tτ ⊗Tι
Tτ , as well as the two ring embeddings φ0 : Tτ ↪→ A and

φ1 : Tτ ↪→ A.

CONSTRUCTION 5.1 (Combined Small-Field IOPCS).
We define Π = (Setup,Commit,P,V) as follows.

• params ← Π.Setup(1λ, ℓ, ι). On input 1λ, ℓ, and ι, choose a constant, positive rate parameter
R ∈ N and a tower height τ ≥ log(ω(log λ)) for which τ ≥ ι and 2τ ≥ ℓ − τ + ι + R. Write
κ := τ − ι and ℓ′ := ℓ − κ. Initialize the vector oracle FTτ

Vec. Fix a folding factor ϑ | ℓ′ and
a repetition parameter γ = ω(log(λ)). Write (X0(X), . . . , X2ℓ

′−1(X)) for the novel Tτ -basis of

Tτ [X]≺2ℓ
′

, and fix the domains S(0), . . . , S(ℓ′) and the polynomials q(0), . . . , q(ℓ
′−1) as in Subsection

3.1. Write C(0) ⊂ Tτ 2
ℓ′+R

for the Reed–Solomon code RSTτ ,S(0) [2ℓ
′+R, 2ℓ

′
].

• [f ] ← Π.Commit(params, t). On input t(X0, . . . , Xℓ−1) ∈ Tι[X0, . . . , Xℓ−1]
⪯1, construct using

Definition 2.1 the packed polynomial t′(X0, . . . , Xℓ′−1) ∈ Tτ [X0, . . . , Xℓ′−1]
⪯1. Write P (X) :=∑

v∈Bℓ′
t′(v)·X{v}(X) for its univariate flattening. Using Algorithm 2, compute the Reed–Solomon

codeword f : S(0) → Tτ defined by f : x 7→ P (x). Submit (submit, ℓ′ +R, f) to the vector oracle
FTτ

Vec. Upon receiving (receipt, ℓ′ +R, [f ]) from the oracle, output the commitment [f ].

We define (P,V) as the following IOP, in which both parties have the common input [f ], s ∈ Tτ , and
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(r0, . . . , rℓ−1) ∈ T ℓ
τ , and P has the further input t(X0, . . . , Xℓ−1) ∈ Tι[X0, . . . , Xℓ−1]

⪯1.

• P again writes t′(X0, . . . , Xℓ′−1) ∈ Tτ [X0, . . . , Xℓ′−1]
⪯1 for t(X0, . . . , Xℓ−1)’s packed polynomial;

P moreover writes h(X0, . . . , Xℓ′−1) := t′(X0, . . . , Xℓ′−1) · ẽq(φ0(rκ), . . . , φ0(rℓ−1), X0, . . . , Xℓ′−1).

• P writes s0 := t′(φ0(rκ), . . . , φ0(rℓ−1)) and sends V s0.

• V destructures (s0,v)v∈Bκ
:= s0, and checks s

?
=
∑

v∈Bκ
s0,v · ẽq(r0, . . . , rκ−1, v0, . . . , vκ−1).

• P and V both abbreviate f (0) := f , and execute the following loop:

1: for i ∈ {0, . . . , ℓ′ − 1} do
2: P sends V the polynomial hi(X) :=

∑
v∈Bℓ′−i−1

h
(
φ1(r

′
0), . . . , φ1(r

′
i−1), X, v0, . . . , vℓ′−i−2

)
.

3: V requires si
?
= hi(0) + hi(1). V samples r′i ← Tτ , sets si+1 := hi(φ1(r

′
i)), and sends P r′i.

4: P defines f (i+1) : S(i+1) → Tτ as the function fold
(
f (i), r′i

)
of Definition 3.6.

5: if i+ 1 = ℓ′ then P sends c := f (ℓ′)(0, . . . , 0) to V.
6: else if ϑ | i+ 1 then P submits (submit, ℓ′ +R− i− 1, f (i+1)) to the oracle.

• V requires sℓ′
?
= φ1(c) · ẽq

(
φ0(rκ), . . . , φ0(rℓ−1), φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)

)
.

• V executes the following querying procedure:

1: for γ repetitions do
2: V samples v ← Bℓ′+R randomly.
3: for i ∈ {0, ϑ, . . . , ℓ′ − ϑ} (i.e., taking ϑ-sized steps) do
4: for each u ∈ Bϑ, V sends

(
query, [f (i)], (u0, . . . , uϑ−1, vi+ϑ, . . . , vℓ′+R−1)

)
to the oracle.

5: if i > 0 then V requires ci
?
= f (i)(vi, . . . , vℓ′+R−1).

6: V defines ci+ϑ := fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
(vi+ϑ, . . . , vℓ′+R−1).

7: V requires cℓ′
?
= c.

We refrain from proving explicitly the completeness and security of Construction 5.1. Indeed, those
results follow essentially directly from the ideas already developed in Sections 3 and 4 above.

5.2 Efficiency

We examine the efficiency of Construction 5.1, both asymptotic and concrete. Throughout our below analysis,
we view the coefficient size parameter ι and the Reed–Solomon rate parameter R as constants, though we
note in passing our protocol’s various dependencies on these values.

We note that it’s possible to achieve, for both parties, a merely-polylogarithmic dependence on the security
parameter λ—while retaining asymptotic security—by instantiating with appropriate care the extension
degree 2τ , the random oracle digest width, and the repetition parameter γ. (Specifically, it’s enough to
demand that these quantities grow strictly polylogarithmically—i.e., with exponent greater than 1—in λ.)
Since this fact is of essentially theoretical interest, we refrain from developing it (though we refer to [DP23,
Thm. 3.14] for a related treatment). We finally assume throughout that ϑ is bounded from above by a
constant (increasing ϑ is universally an option, and not a requirement).

For Construction 5.1 to be well-defined; it’s necessary that 2τ ≥ ℓ − τ + ι + R hold. For the sake of
security, we moreover set 2τ ≥ Θ(λ). In sum, it suffices that 2τ ≥ Θ(λ + ℓ) hold; we assume as much
throughout. We moreover set γ := Θ(λ), and assume that the random oracle outputs digests of size Θ(λ).
We see that each Tτ -element takes Ω(λ, ℓ) bits to represent and each Tτ -operation takes poly(λ, ℓ) work (in

fact, O((λ+ ℓ)log(3)) is enough). Similarly, each A-element occupies 2ι · (2τ−ι)
2
= 22·τ−ι = O((λ+ ℓ)2) bits,

and each A-operation again takes poly(λ, ℓ) work.
The commitment phase of Construction 5.1 amounts to a Reed–Solomon encoding operation in the code

C(0) = RSTτ ,S(0) [2ℓ
′+R, 2ℓ

′
]. By Lin, Chung and Han [LCH14, § III. D.] (see also Algorithm 2), this operation

can be carried out in Θ
(
ℓ′ · 2ℓ′+R

)
= Θ

(
ℓ′ · 2ℓ′

)
Tτ -operations (specifically, using ℓ′ · 2ℓ′+R and ℓ′ · 2ℓ′+R−1

Tτ -additions and Tτ -multiplications, respectively). The prover’s opening protocol entails a sumcheck on the
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A-polynomial h(X0, . . . , Xℓ′−1)—whose individual degree in each variable is at most 2—and an execution
of our 2ϑ-ary multilinear FRI variant (see Subsection 3.2) on the ℓ′-variate committed word f over Tτ . By
the sumcheck prover analysis of Thaler [Tha22, Lem. 4.5], the first task takes Θ(2ℓ

′
) A-operations, which

represents Θ(2ℓ
′
) · poly(λ, ℓ) total work. It follows essentially by inspection that our prover’s FRI-incumbent

work amounts to Θ(2ℓ
′+R) = Θ(2ℓ

′
) Tτ -operations, and thus again represents Θ(2ℓ

′
) · poly(λ, ℓ) total work.

We conclude that our prover is quasilinear in the packed length 2ℓ
′
of its witness.

Construction 5.1’s verifier complexity is essentially that of the sumcheck verifier plus that of the FRI veri-
fier. These latter tasks entail Θ(ℓ′) A-operations and Θ(γ ·2ϑ · ℓ

′

ϑ ) = O(ℓ′)·poly(λ) Tτ -operations, respectively.
These tasks thus represent total work on the order of O(ℓ′) ·poly(λ, ℓ) = poly(λ, ℓ) bit-operations for the veri-
fier. Finally, the verifier’s computation of (ẽq(r0, . . . , rκ−1, v0, . . . , vκ−1))v∈Bκ

takes Θ(2κ) = Θ(2τ ) = Θ(λ, ℓ)
Tτ -operations, and so represents poly(λ, ℓ) total work (we recall from Subsection 2.1 the standard algorithm
for this task). The verifier’s computation of ẽq

(
φ0(rκ), . . . , φ0(rℓ−1), φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)

)
takes just Θ(ℓ′)

A-operations, and so again represents just O(ℓ′) · poly(λ, ℓ) = poly(λ, ℓ) total work.
The non-oracle communication cost of Construction 5.1 (i.e., directly between the prover and the verifier)

amounts to three A-elements per round of the sumcheck, together with the final Tτ -element c.

The BCS transform. In the variant of Construction 5.1 in which, by means of the BCS transform
[BCS16], the use of the vector oracle is eliminated, the prover must moreover Merkle-hash f (0) during its
commitment phase, as well as the oracles f (ϑ), . . . , f (ℓ′−ϑ) during its opening proof; these commitments

represent total work on the order of Θ
(
2ℓ

′+R
)
= Θ

(
2ℓ

′
)

hash evaluations. We note that for each query

repetition i ∈ {ℓ′ − ϑ, . . . , ϑ, 0} and each v ∈ Bℓ′+R−i−ϑ, the required leaves
(
f (i)(u ∥ v)

)
u∈Bϑ

are naturally

adjacent in the prover’s ith Merkle tree. We thus opt to send only a single shortened Merkle path, of height
only ℓ′ +R− i− ϑ, as well as the 2ϑ relevant field elements, at each such query step. The total prover work

during the query phase is thus O
(
γ ·
(
λ · (ℓ′ +R)2 + ℓ′

ϑ · 2
ϑ ·Θ(λ+ ℓ)

))
= O

(
γ · (λ · ℓ2)

)
. Using our further

assumption whereby γ = Θ(λ), we upper-bound the prover’s work during the query phase as O
(
λ2 · ℓ2

)
.

In this non-oracle variant of the protocol—in which the verifier must check Merkle paths—the verifier’s

FRI cost becomes O
(
γ ·
(
λ · (ℓ′ +R)2 + ℓ′

ϑ · 2
ϑ · poly(λ, ℓ)

))
, which is again O(ℓ2) · poly(λ, ℓ) = poly(λ, ℓ).

During the protocol’s query phase—and assuming again the BCS-transformed version—we encounter

further a proof size cost on the order of O
(
γ ·
(
λ · (ℓ′ +R)2 + ℓ′

ϑ · 2
ϑ ·Θ(λ+ ℓ)

))
= O

(
λ2 · ℓ2

)
bits.

Concrete soundness. We record proof sizes for both this work and [DP23, Cons. 3.11]. In our concrete
proof size analyses below, we incorporate various further optimizations. For example, we opt to send the
entire jth layer of the Merkle tree—as opposed to only its root—in each round i ∈ {0, ϑ, . . . , ℓ′ − ϑ}, where
j is an appropriately chosen constant. (For those i for which j > ℓ′ +R− i− ϑ, we simply send the prover’s
entire oracle in the clear.) Increasing j exponentially increases the fixed cost of each Merkle tree, but also
causes each among the γ subsequently sent paths to become shorter. The optimal truncation height turns
out to be j := ⌈log2(γ)⌉. Finally, we incorporate a standard FRI early-termination optimization; we stipulate
that our prover send its message directly to the verifier in the clear as soon as it becomes sufficiently small.

We further incorporate the various optimizations described in Gruen [Gru24, § 3]. Those optimizations
serve to reduce the communication cost of each polynomial hi(X) above from three algebra-elements per

round to just one. They also decrease our protocol’s sumcheck-specific soundness error from 2·ℓ′
|Tτ | to

ℓ′

|Tτ | .

In order to appropriately select the query repetition parameter γ, we must examine the concrete security
of our protocol (we refer to [DP23, § 3.5] for an analogous analysis). It follows essentially from the proof of
Theorem 3.16 that Construction 5.1’s concrete soundness error is bounded from above by

ℓ′

|Tτ |
+

2ℓ
′+R

|Tτ |
+

(
1

2
+

1

2 · 2R

)γ

; (8)

above, the first summand is sumcheck-specific, whereas the latter two reflect Propositions 3.22 and 3.23,
respectively. For each desired concrete security level Ξ, we thus set γ minimally so that (8) becomes bounded

from above by Ξ. (Clearly, this is possible only when Ξ > ℓ′

|Tτ | +
2ℓ

′+R

|Tτ | holds.) We say in this case that

Construction 5.1 attains − log2(Ξ) bits of security.
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Proof sizes. In our proof size measurements below, we use a 128-bit field, and attain 96 bits of provable
security. In Construction 5.1, we use between γ = 142 and γ = 144 queries, as the case may be. We use the
Merkle tree truncation height j := 8. We fix the folding factor ϑ := 4, which happens to yield the smallest
proofs throughout. We terminate FRI early as soon as the message size inequality ℓ′ − i ≤ 11 holds. The
previous work [DP23, Cons. 3.11] requires more queries—rather between γ = 231 and γ = 232, for the sizes
we benchmark below—as [DP23, Rem. 3.18] explains. Our proof sizes appear in Table 1 below.

Total Data Size Num. Variables ℓ Coefficient Size ι [DP23, Cons. 3.11] Construction 5.1

32 MiB (228 bits) 22 6 0.753 MiB 0.227 MiB

25 3 1.003 MiB 0.231 MiB

28 0 2.849 MiB 0.267 MiB

512 MiB (232 bits) 26 6 4.532 MiB 0.335 MiB

29 3 5.682 MiB 0.340 MiB

32 0 11.300 MiB 0.383 MiB

8 GiB (236 bits) 30 6 11.329 MiB 0.465 MiB

33 3 22.572 MiB 0.471 MiB

36 0 61.064 MiB 0.521 MiB

Table 1: Proof sizes, including oracle-skipping, Merkle caps, and early FRI termination.

We see that our Construction 5.1 beats [DP23, Cons. 3.11] by as much as a hundredfold.

Concrete performance. We concretely benchmark this work’s Construction 5.1 above, as well as [DP23,
Cons. 3.11] and the univariate-FRI-based scheme Plonky3 . Our benchmarks of the first two schemes use
Binius, an open-source implementation of both [DP23] and this work.

In our benchmarks below, we again use a 128-bit field and attain 96 bits of provable security. We work
exclusively in the unique-decoding regime. We note that both [DP23, Cons. 3.11] and this work operate
solely in that regime (as of yet). As for Plonky3, we note that it’s impossible to obtain 96 bits of provable
security in the list-decoding regime over a field of merely 128 bits. Indeed, the best-available proximity
gap in that regime—namely, [Ben+23, Thm. 5.1]—has a false witness probability [Ben+23, (5.3)] which
grows quadratically in its problem size. We see that each reasonably-large instance stands to overwhelm that
result’s 128-bit denominator (yielding a vacuous bound). Our benchmarks below thus reflect the best-possible
proof size attainable in Plonky3, conditioned on the 96-bit security level and the use of a 128-bit field.

In [DP23] and this work, we work over the 128-bit tower field T7. In Plonky3 , we use the quartic
extension Fp[X]/

(
X4 − 11

)
of the Baby Bear prime field Fp, where p := 231 − 227 + 1. Throughout, we

use the code rate ρ = 1
4 . We benchmark [DP23] and Construction 5.1 on ℓ-variate multilinear polynomials,

where ℓ ∈ {20, 24, 28}. In each case, we consider polynomials over Tι, for ι ∈ {0, 3, 5} (i.e., with coefficients of
1 bit, 8 bits and 32 bits). As far as Plonky3, we benchmark univariate polynomials of degree 2ℓ ∈ {220, 224}
(the degree-228 size is inaccessible in Plonky3, as we explain below). In that setting, we benchmark only
polynomials over the 31-bit Baby Bear field Fp; indeed, that scheme would not perform any better upon
being given as input a polynomial whose coefficients were “smaller” (albeit still Fp-elements).

In our concrete benchmarks both of this work and of Plonky3 below, we omit throughout the Merkle-caps,
oracle-skipping, and early-termination optimizations. (That is, in this work, we set ϑ := 1 and j := 0 and
use the termination threshold of 0, and moreover proceed analogously in Plonky3.) These omissions make
our proofs become significantly larger (and our prover and verifier slower to boot); we refer to Table 1 above
for our protocol’s “true” proof sizes. On the other hand, they make our comparison to Plonky3 below more
direct, since that work also neglects to include these optimizations, as currently written.
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Finally, we have chosen to benchmark Plonky3 on batches of polynomials. The most natural benchmark
would have compared our scheme’s performance on ℓ-variate multilinear polynomials to Plonky3’s on single,
degree-2ℓ univariate polynomials. We note, however, that Plonky3’s FRI-PCS implementation is heavily
optimized for the case of batched polynomial commitments. In order to present a fairer juxtaposition, we
instead run Plonky3 on batches of 24 univariate polynomials, each of degree 2ℓ−4, for each problem size ℓ.

In our CPU benchmarks below, we use throughout a Google Cloud machine of type c3-standard-22 with
an Intel Xeon Scalable (“Sapphire Rapids”) processor and 22 virtual cores. Both the Binius and Plonky3
implementations leverage AVX-512 accelerated instructions; Binius moreover uses the Intel GFNI instruction
set extension. We benchmark Plonky3 using both the Poseidon2 and Keccak-256 hashes (the former hash is
“recursion-friendly” in that work’s prime-field setting). We present our singlethreaded results in Table 2.

Commit. Scheme Prob. Sz. ℓ Coef. Sz. (bits) Pf. Sz. (MiB) Commit (s) Prove (s) Verify (s)

Plonky3, 20 31 0.741 0.527 0.416 0.0254

Baby Bear, 24 31 1.097 8.72 6.81 0.0367

Poseidon2 28 31 1.533 146 112 0.0499

Plonky3, 20 31 0.741 0.265 0.297 0.0125

Baby Bear, 24 31 1.097 4.67 4.88 0.0180

Keccak-256 28 31 1.533 80.5 81.0 0.0228

[DP23, Cons. 3.11] 20 1 0.183 0.00409 0.00294 0.00537

8 0.205 0.0326 0.00406 0.00351

32 0.281 0.128 0.0173 0.00478

24 1 0.725 0.0457 0.0662 0.0146

8 0.746 0.405 0.0959 0.00917

32 1.010 1.58 0.465 0.0109

28 1 2.849 0.740 1.56 0.0501

8 3.870 6.27 2.99 0.0291

32 3.884 29.3 17.0 0.0716

Construction 5.1 20 1 0.533 0.0252 0.0335 0.00870

8 0.732 0.205 0.268 0.0123

32 0.899 0.822 0.961 0.0176

24 1 0.844 0.401 0.513 0.0141

8 1.089 3.33 4.27 0.0253

32 1.289 13.4 15.5 0.0682

28 1 1.225 6.73 8.39 0.0357

8 1.515 54.9 68.6 0.224

32 1.749 222 248 0.889

Table 2: Singlethreaded benchmarks.
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In Table 3 below, we present multithreaded benchmarks.

Commit. Scheme Prob. Sz. ℓ Coef. Sz. (bits) Pf. Sz. (MiB) Commit (s) Prove (s) Verify (s)

Plonky3, 20 31 0.741 0.0612 0.0744 0.0258

Baby Bear, 24 31 1.097 0.931 1.11 0.0372

Poseidon2 28 31 1.533 15.8 19.5 0.0506

Plonky3, 20 31 0.741 0.0366 0.0592 0.0129

Baby Bear, 24 31 1.097 0.603 0.984 0.0180

Keccak-256 28 31 1.533 11.2 17.6 0.0242

[DP23, Cons. 3.11] 20 1 0.183 0.00257 0.000976 0.00525

8 0.205 0.00556 0.00125 0.00393

32 0.281 0.00146 0.00248 0.00410

24 1 0.725 0.00677 0.00688 0.0108

8 0.746 0.0738 0.0114 0.00729

32 1.010 0.288 0.0421 0.00760

28 1 2.849 0.146 0.141 0.0302

8 3.870 1.35 0.308 0.0197

32 3.884 5.24 1.42 0.0472

Construction 5.1 20 1 0.533 0.00368 0.0145 0.0585

8 0.732 0.0229 0.0405 0.0698

32 0.899 0.0840 0.109 0.0825

24 1 0.844 0.0334 0.0576 0.0754

8 1.089 0.350 0.435 0.0966

32 1.289 1.39 1.58 0.134

28 1 1.225 0.684 0.851 0.116

8 1.515 5.65 6.91 0.336

32 1.749 22.7 25.0 1.09

Table 3: Multithreaded benchmarks.

5.3 Batching

In this subsection, we sketch our approach to the batch-evaluation of many polynomials. We note that a
technique of Ron-Zewi and Rothblum [RR24, Fig. 3] serves to reduce the evaluation of some fixed polynomial
at many points to that of the same polynomial at just one point. It is not difficult to extend the reduction
[RR24, Fig. 3] to the case of possibly different polynomials at different points (we refer to Chen, Bünz,
Boneh and Zhang [CBBZ23, § 3.7] for a similar extension). In this subsection, we discuss the target of this
reduction; i.e., we discuss how to commit to a batch of polynomials, and then later to evaluate all of those
polynomials at a single given point.
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We fix tower heights ι and τ as in Construction 5.1, a batching factor m ≥ 0, and a batch of ℓ-
variate input multilinears (tu(X0, . . . , Xℓ−1))u∈Bm

over Tι. For simplicity, we assume in this subsection
that the relevant input multilinears are defined over the same subfield Tι ⊂ Tτ (an extension of our
theory in which this restriction is relaxed exists). The essential point is that our batching and pack-
ing processes interact in a fairly subtle way. We describe our approach informally as follows. To com-
mit to the batch (tu(X0, . . . , Xℓ−1))u∈Bm

, P applies Definition 2.1 independently to each of its polyno-
mials, obtaining in this way the batch (t′u(X0, . . . , Xℓ′−1))u∈Bm

of packed polynomials. P defines the
ℓ′ + m-variate polynomial T (X0, . . . , Xℓ′−1, Y0, . . . , Ym−1) over Tτ in such a way that, for each u ∈ Bm
and each v ∈ Bℓ′ , T (v0, . . . , vℓ′−1, u0, . . . , um−1) = t′u(v) holds. Finally, P flattens and RS-encodes
T (X0, . . . , Xℓ′−1, Y0, . . . , Ym−1), exactly as in the commitment phase of Construction 5.1; P writes [f ], say,
for the resulting ℓ′ +m+R-dimensional oracle over Tτ .

To evaluate the batch (tu(X0, . . . , Xℓ−1))u∈Bm
collectively at the point (r0, . . . , rℓ−1) ∈ T ℓ

τ , P and
V proceed as follows, given the batch of evaluation claims (su)u∈Bm . First, V samples random scalars
(r′′0 , . . . , r

′′
m−1)← T m

τ . It is a standard consequence of Schwartz–Zippel that, except for with probability at
most m

|Tτ | over V’s choice of (r′′0 , . . . , r
′′
m−1), it suffices for the parties to decide rather the tensor-combined

equality:∑
u∈Bm

tu(r0, . . . , rℓ−1) · ẽq(r′′0 , . . . , r′′m−1, u0, . . . , um−1)
?
=
∑

u∈Bm

su · ẽq(r′′0 , . . . , r′′m−1, u0, . . . , um−1). (9)

Upon receiving (r′′0 , . . . , r
′′
m−1) from V, P defines the ℓ′-variate polynomial:

h(X0, . . . , Xℓ′−1) :=

( ∑
u∈Bm

φ1(t
′
u)(X0, . . . , Xℓ′−1) · φ0(ẽq(r

′′, u))

)
· φ0(ẽq(rκ, . . . , rℓ−1, X0, . . . , Xℓ′−1)).

P sends s0 :=
∑

w∈Bℓ′
h(w) to V, who destructures (s0,v)v∈Bκ

:= s0 and checks:∑
u∈Bm

su · ẽq(r′′0 , . . . , r′′m−1, u0, . . . , um−1)
?
=
∑
v∈Bκ

s0,v · ẽq(r0, . . . , rκ−1, v0, . . . , vκ−1). (10)

The parties then proceed exactly in the main evaluation phase of Construction 5.1. That is, for ℓ′ rounds,
they sumcheck h(X0, . . . , Xℓ′−1) and FRI-fold P’s initial oracle [f ].

After proceeding in this way for ℓ′ rounds, V obtains the reduced sumcheck claim sℓ′ . P moreover sends
to V in the clear the entire message underlying its FRI oracle f (ℓ′). This message is a univariate polynomial
over Tτ of degree less than 2m; we write (cu)u∈Bm for its coordinates (with respect to the ℓ′th-order novel
polynomial basis). V finally checks:

sℓ′
?
=

( ∑
u∈Bm

φ1(cu) · φ0(ẽq(r
′′, u))

)
· ẽq
(
φ0(rκ), . . . , φ0(rℓ−1), φ1(r

′
0), . . . , φ1(r

′
ℓ′−1)

)
. (11)

In its final phase, V reconstructs the codeword f (ℓ′) : Sℓ′ → Tτ , by re-encoding (cu)u∈Bm
with respect to

the ℓ′th-order basis. Finally, V launches its usual FRI querying procedure (we note, however, that P’s initial
oracle hasn’t been “folded all the way”).

We explain our approach in the following way. If the tensor-combined variant (9) of P’s initial claim
is false, then P can pass V’s check (10) only by kicking off their sumcheck with the false initial claim
s0 ̸=

∑
w∈Bℓ′

h(w). By the standard argument, during the course of the sumcheck, this false claim will,

except with low probability, induce the further false claim sℓ′ ̸= h(r′0, . . . , r
′
ℓ′−1). In order to argue that V

will reject (11), then, it suffices to argue that P’s final FRI message (cu)u∈Bm
will equal exactly the set of

evaluations
(
tu(r

′
0, . . . , r

′
ℓ′−1)

)
u∈Bm

. To argue this, we simply need a variant of Theorems 3.12 and 3.16 in

which we only partially fold P’s initial FRI message (T (v ∥ u))(v,u)∈Bℓ′×Bm
.
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