
A Complete Beginner Guide to the Number Theoretic

Transform (NTT)

Ardianto Satriawan1, Rella Mareta1, Hanho Lee1

1Dept. of Electrical and Computer Engineering, Inha University, Incheon, South Korea.

Contributing authors: asatriawan@inha.ac.kr; rmareta@inha.edu; hhlee@inha.ac.kr;

Abstract

The Number Theoretic Transform (NTT) is a powerful mathematical tool that has become increasingly
important in developing Post Quantum Cryptography (PQC) and Homomorphic Encryption (HE). Its
ability to efficiently calculate polynomial multiplication using the convolution theorem with a quasi-
linear complexity O(n logn) instead of O(n2) when implemented with Fast Fourier Transform-style
algorithms has made it a key component in modern cryptography. FFT-style NTT algorithm or fast-
NTT is particularly useful in lattice-based cryptography. In this short note, we briefly introduce the basic
concepts of linear, cyclic, and negacyclic convolutions via traditional schoolbook algorithms, traditional
NTT, its inverse (INTT), and FFT-like versions of NTT/INTT. We then provide consistent toy examples
through different concepts and algorithms to understand the basics of NTT concepts.

Keywords: Number Theoretic Transform, Post Quantum Cryptography, Homomorphic Encryption

1 Introduction

This note provides a beginner guide for learning the concepts of the Number Theoretic Transform. One
problem with learning NTT/INTT concepts was that there was no guidance or tutorial available in one
place. All the resources were scattered around mathematics, engineering, computer science, and cryptog-
raphy papers. From our personal experiences, those factors make it hard to learn. Also, many similar and
unfamiliar terms were found when learning, making it more confusing. For instance, we did not know the
difference between a positively-wrapped convolution and a negatively-wrapped one.

Motivated by the steep curve of NTT/INTT learning concepts, we wrote this note, mostly taken from
my review paper about the hardware implementation of NTT [1]. In this note, we provide:

1. Introduction about the schoolbooks multiplication, convolutions, and long divisions, which are the
concepts NTT/INTT optimize. This will be explained in Section 2.

2. The concepts of the NTT/INTT transformation as the Discrete Fourier Transform in the polynomial
ring are provided in Section 3.

3. The optimization of the NTT/INTT transformation by using the Fast-Fourier Transformation (FFT)-
style calculation: the Cooley-Tukey (CT) and the Gentleman-Sande (GS) butterflies algorithm. Those
techniques are explained in Section 4.

2 Preliminaries: Schoolbook Convolutions

This section briefly explains the definition of linear, cyclic, and negacyclic convolutions between polynomials
with integer coefficients to show their basic concepts and differences. We also provide simple and consistent
toy examples throughout the section to clarify how different concepts work. In this section, we assume the
modulus, q, is large enough so that the arithmetic calculations do not cause integer overflows.

1



2.1 Polynomial Multiplication and Linear Convolution

Definition 2.1. Suppose that G(x) and H(x) are polynomials of degree n− 1 in the ring Zq[x] where q ∈ Z
and x is the polynomial variable, a polynomial multiplication of G(x) and H(x) is defined as:

Y (x) = G(x) ·H(x) =

2(n−1)∑
k=0

ykx
k (1)

where yk =
∑k

i=0 gihk−i mod q, g and h are the polynomial coefficients of G(x) and H(x) respectively.

Polynomial multiplication is equivalent to a discrete linear convolution between the coefficients’ vectors
g and h [2].

y[k] = (g ∗ h)[k] =
k∑
i=0

g[i]h[k − i] (2)

Example 2.1. Let

G(x) = 1 + 2x+ 3x2 + 4x3, and
H(x) = 5 + 6x+ 7x2 + 8x3

or in vector notation:
g = [1, 2, 3, 4], and
h = [5, 6, 7, 8].

Figure 1 shows the schoolbook method of how a typical polynomial multiplication or linear convolution is
done. This traditional multiplication algorithm has a O(n2) complexity.

Fig. 1: Schoolbook method for polynomial multiplication or linear convolution.

Thus, the linear convolution result is Y (x) = 5 + 16x+ 34x2 + 60x3 + 61x4 + 52x5 + 32x6, or in vector
notation, y = [5, 16, 34, 60, 61, 52, 32].

The algorithm has been implemented in many mathematical programming libraries, such as MATLAB’s
conv [3] and Numpy’s convolve [4] with integer array inputs combined with modular arithmetic operations.

2.2 Cyclic Convolution

Definition 2.2. Suppose that G(x) and H(x) are polynomials of degree n−1 in the quotient ring Zq[x]/(xn−
1) where q ∈ Z. A cyclic convolution or positive wrapped convolution, PWC(x) is defined as:

PWC(x) =

n−1∑
k=0

ckx
k (3)

2



where ck =
∑k

i=0 gihk−i +
∑n−1

i=k+1 gihk+n−i mod q. If Y (x) is the result of their linear convolution in the
ring Zq[x], it also can be defined as

PWC(x) = Y (x) mod (xn − 1) (4)

Traditional or schoolbook methods to calculate a cyclic convolution through a polynomial multiplication
are shown in Example 2.1, followed by a long division. The method has O(n2) complexity.

Example 2.2. Let

G(x) = 1 + 2x+ 3x2 + 4x3, and
H(x) = 5 + 6x+ 7x2 + 8x3

or in vector notation:
g = [1, 2, 3, 4], and
h = [5, 6, 7, 8].

We have calculated Y (x) in Example 2.1, thus we only need to do a long division by xn − 1
Figure 2 shows how schoolbook long division is used to calculate a cyclic convolution with the dividend as

the linear convolution result of G(x) and H(x). The remainder of the long division algorithm is the cyclic
convolution result.

Fig. 2: Schoolbook method for positively wrapped modular polynomial multiplication or cyclic convolution.

Thus, the result of the cyclic convolution is PWC(x) = 66+ 68x+66x2 +60x3 or [66, 68, 66, 60]. Notice
that we present the result sorted in increasing power.

The MATLAB function cconv [5] can calculate a cyclic convolution using integer array inputs and
modular arithmetic operations. Notice that the result of cyclic convolution, unlike linear convolution, has a
length of n instead of 2n− 1.

2.3 Negacyclic Convolution

Definition 2.3. Suppose that G(x) and H(x) are polynomials of degree n−1 in the quotient ring Z[x]/(xn+
1) where q ∈ Z. A negacyclic convolution or negative wrapped convolution, NWC(x) is defined as:

NWC(x) =

n−1∑
k=0

ckx
k (5)

where ck =
∑k

i=0 gihk−i −
∑n−1

i=k+1 gihk+n−i mod q. If Y (x) is the result of their linear convolution in
the ring Z[x], it also can be defined as

NWC(x) = Y (x) mod (xn + 1) (6)

3



Example 2.3. Let

G(x) = 1 + 2x+ 3x2 + 4x3, and
H(x) = 5 + 6x+ 7x2 + 8x3

or in vector notation:
g = [1, 2, 3, 4], and
h = [5, 6, 7, 8].

We have calculated Y (x) in Example 2.1, thus we only need to do a long division by xn + 1. Figure 3
shows how schoolbook long division calculates a negacyclic convolution, the remainder of the division.

Fig. 3: Schoolbook method for negatively wrapped modular polynomial multiplication or negacyclic con-
volution.

Thus, the result of the negacyclic convolution is NWC(x) = −56− 36x+2x2 +60x3 or [−56,−36, 2, 60].
Again, notice that we present the result sorted in increasing power.

Note that the only difference between cyclic and negacyclic convolution is the divisor. The cyclic convo-
lution uses xn − 1 while the negacyclic convolution uses xn + 1. Those schoolbook algorithms have O(n2)
complexity. Many efforts have been made to reduce their complexities by dividing the multiplier and multi-
plicand into several parts [6–9] or by parallelizing the algorithm on the implementation side [10]. However,
those efforts are not scalable as the polynomial degree grows higher.

3 NTT-Based Convolutions

In this section, we present the basics of NTT-based convolutions. Many researchers do not differentiate the
term NTT and FFT-based algorithms to calculate NTT, which creates confusion when understanding the
topic. This report refers to the transformation itself as NTT and the FFT-like algorithms as fast-NTT,
which are explained in Section 4. The classical NTT has a quadratic complexity of O(n2) when computed
directly, while fast-NTT algorithms have a more efficient quasi-linear complexity O(n log n).

3.1 Primitive n-th Root of Unity

Definition 3.1. Let Zq be an integer ring modulo q, and n− 1 is the polynomial degree of G(x) and H(x).
Such rings have a multiplicative identity (unity) of 1. Define ω as primitive n-th root of unity in Zq if
and only if:

ωn ≡ 1 mod q (7)

and

ωk ̸≡ 1 mod q (8)

for k < n.

4



One thing to note is that the primitive n−th root of unity in a ring Zq might not be unique. We show the
following example for q = 7681, used in Kyber in Rounds 1 and 2 of the NIST-PQC Competition [11, 12],
however, in our toy example we show for n = 4 instead of n = 256.

Example 3.1. In a ring Z7681 and n = 4, the 4-th root of unity which satisfy the condition ω4 ≡ 1
mod 7681 are {3383, 4298, 7680}. Out of three roots, 7680 is not a primitive n-th root of unity, as there
exist k = 2 < n that satisfy ω2 ≡ 1 mod 7681. Therefore ω = 3383 or ω = 4298 are the primitive 4-th root
of unity in Z7681.

The value of ω will be important in calculating NTT and positive-wrapped convolution. Calculating the
ω of a ring with a large number modulus q is tricky and tedious. One alternative library that provides a
function to calculate ω is Sympy via the function nthroot mod [13].

3.2 NTT-Based Positive-Wrapped Convolution

This section explains the definition of Number Theoretic Transform (NTT) and its inverse (INTT) based
on n-th root of unity, ω. The NTT of a polynomial does not have any physical meaning, unlike Discrete
Fourier Transform (DFT) which represents a signal in the frequency domain. However, NTT preserves one
of the important properties of DFT: the convolution theorem, which is valuable in calculating polynomial
multiplication.

3.2.1 Number Theoretic Transform Based on ω

Definition 3.2. The Number Theoretic Transform (NTT) of a vector of polynomial coefficients a is defined
as â = NTT(a), where:

âj =

n−1∑
i=0

ωijai mod q (9)

and j = 0, 1, 2, . . . , n− 1

Example 3.2. Let G(x) = 1 + 2x + 3x2 + 4x3 or in vector notation g = [1, 2, 3, 4]. We can infer that
n = 4. Suppose we work in the ring Z7681 and ω is its primitive n-th root of unity. The NTT of g, ĝ, can
be calculated by the following matrix multiplication:

ĝ =


ω0×0 ω0×1 ω0×2 ω0×3

ω1×0 ω1×1 ω1×2 ω1×3

ω2×0 ω2×1 ω2×2 ω2×3

ω3×0 ω3×1 ω3×2 ω3×3



1
2
3
4


Notice that the power of ω is the multiplication between the row and column numbers. As ω is the n-root

of unity, ωk = ω(k mod n) for k > n. Thus:

ĝ =


ω0 ω0 ω0 ω0

ω0 ω1 ω2 ω3

ω0 ω2 ω4 ω6

ω0 ω3 ω6 ω9



1
2
3
4



ĝ =


ω0 ω0 ω0 ω0

ω0 ω1 ω2 ω3

ω0 ω2 ω0 ω2

ω0 ω3 ω2 ω1



1
2
3
4


From Example 3.1 we obtained one of the n-th roots of unity in Z7681 is ω = 3383. Substituting into the

equation:

5



ĝ =


33830 33830 33830 33830

33830 33831 33832 33833

33830 33832 33830 33832

33830 33833 33832 33831



1
2
3
4



ĝ =


1 1 1 1
1 3383 7680 4298
1 7680 1 7680
1 4298 7680 3383



1
2
3
4



ĝ =


10
913
7679
6764


Therefore, the NTT(g) = [10, 913, 7679, 6764] in Z7681.

Example 3.3. Let H(x) = 5 + 6x + 7x2 + 8x3 or in vector notation g = [5, 6, 7, 8] in the ring Z7681 and
ω = 3383. Using the same principle as Example 3.2, the NTT of h is:

ĥ =


1 1 1 1
1 3383 7680 4298
1 7680 1 7680
1 4298 7680 3383



5
6
7
8

 =


26
913
7679
6764



Therefore, the NTT(h) = [26, 913, 7679, 6764] in Z7681.

Note that the NTT of a particular polynomial is not always unique. It depends on the choice of ω. The
NTT result of Example 3.2 and 3.3 will differ if one uses ω = 4298 instead of ω = 3383.

3.2.2 Inverse Number Theoretic Transform Based on ω

Definition 3.3. The Inverse of Number Theoretic Transform (INTT) of an NTT vector â is defined as
a = INTT(â), where:

ai = n−1
n−1∑
j=0

ω−ij âj mod q (10)

and j = 0, 1, 2, . . . , n− 1

Note that the INTT has a very similar formula to NTT. The only differences are ω replaced by its inverse
in Zq and a n−1 scaling factor. It always holds that a = INTT(NTT(a)).

Example 3.4. Given NTT(g) = ĝ = [10, 913, 7679, 6764] in Z7681 and ω = 3383. We can calculate the
inverse of ω, which is ω−1 = 4298 and the scaling factor n−1 = 5761. One can calculate the INTT(NTT(ĝ))
by the following matrix multiplication:

g = n−1


ω−0×0 ω−0×1 ω−0×2 ω−0×3

ω−1×0 ω−1×1 ω−1×2 ω−1×3

ω−2×0 ω−2×1 ω−2×2 ω−2×3

ω−3×0 ω−3×1 ω−3×2 ω−3×3




10
913
7679
6764



6



g = n−1


ω0 ω0 ω0 ω0

ω0 ω−1 ω−2 ω−3

ω0 ω−2 ω−4 ω−6

ω0 ω−3 ω−6 ω−9




10
913
7679
6764



g = n−1


ω0 ω0 ω0 ω0

ω0 ω−1 ω−2 ω−3

ω0 ω−2 ω−0 ω−2

ω0 ω−3 ω−2 ω−1




10
913
7679
6764



g = 5761


42980 42980 42980 42980

42980 42981 42982 42983

42980 42982 42980 42982

42980 42983 42982 42981




10
913
7679
6764



g = 5761


1 1 1 1
1 4298 7680 3383
1 7680 1 7680
1 3383 7680 4298




10
913
7679
6764

 =


1
2
3
4


Therefore, the g = [1, 2, 3, 4], which is the initial polynomial coefficients given in Example 3.2

Example 3.5. Given NTT(g) = ĥ = [26, 913, 7679, 6764] in Z7681 and ω = 3383. We can similarly calculate
the INTT to the previous example:

h = 5761


1 1 1 1
1 4298 7680 3383
1 7680 1 7680
1 3383 7680 4298




26
913
7679
6764

 =


5
6
7
8


Therefore, the h = [5, 6, 7, 8], which is the initial polynomial coefficients given in Example 3.3

3.2.3 Using NTT to Calculate Positive-Wrapped Convolutions

Because NTT is a variant of DFT in the polynomial ring. One can apply DFT’s convolution theorem to
calculate positive-wrapped convolution [14, 15]:

Proposition 3.1. Let a and b are the multiplicands’ vectors of polynomial coefficients. The positive-wrapped
convolution of a and b, c can be calculated by:

c = INTT(NTT(a) ◦NTT(b)) (11)

where ◦ is an element-wise vector multiplication in Zq.

Example 3.6. Let g = [1, 2, 3, 4] and h = [5, 6, 7, 8]. From Example 3.2 and 3.3, we know that the NTT of

them in in Z7681 are ĝ = [10, 913, 7679, 6764] and ĥ = [10, 913, 7679, 6764] when ω = 3383. We can calculate
their positive-wrapped convolution by:

INTT(


10
913
7679
6764

 ◦


26
913
7679
6764

) = INTT(


260
4021
4

3660

) = 5761


1 1 1 1
1 4298 7680 3383
1 7680 1 7680
1 3383 7680 4298



260
4021
4

3660

 =


66
68
66
60

 (12)

Therefore, their positive-wrapped convolution is [66, 68, 66, 60], the same result as calculated by schoolbook
multiplication and long division in Example 2.2.

7



While positive-wrapped convolution, commonly known as cyclic convolution, is useful, its imple-
mentation is primarily outside the cryptography domain. One such example is the implementation of
Schönhage–Strassen algorithm [16] for large integer multiplication.

However, in the context of PQC and HE, the chosen ring is mostly Zq[n]/(xn+1) instead of Zq[n]/(xn−1).
One must calculate the polynomial multiplications via the negative-wrapped convolution in such rings.

3.3 NTT-Based Negative-Wrapped Convolution

This section explains the definition of Number Theoretic Transform (NTT) and its inverse (INTT) based
on 2n-th root of unity, ψ, and how to utilize them to calculate negative-wrapped or negacyclic convolution.

3.3.1 Primitive 2n-th Root of Unity

To calculate negative-wrapped convolution, one needs the primitive 2n-th root of unity, ψ.

Definition 3.4. Let Zq be an integer ring modulo q, and n− 1 is the polynomial degree of G(x) and H(x)
and ω is its primitive n-th root of unity. Define ψ as the primitive 2n-th root of unity if and only if:

ψ2 ≡ ω mod q (13)

and

ψn ≡ −1 mod q (14)

Example 3.7. In a ring Z7681 and n = 4, when ω = 3383, the value of ψ can be 1925 or 5756 as
19252 = 57562 ≡ 3383 mod 7681 and 19254 = 57564 = 7680 ≡ −1 mod 7681. Therefore, one can choose the
value of ψ = 1925 or ψ = 5756.

3.3.2 Number Theoretic Transform Based on ψ

Definition 3.5. The Negative-Wrapped Number Theoretic Transform (NTTψ) of a vector of polynomial
coefficients a is defined as â = NTTψ(a), where:

âj =

n−1∑
i=0

ψiωijai mod q (15)

and j = 0, 1, 2, . . . , n− 1. As ψ2 ≡ ω mod q, we can substitute ω = ψ2 to equation (15):

âj =

n−1∑
i=0

ψ2ij+iai mod q (16)

Example 3.8. Let g = [1, 2, 3, 4], n = 4 and ψ = 1925 in the ring Z7681. The NTTψ(g) = ĝ, can be
calculated by the following matrix multiplication:

ĝ =


ψ2(0×0)+0 ψ2(0×1)+1 ψ2(0×2)+2 ψ2(0×3)+3

ψ2(1×0)+0 ψ2(1×1)+1 ψ2(1×2)+2 ψ2(1×3)+3

ψ2(2×0)+0 ψ2(2×1)+1 ψ2(2×2)+2 ψ2(2×3)+3

ψ2(3×0)+0 ψ2(3×1)+1 ψ2(3×2)+2 ψ2(3×3)+3



1
2
3
4



ĝ =


ψ0 ψ1 ψ2 ψ3

ψ0 ψ3 ψ6 ψ9

ψ0 ψ5 ψ10 ψ15

ψ0 ψ7 ψ14 ψ21



1
2
3
4

 =


ψ0 ψ1 ψ2 ψ3

ψ0 ψ3 ψ6 ψ1

ψ0 ψ5 ψ2 ψ7

ψ0 ψ7 ψ6 ψ5



1
2
3
4



8



ĝ =


19250 19251 19252 19253

19250 19253 19256 19251

19250 19255 19252 19257

19250 19257 19256 19255



1
2
3
4



ĝ =


1 1925 3383 6468
1 6468 4298 1925
1 5756 3383 1213
1 1213 4298 5756



1
2
3
4

 =


1467
2807
3471
7621


Therefore, the NTTψ(g) = [1467, 2807, 3471, 7621] when ψ = 1925 in Z7681.
Example 3.9. Let h = [5, 6, 7, 8], n = 4 and ψ = 1925 in the ring Z7681. The NTTψ(h) = ĥ, can be
calculated similarly by the following matrix multiplication:

ĥ =


1 1925 3383 6468
1 6468 4298 1925
1 5756 3383 1213
1 1213 4298 5756



5
6
7
8

 =


2489
7489
6478
6607


Therefore, the NTTψ(h) = [2489, 7489, 6478, 6607].

3.3.3 Inverse Number Theoretic Transform Based on ψ

Definition 3.6. The Negative-Wrapped Inverse of Number Theoretic Transform (INTT) of an NTT vector

â is defined as a = INTTψ
−1

(â), where:

ai = n−1
n−1∑
j=0

ψ−jω−ij âj mod q (17)

and i = 0, 1, 2, . . . , n− 1. Substituting ω = ψ2 yields:

ai = n−1
n−1∑
j=0

ψ−(2ij+j)âj mod q (18)

Note that the differences between NTTψ and INTTψ are the scaling factor n−1, the replacement of ψ
by ψ−1, and the transpose of the exponents of ψ matrix.

Example 3.10. Let NTTψ(g) = ĝ = [1467, 2807, 3471, 7621] and ψ = 1925 in the ring Z7681. Note that
ψ−1 = 1213 and n−1 = 5761. The vector g can be calculated by the following matrix multiplication:

g = n−1


ψ−0 ψ−0 ψ−0 ψ−0

ψ−1 ψ−3 ψ−5 ψ−7

ψ−2 ψ−6 ψ−10 ψ−14

ψ−3 ψ−9 ψ−15 ψ−21



1467
2807
3471
7621



g = n−1


ψ−0 ψ−0 ψ−0 ψ−0

ψ−1 ψ−3 ψ−5 ψ−7

ψ−2 ψ−6 ψ−2 ψ−6

ψ−3 ψ−1 ψ−7 ψ−5



1467
2807
3471
7621



g = 5761


12130 12130 12130 12130

12131 12133 12135 12137

12132 12136 12132 12136

12133 12131 12137 12135



1467
2807
3471
7621



9



g = 5761


1 1 1 1

1213 5756 6468 1925
4298 3383 4298 3383
5756 1213 1925 6468



1467
2807
3471
7621

 =


1
2
3
4


Therefore g = [1, 2, 3, 4].

Example 3.11. Let NTTψ(h) = ĥ = [2489, 7489, 6478, 6607] and ψ = 1925 in the ring Z7681. The vector
h can be calculated by the following matrix multiplication:

h = 5761


1 1 1 1

1213 5756 6468 1925
4298 3383 4298 3383
5756 1213 1925 6468



2489
7489
6478
6607

 =


5
6
7
8


Therefore, the h = [5, 6, 7, 8].

3.3.4 Using NTTψ to Calculate Negative-Wrapped Convolutions

Like its positive-wrapped version, the negative-wrapped NTT can evaluate the negative-wrapped convolu-
tions, commonly referred to as negacyclic convolutions.

Proposition 3.2. Let a and b are the multiplicands’ vectors of polynomial coefficients. The negative-wrapped
convolution of a and b, c can be calculated by:

c = INTTψ
−1

(NTTψ(a) ◦NTTψ(b)) (19)

where ◦ is an element-wise vector multiplication in Zq.

Example 3.12. Let g = [1, 2, 3, 4] and h = [5, 6, 7, 8]. From Example 3.8 and 3.9, we know that the NTTψ

of them in in Z7681 are ĝ = [1467, 2807, 3471, 7621] and ĥ = [2489, 7489, 6478, 6607] when ψ = 1925. We
can calculate their negative-wrapped convolution by:

INTT(


1467
2807
3471
7621

 ◦


2489
7489
6478
6607

) = INTT(


2888
6407
2851
2992

)

= 5761


1 1 1 1

1213 5756 6468 1925
4298 3383 4298 3383
5756 1213 1925 6468



2888
6407
2851
2992

 =


7625
7645
2
60


Therefore, [7625, 7645, 2, 60] – or when written with negative numbers [−56,−36, 2, 60] is their negacyclic
convolution, the same result as calculated by schoolbook multiplication and long division in Example 2.3

3.4 The Choice of Modulus

To make NTT transformation available, the modulus q has to satisfy the following requirements:

1. The n-th root of unity ω exists in ring Zq. The existence of ω enables one to utilize NTT to perform
positive-wrapped convolutions.

2. Furthermore, the 2n-th root of unity ψ exists in ring Zq to make negative-wrapped convolutions work.

The modulus q has to satisfy the following theorem to guarantee that ω exists [14, 17, 18]:

Theorem 3.1. If q is prime, then n must divide q − 1. If q is composite such that:

q = q1
m1 · q2m2 · q3m3 . . . qk

mk

10



then n must divide the greatest common divisor (GCD) of (q1 − 1, q2 − 1, q3 − 1, . . . , qk − 1).

However, while Theorem 3.1 guarantees the existence of ω does not guarantee the existence of ψ. To
guarantee the existence of ψ in Zq:

Theorem 3.2. If q is prime, then 2n must divide q − 1. If q is composite such that:

q = q1
m1 · q2m2 · q3m3 . . . qk

mk

then 2n must divide the greatest common divisor (GCD) of (q1 − 1, q2 − 1, q3 − 1, . . . , qk − 1).

Many researchers proposed various moduli that might satisfy the requirements, such as Mersenne [14]
and Fermat [19] prime numbers. Here we define NTT-friendly modulus based on its abilities to perform the
type of convolutions:

Definition 3.7. A PWC-NTT friendly modulus q is defined if and only if an n-th root of unity, ω,
exists in Zq.

Definition 3.8. An NWC-NTT friendly modulus q is defined if and only if n-th root of unity, ω, and
2n-th root of unity, ψ,exists in Zq.

In the schemes proposed for the NIST-PQC competition, the values of n and q are standardized. Table
1 summarizes the schemes and their NTT-friendliness.

Table 1: Standardized values of n and q NIST-PQC scheme.

Scheme n q PWC-NTT Friendly NWC-NTT Friendly

Dilithium [20] 256 8380417 ✔ ✔

Falcon [21] 512 12289 ✔ ✔
1024 12289 ✔ ✔

Kyber (Version 1 and 2) [11] 256 7681 ✔ ✔

Kyber (version 3) [12, 22] 256 3329 ✔ ✘

In the context of Post-Quantum Cryptography and Homomorphic Encryption, the terms ”Number
Theoretic Transform” and ”Convolutions” usually refer to their negacyclic or negative-wrapped versions.
Therefore, for the rest of the report, we refer to all the terms ”NTT,” ”INTT,” and ”convolutions” for their
negative-wrapped versions.

4 Fast NTT: An Adaptation of Fast-Fourier Transform to the
Number Theoretic Transform

In the previous sections, the presented NTT and INTT transformation pairs have O(n2) complexity, thus
making no difference from the traditional method of negacyclic convolution. However, the NTT is the Dis-
crete Fourier Transform in another ring. Therefore, the DFT optimization techniques can also be applied
to NTT. The well-known technique of DFT optimization is called the Fast-Fourier Transform (FFT),
proposed independently by Cooley-Tukey [23] and Gentleman-Sande [24]. Both using similar butterflies
divide-and-conquer technique to reduce the complexity to O(n log n)

To reduce the complexity and fasten the process of the matrix multiplication needed for the NTT
transformation, one can use ”divide and conquer” techniques by utilizing the periodicity and symmetry
property of ψ:

periodicity : ψk+2n = ψk (20)

symmetry : ψk+n = −ψk (21)

Where k is a non-negative integer. The calculation of n point NTT and INTT can be divided into two n/2
points. However, the dividing techniques for NTT and INTT are slightly different.

11



4.1 Cooley-Tukey (CT) Algorithm for Fast-NTT

From equation (16), one can separate the summation into two parts based on the summation index parity:

âj =

n−1∑
i=0

ψ2ij+iai mod q

=

n/2−1∑
i=0

ψ4ij+2ia2i +

n/2−1∑
i=0

ψ4ij+2j+2i+1a2i+1 mod q

=

n/2−1∑
i=0

ψ4ij+2ia2i + ψ2j+1

n/2−1∑
i=0

ψ4ij+2ia2i+1 mod q (22)

Based on the ψ’s symmetry properties:

âj+n/2 =

n/2−1∑
i=0

ψ4ij+2ia2i − ψ2j+1

n/2−1∑
i=0

ψ4ij+2ia2i+1 mod q (23)

Let Aj =
∑n/2−1

i=0 ψ4ij+2ia2i and Bj =
∑n/2−1

i=0 ψ4ij+2ia2i+1, equations (22) and (23) become:

âj = Aj + ψ2j+1Bj mod q

âj+n/2 = Aj − ψ2j+1Bj mod q (24)

Notice that Aj and Bj can be obtained as n/2 points NTT. If n is power-of-two, the process can be
repeated for all the coefficients. Figure 4 shows the visualization of Equation (24), usually called CT butterfly
as a reference to its proposer, Cooley and Tukey [23].

+

-

Fig. 4: Cooley-Tukey (CT) butterfly unit for calculating NTT.

One can configure several butterfly units to calculate the entire n length of NTT.

Example 4.1. From Example 3.8, one can calculate the NTT by the matrix multiplication:

ĝ =


ψ0 ψ1 ψ2 ψ3

ψ0 ψ3 ψ6 ψ9

ψ0 ψ5 ψ10 ψ15

ψ0 ψ7 ψ14 ψ21



1
2
3
4


Based on the ψ periodicity:

ĝ =


ψ0 ψ1 ψ2 ψ3

ψ0 ψ3 ψ6 ψ1

ψ0 ψ5 ψ2 ψ7

ψ0 ψ7 ψ6 ψ1



1
2
3
4


Based on the ψ symmetry:

ĝ =


ψ0 ψ1 ψ2 ψ3

ψ0 ψ3 −ψ2 ψ1

ψ0 −ψ1 ψ2 −ψ3

ψ0 −ψ3 −ψ2 ψ1



1
2
3
4



12



Breaking down for each element:

ĝ0 = 1ψ0 + 2ψ1 + 3ψ2 + 4ψ3

ĝ1 = 1ψ0 + 2ψ3 − 3ψ2 + 4ψ1

ĝ2 = 1ψ0 − 2ψ1 + 3ψ2 − 4ψ3

ĝ3 = 1ψ0 − 2ψ3 − 3ψ2 + 4ψ3

Factoring:

ĝ0 = ψ0(1 + 3ψ2) + ψ1(2 + 4ψ2)

ĝ1 = ψ0(1− 3ψ2) + ψ3(2 + 4ψ2)

ĝ2 = ψ0(1 + 3ψ2)− ψ1(2− 4ψ2)

ĝ3 = ψ0(1− 3ψ2)− ψ3(2− 4ψ2) (25)

The idea is to calculate similar terms in the brackets once and then distribute the results instead of calculating
them multiple times. Figure 5 shows the visualization of Equation (25).

+

-

+

-

+

-

+

-

Stage 1 Stage 2
Fig. 5: Cooley-Tukey butterflies for n = 4 and [1, 2, 3, 4] as its input.

The number of stages required is log2(n). For our case here, as n = 4, two stages are required. For
this example, the result of stage 1 is [2469, 5853, 5214, 1832], and stage 2 is [1467, 3471, 2807, 7621]. By
reordering the result of stage 2, we can get the correct NTT result: [1467, 2807, 3471, 7621]

The order of the results of CT-Butterfly is called bit-reversed order (BO), while the correct order of the
NTT is called normal order (NO). We will discuss the ordering in more detail in Subsection 4.4.

Example 4.2. Redoing Example 3.9, using the same butterfly configuration as Figure 5 with [5, 6, 7, 8] as
the input, the result of stage 1 is [643, 4027, 7048, 3666], and stage 2 is [2489, 6478, 7489, 6607]. Reorder it
to normal order for the NTT result: [2489, 7489, 6478, 6607].

However, to calculate INTT, one will need another but similar ”divide and conquer” approach.

4.2 Gentleman-Sande (GS) Algorithm for Fast-INTT

For the INTT, instead of dividing the summation by its index parity, it is separated by the lower and upper
half of the summation. From equation (16) and ignoring n−1 term:

ai =

n−1∑
j=0

ψ−(2i+1)j âj mod q

=

n
2 −1∑
j=0

ψ−(2i+1)j âj +

n−1∑
j=n

2

ψ−(2i+1)(j+n
2 )â(j+n

2 )

 mod q

= ψ−i

n
2 −1∑
j=0

ψ−2ij âj +

n
2 −1∑
j=0

ψ−2i(j+n
2 )â(j+n

2 )

 mod q

13



Based on the periodicity and symmetry of ψ−1, for the even term:

a2i = ψ−2i

n
2 −1∑
j=0

ψ−4ij âj +

n
2 −1∑
j=0

ψ−4i(j+n
2 )â(j+n

2 )

 mod q

a2i = ψ−2i

n
2 −1∑
j=0

[
âj + â(j+n

2 )

]
ψ−4ij mod q (26)

Doing the same derivation for the odd term:

a2i+1 = ψ−2i

n
2 −1∑
j=0

[
âj − â(j+n

2 )

]
ψ−4ij mod q (27)

Let Ai =
∑n

2 −1
j=0 âjψ

−4ij and Bi =
∑n

2 −1
j=0 âj+n

2
ψ−4ij ,

4.3 Gentleman-Sande (GS) Algorithm for Fast-INTT

For the INTT, instead of dividing the summation by its index parity, it is separated by the lower and upper
half of the summation. From equation (16) and ignoring n−1 term:

ai =

n−1∑
j=0

ψ−(2i+1)j âj mod q

=

n
2 −1∑
j=0

ψ−(2i+1)j âj +

n−1∑
j=n

2

ψ−(2i+1)(j+n
2 )â(j+n

2 )

 mod q

= ψ−i

n
2 −1∑
j=0

ψ−2ij âj +

n
2 −1∑
j=0

ψ−2i(j+n
2 )â(j+n

2 )

 mod q

Based on the periodicity and symmetry of ψ−1, for the even term:

a2i = ψ−2i

n
2 −1∑
j=0

ψ−4ij âj +

n
2 −1∑
j=0

ψ−4i(j+n
2 )â(j+n

2 )

 mod q

a2i = ψ−2i

n
2 −1∑
j=0

[
âj + â(j+n

2 )

]
ψ−4ij mod q (28)

Doing the same derivation for the odd term:

a2i+1 = ψ−2i

n
2 −1∑
j=0

[
âj − â(j+n

2 )

]
ψ−4ij mod q (29)

Let Ai =
∑n

2 −1
j=0 âjψ

−4ij and Bi =
∑n

2 −1
j=0 âj+n

2
ψ−4ij , Equation (28) and (29) become:

a2i = (Ai +Bi)ψ
−2i mod q

a2i+1 = (Ai −Bi)ψ
−2i mod q (30)

Notice that Ai and Bi can be obtained as n/2 points INTT. If n is power-of-two, the process can be repeated
for all the coefficients. Figure 4 shows the visualization of Equation (32), usually called GS butterfly as a
reference to its proposer, Gentleman and Sande [24].

14



+

-

Fig. 6: Gentleman-Sande (GS) butterfly unit for calculating INTT.

Because the separation is done differently, GS butterflies’ input is usually in bit-reversed order (BO) and
the output is in normal order (NO).
Example 4.3. Repeating example 3.10, let NTTψ(g) = ĝ = [1467, 2807, 3471, 7621], the INTT can be
calculated by using matrix multiplication:

g = n−1


ψ−0 ψ−0 ψ−0 ψ−0

ψ−1 ψ−3 ψ−5 ψ−7

ψ−2 ψ−6 ψ−10 ψ−14

ψ−3 ψ−9 ψ−15 ψ−21



1467
2807
3471
7621


Based on ψ−1 periodicity:

g = n−1


ψ−0 ψ−0 ψ−0 ψ−0

ψ−1 ψ−3 ψ−5 ψ−7

ψ−2 ψ−6 ψ−2 ψ−6

ψ−3 ψ−1 ψ−7 ψ−5



1467
2807
3471
7621


Based on ψ−1 symmetry:

g = n−1


ψ−0 ψ−0 ψ−0 ψ−0

ψ−1 ψ−3 −ψ−1 −ψ−3

ψ−2 −ψ−2 ψ−2 −ψ−2

ψ−3 ψ−1 −ψ−3 −ψ−1



1467
2807
3471
7621


Breaking down for each element:

g0 = [1467ψ−0 + 2807ψ−0 + 3471ψ−0 + 7621ψ−0]n−1

g1 = [1467ψ−1 + 2807ψ−3 − 3471ψ−1 − 7621ψ−3]n−1

g2 = [1467ψ−2 − 2807ψ−2 + 3471ψ−2 − 7621ψ−2]n−1

g3 = [1467ψ−3 + 2807ψ−1 − 3471ψ−3 − 7621ψ−1]n−1

Factoring:

g0 = [(1467 + 3471)ψ−0 + (2807 + 7621)ψ−0]ψ−0n−1

g1 = [(1467− 3471)ψ−1 + (2807− 7621)ψ−3]ψ−0n−1

g2 = [(1467 + 3471)ψ−0 − (2807 + 7621)ψ−0]ψ−2n−1

g3 = [(1467− 3471)ψ−1 − (2807− 7621)ψ−3]ψ−2n−1 (31)

Similar to NTT, the idea is to calculate the similar terms in the brackets once, then distribute the results
instead of calculating them multiple times. By first reordering the input, we can visualize Equation 33 as
shown in Figure 9.

15



+

-

+

-

+

-

+

-

Stage 1 Stage 2
Fig. 7: Gentleman-Sande butterflies for n = 4 and [1467, 2807, 3471, 7621] reordered as bit-reversed order
as its input.

The result of stage 1 is [4938, 4025, 2747, 3664], and stage 2 is [4, 8, 12, 16]. After scaling with a
4−1 = 5761 factor, we can get the INTT result of [1, 2, 3, 4].

Example 4.4. Redoing Example 3.11, using the same butterfly configuration as Figure 9, reordering the
input from normal order [2489, 7489, 6478, 6607] to bit-reversed order [2489, 6478, 7489, 6607]. The result of
stage 1 is [1286, 373, 6415, 7332], the result of stage 2 is [20, 14, 28, 32], and the INTT result after scaling is
[5, 6, 7, 8].

For polynomial multiplication, one can use CT butterflies to transform both inputs to the NTT domain,
then use element-wise multiplication for the NTT outputs. The result is then transformed back using GS
butterflies to perform INTT. As the butterflies reduce the mathematical operation in a quasilinear scale, the
complexity of the polynomial multiplication is reduced from O(n2) to O(n log n). The larger the polynomial
degree, the larger the speed and cost gain [25]. Equation (28) and (29) become:

a2i = (Ai +Bi)ψ
−2i mod q

a2i+1 = (Ai −Bi)ψ
−2i mod q (32)

Notice that Ai and Bi can be obtained as n/2 points INTT. If n is power-of-two, the process can be repeated
for all the coefficients. Figure 4 shows the visualization of Equation (32), usually called GS butterfly as a
reference to its proposer, Gentleman and Sande [24].

+

-

Fig. 8: Gentleman-Sande (GS) butterfly unit for calculating INTT.

Because the separation is done differently, GS butterflies’ input is usually in bit-reversed order (BO)
and the output is in normal order (NO).

Example 4.5. Repeating example 3.10, let NTTψ(g) = ĝ = [1467, 2807, 3471, 7621], the INTT can be
calculated by using matrix multiplication:

g = n−1


ψ−0 ψ−0 ψ−0 ψ−0

ψ−1 ψ−3 ψ−5 ψ−7

ψ−2 ψ−6 ψ−10 ψ−14

ψ−3 ψ−9 ψ−15 ψ−21



1467
2807
3471
7621



16



Based on ψ−1 periodicity:

g = n−1


ψ−0 ψ−0 ψ−0 ψ−0

ψ−1 ψ−3 ψ−5 ψ−7

ψ−2 ψ−6 ψ−2 ψ−6

ψ−3 ψ−1 ψ−7 ψ−5



1467
2807
3471
7621


Based on ψ−1 symmetry:

g = n−1


ψ−0 ψ−0 ψ−0 ψ−0

ψ−1 ψ−3 −ψ−1 −ψ−3

ψ−2 −ψ−2 ψ−2 −ψ−2

ψ−3 ψ−1 −ψ−3 −ψ−1



1467
2807
3471
7621


Breaking down for each element:

g0 = [1467ψ−0 + 2807ψ−0 + 3471ψ−0 + 7621ψ−0]n−1

g1 = [1467ψ−1 + 2807ψ−3 − 3471ψ−1 − 7621ψ−3]n−1

g2 = [1467ψ−2 − 2807ψ−2 + 3471ψ−2 − 7621ψ−2]n−1

g3 = [1467ψ−3 + 2807ψ−1 − 3471ψ−3 − 7621ψ−1]n−1

Factoring:

g0 = [(1467 + 3471)ψ−0 + (2807 + 7621)ψ−0]ψ−0n−1

g1 = [(1467− 3471)ψ−1 + (2807− 7621)ψ−3]ψ−0n−1

g2 = [(1467 + 3471)ψ−0 − (2807 + 7621)ψ−0]ψ−2n−1

g3 = [(1467− 3471)ψ−1 − (2807− 7621)ψ−3]ψ−2n−1 (33)

Similar to NTT, the idea is to calculate the similar terms in the brackets once, then distribute the results
instead of calculating them multiple times. By first reordering the input, we can visualize Equation 33 as
shown in Figure 9.

+

-

+

-

+

-

+

-

Stage 1 Stage 2
Fig. 9: Gentleman-Sande butterflies for n = 4 and [1467, 2807, 3471, 7621] reordered as bit-reversed order
as its input.

The result of stage 1 is [4938, 4025, 2747, 3664], and stage 2 is [4, 8, 12, 16]. After scaling with a
4−1 = 5761 factor, we can get the INTT result of [1, 2, 3, 4].

Example 4.6. Redoing Example 3.11, using the same butterfly configuration as Figure 9, reordering the
input from normal order [2489, 7489, 6478, 6607] to bit-reversed order [2489, 6478, 7489, 6607]. The result of
stage 1 is [1286, 373, 6415, 7332], the result of stage 2 is [20, 14, 28, 32], and the INTT result after scaling is
[5, 6, 7, 8].

For polynomial multiplication, one can use CT butterflies to transform both inputs to the NTT domain
and then use element-wise multiplication for the NTT outputs. The result is then transformed back using
GS butterflies to perform INTT. As the butterflies reduce the mathematical operation in a quasilinear

17



scale, the complexity of the polynomial multiplication is reduced from O(n2) to O(n log n). The larger the
polynomial degree, the larger the speed and cost gain [25].

Example 4.7. From example 4.1, we get that the NTT transformation of [1, 2, 3, 4] in bit-reversed
order is [1467, 3471, 2807, 7621]. From example 4.2, we get the NTT transformation of [5, 6, 7, 8] is
[2489, 6478, 7489, 6607] in bit-reversed order. Using element-wise multiplication for those two results, we get
[2888, 2851, 6407, 2992] in bit-reversed order. Transforming back the results using GS-butterfly, we will get
[7625, 7645, 2, 60] or [−56,−36, 2, 60] when written using negative numbers. Which is the same result as
Example 3.12.

4.4 Normal Order and Bit-Reversed Order

As encountered in Subsection 4.1 and 4.3, typically, the input of CT Butterfly is in Normal Order (NO),
and the output is in Bit-reversed Order (BO). Conversely, the input of GS Butterfly is in BO, and the
output is in NO. This section clarifies the formal definition of Normal and Bit-reversed Order and provides
examples for n = 4 and n = 8.

Definition 4.1. Let n be a power of two, and b is a non-negative integer with b < n. The bit-reversal of
b is defined as:

brvn(blogn−12
logn−1 + · · ·+ b12 + b0)

= b02
logn−1 + · · ·+ blogn−22 + blogn−1

Where bi is the i-th bit of the binary expansion of b [26].

Example 4.8. Consider n = 4, the index of the array in the normal order is [0, 1, 2, 3]. Table 2 shows the
index binary representation in log2 n = 2 bit, their bit-reversal in binary, and their decimal representation.

Table 2: Normal and bit-reversed order for n = 4

Index Index in binary Bit-reversal Decimal of bit-reversal

0 00 00 0
1 01 10 2
2 10 01 1
3 11 11 3

From the table, we know that the index of the normal order is [0, 1, 2, 3] and the index of the bit-reversed
order is [0, 2, 1, 3]

Example 4.9. Similarly, when considering n = 8, we can construct a similar table with log2 n = 3 as
the length of binary representation. We will get the NO index is [0, 1, 2, 3, 4, 5, 6, 7], and the BO index is

Table 3: Normal and bit-reversed order for n = 8

Index Index in binary Bit-reversal Decimal of bit-reversal

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

[0, 4, 2, 6, 1, 5, 3, 7].

Example 4.10. Redoing the previous examples for n = 16 and 4 as the length of binary representation.
Therefore the NO index is [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 12, 13, 14, 15] and the BO index is

[0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15].

18



Table 4: Normal and bit-reversed order for n = 16

Index Index in binary Bit-reversal Decimal of bit-reversal

0 0000 0000 0
1 0001 1000 8
2 0010 0100 4
3 0011 1100 12
4 0100 0010 2
5 0101 1010 10
6 0110 0110 6
7 0111 1110 14
8 1000 0001 1
9 1001 1001 9
10 1010 0101 5
11 1011 1101 13
12 1100 0011 3
13 1101 1011 11
14 1110 0111 7
15 1111 1111 15

Typical NTT-CT Butterfly configuration has NO-input and BO-output, while INTT-GS configuration
usually has BO-input and NO-output. However, one can reconfigure the CT butterfly to have BO-input &
NO-output and GS butterfly to have NO-input & BO-output. Figure 10 shows all possible configurations
for NTT CT and INTT GS Butterfly for n = 8.

+

-

+

-

+

-

+

-

Stage 3Stage 2

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

Stage 1

(a) CT Butterfly for NTT with NO-input and BO-output

+

-

+

-

+

-

+

-

Stage 3Stage 2

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

Stage 1

(b) CT Butterfly for NTT with BO-input and NO-output

+

-

+

-

+

-

+

-

Stage 3Stage 2

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

Stage 1

(c) GS Butterfly for INTT with BO-input and NO-output

+

-

+

-

+

-

+

-

Stage 3Stage 2

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

Stage 1

(d) GS Butterfly for INTT with NO-input and BO-output

Fig. 10: All possible CT and GS butterfly configurations for n = 8

Using normal order as NTT input is called decimation in time, while bit-reversed order input is called
decimation in frequency [27].

Another thing to notice is that the power of ψ follows the bit-reversed order index. The set of all the
exponentiation of ψ is called twiddle factors.

5 Summary

We introduced the basic concepts of linear, cyclic, and negacyclic convolutions via traditional schoolbook
algorithms, traditional NTT, its inverse (INTT), and FFT-like versions of NTT/INTT. We also provided
consistent toy examples through different concepts and algorithms to understand the basics of NTT.

19



References

[1] Satriawan, A., Syafalni, I., Mareta, R., Anshori, I., Shalannanda, W., Barra, A.: Conceptual review on
number theoretic transform and comprehensive review on its implementations. IEEE Access (2023)

[2] Nussbaumer, H.J.: Elements of number theory and polynomial algebra. Fast Fourier Transform and
Convolution Algorithms, 4–31 (1982)

[3] Convolution and polynomial multiplication in matlab. https://www.mathworks.com/ help/ matlab/
ref/ conv.html

[4] Numpy convolution. https://numpy.org/ doc/ stable/ reference/ generated/ numpy.convolve.html

[5] Modulo-n circular convolution in matlab. https://www.mathworks.com/ help/ signal/ref/cconv.html

[6] Karatsuba, A.A., Ofman, Y.P.: Multiplication of many-digital numbers by automatic computers. In:
Doklady Akademii Nauk, vol. 145, pp. 293–294 (1962). Russian Academy of Sciences

[7] Weimerskirch, A., Paar, C.: Generalizations of the karatsuba algorithm for efficient implementations.
Cryptology ePrint Archive (2006)

[8] Toom, A.L.: The complexity of a scheme of functional elements realizing the multiplication of integers.
In: Soviet Mathematics Doklady, vol. 3, pp. 714–716 (1963)

[9] Cook, S.A., Aanderaa, S.O.: On the minimum computation time of functions. Transactions of the
American Mathematical Society 142, 291–314 (1969)

[10] Syafalni, I., Jonatan, G., Sutisna, N., Mulyawan, R., Adiono, T.: Efficient homomorphic encryption
accelerator with integrated prng using low-cost fpga. IEEE Access 10, 7753–7771 (2022)

[11] Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M., Schwabe, P.,
Seiler, G., Stehlé, D.: Crystals-kyber algorithm specifications and supporting documentation (version
1.0). NIST Post-Quantum Cryptography Standardization Process (2017)

[12] Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M., Schwabe, P.,
Seiler, G., Stehlé, D.: Crystals-kyber algorithm specifications and supporting documentation (version
2.0). NIST Post-Quantum Cryptography Standardization Process (2019)

[13] Sympy 1.11 documentation. https://docs.sympy.org/ latest/ modules/ nthe-
ory.html#sympy.ntheory.residue ntheory.nthroot mod

[14] Agarwal, R.C., Burrus, C.S.: Number theoretic transforms to implement fast digital convolution.
Proceedings of the IEEE 63(4), 550–560 (1975)

[15] Nussbaumer, H.: Fast polynomial transform algorithms for digital convolution. IEEE Transactions on
Acoustics, Speech, and Signal Processing 28(2), 205–215 (1980)

[16] Schonhage, A.: Schnelle multiplikation grosser zahlen. Computing 7, 281–292 (1971)

[17] Pollard, J.M.: The fast fourier transform in a finite field. Mathematics of computation 25(114), 365–374
(1971)

[18] Dimitrov, V., Cooklev, T., Donevsky, B.: Generalized fermat-mersenne number theoretic transform.
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 41(2), 133–139
(1994)

[19] Rader, C.M.: Discrete convolutions via mersenne transrorms. IEEE Transactions on Computers
100(12), 1269–1273 (1972)

[20] Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.: Crystals-
dilithium: A lattice-based digital signature scheme. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 238–268 (2018)

[21] Fouque, P.-A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T., Ricosset, T., Seiler,

20



G., Whyte, W., Zhang, Z., et al.: Falcon: Fast-fourier lattice-based compact signatures over ntru.
Submission to the NIST’s post-quantum cryptography standardization process 36(5) (2018)

[22] Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M., Schwabe, P.,
Seiler, G., Stehlé, D.: Crystals-kyber algorithm specifications and supporting documentation (version
3.0). NIST Post-Quantum Cryptography Standardization Process (2021)

[23] Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex fourier series.
Mathematics of computation 19(90), 297–301 (1965)

[24] Gentleman, W.M., Sande, G.: Fast fourier transforms: for fun and profit. In: Proceedings of the
November 7-10, 1966, Fall Joint Computer Conference, pp. 563–578 (1966)

[25] Heckbert, P.: Fourier transforms and the fast fourier transform (fft) algorithm. Computer Graphics 2,
15–463 (1995)

[26] Liang, Z., Zhao, Y.: Number theoretic transform and its applications in lattice-based cryptosystems: A
survey. arXiv preprint arXiv:2211.13546 (2022)

[27] Saidi, A.: Decimation-in-time-frequency fft algorithm. In: Proceedings of ICASSP’94. IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, vol. 3, p. 453 (1994). IEEE

21


	Introduction
	Preliminaries: Schoolbook Convolutions
	Polynomial Multiplication and Linear Convolution
	Cyclic Convolution
	Negacyclic Convolution

	NTT-Based Convolutions
	Primitive n-th Root of Unity
	NTT-Based Positive-Wrapped Convolution
	Number Theoretic Transform Based on 
	Inverse Number Theoretic Transform Based on 
	Using NTT to Calculate Positive-Wrapped Convolutions

	NTT-Based Negative-Wrapped Convolution
	Primitive 2n-th Root of Unity
	Number Theoretic Transform Based on 
	Inverse Number Theoretic Transform Based on 
	Using NTT to Calculate Negative-Wrapped Convolutions

	The Choice of Modulus

	Fast NTT: An Adaptation of Fast-Fourier Transform to the Number Theoretic Transform
	Cooley-Tukey (CT) Algorithm for Fast-NTT
	Gentleman-Sande (GS) Algorithm for Fast-INTT
	Gentleman-Sande (GS) Algorithm for Fast-INTT
	Normal Order and Bit-Reversed Order

	Summary

