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Abstract. Machine learning as a service requires the client to trust the server and provide its own
private information to use this service. Usually, clients may worry that their private data is being
collected by server without effective supervision, and the server also aims to ensure proper management
of the user data to foster the advancement of its services. In this work, we focus on private decision
tree evaluation (PDTE) which can alleviates such privacy concerns associated with classification tasks
using decision tree. After the evaluation, except for some hyperparameters, the client only receives the
classification results from the server, while the server learns nothing.
Firstly, we propose three amortized efficient private comparison algorithms: TECMP, RDCMP, and
CDCMP, which are based on the leveled homomorphic encryption. They are non-interactive, high
precision (up to 26624-bit), many-to-many, and output expressive, achieving an amortized cost of less
than 1 ms under 32-bit, which is an order of magnitude faster than the state-of-the-art. Secondly, we
propose three batch PDTE schemes using this private comparison: TECMP-PDTE, RDCMP-PDTE,
and CDCMP-PDTE. Due to the batch operations, we utilized a clear rows relation (CRR) algorithm,
which obfuscates the position and classification results of the different row data. Finally, in decision tree
exceeding 1000 nodes under 16-bit each, the amortized runtime of TECMP-PDTE and RDCMP-PDTE
both more than 56× faster than state-of-the-art, while the TECMP-PDTE with CRR still achieves
14× speedup. Even in a single row and a tree of fewer than 100 nodes with 64-bit, the TECMP-PDTE
maintains a comparable performance with the current work.
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1 Introduction

Machine learning has been widely used and has well performance in services such as healthcare, financial
services, and data classification [4, 36, 31]. Typically, users need to provide their own sensitive information
to use these services. Therefore, users may worry about their private data being collected without effective
supervision then choose to avoid using such services, and service providers also hope that users’ private data
will be properly managed and ensuring the widespread use of their services. Additionally, service providers
also aim to prevent the leakage of critical parameters, which could result in the illegal distribution and abuse
of their services.

As an important classification model in machine learning, decision tree [29, 28] are widely used because
of their simplicity, interpretability, and ease of training. And the private decision tree evaluation (PDTE) is
proposed to enhance the privacy security of decision tree. When clients utilize the server’s decision tree for
classification, they receive the classification result without revealing their own data, and the server does not
disclose critical parameters about their decision tree.

The private comparison algorithm is the core component of PDTE, exhibits nonlinearity and atomicity,
making it suitable for use in multiple ways. In private comparison, both participants aim to compare their
respective numbers to determine which one is bigger. Similar to the millionaire’s problem [38], there are
numerous solutions available now, including interactive [18, 7] and non-interactive [16, 35] approaches. In
practical applications, private comparison have four important metrics: non-interactive, efficiency, high-
precision, and output expressive (the comparison result can be used in subsequent computations).

In this paper, we focus on the secure and efficient PDTE. Firstly, constructing private comparison algo-
rithms with balancing these metrics. Secondly, we implement the PDTE schemes using our private comparison
to further enhance its performance.
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Existing solutions of PDTE can be categorized into two types: interactive [6, 21, 24] and non-interactive
[1, 25, 34, 14, 5] which mainly depend on the private comparison they used. The first type involves interactive
communication, utilizing techniques such as secure multiparty computation, secret sharing, and garbled
circuits to complete PDTE through multiple rounds of communication. The second type is non-interactive,
requiring only a single round of communication to complete PDTE, based on techniques such as leveled
homomorphic encryption (LHE) or fully homomorphic encryption (FHE). Interactive schemes require higher
bandwidth and simultaneous online requirements for both client and server, while non-interactive schemes
demand a higher computational capabilities, considering limitations on multiplication depth in LHE or the
heavy bootstrapping cost in FHE [13]. There are some practical non-interactive PDTE schemes, such as
SortingHat [14] and Level Up [2]. SortingHat has a very fast computation speed, but it is limited to low
precision (under 16-bit). Level up has two approaches, XXCMP-PDTE and RCC-PDTE, offering 36-bit
and 128-bit of precision while maintaining a low computation. For a single row data in the tree with over
1000 nodes in 10-bit, SortingHat, XXCMP-PDTE and RCC-PDTE require 5s, 3s, and 12s on a single core.
However, when facing the demand to classify massive datasets with millions of rows, existing schemes are
not efficient.

In general sense, PDTE includes three participants: model party, data party and third party. The model
party owns the model, the data party owns the data, and the third party possesses evaluation capability.
Additionally, there are three roles: encryptor, decryptor and evaluator. The encryptor has the encrypt key,
decryptor has decrypt key, and the evaluator holds the evaluation key. In most scenarios, the client represents
the data party with an encryptor and decryptor, while the server represents both the model party and the
third party with an evaluator. This is also how our client and server are configured.

During the evaluation process of private decision tree, the evaluator start from the root node, assigning
state values to the child nodes based on the comparison results at each parent node using information from
model party and data party, until reaching the leaf nodes to obtain their state values, thereby deriving the
classification results and send them to the data party. This process can be divided into three components:
node comparison, node selection, and tree traversal, We discuss each component and optimize them to
enhance the overall performance.

Node comparison is the core building block. The evaluator identifies the threshold and attribute based
on the information provided by the model party and the data party. Then the private comparison takes over,
deriving comparison results based on the threshold and attribute. A private comparison that is efficient,
non-interactive, output-expressive [25], and high-precision can translate these advantages into the virtues of
node comparison. Efficiency allows the Node comparison to achieve relatively low costs in computation and
communication. Non-interactive means that the evaluator does not need to interact with the other parties
during the comparison process. Output expressive ensures that the comparison results can be computed
subsequently without requiring additional operations. High precision refers to the ability to compare more
digits simultaneously.

In this paper, we present three efficient private comparison algorithms in Table 1: TECMP, RDCMP,
and CDCMP, which are non-interactive, amortized efficient, output expressive and high-precision. TECMP
utilizes the thermometer encoding [9], based on batch operations in LHE such as BFV [20]. RDCMP and
CDCMP achieve a balance between multiplication depth and multiplicative complexity by improving the
FOLKLORE [2] in recursive and dichotomy way. Private comparisons have a significant influence on the
computation cost of PDTE, it also determines the encoding method of data input and the output length
of comparison results, so their impact on communication consumption is also significant. Prior to this,
the bottleneck of many works were the private comparison. Sortinghat was limited in output expressive
and bit precision. Level up’s XXCMP and RCC offer high-percision and lower runtime costs. Our private
comparison have high-precision (up to 26624-bit), amortized runtime are 13×, 42×, and 7× faster than the
RCC algorithm for 32-bit numbers. Additionally, the amortized communication cost compare with RCC is
reduced by 20×, 14×, and 37× respectively.

In node selection, as shown in Figure 1, the state value of the child node is obtained by comparing the
threshold with the attribute. Following the Sortinghat method, at least one multiplication and subtraction
are required in each intermediate node.

This paper are aim to evaluates multiple rows of data at once through appropriate batch encoding. After
the node comparsion, the comparison results of attributes in the same row are placed in the same slot
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Table 1. Private comparison, the a,b represent the ciphertext of a,b

Methods inputs bits expressive batchable
XCMP [25] a b, a b 16 ADD limited MUL. no
SortingHat [14] a b 12 ADD limited MUL. no
XXCMP [2] a b 36 ADD limited MUL. yes
RCC [2] a b, a b 287 ADD MUL. yes
FOLKLORE [2] a b, a b 1024 ADD MUL. yes
TECMP a b 26624 ADD MUL. yes
RDCMP a b, a b 1024 ADD MUL. yes
CDCMP a b, a b 287 ADD MUL. yes

Fig. 1. Node selection

position of different ciphertexts, while the comparison results of different rows have different slot positions.
The multiple rows of data only requiring one same operation results with a lower amortization time.

In tree traversal, the classification results of leaf nodes are obtained based on the state values of all
nodes in the tree. There are three methods for utilizing the state values to compute the classification results:
SumPath, MulPath [21] and SinglePath [5]. SumPath adds the state values from each path from the root to
the leaves to refresh the state value of the leaves. MulPath multiply the state values from each path from
the root to the leaves to refresh the state value of the leaves. SinglePath, starting from the layer where the
root is located, determines the state values of the next layer based on the state values in this layer, then use
the state value of leaves to determine the classification result.

In Figure 2, we summary the relation in tree traversal methods:

– SumPath: cleafi =
∑

nodej∈{root→...→leafi} cnodej
– MulPath: cleafi =

∏
nodej∈{root→...→leafi} cnodej

– SinglePath: root→ node1∗ → node2∗ → ...→ leafi

Each of the methods has advantages and disadvantages. In Sumpath, addition and subtraction operations
are required, while the tree traversal does not consume the multiplication depth, but the classification result
is the multiple ciphertexts. Multiplication is required in MulPath, but the classification result is a single
ciphertext. In each layer of SinglePath, only one node comparison is required, but determining which one
in this layer may require a larger workload. In LHE, multiplication depth is a precious resource. During
tree traversal, MulPath inevitably requires the multiplication depth of the tree depth. Currently, there is no
suitable method under BFV for node comparsion at each level in SinglePath. Therefore, we chose SumPath
in this paper to avoid consuming the multiplication depth.

We observed that the leaf state values of SumPath follow a binomial distribution in the perfect binary
tree, with only one state value being 0. To conceal this distribution, we apply masking by multiplying them
with a random number like level up [2]. At the same time, the state value with 0 remains unchanged, and the
classification result can be found based on the position of this 0. This will cause a problem, when classifying
the SumPath under batch encoding of multiple rows of data, classification result is actually the position of
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Fig. 2. Tree traversal, the nodes of the tree are numbered by layer with the root node at level 0. Numbering starts
from left to right, where c represents the state value.

the leaf node. It is necessary to confuse the classification result and the position of the classification result, so
we designed the clear rows relation (CRR) algorithm to clear the inter-row relationship, which disrupts the
relationship between the classification result and the leaf node position through O(logn) times permutations
and cipher-plain multiplication. to ensure the probability that the classification result of n rows of data is
associated with the position of the leaf node with a probability around 1/n.

Contributions. Taken together, our contributions are as follows:
The first is private comparison.

– High precision: By appropriately encoding strategy, we can achieve a comparison precision of 26624
bits when the multiplication depth of LHE is less than 12.

– Amortized efficient: By encoding multiple data into one ciphertext, we can perform multiple com-
parisons simultaneously. This results in highly efficient amortized computation costs and significantly
reduces the amortized communication consumption.

– Output expressive: The comparison results are in the same slot, the subsequent addition or multipli-
cation can be performed.

– Arbitrary input: It supports cipher-plain, cipher-cipher input, and many-to-one, many-to-many input.

Secondly, in terms of PDTE.

– Much faster: We propose the PDTE schemes that combines our private comparison with SumPath. In
a tree with 16-bit and more than 1000 nodes, TECMP-PDTE and RDCMP-PDTE achieve an amortized
cost that is more than 56 times faster than the current fastest solution, XXCMP, while the TECMP-
PDTE with CRR algorithm remains 14 times faster than the state-of-the-art.

– Security enhanced: The security of SumPath with batch encoding is enhanced. During batch evaluation
of multiple rows of data, the output conceals both the classification results and the positions of leaf nodes.

In Section 2, we provide an overview of existing work, which is broadly categorized into interactive and
non-interactive approaches. Section 3 covers fundamental concepts, including communication model, decision
tree, leveled homomorphic encryption, and folklore compare. In Section 4, we introduce the thermometer
encoding, optimization method of folklore algorithm, then design the private comparisons: TECMP, RDCMP,
and CDCMP. Section 5 introduces the batching methods and CCR algorithm, presenting our PDTE scheme:
TECMP-PDTE, RDCMP-PDTE, and CDCMP-PDTE. Section 6 presents the benchmark of runtime and
communication costs of our private comparison and PDTE, comparing them with the current solutions such
as Sortinghat [14] and Level up [2]. In Sections 7 and 8, we discuss the current work and future research
directions.



BPDTE: Batch Private Decision Tree Evaluation via Amortized Efficient Private Comparison 5

2 Related Work

Private decision tree evaluation can be considered as two-party secure computation or multi-party secure
computation. It can utilize methods such as secret sharing, garbled circuits, and oblivious transfer to address
it [6, 8, 21, 24] involving interaction. In [7], Bost et al. used multivariate polynomials to obtain the classification
results through interactive communication. Tueno et al. [34] employed Oblivious RAM, requiring d-round
communication. Liu et al. [23] trained and evaluated on sensitive data, giving an interactive method based
on function secret sharing.

Furthermore, Tai et al. [32] employ the private comparison proposed in [15, 37], and tree traversal uses the
SumPath. However, the comparison result needs to be decrypted for subsequent computations, which requires
additional interaction, thereby increasing the communication cost. In the work of Nateghizad et al. [27] use
DGK and Paillier cryptosystem, but decryption is required before the subsequent processing proceeds. Kiss
et al. [21] abstracted certain designed modules, such as fundamental components including node selection,
comparison, and path evaluation. As we can see, using secure multi-party computation methods requires
multiple rounds of interactions and a significant communication load. In practice, more situations prefer to
use non-interactive to accomplish the PDTE scheme.

The non-interactive PDTE requires each basic component to be non-interactive. In its key component,
private comparison, XCMP [25] encodes data into polynomial coefficients, extracts constant terms as com-
parison results with only one multiplication, is very fast, and non-interactive. However, the comparison result
does not satisfy the output expressive. It can only perform addition and scalar multiplication, cannot per-
form multiplication in two comparison results, which limits the subsequent computations. In addition, the
comparison precision of XCMP is constrained by the degree of the polynomial, which is less than or equal to
the degree of the polynomial, therefore, private comparisons with small bits ≤ 16 can be used, and it leads
to significant communication wastage.

Subsequently, PDT-BIN by Tueno et al. [33] employed the private comparison from [22] and [11], while
PDT-INT utilized the private comparison from [12]. Both approaches implement non-interactive PDTE, but
their overall computational efficiency is low.

SorthingHat [14] proposed an efficient non-interactive PDTE, using the PolyComp algorithm, which is an
improved version of XCMP [25] with a very fast speed, but is limited by comparison precision. In addition,
the comparison results of PolyComp is RLWE ciphertext, requires the operation of [10] to be converted into
RGSW ciphertext for subsequent computations. This makes PolyComp inflexible in PDTE and does not
perform well in high precision. Another PDTE based on gate circuit supports arbitrary precision and trees
of arbitrary depth by using FHE, among them, the performance of the gate circuit private comparison with
cipher-plain input is slightly lower compared to the cipher-cipher input. However, the overall cost is still far
from practical application due to the heavy Bootstrapping operation.

PROBONITE [5] also employs the XCMP. Its characteristic is the tree traversal is SinglePath. Each layer
uses blind rotation to find the comparison node, which aligns with the general rules for evaluating decision
trees on plaintext. However, confirming the comparison node at each layer incurs significant consumption,
and the computation cost still needs to be benchmarked.

Level Up [2] utilizes the extended precision version of XCMP called XXCMP [25] to compute the equation
through extra operations [3]. Additionally, the RCC comparison utilizes methods from [19, 30] and [26], then
further improvement. XXCMP supports cipher-plain input, RCC supports cipher-plain and cipher-cipher
input, and is batchable. Combined with the SumPath method, its PDTE approach is highly efficient.

Note that the folklore algorithm mentioned in level up [2] is a commonly used method for private compar-
ison in gate circuits. This is consistent with the concepts proposed in [11] and [22], as well as thecomparison
in SortingHat [14]. Compute the greater than or equal to each bit in sequence, and then recursively calculate
the final comparison result based on the comparison result of each bit.

So far, PDTE has evolved from interactive to non-interactive, and computational efficiency has gradually
improved. Scholars have widely focused on finding efficient private comparison algorithms with output ex-
pressive. On the other hand, LHE, such as BFV combined with batch technology is very suitable for private
comparison and PDTE design. Unlike the secure multi-party computation, LHE does not require multiple
rounds of interaction. Also, unlike FHE, LHE does not necessitate heavy Bootstrapping, thereby achieving
a balance between communication and computation. Moreover, decision trees, as a fundamental model, do
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not necessarily require highly nonlinear operations. Furthermore, LHE supports batching, which is another
advantageous feature.

3 Preliminaries

Table 2 standardizes all symbols used throughout this paper. we use the function: b← I(statement), where
b ∈ {0, 1}. If statement is true, b = 1; otherwise, b = 0.

Table 2. Summary of notation

Symbol Description
λ security parameter
N polynomial degree
p plaintext modulus
q ciphertext modulus
Rq polynomial ring with modulo q
ZN

p integers ring with modulo p in dimension N
dmax max multiplication depth

Rotatek left rotate k slot
n bits precision
[n] 0, 1, ..., n− 1
B 0, 1
x client attribute vector
len client attribute vector length
T decision tree
N decision tree nodes set
S decision tree structure
I internal nodes set in N
L leaf nodes set in N
m number of N , (|N |)
s state value of node in N
a attribute index of node in I
t threshold of node in I
v classification result of node in L
d depth of T

3.1 Stakeholders & Non-interactivity

In private decision tree evaluation (PDTE), if the private model is not a decision tree but another model,
PDTE can generalize to the private model evaluation (PME). It considers three roles: encryptor, decryptor,
and evaluator, each equipped with different keys for encryption, decryption, and evaluation. And it also
involves three entities: data party, model party, and the third party. The data party owns the data, the
model party owns the model, such as decision trees, linear polynomials, and random forests. Third party
has sufficient computational power to handle the evaluation. The security goal is for the data party to get
the model party’s evaluation result without exposing their data privacy, while the model party keeps their
model private, and the third party learn nothing.

In classical client-server scenario, the client as the data party with the roles of encryptor and decryptor,
while the server as both the model party and the third party with the role of evaluator. This setup is
employed in works such as [14, 5, 2, 25], where the model used is typically a decision tree in their PDTE
implementations. In another way, the client as the model party with the roles of encryptor and decryptor,
while the server as the data party with the role of evaluator. This setup can also enable PDTE if suitable
measures are implemented to safeguard the privacy of the model.

In client-cloud-server scenario, the client as the data party with the roles as encryptor and decryptor,
while the cloud serves as the third party with the role of evaluator. The server as the model party with the
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role of encryptor. The cloud is assumed to have significant computational power, which can alleviate the
computational burden on both the client and server.

For non-interactive PME, there should be no additional interactions beyond the initial send and final
response.

In this paper, we employ the client-server scenario, where the private model is the decision tree, then we
design the non-interactive PDTE schemes.

3.2 Decision Tree and PDTE

Decision tree is a typical classification algorithm that can classify a series of input attributes in order to
obtain a classification result. Commonly seen in the binary decision tree, they consist of internal nodes and
leaf nodes. The internal nodes contain thresholds and indices, while the leaf nodes contain classification
results. The evaluation of decision tree begins with inputting a vector of attributes. The root node identifies
the specific attribute based on its index and compares it with the threshold, depending on the comparison
result, it traverses to either the left or right child, continuing in this manner until it reaches a leaf node.
Finally, it returns the classification result associated with the leaf node.

We record the decision tree as T = (N ,S), a node set N = I + L with a tree structure S, where I
represents the internal node set and L represents the leaf node set. Each internal node contains a threshold
t, attribute index a and state value s, and each leaf node contains a classification result v and state value s.
The tree structure S records the two child nodes of the parent node. Its input attribute vector is x, and its
output is a classification result v∗.

PDTE means that under the client-server model, the server holds a decision tree T and the client holds
the private data x. The client uses the server’s decision tree for evaluation, obtains the evaluation results
without knowing anything else about it, and keeping its own data privacy. The server does not leak its own
private decision tree.

In the PDTE, it is mainly divided into three parts: node comparison, node selection and tree traversal.
The node comparison is performed in the internal node, inputting the attribute vector x, and based on the
attribute index a of the internal node and the threshold value t. The comparison result is c = I(x[a] > t), c ∈
B. Node selection is based on the comparison result c and the tree structure S. It updates the state value
of the left and right child nodes, assigning 1 to one child node’s state value and assigning 0 to the other.
Tree traversal begins from the root, updating the leaf’s state values based on all node’s state values. Then,
it returns the classification result v∗ based on the state values of the leaf nodes. Different from the decision
tree evaluation, PDTE cannot distinguish which internal node is chosen, and which leaf node’s classification
result is returned.

3.3 Leveled Homomorphic Encryption with Batching

Homomorphic encryption processes the plaintext on its ciphertext. Leveled homomorphic encryption (LHE)
is limited with cipher-cipher multiplication, each operation in LHE increases the noise in the ciphertext, when
the noise level in the ciphertext reaches a certain threshold, it will result in decryption failure. The noise
growth of cipher-cipher multiplication is exponential, and the other operations is linear. The multiplication
depth of LHE mainly depended on the depth of cipher-cipher multiplication, which can be configured using
a suitable parameter.

LHE can avoid the heavy Bootstrapping, thereby achieving higher computational efficiency. BFV is a
LHE based on Ring Learning With Errors (RLWE) problem, its ciphertext consists of two elements from the
Rq, while the corresponding plaintext resides in the ring Rp, and the Chinese Remainder Theorem (CRT)
can be utilized to perform batch operations. In batch operations, while the ciphertext remains unchanged,
the corresponding plaintext becomes a vector in 2× ZN/2

p , as Table 3 shows:
The plaintext of BFV is an array of x ∈ ZN

p , which in a strict sense is

x =

[
xa

xb

]
=

[
xa,0, xa,1, ..., xa,N/2−1

xb,0, xb,1, ..., xb,N/2−1

]
, xa,i, yb,i ∈ Zp (1)

Then
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Table 3. Batched BFV operation, x, y ∈ 2 ∗ ZN/2
p , the x, y represent the ciphertext of x, y.

operation cipher plain
cipher-plain add x⊕ y x+ y
cipher-cipher add x⊕ y x+ y
cipher-plain sub. x⊖ y x− y
cipher-cipher sub. x⊖ y x− y
cipher-cipher mul. x⊙ y x · y
cipher-plain mul. x⊙ y x · y
left rotate Rotatek(x) Rotatek(x)

z = x+ y =

[
za
zb

]
=

[
xa,0 + ya,0, xa,1 + ya,1, ..., xa,N/2−1 + ya,N/2−1

xb,0 + yb,0, xb,1 + yb,1, ..., xb,N/2−1 + yb,N/2−1

]
z = x · y =

[
za
zb

]
=

[
xa,0 · ya,0, xa,1 · ya,1, ..., xa,N/2−1 · ya,N/2−1

xb,0 · yb,0, xb,1 · yb,1, ..., xb,N/2−1 · yb,N/2−1

]
Rotatek(x) =

[
xa,k, xa,k+1, ..., xa,N/2−1, xa,0, ..., xa,k−1

xb,k, xb,k+1, ..., xb,N/2−1, xb,0, ..., xb,k−1

]

3.4 Basic Idea of Folklore

The numbers are represented in binary representation from the least significant bit (LSB) to the most
significant bit (MSB).

a = {a0, a1, ..., an−1}, ai ∈ {0, 1} (2)
b = {b0, b1, ..., bn−1}, bi ∈ {0, 1} (3)

The process involves calculating the comparison result bit by bit:

g ={g0, g1, ..., gn−1}, gi = I(ai > bi) = ai · (1− bi) (4)
e ={e0, e1, ..., en−1}, ei = I(ai = bi) = 1− (ai − bi)

2 (5)

Then the comparsion result is:

θ = I(a > b) =

n−1∑
i=0

gi ·
n−1∏

k=i+1

ek (6)

Each multiplication in n ciphertext can use dichotomy to reduce the multiplication depth to log(n−1)+1,
so the multiplication depth of forklore algorithm is log(n− 1) + 2.

4 Amortized Private Comparison

In this section, we propose two types of non-interactive amortized comparison based on LHE with Batch
operations. The first is TECMP, which uses thermometer encoding combined with folklore. The second are
RDCMP and CDCMP, a class of improved folklore algorithm using recursive and dichotomy method.

4.1 Thermometer Encoding

Thermometer Encoding (TE) [9] is an extension of One-Hot encoding, when there is a sequential relationship
between variables, it can effectively retain the sorting information.

During the comparison of two numbers, if I(a > b) = 1, a, b ∈ [2n], then

I(x > b) = 1, x ∈ {a, a+ 1, ..., 2n − 1} (7)
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Algorithm 1 Thermometer Encoding
1: Procedure : TE(b, n)
2: θ ← 12

n

;
3: for all i ∈ [b] do
4: θ[i] = 0;
5: end for
6: return θ.

Therefore, we use thermometer encoding to record these comparison information, as shown in Algorithm
1:

θ = {θ0, θ1, ..., θ2n−1} ← TE(b, n), θi = I(i > b), i, b ∈ [2n] (8)

In XCMP [25], the comparison numbers a and b are respectively encoded as Xa, T = −(1 + X + ... +
XN−b−1), multiply them then obtain the −(Xa +Xa+1 + ...+XN+a−b−1)mod(XN − 1). If a > b, then the
constant is 1, otherwise is 0. the TE is somewhat similar with XCMP. The difference is that the plaintext of
TE in Zq, not in Rq, and the rotate instead of multiplication. As shown in Algorithm 2.

Algorithm 2 Greater Than I(a > b)

1: Pre-procedure :
2: θ ← TE(b, n);
3: Procedure : GT (a, θ, n)
4: θgt ← Rotatea(θ);
5: return θgt.

Then, we can obtain the result of I(a = b) through Algorithm 3.

Algorithm 3 Equal To I(a = b)

1: Pre-procedure :
2: θ ← TE(b, n);
3: θgt ← GT (a, θ, n);
4: W ← 02

n

,W [0] = 1;
5: Procedure : ET (a, θgt,W, n)
6: if a < 2n − 1 then
7: θ′gt ← Rotate1(θgt);
8: else
9: θ′gt ←W ;

10: end if
11: θeq ← θ′gt ⊖ θgt;
12: return θeq.

Through the combination of TE and rotation, we can compute I(a > b) and I(a = b), both of the results
are located at the 0th slot of the ciphertext. Additionally, since we only performed rotation, some information
is still retained in other positions, so the final output needs to be clean up. This entails multiplying by a
plaintext where the 0th slot is 1 and the remaining positions are 0, as shown in Algorithm 4.

Lemma 1. Algorithm 2 and Algorithm 3 are correctness.

Proof. Thermometer Encoding

θ = [I(0 > b), I(1 > b), ..., I(2n − 1) > b] (9)
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Algorithm 4 Clear Up
1: Pre-procedure :
2: W ← 02

n

,W [0] = 1;
3: Procedure : CU(θin,W )
4: θout ← θin ⊗W ;
5: return θout.

Rotate a slots is:

θgt = [I(a > b), I(a+ 1 > b), ..., I(2n − 1 > b), I(0 > b), ..., I(a− 1 > b)] (10)

Then the 0th slot of θgt is I(a > b).
When a < 2n − 1, θgt Rotate 1 slot is:

θ′gt = [I(a+ 1 > b), I(a+ 2 > b), ..., I(2n − 1 > b), I(0 > b), ..., I(a > b)] (11)

When a = 2n − 1, a+ 1 = 2n, b ∈ [2n], so b < a+ 1, I(a+ 1 > b) = 1,

θ′gt = [1, 0, 0, ..., 0] = [I(a+ 1 > b), 0, 0, ..., 0] (12)

The 0th slot of θ′gt is I(a+ 1 > b).
Calculate θeq ← θ′gt ⊖ θgt, and

I(a = b) = I(a+ 1 > b)− I(a > b) (13)

So the 0th slot of θeq is I(a = b).

However, the encoded information is exponential, which means that when we compare 8-bit number, we
need 256 slots to store this information, and our number of slots has an upper limit, such as 214, then one
ciphertext up to 13-bit number can be compared.

Finally, in XCMP, a difficulty is that subsequent multiplication operations cannot be performed on the
comparison results. Therefore, the result of I(a = b) is not compatible with the I(a > b), thus preventing
further precision expansion.

a = a1 · 2n + a0, ai ∈ [2n] (14)
b = b1 · 2n + b0, bi ∈ [2n] (15)

I(a > b) = I(a1 > b1) + I(a1 = b1) · I(a0 > b0) (16)

In TE, this problem becomes simpler. The result of I(a > b) is in the 0th slot and the value is 1 or
0. It can directly addition and multiplication of numbers within the same 0th slot without need for extra
operations. Alternatively, performing some rotations for addition and multiplication with numbers in other
slots.

4.2 Minor Optimized of Folklore Algorithm

Now, we slightly optimize the folklore algorithm to complete our private comparison. Observe the computa-
tions in folklore is θ = θnorm, and θ can be computed in recursive and dichotomy way.

θnorm =

n−1∑
i=0

gi ·
n−1∏

k=i+1

ek (17)

θrec = θn−1, θn−1 = gn−1 + en−1 · θn−2, θ0 = g0 (18)
θdic = g{s+1,s+2,...,n−1} + e{s+1,s+2,...,n−1} · g{0,1,...,s} (19)
g{i,i+1,..,j} = I(aiai+1...aj > bibi+1...bj) (20)
e{i,i+1,..,j} = I(aiai+1...aj = bibi+1...bj) (21)
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Algorithm 5 Recursive Method
1: Procedure : (θgt, θeq, n)
2: θrec = θgt[0]
3: for all i ∈ 1, 2, ..., n− 1 do
4: θrec ← θrec ⊙ θeq[i];
5: θrec ← θrec ⊕ θgt[i];
6: end for
7: return θrec.

Algorithm 6 Dichotomy Method, n is power of 2
1: Procedure : DM(θgt, θeq, n)
2: d = log(n);
3: for all i ∈ [d] do
4: t = 1≪ i;
5: w = 1≪ (i+ 1);
6: for all j ∈ {0, w, 2 · w, ..., n− w} do
7: θgt[j]← θgt[j]⊙ θeq[j + t];
8: θgt[j]← θgt[j]⊕ θgt[j + t];
9: θeq[j]← θeq[j]⊙ θeq[j + t];

10: end for
11: end for
12: θdic = θgt[0];
13: return θdic.

After compute each gi, ei, i ∈ [n]. There are three methods to compute θ = I(a > b). First, the folklore,
using a normal approach, which is brute force computation. Second, the recursive way, computing sequentially
from high bit to low bit. Third, the dichotomy, computing by dichotomy from the middle. In algorithm 5
and algorithm 6, we set n to a power of 2 without losing generality.

Lemma 2. The dichotomy method of compute θdic = I(a > b) is correctness.

Proof.

a = {a0, a1, ..., an−1}, ai ∈ {0, 1} (22)
b = {b0, b1, ..., bn−1}, bi ∈ {0, 1} (23)

Where

a = a0 + a1 · 2 + ...+ an−1 · 2n−1 (24)
b = b0 + b1 · 2 + ...+ bn−1 · 2n−1 (25)

If 0 ≤ r ≤ s < t ≤ n, r, s, t ∈ [n]

g0 = I(arar+1...as > brbr+1...bs) (26)
e0 = I(arar+1...as = brbr+1...bs) (27)
g1 = I(as+1as+2...at > bs+1bs+2...bt) (28)
e1 = I(as+1as+2...at = bs+1bs+2...bt) (29)

Then

g = g1 + e1 · g0 = I(arar+1...at > brbr+1...bt) (30)
e = e1 · e0 = I(arar+1...at = brbr+1...bt) (31)

For n = 8-bit, a dichotomy example, as shown in the Figure 3:
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Fig. 3. Dichotomy Example

In original folklore, where gi = ai ·(1−bi), ei = 1−(ai−bi)2, it can optimize the encode then computation
as:

a = {a0, a1, ..., an−1}, ai ∈ {0, 1} (32)
b = {b′0, b′1, ..., b′n−1}, b′i = 1− bi ∈ {0, 1} (33)

gi = ai · b′i (34)
ei = 1− (ai − bi)

2 (35)
= 1− a2i − b2i + ·ai · bi (36)
= 1− ai − bi + 2 · ai · bi (37)
= 1− bi − 2 · ai · (1− bi) + ai (38)
= b′i − 2 · ai · b′i + ai (39)
= b′i − 2 · gi + ai (40)

At most one cipher-cipher multiplication and one multiplication depth are required. Note that each slot
of the plaintext is modulus p ≥ 65537, so there will be no risk of data overflow in the optimized calculation
steps.

4.3 Thermometer Encoding Compare (TECMP)

The comparison result of thermometer encoding is output expressive, allowing for continued multiplication
and addition. So we next perform precision promotion on thermometer encoding.

For folklore, as long as gi and ei of the corresponding bits are calculated, then θ can be calculated in
the same way. And the corresponding numbers do not need to be binary expansion, it can be quaternary
or octal expansion, so each block can be m-bit length too. We perform thermometer encoding on the m-bit
length block and compute the gi, ei, then we can compare numbers with m · 2dmax bit length by normal and
dichotomy way, m · dmax bit length by recursive way.

Firstly, the numbers are expanded by m-bit, thermometer encoding bi.

a = {a0, a1, ..., al−1}, ai ∈ [2m] (41)
b = {b0, b1, ..., bl−1}, bi ∈ [2m] (42)

Secondly, via algorithm 2 and algorithm 3 calculation each gi = I(ai > bi), ei = I(ai = bi).
Finally, using a normal, or recursive, or dichotomy way to compute the I(a > b), as shown in Algorithm

7 in dichotomy method.
In algorithm 7, l is set as a power of 2 without losing generality. we utilize algorithm 6 to compute

I(a > b) because the multiplication depth increases slowly. Meanwhile, it’s worth noting that algorithm 5
requires the fewest number of multiplications and will effectively in a low multiplication depth.
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Algorithm 7 Thermometer Encoding Compare I(a > b), a, b ∈ [2m·l], l is power of 2
1: Pre-procedure :
2: W ← 02

m

,W [0] = 1;
3: for all i ∈ [l] do
4: ai ← (a≫ i ·m)&(2m − 1);
5: bi ← (b≫ i ·m)&(2m − 1);
6: θi ← TE(bi,m);
7: end for
8: Procedure : TECMP ({a0, a1, ..., al−1}, {θ0, θ1, ..., θl−1}, l)
9: for all i ∈ [l] do

10: θgt[i]← GT (ai, θi, l);
11: θeq[i]← ET (ai, θgt[i],W, l);
12: end for
13: θTECMP = DM(θgt, θeq, l);
14: return θTECMP .

In summary, TECMP effectively combines the advantages of folklore and thermometer encoding. It does
not require excessive multiplication to reduce the multiplication depth, and mitigate the exponential slot
expansion. Balancing the number of multiplications, multiplication depth and the slot numbers. Moreover, it
can perform high-precision comparison and batch operations, making the amortized computing cost highly
efficient. However, it only supports cipher-plain input and many-to-one scenarios, which may limit its ap-
plicability in various contexts. Therefore, we propose another type of comparison algorithm, RDCMP and
CDCMP, to further enhance the versatility of the private comparison.

4.4 Row Dichotomy Compare (RDCMP)

To address the arbitrary input problem of TECMP, we propose a special case where m = 1. In this case, we
compute the gi, ei using the optimized folklore, which does not require rotation to compute, thus eliminating
the need for plaintext. Meanwhile, in the LHE, multiplication depth is a valuable resource, therefore, we use
the dichotomy method to maintain the original multiplication depth logn of folklore(normal) and reduce the
number of multiplications as much as possible.

Algorithm 8 Row Dichotomy Compare I(a > b), a, b ∈ [2n], n is power of 2
1: Pre-procedure :
2: for all i ∈ [n] do
3: ai ← (a≫ i)&1;
4: b′i ← 1− (b≫ i)&1;
5: end for
6: Procedure : RDCMP ({a0, a1, ..., an−1}, {b′0, b′1, ..., b′n−1}, n)
7: for all i ∈ [n] do
8: θgt[i]← ai ⊙ b′i;
9: θeq[i]← b′i ⊖ θgt[i]⊖ θgt[i]⊕ ai;

10: end for
11: θRDCMP = DM(θgt, θeq, n);
12: return θRDCMP .

n is set as a power of 2, usually 8, 16, 32, ..., 1024, we emphasize that it is enough. Even if n is not a
power of 2, algorithm 8 can be adaptively adjusted.

The dichotomy form used by RDCMP can effectively reduce the multiplication depth. Since the multipli-
cation depth is logn+1, we support high-precision bit length comparison, and the number of multiplications
is 3n− 2, which is much lower than n · (n− 1)/2.

In Figure 4 RDCMP encoding, considering the packaging strategy, if we package {a0, a1, , an−1} and
{b0, b1, , bn−1} into n ciphertexts respectively, then we can do it in the same position.
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4.5 Column Dichotomy Compare (CDCMP)

Additionally, considering that n is very large, the number of ciphertexts in the RDCMP packaging strategy is
also n, and N numbers are compared at the same time. In some case, we hope that the number of ciphertexts
will be fewer. Therefore, we pack a0, a1, ..., an−1 into one ciphertext as shown in Algorithm 9.

Algorithm 9 Column Dichotomy Compare I(a > b), a, b ∈ [2n], n is power of 2
1: Pre-procedure :
2: for all i ∈ [n] do
3: ai ← (a≫ i)&1;
4: b′i ← 1− (b≫ i)&1;
5: end for
6: Procedure : CDCMP ({a0, a1, ..., an−1}, {b′0, b′1, ..., b′n−1}, n)
7: θgt ← a⊙ b′;
8: θeq ← b′ ⊖ θgt ⊖ θgt ⊕ a;
9: d = log(n);

10: for all i ∈ [d] do
11: t = 1≪ i;
12: θ′gt ← Rotatetθgt;
13: θ′eq ← Rotatetθeq;
14: θeq ← θeq ⊙ θ′eq;
15: θgt ← θgt ⊙ θ′eq;
16: θgt ← θgt ⊕ θ′gt;
17: end for
18: θCDCMP = θgt;
19: return θCDCMP .

Compared with RDCMP, CDCMP mainly solves the problem of packed ciphertexts size. it only has two
ciphertexts to compare and fewer multiplications.

Table 4. Private Comparison Attributes

Symbol TECMP RDCMP CDCMP
Bit precision l ·m n n
Mul. depth log(l) log(n) + 1 log(n) + 1
Poly. degree N N N
Cipher num. l 2 · n 2
Mul. times 2 · (n− 1) n+ 2 · (n− 1) 1 + 2 · log(n)
Rotate times 2m 0 2 · log(n) + 1
Input type plain-cipher cipher-cipher, plain-cipher cipher-cipher, plain-cipher
Input form many-to-one many-to-many many-to-many
batch num. N/2m N N/n

In summary, We present all the properties of TECMP, CDCMP, and RDCMP in the Table 4, and the
packaging strategy as shown in the Figure 4.

5 Private Decision Tree Evaluation

This section provides a detailed description of the security model and propose ours PDTE schemes.

5.1 Security Model

In client-server model, which the client serves as the data party, holding the attribute vector, and the server
serves as the model party and evaluator, holding the decision tree and performing the evaluation process.
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TECMP encoding RDCMP encoding CDCMP encoding

Fig. 4. Visual comparisons of original models.

The security goal is that the client does not have any decision tree private parameters except the server’s
classification results, and the server cannot learn any important information. The communication process
involves the client initiating communication with the server, the server receiving the client’s require and
responding, then the client receiving the server’s response. There is one round of necessary questioning and
answering, without any intermediate interaction.

Similar to previous work, this work is based on the semi-honest adversary model, where the client and
server execute the protocol honestly, cannot infer additional information based on the received information.

For the decision tree information that the client can inevitably obtain from the classification results, we
consider this aspect beyond the scope of our discussion in this paper.

5.2 Batch-PDTE: Batch-CMP with SumPath

The scheme uses a LHE such as BFV. It is assumed that the public key, evaluation key, and relinearization
key have been exchanged between client and server.

In Batch-PDTE, we integrate private comparison with the SumPath. The data is encoded for batching
and the scheme mainly consists of three parts:

– For each internal node, privately compare the client attribute with the node’s threshold to update the
node’s state value;

– Run SumPath to obtain a batch of classification results;
– Perform clear rows relation on the classification results.

In algorithm 10, our TECMP, RDCMP, and CDCMP are collectively referred to as BCMP.

Algorithm 10 Batch-PDTE
1: Procedure : BPDTE(x,M)
2: (L, a, t, v)←M ;
3: for all d ∈ D do
4: c← BCMP (x[a[d]], t[d]);
5: d.left← c;
6: d.right← 1− c;
7: end for
8: for all l ∈ L do
9: s[l] = Sum of edges from root to leaf L;

10: end for
11: for all l ∈ L do
12: rx, ry ←r ZN

p ;
13: x[l]← rx ⊙ s[l];
14: y[l]← ry ⊙ s[l] + v[l];
15: end for
16: return {x, y}.

There are L ciphertexts in x, and the classification result is recorded at the same position of the plaintext
corresponding to y. In x, there is only one zero in the same position, and the rest are all random numbers.
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In y, after decrypting x and y, return classification result in y based on the position of 0 in x. For example,
when L = 5, there are 3 rows of data to be evaluated simultaneously. The plaintext in x, y is as shown below.

L = {L0, L1, L2, L3, L4} (43)
x = {x0, x1, x2, x3, x4} (44)

=

rx00rx10
rx20

 ,

rx010
0

 ,

 0
rx12
rx22

 ,

rx03rx13
rx23

 ,

rx04rx14
rx24

 (45)

y = {y0, y1, y2, y3, y4} (46)

=

ry00ry10
ry20

 ,

ry01L1

L1

 ,

 L2

ry12
ry22

 ,

ry03ry13
ry23

 ,

ry04ry14
ry24

 (47)

Algorithm 11 Clear Rows Relation
1: Procedure : CRR(len, x, y, L,N)
2: PL = Random permutation in L;
3: for all l ∈ L do
4: x′[l] = x[PL[l]];
5: y′[l] = y[PL[l]];
6: end for
7: for all i ∈ [log(len)] do
8: Plen = Random permutation in len;
9: W0,W1 ← 0N

10: for all j ∈ [len/2] do
11: W0[Plen[j]] = 1;
12: W1[Plen[len/2 + j]] = 1;
13: end for
14: P ′

L = Random permutation in L;
15: for all l ∈ L do
16: x′

0[l] = x′[l]⊙W0;
17: x′

1[l] = x′[l]⊙W1;
18: y′

0[l] = y′[l]⊙W0;
19: y′

1[l] = y′[l]⊙W1;
20: end for
21: for all l ∈ L do
22: x′[l] = x′

0[P
′
L[l]]⊕ x′

1[l];
23: y′[l] = y′

0[P
′
L[l]]⊕ y′

1[l];
24: end for
25: end for
26: return {x, y}.

Note that the classification results L1 of multiple rows are all present in the plaintext of y1. When the
client decrypts y1, two risks arise: knowing the classification results L1 and the corresponding positions of
decision tree leaves, and knowing that different rows of data correspond to the same decision tree leaf. This
violates our intention of only knowing the classification results.

Therefore, we added a clear rows relation (CRR) in Algorithm 11 to obfuscate the position of the classifi-
cation results. We expect that the probability that a semi-honest adversary determines that two classification
results are at the same position does not exceed 1/len, where len represents the number of rows in client
data. In detail, since these L ciphertexts record the classification results of len rows of data, we first perform
a random permutation PL to obscure the original positions. Then, we randomly split and merge the each
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Algorithm 12 Batch PDTE with CRR
1: Procedure : PDTE(x,M)
2: {L} ←M ;
3: len← Len(x);
4: {x, y} ← BPDTE(x,M);
5: {x′, y′} ← CRR(len, x, y, L,N);
6: return {x′, y′}.

xi, yi. This process is repeated log(len) times. For the adversary, each separation and subsequent merging has
a probability of 1/2 to confuse the positions. So, in the end, there is a probability of 1/len that distinguish
the relationship between the classification results and the leaf nodes.

6 Run Time and Communication Cost

In this section, we present two benchmark. In Table 6 we evaluate and benchmark the private comparisons,
and in Table 7 we evaluate the PDTE schemes on the real UCI dataset, which we measure at different bit
precision. The source code3 has been made public on Github.

6.1 Run Time in Private Comparsion

The device is 13th Gen Intel(R) Core(TM) i7-13700KF. Comparing TECMP, RDCMP, CDCMP with RCC,
Folklore, XXCMP, they all operated under SEAL4 library.

Table 5. The trees trained on the UCI dataset [17]

UCI Data Tree
name num bit node internal leaf
Heart 13 11 9 4 5
Breast 30 11 33 16 17
Spam 57 11 116 57 59

Electricity 8 10 1107 553 554

Table 6. Benchmark of private comparsion, amortized numbers, amortized time (ms), amortized communication
(KB)

XXCMP [2] RCC [2] FOLKLORE [2] TECMP RDCMP CDCMP
Bit num time comm. num time comm. num time comm. num time comm. num time comm. num time comm.
8 1 5.3 177 480 0.2 10.8 963 0.5 2.6 2048 0.04 1.1 16383 0.03 0.7 2048 0.1 1.3
12 1 5.5 177 326 0.6 28 655 1.2 3.7 1024 0.1 2.1 16383 0.07 1.4 1024 0.4 2.6
16 1 57 1297 248 1.1 66 496 2.2 5.0 2048 0.1 1.9 16383 0.07 1.4 1024 0.4 2.6
32 1 109 1729 252 6.8 197 252 9.6 9.8 4096 0.3 5.6 16383 0.16 2.7 512 0.9 5.3
36 1 109 1729 224 8.3 252 224 12.1 11.0 2048 0.7 11.1 16383 0.3 5.3 256 2.1 10.5
64 126 27.2 736 127 41.3 19.4 4096 0.6 10.8 16383 0.3 5.3 256 2.1 10.5
128 62 121 4815 63 180 39 4096 1.4 21.3 16383 0.6 12.4 128 5.1 24.5
256 30 1944 147534 31 785 79.5 4096 2.8 42.3 16383 1.2 24.6 64 11.5 49.2
512 15 3453 164 4096 5.8 98.6 16383 2.5 49.2 32 26.0 98.3
1024 7 15721 352 4096 11.5 197 16383 7.0 114 16 83.6 228

3 https://github.com/LoCCS-ViewSources/Batch-PDTE
4 https://github.com/microsoft/SEAL
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In Table 6, we compare bit precision from 8 to 1024 bits. due to the large batch size, RDCMP exhibits
the lowest amortized cost, the next are TECMP and CDCMP, and the CDCMP total communication cost
are constant. At 32-bit, TECMP, RDCMP, and CDCMP are respectively 22, 42, and 7 times faster than
the RCC algorithm in amortized runtime, and an order of magnitude lower in the amortized communication
costs. Additionally, TECMP achieves a bit precision up to 26624 bits under a multiplication depth of 12 in
our experiments.

6.2 Run Time in PDTE

In this subsection, we compare the evaluation time of our Batch-PDTE and the communication costs. We
first benchmark on the decision tree trained on the UCI dataset [17], and then show the comparison of our
experiments with sortinghat and level up.

In Table 5, the parameters of the tree mainly consists of the following parts: the bit precision of the
data, the length of the client’s attribute vector, and the number of nodes in the decision tree, including both
internal and leaf nodes.

In Table 7, we present the PDTE based on the three private comparisons, considering whether to include
the CRR algorithm. Our PDTE scheme is evaluated across four trees in Table 5. Incorporating the CRR
algorithm requires a certain multiplication depth, leading to a reduction in the row of data evaluated at
one time and consequently increasing the amortized costs. Without CRR, the RDCMP-PDTE exhibits the
lowest amortized time and communication cost, requiring only 40ms and 100KB in the electricity dataset.
With the CRR algorithm, TECMP-PDTE-CRR achieves the lowest amortized time and cost, at around
210ms and 1MB.

Table 7. Benchmark of PDTE, amortized numbers, amortized time (ms), amortized communication (KB)

TECMP-PDTE RDCMP-PDTE CDCMP-PDTE
Name num time comm. num time comm. num time comm.
heart 1024 0.4 26 16383 0.3 17 1024 1.6 21
breast 1024 1.8 65 16383 1.4 42 1024 6.3 84
spam 1024 6.8 145 16383 5.4 84 1024 22.8 227
electricity 1024 52.2 481 16383 40.7 100 1024 209 1465

TECMP-PDTE-CRR RDCMP-PDTE-CRR CDCMP-PDTE-CRR
Name num time comm. num time comm. num time comm.
heart 2048 1.8 55 512 16.7 777 256 13.1 164
breast 2048 6.6 137 512 68.1 1833 256 50.3 456
spam 1024 23.4 306 512 268 3666 256 179 1234
electricity 1024 210 1016 512 2095 4408 256 1683 7961

Table 8. Soringhat [14] and Level up [2] in the single row, time (ms), communication(KB)

Sortinghat XXCMP-PDTE FOLKLORE-PDTE RCC-PDTE
Name time comm. time comm. time comm. time comm.
heart 38.36 8096 9 780 928 1568 200 7454
breast 153.8 18568 47 1570 1560 1568 405 7454
spam 543.1 35200 200 2824 3986 1568 1378 7454
electricity 5232 5016 2945 548 36791 1568 12225 6589

In Table 8, we ran the Sortinghat and Level up PDTE schemes on the same machines. In electricity,
XXCMP-PDTE has the lowest communication and time cost, at 2.945s and 548KB, followed by Sortinghat
and RCC-PDTE. It is worth noting that Table 5 is all around 11 bits, and the bit precision is relatively low.

Based on the data from both Table 7 and Table 8, we can draw the following conclusions: TECMP-
PDTE and RDCMP-PDTE are 56 and 73 times more efficient than XXCMP-PDTE in the electricity tree,
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respectively. After adding CRR, the per-row amortized time of TECMP-PDTE-CRR is 14 times than the
XXCMP-PDTE in the same dataset.

Fig. 5. High precision in breast data with single row

Due to our data being compared with amortized costs at relatively low precision, in Figure 5, we evaluate
these PDTE at high precision with a single-row data in breast tree. The RRCMP-PDTE exhibits stability
and is insensitive to changes in precision, performing faster than others after 128 bits. TECMP-PDTE has
the lowest time consumption at around 64 bits. In terms of low precision comparison, XXCMP-PDTE,
RCC-PDTE, and TECMP-PDTE show similar performance.

6.3 Summary of the Result

Among all private comparisons, our private comparison demonstrates superior performance in amortization,
enabling comparisons with arbitrary precision and in arbitrary forms, while the compared results maintain
the output expressive.

With the support of CRR, by obfuscating the classification results and leaf positions, we further improve
the security of batch-processed PDTE, but also sacrifice some computational efficiency and multiplication
depth. However, due to the speed improvement of our private comparison method, the Batch-PDTE is still
very efficient, about 14 times faster than the state-of art. In terms of communication cost, they are greatly
reduced due to the adoption of packaging strategies. Even in a single row, our Batch-PDTE performs well
over the 64-bit.

7 Disscussion and Future Work

Next, we will expand the existing work from the following aspects.
Include the different application scenarios: the data party, model party, and third party, the encryptor,

decryptor, and evaluator are all independent, so we can use a client-cloud-server architecture, or integrate
the model party with the encryptor and decryptor.

Expanding private comparison: private comparison as a fundamental module, has various applications
such as selecting maximum values, sorting among multiple data parties, and simulating the activation func-
tion in neural networks.
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Improved security: We are based on semi-honest assumptions and do not pay attention to malicious
adversary. Ensuring that evaluators honest to prescribed evaluation scheme can effectively enhance the
security of decision trees. Additionally, decision tree models inherently possess some privacy leakage problems,
making it challenging to obfuscate decision results and tree parameters.

8 Conclusion

In this work, we propose two types of batch private comparison and their PDTE schemes. These private com-
parison are non-interactive, batchable, and amortized efficient. they can achieve high-precision comparison
at low multiplication depth, and is suitable for cipher-cipher, cipher-plain, one-to-many and many-to-many
input type. Meanwile, The security of the Batch-PDTE is further improved, and the SumPath is improved
to confuse the relationship between the leaf node position and the classification results.

We also compared the computation and communication cost of several private comparison protocols
at various bit precision. RDCMP’s amortization time is the fastest, and CDCMP’s communication cost is
low. TECMP is relatively moderate, with great computing speed and communication cost. Compared with
XXCMP, RCC and FOLKLORE, there is an order of magnitude advantage, and the comparison bit precision
is higher.

PDTE benefits from the computational speed and communication efficiency of the private comparison
algorithm, resulting a very fast amortized computation speed and low communication costs. Compared to the
state-of-art, TECMP-PDTE shows an improvement of approximately 14 times in computing speed and lower
communication costs. Meanwhile, RDCMP-PDTE and CDCMP-PDTE are affected by the multiplication
depth in SumPath with CRR and do not fully utilize the batch processing power. In scenarios with lower
security requirements, such as CRR-free, it will exhibit more robust performance.
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Tong University.
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