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Abstract. Vertical Federated Learning (VFL) is becoming a standard
collaborative learning paradigm with various practical applications. Ran-
domness is essential to enhancing privacy in VFL, but introducing too
much external randomness often leads to an intolerable performance
loss. Instead, as it was demonstrated for other federated learning set-
tings, leveraging internal randomness —as provided by variational au-
toencoders (VAEs) —can be beneficial. However, the resulting privacy
has never been quantified so far, nor has the approach been investigated
for VFL.

We therefore propose a novel differential privacy (DP) estimate, denoted
as distance-based empirical local differential privacy (dELDP). It allows
us to empirically bound DP parameters of models or model components,
quantifying the internal randomness with appropriate distance and sen-
sitivity metrics. We apply dELDP to investigate the DP of VAEs and
observe values up to ϵ ≈ 6.4 and δ = 2−32. Based on this, to link
the dELDP parameters to the privacy of VAE-including VFL systems
in practice, we conduct comprehensive experiments on the robustness
against state-of-the-art privacy attacks. The results illustrate that the
VAE system is robust against feature reconstruction attacks and out-
performs other privacy-enhancing methods for VFL, especially when the
adversary holds 75% of the features during label inference attacks.

Keywords: privacy · vertical federated learning · distance-based empirical dif-
ferential privacy · variational autoencoder

* These authors contributed equally to this work.

https://orcid.org/0009-0007-0088-0385
https://orcid.org/0009-0001-1663-2622
https://orcid.org/0000-0003-2077-7223
https://orcid.org/0000-0002-9552-0097
https://orcid.org/0009-0002-0896-9521
https://orcid.org/0000-0002-1916-7033


2 Y. Sun, L. Duan, R. Mendes, D. Zhu, Y. Xia, Y. Li, A. Fischer

1 Introduction

Vertical Federated Learning (VFL) is a distributed learning paradigm that al-
lows different participants to collaboratively train a joint model without sharing
their raw data. In VFL, different features of each sample are held by different
participants. A typical VFL model consists of multiple bottom models and one
top model [38]. In principle, the participants feed their own features to the bot-
tom models, whereas those with labels hold the top model(s) and coordinate the
updates. VFL has been widely deployed in commercial services spanning various
industrial sectors, and it is seen as prominent by leading AI players, including
Google, Amazon, and Huawei, as VFL promotes data-based collaborations [18].
An overview of the VFL workflow is shown in Figure 1.

Despite the remarkable success of VFL in real-world applications, there are
increasing concerns about the vulnerabilities, especially input and model leakage
of the basic VFL architecture. Besides attacking the VFL training [25, 31], an
adversary can also extract information during the inference phase if a trained
VFL model is released as a public service, threatening the privacy of input fea-
tures of other participants and even the entire VFL model [25,29]. For instance,
Luo et al. [26] show how to utilize the model output to approximate the input
features. Moreover, Geng et al. [15] illustrate how the released model outputs can
help an adversary reconstruct the entire model by employing transfer learning.

Fig. 1: VFL, the general workflow
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1.1 Randomness for Privacy in VFL

Technically, enhancing privacy often relates to processing the input data or in-
termediate states in VFL with randomness. Sources of randomness can be (1)
external, e.g., resulting from adding independent random noise, or (2) internal,
resulting from random variables that depend on the structure of the network
and the input data. Classical differential privacy (DP) uses external random-
ness. Quantifying privacy from external randomness is rather straightforward.
For example, in the case of Laplace and Gaussian mechanisms in DP, predefined
diversity b or variance σ can determine the privacy parameters (ϵ, δ). However,
major downsides of external randomness also exist: it hinders performance or
utility [16], and the users may be concerned with the trustworthiness of central-
ized noise adding mechanisms. As a countermeasure, Geng et al. [15] suggested
to use a trusted third party (TTP) to introduce noise into the output throughout
training and inference. However, the existence of a TTP is usually considered an
unjustified strong assumption in real-world scenarios.

In contrast to external noise, taking advantage of structural and data depen-
dent randomness can lead to more compact and efficient solutions. This is be-
cause the structures such as variational autoencoder [19], global attention [9], and
U-noise [21] are already parts of the machine learning model, i.e., the randomness
is internal. Solutions such as PRECODE [31] and GATN [9] have demonstrated
the merit of using internal randomness for privacy. On the other hand, quanti-
fying the privacy resulting from this internal randomness is far more challenging
than in the external case. First, the structural randomness may not have an
analytic form [21]. If the query structure spans several linear and non-linear
layers, directly deriving a generic analytic form for the random distribution is
intractable [19]. Second, the extracted privacy parameters may not be compa-
rable or compatible with other mechanisms. For example, as pointed out by
Burchard et al. [7], Duan’s noise-less privacy [11] cannot be combined with DP
directly.

1.2 Contributions and Paper Outline

This paper proposes a novel way to estimate differential privacy, that can be
applied to model internal noise, and employs it to quantify the privacy in VAE
based VFL systems. More specifically, we make the following contributions.

1. We propose a new differential privacy estimate called distance-based Em-
pirical Local Differential Privacy (dELDP) that forms a good foundation
for empirical estimation of internal randomness in VFL. When used with
appropriate distance metric, sensitivity and estimators, the dELDP privacy
parameters can be efficiently estimated for concrete structural parameters,
trained model, and data sets.

2. We demonstrate the applicability of dELDP by estimating the (ϵ, δ) values
of trained VAEs. Randomly initialized VAEs are integrated into an existing
VFL architecture, and the whole model is then trained with the original opti-
mization goal and methods. We denote the VFL pipeline extended with VAE
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as SAIR, as it SAves the cost with Internal Randomness. Besides quantifiable
privacy guarantee in the sense of dELDP, we also show that SAIR can enjoy
minimal performance loss and be empirically composed with other privacy-
enhancing technologies for improved resilience against attacks.

3. To link dELDP parameters to privacy in practice, we also conduct investigate
the robustness of VAE equipped VFL systems against state-of-the-art pri-
vacy attacks during VFL inference. Besides showing high robustness against
feature reconstruction attacks, the results also illustrate that SAIR outper-
forms other privacy-preserving methods in VFL, especially when the adver-
sary holds more than 50% of features in label inference attacks and model
stealing attacks.

Outline. After the introduction of background knowledge and a survey of re-
lated work in Section 2, Section 3 elaborates dELDP definitions and its appli-
cation. Section 4 contains detailed implementation, experiment description and
highlights of empirical results for privacy and performance.

2 Background and Related Work

Distance-based Local Differential Privacy The main idea of Local differ-
ential privacy (LDP) is to perturb individual data samples with noises, and the
usage of LDP is frequently seen in FL. Truex et al. [35] present LDP-Fed, a
federated learning system with a quantifiable privacy guarantee using LDP. Er-
lingsson et al. [13] described an algorithm whose privacy cost is polylogarithmic
in the number of user value changes. The major drawback of LDP is its neg-
ative impact on accuracy, but efforts are being made to reduce it. In the VFL
setting, besides conventional DP against honest adversaries [30], Li et al. [24]
propose a federated tree boosting framework based on order-preserving desen-
sitization with distance-based LDP (dLDP). The distance metric introduced by
dLDP reduces the amount of noise needed, as it provides a reasonable way to
ignore the extreme cases where two samples are too far away, i.e., too easy to be
distinguished by an adversary. However, existing dLDP mechanisms still rely on
external randomness source and complete analytic forms of queries.

Empirical Differential Privacy In 2009, Duan [11] introduced the notion of
privacy without noise, which estimates the corresponding (ϵ, δ) from the inherent
randomness in the dataset and the query. Although this approach needs strong
assumptions about data distribution, i.e., independent identically distributed
data, it highlights that non-uniform internal noise can also achieve reasonable
DP. Moreover, Duan’s research also inspired Burchard et al. to formalize empir-
ical differential privacy (EDP) in 2019 [7]. EDP introduces a method to empiri-
cally estimate the privacy of a given query f() applied to a random database S,
which iterates over all adjacent data bases Si for each sample xi to estimate the
centralized privacy risk. However, a large gap still exists between EDP and the
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evaluation of privacy in VFL, especially the privacy provided by each individual
bottom model. First, formed as centralized DP, the estimation in EDP needs
complete knowledge about every feature of each sample, contradicting with the
settings of VFL where each bottom model owner knows only its own features.
Second, a large number of the numerical integration of the estimated proba-
bility density function are necessary, leading to high computational cost and
accumulated error even if the data set is of moderate size.

Other Existing Defenses Besides homomorphic encryption (HE) and multi-
party computation [20], differential Privacy (DP) [12] has also been applied to
the training process: Differentially Private-Stochastic Gradient Descent (DP-
SGD) [1]. DP-SGD has been widely used as an effective and provable privacy
protection mechanism to protect training data. However, and similarly to LDP,
it can have a significant impact on utility. In the context of VFL, simpler mech-
anisms have also been proposed that can protect privacy and improve communi-
cation costs. Particularly, Noisy Gradient (NG) [40] adds Gaussian noise to the
backward propagation, Gradient Compression (GC) [18] retains only the high-
est gradients, and Discrete SGD (DSGD) [4] discretizes gradients into a small
number of bins. We mainly use these non-cryptographic defenses as comparison
in the experiments.

Although VAE and its variants are widely used and studied in machine learn-
ing [2, 19, 27, 36], to the best of our knowledge Scheliga et al. [31] first proposed
the use of VAE for privacy in training in 2022 as PRECODE, an VAE-based
privacy-enhancing module for existing models. Although PRECODE’s privacy
protection against gradient inversion attack is empirically illustrated in training,
Scheliga et al. did not give any formal interpretation of the privacy guarantee or
conduct any attack experiments for the inference phase.

3 Distance-based Empirical Local Differential Privacy

3.1 Formal Definition of dELDP

We consider a threat model for the inference, where a malicious adversary A
controls some participants and holds partial datasets. Moreover, A can interact
with the trained model via normal interfaces. Due to the sample alignment in
VFL*, it is trivial to see whether an individual is in the training dataset or not.
Thus, in the sense of centralized DP [12] or EDP [7], VFL training cannot have
any meaningful privacy. Moreover, an adversary A trying to steal information
from a trained VFL model M∗ has two extra advantages: (1) A can get the
label produced by M∗ if A participates in the inference; (2) A can have partial
information of the sample x. Due to (1) and (2), even if we apply LDP in VFL
and A’s own features are identical for each sample, A can trivially distinguish

* In Step 1 in Figure 1, features of the same individual have to be aligned by the
identifier. If A participates in training, A sees the (quasi-)identifier of every sample.
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two samples with different labels with a probability determined by the accuracy
of M∗. Therefore, besides the range of the output, we have to consider the partial
information held by A (leakage, especially labels), which can be formulated as
the distance between two samples. We start by recalling the distance-based LDP
definition and discussing its limitations.

Definition 1 (Distance-based LDP, dLDP) We say that a dataset S has (ϵ, δ)-
distance-based local differential privacy against an adversary A with regard to
statistical function f : S → R, distance metric dist(), and distance threshold t,
if ∀x, x′ ∈ S,∀y ∈ R :

dist(x, x′) ≤ t ⇒ Pr[f(x) = y] ≤ etϵ Pr[f(x′) = y] + δ . (1)

Given an appropriate dist(), if we have an input-independent f() with an effi-
ciently computable analytic form, we can derive the dLDP parameters directly.

However, in VFL, the complexities inside the parameterized function fθ()
hinders the use of dLDP for quantifying the corresponding internal randomness.
The value fθ(x) depends on both θ and x, and the trained model parameters θ
depend on x and other samples (features) in the training data set. As mentioned
before, when fθ() spans several linear and non-linear layers, deriving the analytic
form of fθ() or the probability function of it is intractable [19]. Moreover, samples
are split into features and the bottom models are trained for different features.
Therefore, not only the value, the function fθ() itself may also vary for different
x, adding another layer of complexity.

Thus, we opt for an empirical approach to circumvent the theoretical obsta-
cles. Intuitively, we can turn it into an estimate of the privacy parameters, as
formalized by the following definition.

Definition 2 (Distance-based Empirical LDP, dELDP) We say that a dataset
S has (ϵ, δ)- distance-based empirical local differential privacy against an ad-
versary A with regard to statistical function f : S → R, distance metric dist(),
distance threshold t, and estimator esmt(), if

∀x, x′ ∈ S,∀y ∈ R : dist(x, x′) ≤ t ⇒
esmt(Pr[f(x) = y]) ≤ etϵ · esmt(Pr[f(x′) = y]) + δ . (2)

Note that if the same dist() and threshold t are used, and if the distribution
can be estimated exactly, i.e., ∀x : esmt(Pr[f(x) = y]) = Pr[f(x) = y], then
(ϵ, δ)-dELDP implies (ϵ, δ)-dLDP.

In the application of dELDP in practice, besides well-defined dist() and thresh-
old, the estimation algorithm provides another degree of freedom and it can be
adapted to individual VFL task for improved efficiency. Next we elaborate how
dELDP can be applied to Gaussian-type internal randomness.

3.2 Application: dELDP for Trained VAEs in VFL

The posterior sampling process inside VAE has a Gaussian form, so we can
estimate the sensitivity of the function and the variance instead. To see how
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this can proceed, first recall the Gaussian Mechanism in LDP and the posterior
sampling in VAE.

Definition 3 (Gaussian Mechanism for LDP [32]) If a function f(x) of
an input x ∈ S is to be released, the Gaussian release mechanism is defined
as

G(x) := f(x) +N (0, σ2I) = f(x) + σN (0, I) . (3)

Theorem 1 ((ϵ, δ) of Classical Gaussian Mechanism [12,32]) If the sen-
sitivity of the function is bounded by ∆f , i.e., ∀x, x′ ∈ S, ||f(x)− f(x′)||2 ≤ ∆f ,
then for any δ ∈ [0, 1], the Gaussian mechanism G() satisfies (ϵ, δ)-LDP, where

ϵ =
∆f

σ

√
2 log

1.25

δ
. (4)

Definition 4 (Posterior Sampling in VAE [19]) Let x ∈ S be the input to
VAE. The posterior sampling of z(x) is defined as

z(x) := µ(x) +Σ(x)
1
2N (0, I) , (5)

where µ(x) is the mean function and Σ(x) the covariance matrix dependent on
x learned by the VAE.

The key difference between (5) and the original Gaussian mechanism (3)
is that the perturbation in (5) is a function of the input value x. Following
the approach taken by [11] for non-uniform perturbation, we can generalize the
Gaussian mechanism as follows.

Definition 5 (Extended Gaussian Mechanism, EG) Let R be the set of
real numbers. For f : S → R ⊂ Rm, if a function f(x) of an input x ∈ S is
to be released, the extended Gaussian release mechanism is defined as

EG(x) := f(x) +M(x)N (0, I) , (6)

where M : S → Rm×m maps x to a diagonal matrix with non-negative entries.

By taking f() := µ(), VAE posterior sampling is an instance of EG. As Σ(x)
1
2

is a diagonal matrix in VAE [19], we can collect the diagonal elements into a
vector V (x). The EG(x) implemented by VAE can then be re-written as

EG(x) = f(x) + V (x)⊙N (0, I) . (7)

We keep this V (x) notation and omit the element-wise product symbol ⊙
henceforth. What remains to be quantified for dLDP for VAE is an appropriate
distance function and sensitivity. As we consider samples with the same label,
we define

dist(x, x′) =

{
1, Label(x) = Label(x′)

∞, otherwise
. (8)
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Definition 6 (Local Sensitivity, Distance-based) For f : S → R ⊂ R and
∀x, x′ ∈ S with Label(x) = Label(x′) = ℓ, the local sensitivity Sensf,ℓ of f() with
respect to ℓ is defined as

Sensf,ℓ = max
x,x′

(||f(x)− f(x′)||2) . (9)

Using (4), (7), (8) and (9), we arrive at the bound of dLDP parameters of
VAE in Theorem 2. Let Label(S) be the set of labels of samples in S.

Theorem 2 (dLDP for VAE of each bottom model) Given dataset S and
query µ : S → R ⊂ Rm, if ∀ℓ ∈ Label(S), x, x′ ∈ S, Label(x) = Label(x′) = ℓ

∃∆ℓ, σℓ :
(
Sensµ,ℓ ≤ ∆ℓ ∧ min(||V (x)||2, ||V (x′)||2) ≥ σℓ

)
, then there exists ∆µ

and σµ for VAE posterior sampling for fixed (µ, V ) that satisfy (ϵ, δ)-dLDP in
the sense of Definition 1 for t = 1, δ ∈ [0, 1], and

ϵ =
∆µ

σµ

√
2 log

1.25

δ
. (10)

Proof. (Sketch) ∆ℓ is the upper bound of the sensitivity, and σℓ is the lower
bound of the (standard) variance. The intuition is that if for a label ℓ, the
minimum noise is no less than N (0, σ2

ℓ I), then the privacy guarantee is at least
as good as provided by N (0, σ2

ℓ I) with the corresponding (ϵℓ, δℓ). And ∆µ/σµ

corresponds to the worst ϵℓ and δℓ, i.e., the maximum among all ℓ’s. The complete
proof is in Appendix A. ⊓⊔

The last gap between dLDP and dELDP is an efficient estimation. If the size
of the dataset and the number of parameters of a VAE can be bounded by a
polynomial of the input length, the sensitivity and the variance can be efficiently
estimated. Thus, we have the following lemma for dELDP of VAE.

Lemma 1 (dELDP for VAE). The posterior sampling in VAE has (ϵ, δ)-dELDP
in the sense of Definition 2 with

ϵ = esmt

(
∆µ

σµ

)√
2 log

1.25

δ
, (11)

if esmt() can be computed in polynomial time.

Algorithm 1 plays the central role in esmt() which bounds the sensitivity and
the variance in the trained VAE with respect to the given partial dataset. Let
the number of labels be a constant, and the number of data items be nx. The
time complexity of Algorithm 1 is O(n2

x). The computation includes only inner-

product and comparison. Once {(∆ℓ, σℓ)} is collected, the term esmt
(

∆µ

σµ

)
can

be computed as max
(

∆ℓ

σℓ

)
. The empirical results will be presented in Table 3 in

Section 4.
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Algorithm 1 dELDP for VAE

1: Input: Pi’s partial data Si and Label(S);
2: Output: {(∆ℓ/σℓ)}, the maximum sensitivity over the minimum variance pairs of

each label ℓ ∈ Label(S) with respect to Si.
3: Algorithm Starts:
4: for each label ℓ ∈ Label(S) do
5: ∆ℓ = 0, σℓ = 0
6: for each pair (x, x′) in Si do
7: if Label(x) = Label(x′) = ℓ then
8: ∆ = ||µx − µx′ ||2, σ = min(||V (x)||2, ||V (x′)||2);
9: ∆ℓ = max(∆ℓ,∆), σℓ = min(σℓ, σ);
10: end if
11: end for
12: end for
13: Output: {(∆ℓ/σℓ)} for Si

4 Experiments

We first describe the setup of our experiments that were all run on a Tesla™P100
GPU with 16GB RAM. Next, we discuss the results.

4.1 Setup

Datasets. We use six real-world multiclass classification datasets for evalua-
tion: Sensorless Drive Diagnosis (SDD) [3], Criteo [22], MNIST [8], Medi-
calMNIST [37], Look and Listen (LL, a multimodal dataset with image-audio
modalities) [5], and AG’s News Topic Classification Dataset [39]. The features
are split into two groups and then fed into VFL systems. The feature distribution
and statistics of the six datasets are shown in Table 1

Baseline Models. All baseline models have no privacy-preserving techniques.
We employed VFL systems with two bottom models and one top model. For
SDD, Criteo, MNIST, and MedicalMNIST, each bottom model consists of
two linear layers of neural network. The top model as well consists of two linear
layers. For LL, one bottom model contains a VGG-16 [34] backbone for the
image modality, the other contains 4 linear layers for the audio modality. The
top model contains two linear layers. For AG’s News, each bottom contains a
BERT [10] backbone, and the top model contains one linear layer. Table 1 shows
the parameters of the top model and bottom models.

SAIR Models. Rather than testing existing models that contain VAE-like struc-
tures, we add a VAE to our VFL baseline models that do not contain any other
sources of randomness, since this allows for direct comparison and the effect of
adding internal randomness can be observed without interference. Specifically,
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Table 1: Bottom and Top Model Parameters. Different clients hold different
ratios of features, for example, client 0 and client 1 have 24 features in SDD.

Dataset #Samples #Labels
#Params. Bottom Model
Feature Distribution

#Params. Top Model

SDD 58.5K 11 [18.5K, 18.5K] (24, 24) 6K
Criteo 44841K 2 [17.5K, 18.1K] (13, 26) 5K
MNIST 70K 10 [72.4K, 72.4K] (14, 14) 10.8K
MedicalMNIST 59K 6 [315K, 315K] (16, 16) 10.8K
LL 17.2K 9 [294M, 733K] (image, audio) 1.7K
AG’s News 128K 4 [1.5M, 1.5M] (’title’, ’description’) 32.3K

we augment each baseline model by adding a VAE with 3 layers (corresponding
to an encoder and a decoder with one linear hidden layer each) on top of each
bottom model. We denote the VFL pipeline extended with a VAE as SAIR, as
it SAves the cost with Internal Randomness. The algorithm used for training
the models is descibed in Algorithm 2. The model inference is identical to the
forward pass except that the loss function is not computed.

Fig. 2: Overview of VAE-enhanced VFL: (a) data flow; (b) VAE in bottom model.
Secure aggregation [6] against adversaries is used.

Performance Experiments. To evaluate the performance of different systems,
we measure the total time needed until convergence. We compare SAIR with
VAEs trained from scratch and SAIR with pre-trained models to the baseline
models.

dELDP Experiments. We estimate the dELDP of the VAEs using Algorithm
1. The algorithm is executed over each label and each bottom model trained on
SDD, MedicalMNIST, LL, and AG’s News. The primary results from the
experiments are the maximum values ∆ℓ

σℓ
for each label-model combination.
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Algorithm 2 Training Process in SAIR
1: Input and Parameters:
2: Top model owner S and N bottom model owners, a dataset S, and labels Label(S);
3: Bottom model, owner Pi, has partial data Si, ∀i ∈ [N ];
4: (Pre-trained) bottom model MB with VAE, top model MT;
5: Top and bottom model parameters θS , {θCi ,∀i ∈ [N ]}, resp.;
6: Loss function L of final outputs, loss functions {L(µi,σi)} of bottom models, pa-

rameters {µi} and {σi} of VAEs;
7: Learning rate η, total training epochs E .
8: Algorithm Starts:
9: for e = 1, 2, ..., E do
10: // Training for bottom model
11: for each bottom model owner Pi do
12: // 1. Forward propagation for bottom models
13: // Train MB in parallel;
14: outei = MB (Si);
15: Compute L(µi,σi);
16: Send outei to S; //All outei have the same shape.
17: // 2. Backpropagation and stochastic gradient descent for bottom models
18: Compute ∂L(µi, σi), update µi and σi;
19: // Until the server finishes backward propagation

20: Receive ∂L(outT ,Label)
∂outei

;

21: Compute ∂L(outT ,Label)
∂θCi

= ∂L(outT ,Label)
∂outei

× ∂outei
∂θCi

;

22: Update θCi = θCi − η ∂L(outT ,Label)
∂θCi

;

23: end for
24: // Training for top model
25: // 1. Forward propagation for top model
26: outT = MT (out

e
i );

27: Compute L(outT , Label(S));
28: // 2. Backward propagation for top model;

29: θS = θS − η ∂L(outT ,Label(S))
∂θS

;

30: Compute and send ∂L(outT ,Label)
∂outei

to all bottom model owners;

31: end for
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Attack Experiments. We evaluate the robustness of SAIR in comparison with
that of the baseline models with respect to the following state-of-the-art attacks
applicable during model inference. As mentioned in Section 3.1, the malicious
adversary A tries to extract private information by accessing the trained model
and the partial datasets during the inference. A’s power may be strengthened
or altered for each concrete attack.

– Feature reconstruction (FR) attack. In FR attacks, A has access to the
trained model. We implemented an FR attack under the white-box setting
[17], which provides a stronger adversary and an upper bound of privacy
loss. In this attack, the adversary A uses backpropagation to update an
input composed of A’s own and random features, as to minimize the distance
between the true confidence scores and the output for this input. A collects
the true confidence scores of the trained model during inference, meanwhile
forming pairs of partial inputs and respective outputs.

– Label inference (LI) attack. As an example of an LI attack, we implement
the Passive Label Inference Attack through Model Completion [14] without
access to the complete trained model. In this LI attack, the adversary A
tries to infer the labels of new samples by using its own bottom model MA

B ,
and complementing that model with an inference head, which corresponds to
randomly initialized additional layers that augment the local model. A trains
this head by freezingMA

B and using samples containing onlyA’s training data
(i.e., part of the features) and the respective labels.

– Model stealing (MS) attack.MS attackers train shadow models and need
access to the trained model. In addition, the adversary A has some input
data with all features , which is referred to as the background information.
Specifically,
• for stealing M∗ trained with MNIST, we use the MedicalMNIST

dataset to pre-train the adversarial model M′,
• and for stealing M∗ trained with LL, we use the CIFAR10 dataset to
pretrain M′.

Following the approach taken by [28], we use three different background
information for MS:
1. the full training set S, i.e., A’s background information covers all the

(private) training data S. It should be noted that in this case A can
train the model from scratch. Therefore this is an unrealistic scenario to
provide an upper bound on the attack performance;

2. the validation set SV , i.e., A’s background information has no intersec-
tion with S;

3. a randomly sampled subset from the S of the size |SV |, i.e., A’s back-
ground information intersects with part of S.

We refer to [14] and consider four privacy-preserving methods in our exper-
imental comparison: Noisy Gradient (NG) [40], Gradient Compression (GC)
[18], Differentially Private - Stochastic Gradient Descent (DP-SGD) [1], and
Discrete Stochastic Gradient Descent (DSGD) [4]. NG is a common strategy
that adds noise to the gradients [40]. As in previous work [14] we consider three
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NG ratios for comparisons, namely 10−4, 10−3 and 10−2.GC is a method for pri-
vacy protection and communication efficiency [18]. We consider 75%, 50%, 25%
and 10% as compression rates. DP-SGD is widely used in privacy-preserving
deep learning [1]. We choose ϵ to be 0.1, 1 and 10. DSGD protects the signs of
gradients. Thus, it benefits not only the privacy protection but also contributes
to the communication efficiency [4]. We choose DSGD bins to be 6, 12, 18, and
24 as suggested by previous work [14].

4.2 Results

Performance. To analyze the performance, we measure the accuracy change
over epochs displayed in Figure 3 and the total execution time shown in Ta-
ble 2. Overall, the results confirm that using SAIR with a pre-trained VAE to
replace the insecure baseline model has minimum impact on the training and
inference cost. Figure 3 shows that integrating a VAE does not affect the conver-
gence of training. Moreover, employing pre-trained VAEs accelerates the speed
of convergence. Table 2 shows that until convergence the basic SAIR consumes a
maximum of up to 1.43 times more training time than baseline. The acceleration
from a pre-trained model is also significant. The time cost is c.a. 1.04 to 1.40 of
that of the baseline.

Fig. 3: Accuracy changes in training over different datasets. Models with pre-
trained VAE and correlated randomness converge faster than baseline and those
without pre-trained models. All experiments run 100 epochs.

The dELDP of VAE. Table 3 shows the results for ∆ℓ

σℓ
computed by Algorithm

1 as described in in Section 4.1. The ratio ∆ℓ

σℓ
lies between 0.1 and 2.1. For the

VAE trained on SDD we observe the maximum ratio at client 0 for label 6.
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Table 2: Time consumption (in minutes) till convergence in each setting. The
time used by the Baseline is taken as 1.00x.
Settings / Datasets SDD Criteo MNIST MedicalMNIST LL AG’s News

Baseline (not secure) 44.04 (1.00x) 251.13 (1.00x) 31.31 (1.00x) 39.00 (1.00x) 109.17 (1.00x) 296.71 (1.00x)
Basic SAIR 57.68 (1.30x) 258.21(1.03x) 44.96 (1.43x) 47.85 (1.23x) 141.38 (1.29x) 370.57 (1.24x)
SAIR (Pre-trained) 50.20 (1.14x) 266.20 (1.06x) 43.41 (1.40x) 46.78 (1.21x) 118.89 (1.09x) 309.08 (1.04x)

Meanwhile, for the VAE trained on MedicalMNIST the minimum value is
found for client 1 and label 1. The ratios are more evenly distributed around 0.5
for the VAE trained on LL. Besides, the VAE trained on AG’s News obtains
ratios above 1.1 for all labels besides label 4. By setting δ = 2−32, we obtain
ϵ values between 2.59 and 10.23 for the different models based on the ratios
presented in the table and we estimate ϵ ≈ 6.4 with δ = 2−32 on average.

Table 3: dELDP results, the maximum ∆ℓ

σℓ
values for each label-model combina-

tion. The largest value on each client is marked in bold.
Dataset Labels & Clients Ratio

SDD
Label 1 2 3 4 5 6 7 8 9 10 11

Client 0 0.5381 0.5611 0.2431 0.4871 0.4032 2.1041 0.2155 0.5046 0.7639 0.4732 0.4926
Client 1 0.6210 0.5126 0.3827 0.5971 0.6307 1.9711 0.4227 0.7162 0.8985 0.4009 0.4071

MedicalMNIST
Label 1 2 3 4 5 6

Client 0 0.2430 0.3360 0.8323 0.1992 1.1190 1.8725
Client 1 0.1092 0.2079 1.2161 0.1474 0.8595 0.3430

LL
Label 1 2 3 4 5 6 7 8 9

Client 0 0.4781 0.7276 0.5979 0.7690 0.7464 0.4585 0.7487 0.7345 0.6337
Client 1 0.4869 0.4273 0.4070 0.5339 0.4711 0.4410 0.4846 0.4188 0.4644

AG’s News
Label 1 2 3 4

Client 0 1.3804 1.7998 1.6909 0.4732
Client 1 1.1874 1.3442 1.3543 0.4009

Resilience against Attacks. As aforementioned, we executed three attacks.
The results on the robustness of models trained on MNIST against the feature
reconstruction (FR) and the label inference (LI) attack are presented in Table
4, and the results w.r.t. model stealing (MS) in Table 5. For comparison, we
consider both the model performance and the resilience, as a model with low
accuracy is usually more robust against attacks but not useful. The baseline
model achieves an accuracy of 97%, 86%. This accuracy is only met by models
using the GC defense and reduced for all other privacy-enhancing techniques.
The performance is most heavily reduced for DP-SGD and NG with a noise
scale of 10−2 or 10−3. For SAIR we only observe a very slight performance loss.

In Table 4, we compare the robustness of SAIR against FR and LI attacks with
that of models protected by NG, GC, DSGD and DP-SGD. We estimate the
robustness against the FR attack by measuring the mean squared error (MSE)
between the real and the reconstructed features in dependency of the percentage
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of features owned by the adversary. That is, the larger the MSE, the higher the
robustness. For the LI attack we measure the accuracy of the label inferred by
the adversary w.r.t. the true label. The higher the robustness of the model, the
lower this accuracy will be. DP-SGD has a more powerful defense than GC,
DSGD and NG, as clearly observed from the label inference accuracy, but it
also incurs a significant utility loss. In comparison with using no defense and
ϵ = 10, SAIR has higher accuracy while having the efficiency of DP-SGD with
ϵ = 10. In addition, SAIR achieves notable efficiency, even when the adversary
holds a large proportion of features. When the adversary has 75% features and
no protection, the label extraction accuracy is 97.02%. Meanwhile, SAIR has a
label extraction accuracy of only 87.68%. The last row of Table 4 also shows that
the internal randomness in VAE can be empirically combined with DP-SGD
and achieve better resilience against attacks.

Table 4: MNIST: Adversary performance for the feature and label extraction
attacks against the different defenses, and considering an adversary holding dif-
ferent ratios of features. The adversaries hold 25%, 50%, and 75% of the total
feature space. Note that we use the Mean Square Error (MSE) for feature ex-
traction, whereas for label extraction, we use the Accuracy (Acc).

Defense
Approach

Parameter
Parameter
Set Value

Model
Accuracy (50%)

FR; MSE LI; Acc
25% 50% 75% 25% 50% 75%

No Defense 97.86% 2.46 2.32 1.37 35.05% 88.30% 97.02%

NG
Noise
Scale

1e-4 97.34% 2.32 2.12 1.40 10.20% 82.74% 95.56%
1e-3 96.88% 2.34 2.13 1.57 9.11% 82.48% 95.52%
1e-2 94.17% 2.71 3.07 2.13 10.14% 76.43% 82.70%

GC
Compression

Rate

75% 97.85% 2.33 2.34 1.39 9.54% 86.71% 95.01%
50% 97.87% 2.33 2.32 1.39 10.74% 84.07% 95.50%
25% 97.85% 2.35 2.31 1.38 11.49% 86.65% 95.92%
10% 97.82% 2.35 2.32 1.41 9.82% 85.64% 95.56%

DSGD Bin

24 97.42% 2.34 2.34 1.41 9.86% 85.14% 95.12%
18 97.32% 2.36 2.38 1.50 9.62% 85.59% 92.90%
12 97.42% 2.37 2.44 1.38 11.26% 79.43% 95.09%
6 97.43% 2.61 2.29 1.45 6.74% 80.72% 94.12%

DP-SGD ϵ
0.1 91.70% 2.28 2.18 1.37 9.31% 57.50% 71.85%
1 95.57% 2.38 2.24 1.35 12.62% 72.81% 79.15%
10 96.80% 2.40 2.30 1.44 10.07% 80.38% 87.03%

Ours 97.68% 2.34 2.15 1.36 9.67% 81.66% 87.68%

Ours & DP-SGD(ϵ = 10) 96.94% 2.42 2.28 1.43 9.63% 77.18% 86.15%

When facing MS, SAIR in general outperforms DP-SGD in both the utility
and protection metrics. In comparison with the baseline, SAIR has an accuracy
loss below 0.5%, while DP-SGD drops up to 16% in the in MedicalMNIST
(83.06% versus the baseline 99.9%). With regard to the attack, SAIR also out-
performs DP-SGD in provided protection when using the validation data or
the training subsamples, with a minimum observed attacker accuracy of 11.52%
in the MNIST dataset. We use the full training data as the strongest attacker
reference, which shows two special cases in MedicalMNIST. When the task
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accuracy is 83.06%, the adversary is not able to achieve better result (82.36%).
However, when the task accuracy is very good (99.96%), the adversary is then
also powerful to achieve a good result (97.63%).

Table 5: Model Stealing Attacks

Dataset Protection Task Accuracy
Attack Accuracy

Full Training Data | Validation Data | Training Subsamples

MNIST
Baseline 97.68% 77.42% 33.44% 33.61%

DP-SGD(ϵ=10) 93.83% 76.95% 32.83% 32.82%
Ours 97.53% 67.80% 11.52% 11.54%

MedicalMNIST
Baseline 99.90% 98.93% 97.06% 96.73%

DP-SGD (ϵ=0.1) 83.06% 82.36% 80.15% 80.60%
Ours 99.96% 97.63% 79.96% 80.43%

LL
Baseline 95.63% 92.81% 90.14% 90.43%

DP-SGD (ϵ=0.1) 94.72% 91.51% 89.98% 89.54%
Our Solution 95.16% 88.28% 86.55% 86.14%

5 Conclusion and Future Work

We proposed an empirical estimate of distance-based local differential privacy
that we refer to as dELDP. We demonstrate that it can be employed to quantify
the privacy of variational auto encoders (VAEs). VAEs can be used as compo-
nents of vertical federated learning (VFL) systems with the goal of inducing
internal randomness. Our experimental study shows that such VAE containing
VFL systems display increased robustness against various state-of-the-art pri-
vacy attacks while maintaining good overall performance.

We still wonder whether it is possible to compose the parameters of both
worlds, i.e., form a generic bound given both the LDP and dELDP mechanisms
robustly in theory. Moreover, developing concrete algorithms for other types of
model internal randomness, e.g., components within Bayesian networks [33], can
be meaningful future work. In addition, SAIR can be combined with orthogonal
privacy-enhancing mechanisms. For example, when each individual embedding
must be protected against strong adversaries, secure aggregation with malicious
security [23] can be applied in addition. If the secrecy of top model parameters is
critical, using multi-party computation [20] for the top model is a good option.
Analyzing the overall privacy of other extended pipelines is intriguing, too.

Acknowledgments. This research is funded by the European Research Cen-
ter of Huawei Technologies. Asja Fischer ackowledges support by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CASA – 390781972. We thank anonymous re-
viewers for the various constructive comments and suggestions.



Exploiting Internal Randomness in VFL 17

References

1. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K.,
Zhang, L.: Deep learning with differential privacy. In: Proceedings of the 2016
ACM SIGSAC conference on computer and communications security. pp. 308–318
(2016)

2. Bai, J., Wang, W., Gomes, C.P.: Contrastively disentangled sequential variational
autoencoder. Advances in Neural Information Processing Systems 34, 10105–10118
(2021)

3. Bator, M.: Dataset for Sensorless Drive Diagnosis. UCI Machine Learning Repos-
itory (2015), DOI: https://doi.org/10.24432/C5VP5F

4. Bernstein, J., Wang, Y.X., Azizzadenesheli, K., Anandkumar, A.: signsgd: Com-
pressed optimisation for non-convex problems. In: International Conference on Ma-
chine Learning. pp. 560–569. PMLR (2018)

5. Bird, J.J., Faria, D.R., Premebida, C., Ekárt, A., Vogiatzis, G.: Look and listen:
A multi-modality late fusion approach to scene classification for autonomous ma-
chines. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). pp. 10380–10385. IEEE (2020)

6. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B., Patel, S.,
Ramage, D., Segal, A., Seth, K.: Practical secure aggregation for privacy-preserving
machine learning. In: proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 1175–1191 (2017)

7. Burchard, P., Daoud, A., Dotterrer, D.: Empirical differential privacy. arXiv
preprint arXiv:1910.12820 (2019)

8. Cohen, G., Afshar, S., Tapson, J., Van Schaik, A.: Emnist: Extending mnist to
handwritten letters. In: 2017 international joint conference on neural networks
(IJCNN). pp. 2921–2926. IEEE (2017)

9. Dai, Y., Qian, Y., Lu, F., Wang, B., Gu, Z., Wang, W., Wan, J., Zhang, Y.:
Improving adversarial robustness of medical imaging systems via adding global
attention noise. Computers in Biology and Medicine 164, 107251 (2023)

10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

11. Duan, Y.: Privacy without noise. In: Proceedings of the 18th ACM conference on
Information and knowledge management. pp. 1517–1520 (2009)

12. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science 9(3–4), 211–407
(2014)
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A Proof of Theorem 2

Here is the complete proof of the dLDP main theorem (Theorem 2).

Proof. We start from one-dimensional case and upgrade it to the high dimen-
sional case. If the distance < ∞, it is 1 by definition for x, x′ with Label(x) =
Label(x′) in (8). We start from one-dimensional case and real valued µ(x), V (x).
Fix a label ℓ = Label(x) = Label(x′), The sensitivity is

∆ℓ = max
x,x′

(|µ(x)− µ(x′)|)

We then consider the absolute value of the privacy loss for x, x′:∣∣∣∣∣ln
(

e(−1/2σ2
1)x

2

e(−1/2σ2
2)(x+∆ℓ)2

)∣∣∣∣∣ , (12)

where σ1 = ||V (x)||2 and σ2 = ||V (x′)||2, and V () is fixed.*

Without loss of generality, we assume σ1 ≤ σ2. Then we have∣∣∣∣∣ln
(

e(−1/2σ2
1)x

2

e(−1/2σ2
1)(x+∆ℓ)2

)∣∣∣∣∣ ≥
∣∣∣∣∣ln
(

e(−1/2σ2
1)x

2

e(−1/2σ2
2)(x+∆ℓ)2

)∣∣∣∣∣ . (13)

So to bound (12), we can bound the left-hand side of (13) instead, i.e., we need
an ϵ1, such that

ϵ1 ≥

∣∣∣∣∣ln
(

e(−1/2σ2
1)x

2

e(−1/2σ2
1)(x+∆ℓ)2

)∣∣∣∣∣ =
∣∣∣∣ 1

2σ2
1

(2x∆ℓ −∆ℓ/2)

∣∣∣∣ . (14)

* V (x) ∈ R, so |V (x)| = ||V (x)||2. The VAE parameter θ has been trained.
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Thus, if we iterate over all x with Label(x) = ℓ and let

σℓ := min({σi}), σi = V (xi),

the bound for the privacy loss w.r.t. label ℓ is

ϵℓ ≥

∣∣∣∣∣ln
(

e(−1/2σ2
ℓ )x

2

e(−1/2σ2
ℓ )(x+∆ℓ)2

)∣∣∣∣∣ =
∣∣∣∣ −1

2σ2
ℓ

(2x∆ℓ −∆ℓ/2)

∣∣∣∣ (15)

With a similar argument in the proof of Theorem A.1 in [12], and since |x| is
identical to ||x||2 if x ∈ R, then we can have the relation

ϵℓ =
∆ℓ

σℓ

√
2 log

1.25

δ
. (16)

By taking ϵ = max({ϵℓ}), we can conclude that Theorem 2 is correct for
one-dimensional posterior sampling in VAE.

We use a convention µx := µ(x). For the high dimension case, i.e., µx, x, V (x) ∈
Rm, the sensitivity is changed to

∆ℓ = max
x,x′

(||µx − µx′ ||2).

Similarly, we are interested in the privacy loss w.r.t. label ℓ∣∣∣∣∣ln
(

e(−1/(2σT
1σ1))||x||22

e(−1/(2σT
2σ2))||(x+µx−µx′ )||22

)∣∣∣∣∣ , (17)

For σ1 = V (x) and σ2 = V (x′), with σT
1 σ1 ≤ σT

2 σ2, we can have∣∣∣∣∣ln
(

e(−1/(2σT
1σ1))||x||22

e(−1/(2σT
2σ2))||(x+µx−µx′ )||22

)∣∣∣∣∣ ≥
∣∣∣∣∣ln
(

e(−1/(2σT
1σ1))||x||22

e(−1/(2σT
1σ1))||(x+µx−µx′ )||22

)∣∣∣∣∣ . (18)

If we assume that µx − µx′ with the maximum norm is aligned with x (which
gives the biggest denominator), we are back to the one-dimensional case, i.e., for

σℓ = argmin
σi

(σT
i σi),

the bound ϵℓ for the privacy loss must fulfill

ϵℓ ≥

∣∣∣∣∣ln
(

e(−1/(2σT
ℓ σℓ))||x||22

e(−1/(2σT
ℓ σℓ))(||x||2+∆ℓ)2

)∣∣∣∣∣ =
∣∣∣∣ −1

2σT
ℓ σℓ

(2||x||2∆ℓ −∆ℓ/2)

∣∣∣∣ . (19)

So we have (20) in high dimension. Theorem 2 holds.*

ϵℓ =
∆ℓ√
σT
ℓ σℓ

√
2 log

1.25

δ
. (20)

⊓⊔

* We abuse the notation by letting σℓ =
√

σT
ℓ σℓ so we have the form in the theorem.
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