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Abstract. Introduced by Kohlweiss, Lysyanskaya, and Nguyen (Euro-
crypt’23), an f -privacy-preserving blueprint (PPB) system allows an au-
ditor with secret input x to create a public encoding of the function
f(x, ·) that verifiably corresponds to a commitment Cx to x. The audi-
tor will then be able to derive f(x, y) from an escrow Z computed by a
user on input the user’s private data y corresponding to a commitment
Cy. Z verifiably corresponds to the commitment Cy and reveals no other
information about y.

PPBs provide an abuse-resistant escrow mechanism: for example, if f
is the watchlist function where f(x, y) outputs y only in the event that
y is on the list x, then an f -PPB allows the auditor to trace watchlisted
users in an otherwise anonymous system. Yet, the auditor’s x must cor-
respond to a publicly available Cx (authorized by a transparent, lawful
process), and the auditor will learn nothing except f(x, y).

In this paper, we build on the original PPB results in three ways:
(1) We define and satisfy a stronger notion of security where a malicious
auditor cannot frame a user in a transaction to which this user was not
a party. (2) We provide efficient schemes for a bigger class of functions
f ; for example, for the first time, we show how to realize f that would
allow the auditor to trace e-cash transactions of a criminal suspect. (3)
For the watchlist and related functions, we reduce the size of the escrow
Z from linear in the size of the auditor’s input x, to logarithmic.

Of independent interest, we develop a new framework for succinctly
verifiable computation over additively-homomorphically encrypted data.



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Non-Frameability and Why It Matters . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Our Framework for Verifiable Computation over Additively

Homomorphic Encrypted Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Our Techniques for Achieving Succinct Escrows . . . . . . . . . . . . . . . 9

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 BB-PSL Non-Interactive Zero Knowledge (NIZK) . . . . . . . . . . . . . 10
2.2 Motivation for BB-PSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Proofs of Equivalent Representations of Discrete Logarithms . . . . 12
2.4 Construction of Equality of (Linear) DL Representations Proof

in Prime Order Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Non-Frameable Privacy-Preserving Blueprints . . . . . . . . . . . . . . . . . . . . . 13

3.1 Definition of Non-Frameability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Consistent Homomorphic-Enough Encryption . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Definition of Consistent HEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Modifying the Generic Blueprint Scheme from HEC to Obtain

Non-Frameability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Consistent HEC from FHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Efficient PPBs for fCBDC and Related Functions . . . . . . . . . . . . . . . . . . . 21
5.1 Building Blocks for Verifiable Computation over Additively-

Homomorphically Encrypted Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Instantiation of Consistent HEC Scheme . . . . . . . . . . . . . . . . . . . . . 24
5.3 Efficient Instantiation of HEC Evaluation Proof Ψ2 . . . . . . . . . . . . 27
5.4 Construction of NIZKs in ψ2 proof scheme . . . . . . . . . . . . . . . . . . . . 36
5.5 Multi-attribute HEC scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Constructions of Commitments to Ciphertexts . . . . . . . . . . . . . . . . . . . . . 38
6.1 Encryption Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Description of GElG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Description of GCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Commitments to GElG elements and ElGamal ciphertexts . . . . . . . 41
6.3 Commitments to GCS Elements and Camenisch-Shoup Ciphertexts 46

Proving that Damgård-Fujisaki commitments are secure for
G = Zn2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Proofs of hiding and binding for GCS-DF-commitments in Fig. 6.5 50
Auxiliary proofs for commitments to GCS . . . . . . . . . . . . . . . . . . . . . 52
Commitments to Camenisch-Shoup encryptions . . . . . . . . . . . . . . . 53
Proofs for commitments to Camenisch-Shoup ciphertexts . . . . . . . 54

7 Discussion on Non-frameability vs. Deniability . . . . . . . . . . . . . . . . . . . . . 56
8 Retrospective Blueprints and Future work . . . . . . . . . . . . . . . . . . . . . . . . . 56
9 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
A Number theory background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



PPBs via Verifiable Computation 3

B Examples of using eqrep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.1 Constructing eqrep-p∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.2 Constructing eqrep-n∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

C Definition of an f -Blueprint Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
D Constructions of HEC Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

D.1 KLN construction of HEC from Fully Homomorphic
Encryption (FHE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

D.2 Additional proofs for consistent HEC scheme . . . . . . . . . . . . . . . . . 73

1 Introduction

Cryptography gives us powerful tools for balancing our fundamental need to
protect our personal privacy with the legitimate needs of systems and govern-
ments to enforce rules and laws and to regulate finance. Anonymous creden-
tials [Cha90,LRSW99,CL01,Lys02,CL02,CV02,CL04,BCL04,BL13] and related
technologies such as e-cash [CFN90] are prominent examples: such systems al-
low a user with a cryptographic commitment Cy to his data y to prove that y is
somehow certified by some authority or authorities; in the case of e-cash, they
further allow to prove that an e-coin was computed correctly as a function of
the user’s data y.

In a recent paper, Kohlweiss, Lysyanskaya and Nguyen (KLN) [KLN23] added
privacy-preserving blueprints (PPBs) to the repertoire of cryptographic algo-
rithms for balancing privacy and accountability. In a f -PPB system, the goal is
to allow an authorized auditor to learn f(x, y) where x is the auditor’s secret
input that’s fixed once and for all, and y is a user’s secret input to a transaction;
if a PPB system is used in tandem with an anonymous credential system, y can
include meaningful information about the user’s identity. Via an appropriate
choice of f , an f -PPB system makes it possible to perform audits of the system
while leaking no information other than what’s leaked by f . For example, for x
representing a watchlist of suspected criminals, let fwatchlist be defined as fol-
lows: fwatchlist(x, y) = y if y is on the list, and ⊥ otherwise. An fwatchlist -PPB
would allow the auditor to trace all of the suspects’ transactions, but none of
the transactions of other people. A PPB further requires that the secret x cor-
respond to a publicly known commitment Cx that can be further certified by an
external party, so that a malicious auditor cannot make up x at will.

A PPB system works as follows: first, the auditor sets up his public key pk
and secret key sk on input his secret x and a commitment Cx to x for which the
auditor knows the opening (and which may be signed by an external validator
who certifies that x is a correct input). A PPB includes a public verification pro-
cedure VerPK(pk, Cx) for ensuring that pk corresponds to the commitment Cx.
Now the system is ready for blueprinting transactions; there is no limit on the
number of such transactions. In a transaction, a user with secret input y and a
commitment Cy to y to which the user knows the opening r (and which meaning-
fully corresponds to some information about this user, for example validated via
an anonymous credential system), computes the escrow Z = Escrow(pk, y, r) of
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y under pk. A PPB includes a public verification procedure VerEscrow(pk, Cy, Z)
for ensuring that Z corresponds to pk and Cy. Finally, using sk, the auditor runs
the decryption algorithm to recover z = f(x, y) from Z. The reason that it is
called a privacy-preserving blueprint is that we can think of pk as a “blueprint”
of the function f(x, ·) of the user’s y.

Kohlweiss, Lysyanskaya and Nguyen (KLN) showed that PPB were realiz-
able for any efficiently computable f from either fully homomorphic encryption
(FHE) or non-interactive secure computation (NISC); however, this general con-
struction was not suitable for practical use. They additionally showed a much
more practical construction of fwatchlist -PPB from the ElGamal cryptosystem
and proof systems about discrete logarithm relations in the random-oracle model.

Motivating application. Since the KLN paper first appeared, privacy-preserving
blueprints received some attention in the civil liberties discourse [Sta23] because
(among other things) of the following motivating application to central bank
digital currencies (CBDCs): suppose that the auditor’s input x is a list of sus-
pected financial criminals’ unique identifiers. Suppose a user’s input y contains
this user’s unique identifier yid as well as seed yseed from which all of this user’s e-
coins’ serial numbers are generated. This is consistent with, for example, compact
e-cash [CHL05] and related schemes [CHL06,CHK+06,KKS22,TBA+22], includ-
ing those proposed specifically for the CBDC application [KKS22,TBA+22]. The
function f is as follows: f(x, y) = y if yid ∈ x, and ⊥ otherwise. A PPB with
these properties will allow the auditor to not only identify that a transaction was
carried out by a suspect, but also to recover the seed yseed and trace all of the
user’s e-coins, even as the rest of the users of the systems’ privacy is protected.

This application to cryptographic e-cash is attractive to those who advocate
that a CBDC can be privacy-preserving even while enabling lawful investigations.
Unfortunately, the alternative to yielding ground on this to law enforcement is
that central banks throughout the world would adopt a CBDC that provides
no privacy — even from third-party observers — to individuals, in the name
of compliance with law enforcement. For example, the analysis of CBDC design
choices provided by the White House [Gov22] is lukewarm on using ecash-like
systems for that reason4. The existence of a practical cryptographic system that
can provide a watchlist capability in a way that is transparent to citizens who,
even if they shouldn’t know who is on the watchlist, can nevertheless see the
size of the watchlist and the fact that there was a lawfully obtained warrant
for placing a person on it, would strike a reasonable balance, and, as a result,
may sway the policy conversation (in which law enforcement voices are often
louder than those of privacy advocates) in favor of using an ecash-like system
for CBDCs.

Our contributions. Unfortunately, as we explain below, the original PPB system
and its realization [KLN23] are not suitable for the above motivating application
for several fundamental reasons. Our main contribution is to bridge the gap

4 See page 17 of [Gov22].
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between the needs of this motivating application and the security, functionality
and efficiency properties of PPBs.

Let us begin with security. Let us see why the KLN definition of security for
PPBs is not strong enough to allow an auditor to soundly prove that a given
value z indeed corresponds to the correctly computed f(x, y). In other words,
the definition of security does not rule out that a malicious auditor would be
able to produce pk, sk, Cy and Z such that the decryption algorithm will output
z ̸= f(x, y). Even worse, we show (in Section 1.1) that the KLN construction
of fwatchlist -PPB also allows for this “framing” attack: a malicious auditor can
cause an escrow to decrypt to the identity of an honest user y who is not a party
to the transaction. Addressing these security issues is our first contribution.

Our Contribution 1: Stronger security. We improve the definition
of security of PPB to that of non-frameable PPB: we add the requirement
that the decryption algorithm’s output be publicly verifiable. We also show
how to modify the KLN constructions [KLN23] to achieve non-frameability.

Next, we turn our attention to improved functionality and efficiency. Our
first step towards these goals is conceptual: we provide a new framework for
verifiable computation on encrypted data. Specifically:

Our Contribution 2: New framework for succinct verifiable
computation on additively-homomorphically encrypted data. We
introduce the notion of an additively homomorphic (g-semi-)encryption scheme
(Definition 12) with a commitment scheme that allows for (1) committing
to ciphertexts; and (2) proving that a committed ciphertext is the result
of a homomorphic computation on other committed values or ciphertexts.
Further, we give two different practical instantiations of this framework: one
under the DDH assumption (using the ElGamal cryptosystem) and the other
under the Paillier assumption (using the Camenisch-Shoup cryptosystem).

This framework helps us both efficiently instantiate non-frameable PPB and
realize the needs of our motivating application efficiently and succinctly. As
defined above (and by KLN), fwatchlist does not work for the CBDC application.
Instead, we need fCBDC (x, y) = y if y = (yid , yseed), and yid ∈ x. KLN give
a practical construction that works for fwatchlist but not for fCBDC , because
instead of recovering y, their construction can only recover gy where g is a
generator of a group in which the discrete logarithm problem is hard. From gy

it is possible to recover y by brute-force search if only a small number of bits of
y are still unknown; but it wouldn’t be possible to recover yseed , since the size
of a pseudorandom seed must be too large to allow brute-force search. Here, we
give a construction for the correct f :

Our Contribution 3: Appropriate functionality. Let f(x, y) = y if
y = (y1, y2), and y1 ∈ x, and ⊥ otherwise. We give a practical instantiation
of a non-frameable f -PPB construction. By “practical”, we mean that it can
be instantiated efficiently using proof systems for discrete logarithm relations
in the random-oracle model.
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Finally, the KLN construction [KLN23] is not suitable for our motivating
application because, in CBDCs, we expect the watchlist x to be quite large. In
the KLB construction, the size of the escrow Z was linear in the size of the
watchlist x. We give a substantial efficiency improvement:

Our Contribution 4: Exponential improvement in the size of es-
crow Z. Let f(x, y) = y if y = (y1, y2), and y1 ∈ x, and ⊥ otherwise. In
our practical instantiation of a non-frameable f -PPB construction, the size
of Z is logarithmic in the size of x.

We conclude by discussing other flavors of PPB in Section 8 that elaborate
on the idea of granting the auditor access to a seed (or key) via a blueprint
match. In particular, we discuss options that restrict the impact of such a match
on the privacy of matching users.

1.1 Non-Frameability and Why It Matters

Let us begin by explaining why the watchlist PPB scheme of Kohlweiss, Lysyan-
skaya, Nguyen [KLN23] is frameable, i.e., a malicious auditor can collude with a
malicious user to produce Z that will decrypt to the identity of an honest user
who was not a party to the transaction (and who may or may not be on the
watchlist). The gist of their scheme is that pk includes encrypted coefficients of
a polynomial P (modulo some integer τ) such that P (y) = 0 if and only if y is
on the watchlist x. The escrow Z = (Ẑ, π) produced by the user whose identity
is y consists of the encryption Ẑ of rP (y) + y for a random r chosen by the
user, as well as a proof π that indeed Ẑ was computed correctly from pk and the
opening y to the commitment Cy. To decrypt Z, decrypt Ẑ as long as the proof
π verifies. Since r is random, the decryption of Ẑ that’s formed by the honest
user with identity y will be random whenever y /∈ x, but will equal y otherwise.

In order to frame the user with identity y∗, a malicious user whose identity is
y and to whom the coefficients of the polynomial P are known (as would be the
case if the auditor is malicious) needs to solve for r in the linear (in r) equation
rP (y)+ y = y∗, and will produce an escrow Z = (Ẑ, π) by following the original
algorithm, but just using this value for r instead of a truly random one.

Note that, of course, this attack is outside the KLN security model, and
therefore does not contradict their security analysis (which is correct). One could
also argue that frameability, also known as deniability, can be a feature and not
a bug. We discuss this at greater length in Section 7.

In Section 3, we improve the KLN definition of privacy-preserving blueprints
by incorporating non-frameability. The gist of the new definition is that, even
if the auditor is adversarial, if VerPK(Λ, pkA, Cx) and VerEscrow(Λ, pkA, Cy, Z)
accept, then Z decrypts to f(x, y). Moreover, we require that the decryption
algorithm produce a proof πz of correct decryption, and add a new algorithm,
Judge that verifies this proof. The proof πz is important when information gar-
nered from blueprints is meant to be used as evidence in legal proceedings5 or
5 Interestingly, this is currently rarely the case for existing investigations employing

mass or targeted surveillance. Instead, law enforcement follow a complicated process
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as input in a smart contract, e.g., to execute a slashing operation or restitute
victims of crime.

In order to satisfy our new definition, we need to modify the KLN con-
struction. The general approach taken by KLN is to construct f -PPBs from
“f -homomorphic-enough encryption” (f -HEC) and appropriate non-interactive
zero-knowledge proof systems. An f -HEC scheme includes algorithms HECenc,
HECeval, and HECdec (and a few additional ones, see Section 4). HECenc
produces a public key X (and a secret decryption key d) that hides x but
nevertheless allows the algorithm HECeval(X, y) to output Z.6 This Z will
decrypt to f(x, y) using algorithm HECdec(d, Z). KLN showed that an f -
HEC can be transformed into an f -PPB using proof systems for ensuring that
X and Z are computed correctly. In Section 4, we define consistent f -HEC
where an adversary cannot produce the values x and y and randomness r
and rZ such that (X, d) = HECenc(x; r) and Z = HECeval(X, y; rZ) but
HECdec(d, Z) ̸= f(x, y).

We then show that, in combination with appropriate non-interactive zero-
knowledge proof systems, a consistent f -HEC yields a non-frameable f -PPB.
We also show that the KLN construction of f -HEC from fully homomorphic
encryption (FHE) already satisfy the definition of a consistent f -HEC; therefore,
using our general construction of non-frameable f -PPBs from consistent f -HEC,
we obtain non-frameable f -PPBs for all f . However, this general construction is
not efficient because tools such as FHE are not (yet) practical, and the general
NIZK proof systems invoked are not optimized for efficiency, either.

Thus, in order to obtain a practical non-frameable f -PPB for the watch-
list function, we need a more efficient approach. We use the KLN construction
described above as a starting point, except that our Escrow algorithm will out-
put (Ẑ, Ẑ ′, π), where Ẑ is an encryption of rP (y) + y (just as before), and the
additional value Ẑ ′ is an encryption of r′P (y), while, as before, the proof π is
to ensure that Ẑ and Ẑ ′ were computed correctly. If π verifies, the decryption
algorithm will decrypt Ẑ iff Ẑ ′ decrypts to 0; it will output ⊥ otherwise.

Let us see why this fix works. Suppose y is present in the watchlist. Then
for any r and r′, we have that r′P (y) = 0 and rP (y) + y = y, and therefore
even a maliciously formed Z will correctly decrypt to y. Suppose y /∈ x. Then
r′P (y) cannot equal zero (since we require that r′ ̸= 0) and thus the decryption
algorithm will correctly output ⊥.

1.2 Our Framework for Verifiable Computation over Additively
Homomorphic Encrypted Data

Above, we already hinted at how our consistent fcbdc-HEC scheme will work:
HECenc(x) will pick a polynomial P (χ) = a0 + a1χ + . . . + anχ

n of degree

of parallel construction where not always lawfully attained evidence is used to inform
a lawful investigation [Boy].

6 Formally, a HEC scheme as defined by KLN supports a class of functions F and
HECeval takes an additional input f ∈ F ; we are being somewhat informal here.
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n whose roots are values on the list x, and it will output a public key pk of
an encryption scheme, as well as the encryptions of the coefficients of P ; i.e.
X = (pk, a0 pk, . . . an pk), where for anym in the message space of the encryption
scheme, m pk denotes an encryption of m under the public key pk (and we
drop the subscript when clear from the context). The underlying encryption
scheme will need to be additively homomorphic in order to make sure that
HECeval(X, y) can output Ẑ = rP (yid) + y and Ẑ ′ = r′P (yid) . Specifically,
let the symbol ‘⊗’ denote the homomorphic operation on ciphertexts. The user
will first compute P (yid) =

⊗n
i=0 ai

yi
id , and then compute Ẑ = P (yid)

r ⊗ y

and Ẑ ′ = P (yid)
r′ .

In addition to Ẑ and Ẑ ′, the user’s escrow will need to include a proof
π that Ẑ and Ẑ ′ were computed correctly. Of course, general-purpose zero-
knowledge proof systems can be used here; however, a proof system designed
hand-in-hand with the underlying encryption scheme can take advantage of ef-
ficient Σ-protocols and impose only a minimal overhead over encryption; the
classical results on efficient multi-party computation of Cramer, Damgård and
Nielsen [CDN01] serve as the inspiration for this approach.

We suggest a modular approach for constructing a proof that a given ci-
phertext is the result of computing on additively-homomorphically encrypted
data. For example, here the output ciphertext Ẑ is the result of applying a series
of homomorphic operations, starting with the input ciphertexts { ai } and the
user’s input y. In order to prove correctness of Ẑ in our framework, one forms
commitments to the intermediate steps of this computation (for example, the
intermediate ciphertexts ai

yi
id) and proves that each of these intermediate steps

was carried out correctly.
Thus, our main new building block is an additively homomorphic encryption

scheme equipped with (1) a cryptographic commitment scheme for committing
to ciphertexts; and (2) proof systems for proving properties of committed ci-
phertexts, such as the property that a committed ciphertext c was obtained
from committed ciphertexts c1 and c2, along with a committed scalar a, as fol-
lows: c = c1 ⊗ (c2 ⊙ a), where ⊗ is the homomorphic operation on ciphertexts,
and c2⊙a denotes that the homomorphic operation was applied to c2 with itself
a times. (See Section 5.1 for the more formal treatment.)

Next, let us explain how to instantiate this framework with the ElGamal
cryptosystem. Recall that an ElGamal cryptosystem uses a group G of prime
order q and generator g; a public key here is a group element h; to encrypt
a message M ∈ G, a user picks a random r ∈ Zq and outputs the cipher-
text (gr, hrM). First, note that ElGamal is not, strictly speaking, an addi-
tively homomorphic encryption scheme, but a multiplicatively homomorphic one:
(gr, hrM) ⊗ gr′ , hr′M ′ = (gr+r′ , hr+r′MM ′). However, we can define a “lifted"
ElGamal cryptosystem: to encrypt the message m, use the ElGamal cryptosys-
tem to encrypt gm; i.e. m = (gr, hrgm). The only problem is that, instead
of outputting m, the decryption algorithm will output gm; converting it to m
requires that m come from a small space known to the decryption algorithm,
so that it can be found via brute-force search; we call this flavor of encryption
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“semi"-encryption. Still, for some applications (such as realizing fwatchlist-PPBs),
this is good enough. In Section 6, we give a commitment scheme for committing
to ElGamal ciphertexts, and the necessary proof systems.

As we show in Section 6, our framework can also be instantiated, under the
Paillier assumption, with a semantically secure variant of the Camenisch-Shoup
cryptosystem [CS03]. The advantage of this approach is that the decryption
algorithm here will indeed output the original message m. As we explain below,
this way of instantiating our framework is key to realizing fCBDC-PPBs.

Our Techniques for Achieving Appropriate Functionality KLN’s limitation was
that it used lifted ElGamal, and thus the decryption algorithm was only able
to recover grP (yid)+y from Ẑ. As we just explained, this is not sufficient for
recovering y in the event that yid ∈ x.

The Camenisch-Shoup based instantiation of the framework we just discussed
allows us to directly achieve fcbdc-blueprints. It turns out that the ElGamal-
based instantiation can work as well (with some efficiency limitations), if we
split the ecash seed into sufficiently small chunks, see Section 5.5.

1.3 Our Techniques for Achieving Succinct Escrows

As explained above, an escrow will consist of Ẑ, Ẑ ′ and NIZK proofs πẐ and
πẐ′ that they are encryptions of rP (yid) + y and r′P (yid) respectively, where P
is a polynomial whose encrypted coefficients ai are available to both the prover
and the verifier. In other words, πẐ is a proof that Ẑ = ((

⊗n
i=0 ai

yi
id )⊙ r)⊗ y

(and πẐ′ is analogous).
The naïve way for computing πẐ is to form a commitment to each intermedi-

ate ciphertext ai yi
id computed on the way to obtaining Ẑ, and to prove that this

commitment was formed correctly; this would be linear in n. To reduce the size of
this proof to O(log n), we use a degree reduction technique similar to the variable
reduction technique in Shamir’s proof that IP=PSPACE [Sha90]. More recently,
it was used in cryptography by Goldwasser, Kalai and Rothblum [GKR08] and
later by Pietrzak [Pie19], who was the first to use it to halve the degree of the
polynomial rather than to eliminate a variable, and follow-up work [HHKP23].
As far as we know, our paper is the first time that this technique is used in order
to prove correctness of computation on encrypted data.7

The overall idea, described in Section 5.3, is to use recursion such that each
recursive step halves the degree of the polynomial. In other words, suppose
that we need to prove that a committed ciphertext E = P (y) , where the
coefficients of P are not known to the prover and verifier, but instead, their
encryptions Ai = ai are known; further, the prover knows y (and thus can
compute E =

⊗n
i=0 ai

yi

) and r, while the verifier knows Cy = Com(y; r). The

7 Previous work [BG13] used a completely different technique to give a succinct proof
that a committed value corresponds to the evaluation of a polynomial, but with the
important distinction that the polynomial was known to both Prover and Verifier.
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recursive step is to reduce the proof of this statement to the proof that an-
other committed ciphertext E′ is an encryption of P ′(y), which is a polynomial
of degree n/2 whose encrypted coefficients are known to both prover and ver-
ifier. This can be accomplished using the Schwartz-Zippel lemma, by setting
P ′(χ) =

∑(n+1)/2−1
i=0 (ai + αai+(n+1)/2)χ

i for a random α chosen by the verifier
(or output by the random oracle).

2 Preliminaries

2.1 BB-PSL Non-Interactive Zero Knowledge (NIZK)

Non-interactive zero-knowledge (NIZK) proofs are an important building block
in this paper. We follow the KLN notation and definitions (Section 2.1 of [KLN23])
of the completeness and ZK properties of NIZK proof system, provided in ab-
breviated form in Definition 1 below.

Definition 1 (Completeness and ZK of NIZK [KLN23]). Let R be a
relation. Let S be a setup model (e.g., the CRS model or the random oracle
model). Let PS and VS be (non-interactive) algorithms for the prover and the
verifier in the S-setup model. (PS,VS) constitute a complete proof system if for
all (x,w) ∈ R, Pr

[
π ← PS(x,w) : VS(x, π) = 0

]
= 0.

They satisfy the zero-knowledge property if for any PPT adversary Adv in the
experiment of Fig. 2.1, the advantage function ν(λ) defined below is negligible:

AdvNIZKAdv (λ) =
∣∣∣Pr [NIZKAdv,0(1λ) = 0

]
− Pr

[
NIZKAdv,1(1λ) = 0

]∣∣∣ = ν(λ)

NIZKAdv,0(1λ)

return AdvS(·),P
S(·,·)(1λ)

NIZKAdv,1(1λ)

return AdvOS(·),OP(·,·)(1λ)

OS(m)

st, h, τExt ← SimS(st,m)

return h

OP(x,w)

if (x,w) /∈ R : return ⊥
st, π ← Sim(st,x)

return π

Fig. 2.1: NIZK game

Let us review black-box partial straight line simulation extractable proof sys-
tems [KLN23] (Definition 2). In such a proof system, the straight-line extractor
does not in fact extract the entire witness, but just some function of it; at the
same time, a black-box extractor (that’s allowed to rewind the adversary) can in
fact extract the entire witness. In Section 2.2, we motivate this definition further.

Definition 2 (Black-box partial straight-line simulation extractabil-
ity). AdvNISimBBPSLExtract

Adv (λ) = Pr
[
f -NISimBBPSLExtractAdv(1λ) = 1

]
= ν(λ)

for some negligible function ν.
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f -NISimBBPSLExtractAdv(1λ)

1 : Q,QS ← [ ]

2 : (x, π)← AdvÕS(·),OSim(·)(1λ)

3 : w← ExtBB(Adv)(QS,x, π)

4 : w
′ ← ExtSL(QS,x, π)

5 : return VOS(x, π) ∧ (x, π) ̸∈ Q ∧
(
(x,w) ̸∈ R ∨w′ ̸= f(w)

)
OS(m) ÕS(m)

1 : st, h, τExt ← SimS(st,m)

2 : QS.add((m,h, τExt))

3 : return h, τExt

OSim(x)

1 : st, π ← Sim(st,x)

2 : Q.add((x, π))
3 : return π

Fig. 2.2: f -NISimBBPSLExtract game

2.2 Motivation for BB-PSL

For concreteness, let us imagine that π is the NIZK we get by running a Σ-
protocol for a proof of knowledge, and making it non-interactive by replacing
the message from the verifier with the output of the random oracle. The prover’s
side of the Σ-protocol consist’s two algorithms, P1 and P2. P1(pk,m, r;R) gen-
erates the first message, a, of the proof of knowledge of how c = Enc(pk,m, r)
was computed using random coins R; P2(pk,m, r, e;R) generates the prover’s
response, z, to the challenge e using the same randomness. The verifier’s part
of the Σ protocol is just the algorithm V (pk, c, a, e, z). It is well-knownthat, in
the random-oracle model, the following proof system is black-box simulation-
extractable: the prover computes a = P1(pk,m, r;R), e = H(pk, c, a), and
z = P2(pk,m, r, e;R) and outputs the proof π = (a, z). To verify π, the veri-
fier computes e = H(pk, c, a) and runs V (pk, c, a, e, z).

However, when we plug this proof system into the attempted construction
above of a CCA-secure cryptosystem from a semantically secure one, we don’t
(easily) get a proof of CCA security. This is because the adversary can interleave
his decryption queries and his random-oracle queries in such a way that he will
force the security reduction to run in exponential time in the number q of queries.
In order to respond to the ith decryption query (ci, πi) where πi = (ai, zi),
the reduction needs to rewind the adversary to the point in time where the
adversary queried the random oracle to get ei = H(pk, ci, ai). By first issuing
all the random-oracle queried in reverse order, i.e. obtaining eq = H(pk, cq, aq),
and then eq−1, . . . , e1 before issuing any decryption queries at all, and then
querying for the decryptions of (c1, π1), . . . , (cq, πq), the adversary will ensure
that the reduction will need to rewind O(2q) times 8. This is because each time

8 The adversary must also base the first message of each Σ-protocol on the output of
the random oracle from the last query to ensure rewinding is impossible.
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the reduction rewinds the adversary, they also need to rewind for each previous
query to ensure the adversary receives the correct decryptions to run normally.
Thus, each decryption query doubles the number of required rewinds.

There are two ways of fixing this problem. One is to use a straight-line ex-
tractable proof system that does not need to rewind at all; but that can be
inefficient. The other way to fix it (implicitly in the spirit of Shoup and Gen-
naro) is to not require the straight-line extraction of the entire witness: the
reduction does not need both m and r to proceed, just the message m alone is
sufficient. The fact that, with rewinding, it is possible to extract the entire wit-
ness is still crucial since it guarantees that the adversary’s interaction with the
security reduction results in exactly the same view as in its interaction with the
decryption oracle: if not, then a separate reduction would break the soundness
of the proof system.

2.3 Proofs of Equivalent Representations of Discrete Logarithms

Using known techniques, we can construct a Σ-protocol that proves the following
relation in Def. 3 in prime order cyclic groups where the DDH and CDH problems
are hard. We describe a Σ-protocol that satisfies Def. 3 in Section 2.4.

Definition 3 (Relation for proof of equality of discrete logarithm rep-
resentations in cyclic groups of prime order). Let Reqrep−p be the following
relation: Reqrep−p(x,w) accepts if x = (G, {xi, {gi,1, . . . , gi,m}}ki=1) where G is the
description of a group of order q, and all the xis and gi,js are elements of G,
and witness w = {wj}mj=1 such that xi =

∏m
j=1 g

wj

i,j .

We can enhance this protocol to multiply witnesses with the relation in the
following definition (Def. 4). We give examples of how to construct and use these
protocols in Appendix B. While using this protocol, we use Camenisch-Stadler
notation to denote witnesses and relations.

Definition 4 (Relation for proof of multiplication of witnesses over
bases in cyclic groups of prime order). Let Reqrep−p∗ be the following
relation: Reqrep−p∗(x,w) accepts if the following two conditions hold:
(1) x = (G, µ, {xi, {gi,1, . . . , gi,m}}ki=1) where G is the description of a group of
order q, and all the xis and gi,js are elements of G, and witness w = {wj}mj=1

such that xi =
∏m

j=1 g
wj

i,j .
(2) If ∀i ∈ [m], wi =

∏
j∈µ(i) wj where µ is a map µ : [m]→ P ([m]) and P ([m])

is the set of all subsets of [m].

The multiplication protocol holds for Zn2 as well with a caveats: we can only
prove the relations for the absolute values of elements (e.g., for the example
above, we could only prove that C = ±gabhr). This is a limitation of extraction
of Σ-protocols in Zn2 . We explain this limitation and other details in Appendix
B. This proof can be constructed from known techniques [BCM05,DF02].
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Definition 5 (Relation for proof of multiplication of witnesses over
bases in composite order groups). Let Reqrep−n∗ be the following relation:
Reqrep−n∗(x,w) accepts if the following two conditions hold:
(1) x = (n, µ, {xi, {gi,1, . . . , gi,m}}ki=1) where n = pq and p, q are safe primes,
and all the xis and gi,js are elements of Zn2 , and witness w = ({bi}ki=0, {wj}mj=1)

such that xi = bi
∏m

j=1 g
wj

i,j where bi ∈ {−1, 1}.
(2) If ∀i ∈ [m], wi =

∏
j∈µ(i) wj where µ is a map µ : [m]→ P ([m]) and P ([m])

is the set of all subsets of [m].

2.4 Construction of Equality of (Linear) DL Representations Proof
in Prime Order Groups

Using known techniques, e.g. KLM from which we took the following description,
we can construct the protocol in Def. 3 in prime order cyclic groups where the
DDH and CDH assumptions are hard. We do so in Def. 6.

Definition 6 (Σ-protocol for proof of equality of discrete logarithm
representations cyclic groups of prime order). Let Reqrep−p be the follow-
ing relation: Reqrep−p(x,w) accepts if x = (G, {xi, {gi,1, . . . , gi,m}}ki=1) where G
is the description of a group of order q, and all the xis and gi,js are elements of
G, and witness w = {wj}mj=1 such that xi =

∏m
j=1 g

wj

i,j .

P→V On input the (x,w) ∈ Reqrep−p, the Prover chooses ej ← Zq for 1 ≤ j ≤
m and computes di =

∏m
j=1 g

ej
i,j for 1 ≤ i ≤ k. Finally, the Prover sends to

the Verifier the values com = (d1, . . . , dn).
P←V On input x and com, the Verifier responds with a challenge chal = c for

c← Zq.
P→V The Prover receives chal = c and computes si = ei + cwi mod q for

1 ≤ i ≤ m, and sends res = (s1, . . . , sm) to the Verifier.
Verification The Verifier accepts if for all 1 ≤ i ≤ n, dixci =

∏m
j=1 g

sj
i,j; rejects

otherwise.
Simulation On input x and chal = c, the simulator chooses sj ← Zq for 1 ≤

j ≤ m, and sets di = (
∏m

j=1 g
sj
i,j)/x

c
i for 1 ≤ i ≤ k. He then sets com =

(d1, . . . , dn) and res = (s1, . . . , sm).
Extraction On input two accepting transcripts for the same com = (d1, . . . , dn),

namely chal = c, res = (s1, . . . , sm), and chal′ = c′, res′ = (s′1, . . . , s
′
m),

output wj = (sj − s′j)/(c− c′) mod q for 1 ≤ j ≤ m.

3 Non-Frameable Privacy-Preserving Blueprints

In this section we first provide the formal definition of a blueprint scheme as
introduced in [KLN23]. We then define the property of non-frameability for
privacy preserving blueprints, and then focus our attention on proving it.

A blueprint scheme has three parties - an auditor, a set of users and a set of
recipients. It is defined as follows:
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Definition 7. For a non-interactive commitment scheme (CSetup,Com),
an f -blueprint scheme consists of the following probabilistic polynomial time
algorithms:

Setup(1λ, cpar) → Λ: Outputs the public parameters Λ which includes 1λ and
cpar .

KeyGen(Λ, x, rx)→ (pkA, skA): The key generation algorithm for auditor A.
VerPK(Λ, pkA, Cx) → 1 or 0: Takes the auditor’s public key pkA and a com-

mitment Cx as input, verifies that the auditor’s public key was computed
correctly for the commitment Cx.

Escrow(Λ, pkA, y, ry) → Z: Takes Λ, pkA, and commitment value and opening
(y, ry) as input and outputs an escrow Z for commitment C = Com(y; ry).

VerEscrow(Λ, pkA, Cy, Z) → 1 or 0: Takes the auditor’s public key pkA, a com-
mitment Cy, and an escrow Z as input and verifies that the escrow was
computed correctly for the commitment Cy.

Dec(Λ, skA, Cy, Z)→ f(x, y) or ⊥: Takes the auditor’s secret key skA, a commit-
ment Cy and an escrow Z as input. It decrypts the escrow and returns the
output f(x, y) if Cy is a commitment to y and VerEscrow(Λ, pkA, Cy, Z) = 1.

[KLN23] also defines a secure f -blueprint scheme as one that possesses the fol-
lowing properties -

Correctness of VerPK and VerEscrow: The algorithms VerEscrow and VerPK
accept with probability 1 for honestly generated values (cpar , pkA, Cx, Cy, Z).

Correctness of Dec: Dec(Λ, skA, Cy, Z) = f(x, y) holds with overwhelming
probability for honestly generated values (cpar , pkA, skA, Cy, Z).

Soundness ensures that if, for a commitment Cy, escrow Z is accepted, then
it correctly decrypts to f(x, y) where x is opening of Cx and y is opening of Cy.

Blueprint Hiding: The blueprint pkA does not reveal anything about x
other than what the adversary can learn by forming valid escrows and submitting
them for decryption.

Privacy against Dishonest Auditor ensures that even if the auditor is
malicious, an honest user’s escrow contains does not have access to any informa-
tion apart from f(x, y), where x is opening of Cx and y is opening of Cy.

Privacy with Honest Auditor ensures that an adversary that does not
control the auditor learns no information from the escrow Z.

We provide more complete and formal definitions of the existing blueprint
scheme and its security properties in the Appendix C.

3.1 Definition of Non-Frameability

In order to systematically prevent framing attacks and formally define the notion
of non-frameability, we change the Decrypt algorithm of the blueprint scheme and
introduce an additional Judge algorithm to be included in a (non-frameable)
blueprint scheme. This non-framing Dec algorithm additionally outputs a proof
for the Judge algorithm to verify.
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Definition 8. For a non-interactive commitment scheme (CSetup,Com),
a non-frameable f -blueprint scheme consists of all the algorithms of a basic f -
blueprint scheme with an adapted Decrypt algorithm and an additional Judge
algorithm, both probabilistic polynomial time algorithms:

Dec(Λ, skA, Cy, Z)→ (f(x, y), πz) or ⊥: The algorithm takes the auditor’s secret
key skA, commitment Cy and escrow Z such that VerEscrow(Λ, pkA, Cy, Z) =
1 as input. It decrypts the escrow and returns the output f(x, y) if Cy is
a commitment to y. Additionally it returns a proof, πz, that the Judge
algorithm that f(x, y) was decrypted correctly from Z. If VerEscrow() does
not accept, Dec() returns ⊥.

Judge(Λ, pkA, Cx, Cy, Z, z, πz) → 0 or 1: This is the algorithm which, on input
all the inputs of VerPK, VerEscrow, and z and π, verifies that z was obtained
correctly from escrow Z.

Correctness of Judge: Assume values (Λ, pkA, Cx, Cy, Z, z, π) are generated
honestly that is: (1) cpar is generated by CSetup(1λ); (2) Λ is generated by
Setup(1λ, cpar); (3) (pkA, skA) is the output of KeyGen(Λ, x, rx); (4) Cx = Comcpar (
x; rx); (5) Cy = Comcpar (y; ry); (6) Z is generated by Escrow(Λ, pkA, y, ry); (7)
(z, π) is generated by Dec(Λ, skA, Cy, Z) → (z, π). We require that algorithm
Judge accept with probability 1.

Definition 9 (Non-Frameability). We want to make sure that even if the
auditor colludes with dishonest users, it is not possible for a dishonest auditor
to frame an honest user.

Let Cx and Cy be commitments computed from from (x, rx) and (y, ry) respec-
tively. Non-frameability guarantees that any pkA, Z, z, πZ that passes Judge(Λ, pkA,
Cx, Cy, Z, z, πZ) will imply that f(x, y) = z with overwhelming probability. More
formally, for all PPT adversaries A, there exists a negligible function ν such
that: Pr

[
NonFramingAdvBlu (λ) = 1] < ν(λ)

NonFramingAdvBlu (λ)

1 : cpar ← CSetup(1λ)

2 : Λ← Setup(1λ, cpar)

3 : (pkA, x, rx, y, ry, Z, z, πZ)← A(1λ, Λ)
4 : Cx = Comcpar (x, rx);Cy = Comcpar (y, ry)

5 : return [(Judge(Λ, pkA, Cx, Cy, Z, z, πZ) = 1) ∧ (f(x, y) ̸= z)]

Fig. 3.1: Experiments NonFramingAdvBlu (λ)

The existing HEC schemes that are only correct and sound as defined in
[KLN23] will not be sufficient to construct Non-Frameable Blueprint schemes.
We define a stronger HEC scheme in the following subsection.
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4 Consistent Homomorphic-Enough Encryption

In Kohlweiss et al. [KLN23], they use a “homomorphic-enough” encryption scheme.
This encryption scheme is parameterized by a function family and is correct if it
is possible to compute any function from that family using only the ciphertexts.
When creating the homomorphic ciphertexts, an encryptor specifies a specific
function (f) from the function family as well as some secret information (x) to
produce the ciphertext (X) and decryption key (d). The ciphertext does not
necessarily hide f but does hide x. Another party can then use X to compute
an encryption of f(x, y). The original encryptor can then use d to retrieve this
value. We provide a more formal definition in 10. We include the game for our
contributed definition (HECconsistent) to Fig. 4.1 to save space though the
original scheme [KLN23] does not consider this. In Kohlweiss et al. [KLN23] the
HEC scheme is used to implement their generic blueprints construction.

Definition 10 (Homomorphic-enough cryptosystem (HEC) for a func-
tion family). Let F = {f | f : domainf,x × domainf,y 7→ rangef} be a
set of polynomial-time computable functions. We say that the set HEC of al-
gorithms (HECsetup,HECenc,HECeval,HECdec,HECdirect) constitute
a homomorphic-enough cryptosystem (HEC) for F if they satisfy the following
input-output, correctness, and security requirements:

HECsetup(1λ) → hecpar takes the security parameter as input, outputs the
parameters hecpar .

HECenc(hecpar , f, x)→ (X, d) takes parameters hecpar , a function f ∈ F , and
a value x ∈ domainf,x as input, outputs an encrypted representation X of
the function f(x, ·), and a decryption key d.

HECeval(hecpar , f,X, y)→ Z takes as input the parameters hecpar , a function
f ∈ F , an encrypted representation of f(x, ·), and a value y ∈ domainf,y

and outputs a ciphertext Z, an encryption of f(x, y).
HECdec(hecpar , d, Z)→ z takes as input the parameters hecpar , the decryption

key d, and a ciphertext Z, decrypts Z to obtain a value z.
HECdirect(hecpar , X, z) → Z on input hecpar , an encrypted representation

X of some function, and a value z, outputs a ciphertext Z.

HEC correctness. For a given adversary Adv and HEC, let AdvHEC,Adv(λ) be
the probability that the experiment HECcorrect in Fig. 4.1 accepts. HEC is
correct if AdvHEC,Adv(λ) is negligible for all PPT algorithms Adv.

Definition 11 (Security of x, security of x and y from third parties,
and security of DirectZ.). Consider Fig. 4.1. HEC provides security for x
if for any PPT Adv, |pSecX

Adv,0 (λ)− pSecX
Adv,1 (λ)| is negligible. HEC provides security

for x and y from third parties if or any PPT Adv, |pSecXY
Adv,0 (λ) − pSecXY

Adv,1 (λ)| is
negligible. HEC provides security of DirectZ if or any PPT Adv, |pDirectZ

Adv,0 (λ)−
pDirectZ
Adv,1 (λ)| is negligible.
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HECcorrectAdv(λ)

1 : hecpar ← HECsetup(λ)

2 : (f, x, st)← Adv(1λ, hecpar)

3 : if f ∈ F, x ∈ domainf,x

4 : (X , d)← HECenc(hecpar , f, x)

5 : (y, rZ)← Adv(st, X)

6 : if y ∈ domainf,y

7 : Z ← HECeval(hecpar , f,X , y; rZ)

8 : if HECdec(hecpar , d, Z) ̸= f(x, y)

9 : return 1

10 : return 0

HECconsistentAdv(λ)

1 : hecpar ← HECsetup(λ)

2 : (f, x, st, r, y, rZ)← Adv(1λ, hecpar)

3 : if f /∈ F ∨ x /∈ domainf,x ∨ y /∈ domainf,y

4 : return 0

5 : (X , d)← HECenc(hecpar , f, x; r)

6 : Z ← HECeval(hecpar , f,X , y; rZ)

7 : if HECdec(hecpar , d, Z) ̸= f(x, y)

8 : return 1

9 : return 0

SecXAdv
b (λ)

1 : hecpar ← HECsetup(1λ)

2 : (f, x0, x1, st)← Adv(1λ, hecpar)

3 : if f ∈ F, x0, x1 ∈ domainf,x

4 : X,_← HECenc(hecpar , f, xb)

5 : return Adv(hecpar , X, st)

6 : return Adv(⊥, st)

SecXYAdv
b (λ)

1 : hecpar ← HECsetup(1λ)

2 : (f, x0, x1, st)← Adv(1λ, hecpar)

3 : if f ∈ F, x0, x1 ∈ domainf,x

4 : X,_← HECenc(hecpar , f, xb)

5 : (y0, y1, st)← Adv(X, st)

6 : if y0, y1 ∈ domainf,y

7 : Z ← HECeval(hecpar , f,X, yb)

8 : return Adv(Z, st)

9 : return Adv(⊥, st)

DirectZAdv
b (λ)

1 : hecpar ← HECsetup(1λ)

2 : (f, x, y, rX , st)← Adv(1λ, hecpar)

3 : if f ∈ F, x ∈ domainf,x, y ∈ domainf,y

4 : X,_ = HECenc(hecpar , f, x; rX)

5 : Z0 ← HECeval(hecpar , f,X, y)

6 : Z1 ← HECdirect(hecpar , X, f(x, y))

7 : return Adv(hecpar , Zb, st)

8 : return Adv(⊥, st)

Fig. 4.1: HEC correctness, consistency and security games

Explanation for DirectZ. This is an algorithm we need in order to use a HEC
in our construction of PPBs. Intuitively, recall that the security of PPBs re-
quires that there be a simulator that can simulate the output of Escrow just
given z = f(x, y), without knowledge of x or y. DirectZ allows the simulator to
compute the encryption of z directly. For example, if z = f(x, y) where f is a
one-way function of y for any fixed x, then access to just the Eval function is not
sufficient to compute the encryption of z, since Eval requires y as input, and no
such pre-image y cannot be computed from z because f is a One-Way Function.

Our main insight for adapting the generic construction of blueprints from ho-
momorphic enough encryption, HEC, and NIZK is as follows: A HEC scheme
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must be such that even when an adversary fully controls x, y, and the random-
ness for the HEC scheme, the encryption and evaluation algorithms must not
produce a ciphertext that decrypts to a plaintext other than f(x, y). We refer
to this strengthened correctness property with respect to adversarial inputs as
HEC consistency. We formalize this in the HECconsistent game in Fig. 4.1.

After giving a definition of HEC consistency, we give an adapted generic
construction for blueprints from HEC and NIZK and prove it secure.

4.1 Definition of Consistent HEC

We show our new game for Consistent HEC as HECconsistent in Fig. 4.1.
The new definition of HEC consistency is stronger than the previous correctness
definition since the adversary outputs the randomness r to the HEC encryption
algorithm, in addition to the randomness rZ , and can thus exercise additional
control over the output of HECenc.

4.2 Modifying the Generic Blueprint Scheme from HEC to Obtain
Non-Frameability

We extend the existing generic construction of blueprint schemes to include the
property of non-frameability. In order to do so, we modify the Dec algorithm
and introduce a new algorithm Judge which we define as given below in Figure
4.2. The new Dec algorithm returns a proof of knowledge of correct decryption.

Incorporating the property of non-frameability in the definition of blueprint
schemes gives us the following theorem which is virtually identical to the result
obtained in [KLN23] (Theorem 2) apart from also including the condition on the
additional NIZK PoK required, Ψ3 and the property of non-frameability.

Theorem 1. If HEC is a secure homomorphic-enough cryptosystem, the com-
mitment scheme is binding, and the NIZK PoKs Ψ1, Ψ2 and Ψ3 are zero-knowledge
and BB-PSL simulation extractable then our generic blueprint scheme is a se-
cure, non-frameable f -blueprint scheme.

Since the property of HEC consistency implies HEC correctness, the proofs
of correctness of VerEscrow, VerPK and Dec from the original PPB proof of
[KLN23], goes through unchanged. Similarly, the soundness of the generic f -
blueprint scheme is also proven using the BB-Extractability of the NIZK Ψ2 in
the same reduction as in [KLN23].

Using these properties and the correctness of the Judge which we prove in
Lemma 1, we prove the non-frameability of the HEC scheme in 4.2.

Lemma 1. If the NIZK PoKs Ψ1, Ψ2 and Ψ3 are complete, then the generic
blueprint scheme satisfies correctness of Judge.

Proof. Consider Judge as defined in Fig. 4.2. Suppose this algorithm Judge re-
turns 0 in the above mentioned experiment. This can happen if either VerEscrow
returns a reject or if VS3

3 (Z, fxy, hecpar , cpar) = 0. From correctness of VerEscrow,
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Setup(λ, cpar ,S1,S2,S3)

1 : hecpar ← HECsetup(1λ)

2 : return Λ = (λ, cpar , hecpar , S1,S2, S3)

KeyGen(Λ, x, rx)

1 : parse Λ = (λ, cpar , hecpar ,S1, S2,S3)

2 : (X , d)
r← HECenc(hecpar , f, x)

3 : Cx = Comcpar (x; rx)

4 : πA ← PoKS1
Ψ1

{
(x, d, r, rx) :

5 : (X , d) = HECenc(hecpar , f, x; r)

6 : ∧ Cx = Comcpar (x; rx))
}

7 : pkA ← (X , Cx, πA); skA ← (pkA, d)

8 : return (pkA, skA)

VerPK(Λ, pkA, Cx)

1 : parse Λ = (λ, cpar , hecpar ,S1, S2,S3)

2 : parse pkA = (X , C′
x, πA)

3 : return VS1
1 ((X , hecpar , f, Cx, cpar), πA)

4 : ∧ (C′
x = Cx)

Judge(Λ, pkA, Cx, Cy, Z = (Ẑ, πU), z, πZ)

1 : parse Λ = (λ, cpar , hecpar ,S1, S2,S3)

2 : return VS3
3 ((z, hecpar , Ẑ), πZ)

3 : ∧ VerPK(Λ, pkA, Cx)

4 : ∧ VerEscrow(Λ, pkA, Cy, Z)

Escrow(Λ, pkA, y, ry)

parse Λ = (λ, cpar , hecpar , S1, S2,S3)

parse pkA = (X , Cx,_)

if VerPK(Λ, pkA, Cx) = 0

return 0

Ẑ
r
Ẑ← HECeval(hecpar , f,X , y)

Cy = Comcpar (y; ry)

πU ← PoKS2
Ψ2

{
(y, ry, rẐ) :

Ẑ = HECeval(hecpar , f,X, y; rẐ)

∧ Cy = Comcpar (y; ry)
}

return (Ẑ, πU)

VerEscrow(Λ, pkA, Cy, Z = (Ẑ, πU))

parse Λ = (λ, cpar , hecpar , S1, S2,S3)

parse pkA = (_, Cx,_)

return VerPK(Λ, pkA, Cx)

∧ VS2
2 ((Ẑ, hecpar , f,X,Cy, cpar), πU)

Dec(Λ, skA, Cy, Z = (Ẑ, πU))

1 : parse Λ = (λ, cpar , hecpar ,S1, S2, S3)

2 : parse skA = (pkA, d)

3 : if VerEscrow(Λ, pkA, Cy, Z) = 0

4 : return ⊥

5 : z ← HECdec(hecpar , d, Ẑ)

6 : πZ ← PoKS3
Ψ3

{
d : z = HECdec(hecpar , d, Ẑ)

}
7 : return (z, πZ)

Fig. 4.2: Construction of generic f -blueprint scheme from HEC and NIZK PoKs
Ψ1, Ψ2 and Ψ3 with setup S1,S2, and S3 respectively.

we know that VerEscrow returns 1, so Judge only returns 0 if VS3
3 (Z, fxy, hecpar , cpar) =

0. However, this contradicts completeness of the NIZK scheme because the proof
πZ in Z is generated by Dec on a valid statement and witness pair.

Therefore, if the NIZK PoKs Ψ1, Ψ2 and Ψ3 are complete, then the generic
blueprint scheme satisfies correctness of Judge.

Lemma 2. Let Ψ3 be a BB extractable NIZK scheme, let (CSetup,Com) be
a computationally binding commitment scheme, and HEC be consistent with
adversarial evaluation randomness, then our proposed scheme achieves Non-
frameability.
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Proof. Consider Fig. 3.1. Suppose, for the sake of contradiction, that there exists
a PPT adversary A such that AdvNonFraming

A,Blu (λ) = ν(λ) is non negligible. Let Z,
one of the adversary’s output in the experiment, be divided into Ẑ and a proof
πU to validate Ẑ. The events where A outputs 1 can be divided into four cases: (i)
when C = Com(y; r), C = Com(y′; r′) and Ẑ = HECeval(hecpar , f,X, y′; rẐ)
for y ̸= y′, (ii) when C = Com(y; r) and Ẑ = HECeval(hecpar , f,X, y; rẐ)
for some rẐ where in both (i) and (ii) X is a part of pkA, (iii) the case where
neither of these equalities holds and (iv) when C = Com(y; r) and (X , d) =
HECenc(hecpar , f, x; r).

We express the probabilities of these events with the functions ν0(λ), ν1(λ),
ν2(λ), and ν3(λ) respectively. Since ν(λ) is non negligible and these three events
covers all cases where Adv would output 1, at least one of ν0(λ), ν1(λ), ν2(λ) or
ν3(λ) must be non negligible.

Suppose ν2(λ) is non negligible. The adversary produced a proof of a false
statement and we can construct a reduction B to the BB extractable NIZK sys-
tem. B runsA the same way as Sound, see Fig. C.1, but outputs (Ẑ, hecpar , f,X,Cy,
cpar), πU) instead. By BB extractability of the NIZK, Pr [B wins ] of extraction
failure is negligible, which contradicts our assumption ν2(λ) is non negligible.

Similarly, consider ν3(λ) to be non-negligible. As proved above, we can reduce
this case to a contradiction of the BB-extractability of the NIZK Ψ3.

We now assume that the BB extractor extracts a witness (y′, r′y, rẐ), such
that Ẑ = HECeval(hecpar , f,X, y′; rẐ) and Cy = Comcpar (y

′; r′y). Suppose
ν0(λ) is non negligible. In this event, we break the computational binding prop-
erty using a reduction that outputs (y, r, y′, r′). Suppose ν1(λ) is non negligible.
In this event, we get a situation where both pkA and Z were generated correctly
with adversarial randomness rẐ , but the output of decrypt is incorrect. We can
construct a reduction B using A to HEC consistency with adversarial evaluation
randomness. B runs A, in the same way as Sound, see Fig. C.1, but instead of
returning a bit at the end, it outputs the tuple (y, rẐ).

The f -blueprint scheme having the properties of Blueprint Hiding, Privacy
against dishonest auditor and Privacy against honest auditor can be shown using
the same proofs as in [KLN23].

4.3 Consistent HEC from FHE

We provide an efficient construction for a secure, consistent HEC scheme for the
watchlist function in Section 5.2. We show that the existing construction of a
HEC scheme for any function f from FHE, as provided in [KLN23], is also secure
and consistent. The full details of the construction is provided in Appendix D.1.

Theorem 2. If (FHEKeyGen,FHEEnc,FHEDec,FHEEval) is a fully-homomorphic
public-key encryption scheme that is circuit-private for circuit family {Cfj : f ∈
F} (as defined in [KLN23]), then our construction above constitutes a consistent
homomorphic-enough encryption for the family F .
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Proof. Let us assume the existence of an adversary A that is able to produce a
(f, x, st, r, y, rZ) such that Z ← HECeval(hecpar , f, x, y; rZ) but HECdec(hecpar ,
d, Z) ̸= f(x, y). We can then construct an adversary A′ from adversary A which
outputs x, y and Φf

y where the output of the circuit Φf
y(x) = f(x, y).

This gives us a tuple (x, y, Φf
y) for which, given FHEKeyGen(λ) → (FHESK,

FHEPK), c← FHEEnc(FHEPK, x) and cΦ = FHEEval(FHEPK, Φ, c), but FHEDec
(FHESK, cΦ) ̸= Φ(x).Since the correctness of FHE (as provided in Appendix
D.1) is defined over all possible inputs x and y and for all circuits Φ, the tuple
(x, y, Φf

y) is clearly a violation of this FHE Correctness condition. This proves
that the HEC construction is indeed consistent. ⊓⊔

As shown by [KLN23] both Security of x, SecX and the security of x and
y from third parties, SecXY is obtained by the semantic security of the FHE.
The security of DirectZ follows from the circuit privacy.

5 Efficient PPBs for fCBDC and Related Functions

In this section, we show how to efficiently instantiate privacy-preserving non-
framing blueprints for watchlists. This includes a new HEC scheme as well as
new proof systems for the Ψ1, Ψ2, and Ψ3 proofs used in Fig. 4.2. Notably, our Ψ2

proof produces a NIZK of size O(log(n)) as opposed to O(n) as was previously
constructed [KLN23], where n is the length of the watchlist.

These constructions are generically obtained from the high-level ingredients
listed in Section 5.1. In Section 6.2 we show how to instantiate our high-level
ingredients under the decisional Diffie-Hellman assumption from the ElGamal
cryptosystem; the limitation here is that, conditioned on x the value y can only
come from a polynomial-size domain: the ElGamal cryptosystem only allows the
auditor to directly decrypt gy, so recovering y requires an auditor to do a brute-
force search (using the list of identities x as a starting point). The scheme we
give in Section 6.3, based on the Camenisch-Shoup cryptosystem, does not have
this limitation, and is secure under same assumption as the Paillier cryptosystem
[Pai99], the decisional composite residuosity (DCR) assumption.

Ψ1 and Ψ3 run in time independent of the watchlist and so are not as impor-
tant to optimize. These can be implemented for ElGamal and Camenisch-Shoup
with many known techniques [CL01,CS03].

5.1 Building Blocks for Verifiable Computation over
Additively-Homomorphically Encrypted Data

Commitment to user data and other scalars. Recall that a blueprint
scheme is defined relative to a commitment scheme (CSetup,Com); the pub-
lic parameters of the blueprint scheme, cpar , contain the public parameters for
this commitment. Our construction for watchlists works if, in this commitment
scheme, the input domain for the values to be committed is a ring Zτ (in our
instantiations, τ is either a prime q, or an RSA modulus N), and the opening
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can be parsed in a specific way. More precisely, Com takes as input an element
x from Zτ , a random value r sampled uniformly at random from [R] for some
integer R. For simplicity and efficiency, we’ll use Zτ as the space for user data,
message space for encryption, and some randomization scalars (such as r1 and
r2 in rz) used in our construction.
Proofs of correct modular addition and multiplication of committed
values. In order to prove that an escrow was correctly computed, we’ll need to
add and multiply the values in our scalar commitments together (modulo τ).
Let us define the following relations:

– Radd
cpar ((C1, C2, C3), (x1, r1, x2, r2, x3, r3)) = 1 iff ∀i ∈ [3] : Ci = Com(xi; ri),

and x3 = x1+x2 mod τ . Let (Proveadd,Verifyadd) be a BB NIZK proof system
for Radd

cpar .
– Rmult

cpar ((C1, C2, C3), (x1, r1, x2, r2, x3, r3)) = 1 iff ∀i ∈ [3] : Ci = Com(xi; ri),
and x3 = x1x2 mod τ . Let (Provemultiply, Verifymultiply) be a BB NIZK proof
system for Rmult

cpar .

We also need this commitment scheme to have a zero-knowledge proof of
knowledge (Proveopen,Verifyopen) of opening, i.e. a BB NIZK for the relation
Rcpar = ((C), (m, r)) iff Comcpar (m; r) = C.
Additively homomorphic g-semi-encryption scheme. We need an appro-
priate additively homomorphic (AH) semantically secure public-key encryption
scheme. Our application can tolerate a relaxed version of encryption, in which
the decryption algorithm need not recover the original plaintext m, but just
some function g(m), where g is a (not necessarily efficiently) invertible func-
tion. This relaxation allows us to view the ElGamal cryptosystem as additively
homomorphic. Let us define it formally.

Definition 12 (Semantically secure additively homomorphic g-semi-
encryption scheme). A set of three polynomial-time algorithms AH = (KeyGenAH ,
EncAH ,DecAH ) constitutes a semantically secure homomorphic g-semi-encryption
scheme if it satisfies the following input-output specification as well as correct-
ness, security, and homomorphic properties:

Input-output specification KeyGenAH and EncAH have the same input-output
specifications as those for key generation and encryption algorithms, respec-
tively, for a public-key encryption scheme. The message space, MpkAH

, may
be parameterized by the public key pkAH of the cryptosystem. DecAH (skAH , c)
takes as input a secret key skAH and a ciphertext, and outputs a value
m′ = gpkAH

(m) for some m ∈MpkAH
.

Correctness For all (pk, sk) ∈ KeyGenAH , for all m ∈ MpkAH
, for all c ∈

EncAH (pk,m), DecAH (sk, c) = gpkAH
(m). I.e., the decryption algorithm cor-

rectly recovers gpkAH
(m) from an encryption of m.

Security A semantically secure g-semi-encryption scheme must satisfy the same
definition of semantic security as a regular semantically secure encryption
scheme [GM82].
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Additively homomorphic properties (1) MpkAH
is an algebraic ring (we

will use Zτ as the ring) and (2) there is an efficient deterministic algo-
rithm OpAH that takes as input the public key pkAH and two ciphertexts,
c1 and c2 and outputs a ciphertext c′ such that for all pkAH ∈ KeyGenAH ,
for all m1,m2 ∈ MpkAH

, for all ciphertexts c1 ∈ Enc(pkAH ,m1) and c2 ∈
Enc(pkAH ,m2), if c′ = OpAH (pkAH , c1, c2), then c′ ∈ Enc(pkAH ,m1 +m2).

For our constructions in Section 6.1 we define MpkAH
as Zp for a prime p for

ElGamal or ZN for an RSA modulus N for Camenisch-Shoup.
Further (inspired by Cramer, Damgård and Nielsen’s [CDN01] formalization

of an additively homomorphic cryptosystem), (1) we also need a way to sample
new encryptions of messages, i.e., compute c′ ← Enc(pkAH ,m) given any c ∈
Enc(pkAH ,m); we require that this be achieved by forming a fresh encryption of
0, c0 ← Enc(pkAH , 0) and then adding to c, resulting in c′ = c⊕ c0; and (2) we
need AH to include efficient algorithms for obtaining c′ ∈ Enc(pkAH , am) from
c ∈ Enc(pkAH ,m) and a ∈ Zτ

9. Our application to privacy-preserving blueprints
requires that the user’s input y is in the message space MpkAH

= Zτ . When
generating the key pair for this cryptosystem, KeyGenAH should take as input
public parameters params generated by Setup that are also relevant for other
algorithms we describe below.

Note that the function gpkAH
that determines the output of the decryption

algorithm is parameterized by pkAH ; when clear from the context, we omit the
parameterization. Also note that, when g is the identity function, a semanti-
cally secure additively homomorphic g-semi-encryption scheme is just a regular
additively homomorphic semantically secure encryption scheme.

Notation. If c1 and c2 are ciphertexts, will use c1 ⊕ c2 to denote the output
of Op(pk, c1, c2). We use a pk to represent an encryption of a under the public
key pk using the scheme AH ; we will drop the subscript and denote it a when
pk is clear from the context. By a = c ⊕ d we denote that the ciphertext a
was generated by running the algorithm Op(pk, c , d ); thus a= c+ d . y ⊙ a
denotes applying this operation y times; in our instantiations this will yield ya
and is efficient for large y with repeated squaring;

⊕n
i=0 ai denotes applying Op

n times on the set { ai : i ∈ [0...n]}.
Commitment to ciphertexts. In order to prove correctness of an intermediate
step in a longer computation over (semi-)encrypted data without revealing the
ciphertext obtained in that step itself (which would leak data), we need to be able
to commit to ciphertexts and prove properties of committed ciphertexts. Thus,
we need a non-interactive statistically hiding, computationally binding commit-
ment scheme ComAH (parameterized by public parameters params generated by
Setup) for committing to ciphertexts c ∈ EncAH (pk, ·) and we need protocols for
9 In (1), we require randomization by adding an encryption of 0. This is needed for

technical reasons that lead to a simpler construction; it may be possible to relax this
requirement at the expense of a more complicated construction and proof. (2) fol-
lows generically from homomorphic properties, so explicitly requiring it is somewhat
redundant, but we choose to do so for ease of presentation.
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proving statements about committed ciphertexts, as described below. We’ll use
ComAH ( y ; r) to denote a commitment to a ciphertext.
Proofs of properties of committed ciphertexts. We need BB NIZK proof
systems for (1) proving knowledge of a committed ciphertext; (2) proving that a
committed ciphertext is the result of applying OpAH to other committed cipher-
texts; (3) proving that a committed ciphertext is the result of applying OpAH to
another committed ciphertext α times, where α is the opening of a commitment
(under the commitment scheme Com) to an element of Zτ ; and (4) proving that
a committed ciphertext is an encryption of a committed scalar. (4) is often called
“verifiable encryption” (VE).

We’ll use the Camenisch-Stadler notation to describe an instance of these
protocols. For example, if we have A = ComAH ( a ; ra), B = ComAH ( b ; rb), and
C = Com(c; rc) and want to prove that a = bc, we’ll denote the output of the
prover’s computation as π = NIZK[a, b, c, ra, rb, rc : A = ComAH ( a , ra) ∧ B =
ComAH ( b , rb) ∧ C = Com(c; rC , aC) ∧ a = b ⊙ c]. If π is accepted by the
verification algorithm, then the prover can open commitments A, B and C to
ciphertexts a , b and scalar c respectively, such that a = b ⊙ c.

More precisely, let us define the following relations:

– RparamsAH
(C, (c, r)) = 1 iff C = ComAH (c; r);

– Radd
paramsAH

((C1, C2, C3), (c1, r1, c2, r2, c3, r3)) = 1 iff ∀i ∈ [3] : Ci = ComAH (ci; ri)
and c3 = OpAH (c1, c2);

– Rmult
paramsAH

((C1, C2, C3), (c1, r1, c2, r2, x, r3)) = 1 iff ∀i ∈ [2] : Ci = ComAH (ci; ri),
C3 = Com(x; r3) and c3 = c1 ⊙ x.

– RVE
paramsAH

((C1, C2), (c1, r1, rc1 , y, r2)) = 1 iff C1 = ComAH (c1; r1), C2 =
Com(y; r2) and c1 = EncAH (pkAH , y, rc1).

Our construction will use as building blocks BB NIZK proof systems (ProveAH ,
VerifyAH ) for the relationRparamsAH

, (ProveaddAH ,Verify
add
AH ) for the relationRadd

paramsAH
,

(Provemult
AH ,Verifymult

AH ) for the relation Rmult
paramsAH

, and (ProveVE
AH ,Verify

VE
AH ) for

the relation RVE
paramsAH

; we usually refer to these proof systems indirectly via
the Camenisch-Stadler notation. These proof systems exist generically for any
cryptosystem and any set of commitment schemes; however, for the specific in-
stantiations of semi-encryption and commitment schemes, we also show how to
construct them efficiently in Section 6.
Proof of ciphertext equality. Our construction further requires a proof system
for proving that two commitments open to the same ciphertext; i.e. a proof
system for the relation Req

paramsAH
(C1, C2, (c, r1, r2)) = 1 iff C1 = ComAH (c; r1)

and C2 = ComAH (c; r2). This can be generically constructed by using x = 1 as
the scalar in the proof for the relation Rmult

paramsAH
.

5.2 Instantiation of Consistent HEC Scheme

In this section, we provide a HEC scheme that satisfies Def. 9. In Section 5.3
we’ll show a succinct proof system Ψ2 which ensures escrows are created honestly.



PPBs via Verifiable Computation 25

To obtain a non-frameable watchlist scheme, we construct the algorithms
HECeval and HECdec in Fig. 5.1 for the function family {fn,k}n,k∈Z, where
n is the length of the auditor’s list x = {x1, . . . , xn} and k is the bit length of
the user’s attribute yattr , where the user’s input consists of the user’s identifier
yid and an attribute: y = (yid , yattr ). fn,k is defined as fn,k(x, y) = y if yid ∈ x
and fn,k = ∅ otherwise. We discuss why this watchlist function is useful for the
watchlist/CBDC application in Section 1. yid uniquely identifies a user and yattr
could be any useful data about the user such as a seed for the user’s e-cash. We
construct a HECeval algorithm for multiple attributes in Section 5.5.

Overview of the construction. The HECenc algorithm (Fig. 5.1 ) takes as input
the list x of n watchlisted identities, and computes a polynomial P (χ) = aiχ

i

such that P (yid) = 0 if and only if yid ∈ x. Then, it samples a key pair
(pkAH , skAH ) for a semantically secure g-semi-encryption scheme (Def. 12), and
outputs the public key X = (pkAH , {Ai = Enc(pkAH , ai)}i∈[0...n]) where the ai’s
are coefficients of P , and the decryption key d = (skAH , x).

On input the public key X and the value y = (yid , yattr ), HECeval will
output the escrow Z = (Zid , Zattr , Znf ) which consists of three ciphertexts under
the key pkAH ; these will decrypt to the values (yid , yattr , 0) if and only if yid ∈ x;
otherwise they will decrypt to uniformly random elements of the message space,
independent of y. As we show in more detail in Fig. 5.1, additively homomorphic
properties of the underlying (semi-)encryption scheme allow the evaluator to
form the ciphertext E so that it will be an encryption of P (yid). The evaluator
also encrypts the identity yid and attribute yattr , yielding ciphertexts Yid and
Yattr . The escrow of yid is then formed as Zid = (r1⊙E )⊕Yid = ((r1⊙ P (yid) )⊕
yid = r1P (yid) + yid , which is an encryption of yid if E is an encryption of 0
(i.e. whenever yid ∈ x), and an encryption of a random value otherwise, thanks
to the randomizer r1. Similarly, the escrow of yattr is Zattr = (r2⊙E )⊕Yattr =
r2P (yid) + yattr . To make the HEC consistent, we include Znf = r3 ⊙ E =

r3P (yid) , which will decrypt to 0 if and only if yid ∈ x.
HECdec will take as input the HEC decryption key d = (skAH , x) and the es-

crow Z, and recovers y′id , y
′
attr , and y′ by decrypting the escrows, (Zid , Zattr , Znf )

using the secret key, skAH . Note that, by the correctness property the decryp-
tion algorithm for g-semi-encryption, we know that for Z ∈ HECenc(X, y),
y′ = g(r3P (yid)) = g(0) if and only if yid ∈ x; so if y′ ̸= g(0), HECdec out-
puts ⊥. Else, we know that yid ∈ x, so HECdec must somehow determine (1)
yid from y′id = g(yid), and (2) yattr from y′attr = g(yattr ). Let us explain how
HECdec can do so.

If g is the identity function (or an efficiently invertible one), then this step is
trivial; we will show in Section 6 that we can achieve an additively homomorphic
g-semi-encryption scheme where g is the identity function under the decisional
composite residuosity assumption using the Camenisch-Shoup cryptosystem.

If, however, g is a one-way injective function, then (1) can be done by looking
for g(yid) on the list g(x1), . . . , g(xn) where xi ∈ x and (2) can only be done
by exhaustive search, which is only possible if yattr comes from a small space.
This is the approach that was (implicitly) taken by the original PPB paper of
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Kohlweiss et al.: since the ElGamal cryptosystem is only additively homomorphic
when viewed as a gy-semi-encryption scheme, and gy is a one-way function, they
could only achieve attributes from a small space. In Section 6.2 we also give the
ElGamal-based formalization.

HECdec(hecpar , d, Z)

1 : parse d = (skE , fn,k,ℓ, x),

Z = (Zid , Zattr , Znf )

2 : y′
id ← Dec(skE , Zid)

3 : y′
attr ← Dec(skE , Zattr )

4 : y′ ← Dec(skE , Znf )

5 : if y′ ̸= g(0)

6 : return ∅
7 : for yid ∈ x

8 : if g(yid) = y′
id

9 : return (yid , yattr )

where yattr ∈ domainf,y,attr

∧ g(yattr ) = y′
attr

10 : return ∅
HECenc(hecpar , fn,k, x)

1 : (pkAH , skE)← KeyGen(1λ)

2 : s←$MpkAH

3 : P ← s

n∏
i=1

(χ− xi)

4 : for i in{1, . . . , n+ 1}
5 : Ai ← Enc(pkAH , Pi)

6 : return (X = (pkAH , A1, . . . , An+1),

7 : d = (skE , fk, x)))

HECeval(hecpar , fn,k,ℓ, X, y; rẐ)

1 : parse X = (pkAH , A1, ..., An+1),

y = (yid , yattr ),

rẐ = (rid , rattr , r1, r2, r3)

2 : if r3 = 0, return ⊥

3 : E ←
n+1⊕
i=1

(Ai ⊙ yi
id)

4 : Yid ← Enc(pkAH , yid ; rid)

5 : Yattr ← Enc(pkAH , yattr ; rattr )

6 : Zid ← (r1 ⊙ E)⊕Yid

7 : Zattr ← (r2 ⊙ E)⊕Yattr

8 : Znf = r3 ⊙ E

9 : return Z = (Zid , Zattr , Znf )

HECdirect(hecpar ,X , z)

1 : parse X = (pkAH , A1, . . . , An+1)

2 : z = (z1, z2, z3)

3 : if z = ∅
4 : β1 ←$MpkAH

5 : β2 ←$MpkAH

6 : β3 ←$MpkAH

7 : return (Enc(pkAH , β1),

8 : Enc(pkAH , β2),Enc(pkAH , β3))

9 : return (Enc(pkAH , g(z1)),

10 : Enc(pkAH , g(z2)),Enc(pkAH , g(z3)))

Fig. 5.1: HEC algorithms

Theorem 3 (HEC consistency of Fig. 5.1). Our construction in Fig. 5.1
achieves HEC consistency in Def. 4.1.

Theorem 4 (Security of the construction in Fig. 5.1). Our construction
in Fig. 5.1 achieves security of DirectZ , Security of y, and security of x
and y from third parties, defined in Definition 11.
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We provide the full proofs of Theorems 3 and 4 in Appendix D.2.

5.3 Efficient Instantiation of HEC Evaluation Proof Ψ2

In this section we show how to efficiently instantiate a NIZK proof used in the
Escrow algorithm in Fig. 4.2 to compute πU. This proof is for the following rela-
tion:RΨ2

((y, ry, rẐ), (Ẑ,X, fn,k, Cy)) = 1 iff Ẑ = HECeval(hecpar , fn,k, X, y; rẐ)
∧Cy = Com(y; ry) where fn,k is the watchlist blueprinting function described at
the start of this section.

Overview. In Alg. 1, we give the construction of Ψ2 for HECeval. The proof
function for this system, PoKΨ2

, calls ProveRecursive (described in Alg. 2) to
prove the correctness of commitment C to E . The input values, (Cz, rt), on the
first call from Alg. 1 to Alg. 2 are initialized to “default” values. For this first
call, z takes the value (yid)

(n+1)/2−1 as it is left unspecified in the input. This
allows the proof to recursively interact with itself while keeping the interface to
PoKΨ2

simpler.
The most involved part of this process is to prove that ciphertext E =⊕n

i=0( ai ⊙ yiid) was computed correctly. The verifier will verify this proof while
only knowing a commitment to E, C = ComAH (E ). Naively, this proof would re-
quire a correctness proof over the ciphertexts containing each coefficient, { ai }i∈[0...n]

where n is the length of the watchlist. The correctness of the final ciphertexts
Zid , Zattr , and Znf will follow from the correctness of E and the additional
proofs about committed ciphertexts specified in Section 5.1. To make the proof
of correctness of C = ComAH (E ) efficient (taking O(log(n)) instead of O(n)
communication) we use a protocol similar to Shamir’s [Sha90], recently used in
cryptography by Pietrzak [Pie19] and follow-up work [HHKP23]. The idea is to
use recursion, where each step halves the degree of the polynomial by computing
the random linear combination of the lower and upper half of coefficients.

We will now explain how our ProveRecursive algorithm in Fig. 2 ensures that
C is a correct commitment to E . The prover and verifier can both evaluate
the polynomial P (χ) using the encrypted coefficients {Ai}i∈[n]. We assume the
watchlist is padded such that the number of coefficients (n + 1) is a power of
2. They can further break P into two parts such that P (χ) = P1(χ) + P2(χ)
where P1 contains the terms of P up to degree (n + 1)/2 − 1 and P2 contains
the rest of the terms from degree (n+ 1)/2 to n. They both also represent P as
P (χ) = P1(χ) + χ(n+1)/2P3(χ) such that P3(χ) = P2/χ

(n+1)/2. The prover then
commits to ciphertexts e1 = P1(yid) , e2 = P2(yid) , e3 = P3(yid) and to the
value z = y

(n+1)/2
id , and then proves that e = e1 ⊕ e2 and e2 = z⊙ e3 . Thus,

the prover has reduced the task of proving correctness of committed e = P (yid)
for a degree-n encrypted polynomial P to the task of proving correctness of (1)
committed e1 = P1(yid) and committed e3 = P3(yid) , where P1 and P3 are
both polynomials of degree (n+1)/2−1, and (2) the committed value z is indeed
y
(n+1)
id /2. (2) is straightforward with O(log n) commitments and proofs of correct

multiplication of committed values: the prover commits to yid exponentiated by
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powers of 2 from 20 to 2n+1, and uses a proof of multiplication of committed
values to prove correctness of each subsequent commitment from the previous
one.

For (1), we see that if the prover proved P1 and P3 individually, it would
fork the proof which would be inefficient. Instead, the prover procures a Σ-
protocol-style challenge, α, from the random oracle. The prover and verifier
can then represent a fourth polynomial, P ′(χ) = P1(χ) + αP3(χ) using α and
the encrypted coefficients. The prover then computes e′ = e1 ⊕ (α⊙ e3 ). The
prover then computes a commitment (C ′) to e′ . By the Schwartz-Zippel Lemma
(Lemma 3), if committed e1 ̸= P1(yid) or committed e3 ̸= P3(yid) , then
with overwhelming probability over the choice of a random α, committed e′ =
e1 ⊕α⊙ e2 ̸= P ′(yid) . Thus, we have reduced proving correctness of committed
ciphertext e to proving that committed ciphertext e′ = P ′(yid) , where P ′ is
a polynomial of degree (n + 1)/2 − 1. This completes the recursive step: it has
halved the degree of the encrypted polynomial. After the recursive step is applied
O(log n) times, we will be left with a constant-degree encrypted polynomial P ′,
and correctness of committed ciphertext e′ can be proved directly using the
protocols for ciphertext commitments.

Our proof system must have the zero-knowledge and extractability properties
needed for the proofs of both blueprint hiding (Definition 14) and user privacy
(Definitions 15 and 16) for our construction in Fig. 4.2. The zero-knowledge
property is standard; for extractability recall that we require both the usual
black-box proof of knowledge property, as well as partial straight-line extrac-
tion of g(y); g is some function such that g(y), jointly with x is sufficient to
compute f(x, y) because there is some efficiently computable function f∗ such
that f∗(x, g(y)) = f(x, y). In order to achieve straight-line extractability of
g(y), our proof system requires that the prover g-semi-encrypt y under a pub-
lic key “in the sky”, i.e. a public key that’s part of the parameters generated
during setup; the knowledge extractor’s trapdoor will be the decryption key. To
that end, we need a semantically secure public-key g-semi-encryption scheme
(Γsky = {KeyGensky ,Encsky ,Decsky}). (Using our notation from Definition 2, the
prover retrieves the public key in the sky by querying the setup S2.)

We explain how we instantiate the NIZK proofs in Algs. 1 and 2 in Section 5.4.
We present the corresponding verification functions for PoKΨ2

and ProveRecursive
(V S2

Ψ2
and VerifyRecursive) in Algs. 3 and 4.

Theorem 5. Our scheme in Algs. 2 and 1 are complete and ZK (Def. 1).

Theorem 6. The ProveRecursive function in Alg. 2 is black-box (BB) simulation
extractable with respect to Def. 2 for the relation R((C,Cyid

, X, n), (O,Oyid
, yid)) =

1 iff C = ComAH (EncAH (pkAH ,
⊕n

i=0( ai ⊙ yiid);O)) ∧ Cyid
= Com(y,Oyid

).

Theorem 7 (g∗-BB-PSL for Ψ2). If ProveRecursive is a BB NIZK for the
relation RP (where RP is defined as RP ((C,Cyid

, X, n), (O,Oyid
, yid)) = 1 iff

C = ComAH (EncAH (pkAH ,
⊕n

i=0( ai ⊙ yiid);O)) ∧ Cyid
= Com(y,Oyid

)) and if
Γsky = {KeyGensky ,Encsky ,Decsky} is a semantically secure g-semi-encryption
scheme, our Ψ2 proof is a g∗-BB-PSL protocol, where g∗(y, rẐ) = g(y).
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Algorithm 1 PoKS2

Ψ2
(hecpar , f,X, y, ry, rẐ)→ π

parse X = (pkAH , { ai }i∈[0...n]); rẐ = (r1, r2, r3, rid, rattr)
1: (yid , yattr )← y; (Cid , Oid) = Com(yid)
2: E ← e =

⊕n
i=0( ai ⊙ yi

id)
3: Zid = EncAH (pkAH , yid ; rid)⊕ (r1 ⊙ e )
4: Zattr = EncAH (pkAH , yattr ; rattr)⊕ (r2 ⊙ e )
5: Znf = r3 ⊙ e
6: Z = (Zid , Zattr , Znf )
7: Cy ← Com(y; ry)
8: pksky ← S2(1

λ);Csky = Encsky(pksky , y; rsky)
9: πsky = NIZK[y, ry, rsky : Csky = Enc(pksky , y; rsky)]

10: (C,O)← ComAH (E)
11: πrec ← ProveRecursive(C,O,Cid , Oid , yid , X, n)
12: Yid ← EncAH (pkAH , yid ; rid)
13: Yattr ← EncAH (pkAH , yattr ; rattr)
14: (CYid , OYid)← ComAH (Yid)
15: (CYattr , OYattr)← ComAH (Yattr)
16: πẐ ← NIZK[O,OYid , OYattr , rẐ ,E ,Y , Oid , y :
17: ∧Com(yid , Oid) = Cid ∧ Com(y, ry) = Cy ∧ y = (yattr , yid)
18: ∧ComAH (E , O) = C
19: ∧ComAH (Yid, OYid) = CYid ∧ ComAH (Yattr, OYattr) = CYattr

20: ∧Yid = EncAH (pkAH , yid ; rid)
21: ∧Yattr = EncAH (pkAH , yattr ; rattr)
22: ∧Zid = EncAH (pkAH , yid ; rid)⊕ (r1 ⊙ e )
23: ∧Zattr = EncAH (pkAH , yattr ; rattr)⊕ (r2 ⊙ e )
24: ∧Znf = r3 ⊙ e ∧ r3 ̸= 0]
25: return C,Cid , πrec , πẐ , πsky , Csky , CYid , CYattr
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Algorithm 2 ProveRecursive(C,O,Cy, ry, y,X, n, (Cz, rz))→ π

parse X = (pkAH , { ai }i∈[0...n]),

(C) = ComAH ( e ;O) where e =
n⊕

i=0

ai ⊙ yi =
n∑

i=0

yiai ,

and if recursing, Cz = Com(z; rz), where z = y(n+1)/2

If the degree of the polynomial is low enough, prove its computation directly
1: if n = 1,
2: π2 ← NIZK[y, rz, y, O, ry : Com(y, ry) = Cy

3: ∧ ComAH ( e , O) = C ∧ e =
n⊕

i=0

ai ⊙ yi

4: ∧ Com(y; rz) = Cz]
5: return π2

If not, we will need to reduce the degree needed to prove C and recurse.
To do so, first, commit to the lower half of the polynomial.

6: (C1, O1)← ComAH ( e1 ) where e1 =
(n+1)/2−1⊕

i=0

ai · yi =
(n+1)/2−1∑

i=0

yiai

Next, commit to the upper half of the polynomial

7: (C2, O2)← ComAH ( e2 ) where e2 =
(n+1)/2−1⊕

i=0

ai+(n+1)/2 ⊙ yi+(n+1)/2

=
(n+1)/2−1∑

i=0

yi+(n+1)/2ai+(n+1)/2

Lastly, commit to the upper half of the polynomial with the degree lowered by half

8: (C3, O3)← ComAH ( e3 ) where e3 =
(n+1)/2−1⊕

i=0

ai+(n+1)/2 ⊙ yi

=
(n+1)/2−1∑

i=0

yiai+(n+1)/2

Put the current transcript (τ) of the proof (including all inputs) into the random oracle
to get a value, α.

9: α← H(τ)
Compute the encryptions of the new coefficients for a reduced degree polynomial

10: X ′ ← (pkAH , { a′
i }i∈[(n+1)/2]) where a′

i = ai ⊕ ( ai+(n+1)/2−1 ⊙ α)
Compute a new evaluation over this reduced degree polynomial

11: (C′, O′)← ComAH ( e′ ) where e′ =
(n+1)/2⊕

i=0

a′
i ⊙ yi

If we’re not recursing, compute the correct value to scale e2 with..
12: if Cz = Oz =⊥,
13: (Cz, Oz)← Com(y(n+1)/2)

Prove that this new commitment (C′) is consistent with C,C1,C2, and C3.
14: πα ← NIZK[O,O1, O2, O3, O

′, ry, y, Oz, z, rz, e , e1 , e2 , e3 :
15: ComAH ( e ,O) = C ∧ ComAH ( e′ , O′) = C′

16: ∧ ∀1 ≤ i ≤ 3 : ComAH ( ei , Oi) = Ci

17: ∧ ComAH ( e′ , O′) = C′;Com(z,Oz) = Cz;
18: ∧ e = e1 ⊕ e2
19: ∧ e2 = z ⊙ e3
20: ∧ e′ = e1 ⊕ (α⊙ e3 )]

Setup the recursion and call it.
21: z′ = y(n+1)/4; (C′

z, r
′
z) = Com(z′)

22: πz ← NIZK[z, z′, rz, r
′
z : Com(z, rz) = Cz ∧ Com(z′, r′z) = C′

z ∧ z = z′ ∗ z′]
23: return

(
C,C1, C2, C3, Cz, πz, πα,ProveRecursive(C

′, O′, Cy, ry, y,X
′, (n + 1)/2 −

1, (C′
z, r

′
z))

)
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Algorithm 3 VS2

Ψ2
(hecpar , f,X,Cy, Z, π)→ {0, 1}

parse X = (pkAH , { ai }i∈[0...n]);
parse π = (C,Cid , πrec , πẐ , πsky , Csky , CYid , CYattr)

1: pksky ← S2(1
λ);

2: Verify πsky

3: Verify πrec using VerifyRecursive
4: Verify πẐ

5: If any proof failed to verify, return 0, otherwise return 1

Algorithm 4 VerifyRecursive(C,Cy, X, n, (Cz))→ {0, 1}
parse X = (pkAH , { ai }i∈[0...n]),

1: parse π =
(
C,C1, C2, C3, Cz, πz, πC , π

′)
2: if n = 1,
3: Verify π2

4: return 0 if π2 didn’t verify, otherwise, return 1
Random oracle hash current transcript (τ) of the proof (including all inputs)

5: α← H(τ)
6: Verify πC

7: Verify πz

8: Verify π′ by recursing into VerifyRecursive.
9: If any proof failed to verify, return 0, otherwise return 1

We prove Thms. 5, 6, and 7 next. We can also use our homomorphic additive
encryption along with our ciphertext commitment schemes to construct proofs
for Ψ1 and Ψ3 using similar techniques to that of Ψ2.

Proof of Thm. 5 (Correctness and ZK). Correctness is clear by inspection. The
zero knowledge property of Alg. 2 relies on the hiding and zero knowledge prop-
erty of our underlying ciphertext and scalar commitment scheme and associated
protocols described in Section 5.1 and constructed in Section 6. Since we have
committed to all values and do all proofs with a NIZK scheme with a trapdoor
that allows our simulator to produce proofs for relations not in the language,
we can simply choose random elements as our commitments and simulate all
proofs. We show the simulator for PoKΨ2 and ProveRecursive in Algs. 6 and 5 for
completeness in Section 5.3. We can see that if we replace the real commitments
and proofs one-by-one with hybrids, an adversary that can distinguish these hy-
brids can defeat either the hiding of the commitment or the zero knowledge of
the proof systems.

We quickly review the Schwartz-Zippel lemma [Sch80,Sho97] in Lemma 3.
We will use this in our proof of black-box simulation extractability proof for
Alg. 2 in Thm. 6

Lemma 3 (Schwartz-Zippel [Sch80,Sho97]). For two distinct polynomials,
r(χ), r′(χ), over a field, F of size p, the probability that r(α) = r′(α) when α
is sampled randomly from F is d/p where d is the larger degree out of either
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polynomial, d = max{deg r, deg r′}. Where “distinct polynomials” means there
exists some power where the coefficients for r and r′ differ.

We need one more form of the Schwartz-Zippel lemma in order to prove our
construction sound for Camenisch-Shoup encryptions which we show in Lemma
4

Lemma 4 (Schwartz-Zippel for Zn). For two distinct polynomials, r(χ),
r′(χ), over a ring, Zn where n = pq for p, q prime, the probability that r(α) =
r′(α) when α is sampled randomly from Zn is (dp+ dq)/n where d is the larger
degree out of either polynomial, d = max{deg r, deg r′}. Where “distinct polyno-
mials” means there exists some power where the coefficients for r and r′ differ.

Proof of Lemma 4. Using the Chinese remainder theorem, we know that Zn

decomposes into Zq × Zp. For r(χ) to be equal to r′(χ) it must be that P (χ) =
r(χ)−r′(χ) = 0. We can decompose P (χ) into Zp and Zq by defining PZq

and PZp

such that PZp
(χ) is in Zp[χ] and PZq

(χ) is in Zq[χ] and P (χ) = PZp
(χ) ∗PZq

(χ).
We know that if P (χ) equals 0 in Zn, then it there must be unique (x, y) in Zq×Zp

such that the product of x and y is 0 mod n and x = PZp(χ) and y = PZq (χ)
PZp . Thus, xy = kn for some k. Because Zn and Zq × Zp are isomorphic, and
p|n, q|n, we know that drawing randomly from Zn gives us random points in Zq

and Zp. Let us assume that either x or y must be zero for P (χ) to be zero. There
are only d∗p+d∗q evaluations of P (χ) in Zn that make either PZp

(χ) or PZq
(χ)

equal to zero. Thus, with our assumption that one of these polynomials (PZp(χ)
or PZq (χ)) must be zero, the probability of choosing one of these randomly is
(dp+ dq)/n = d/q+ d/p which is negligible. We know that P (χ) cannot be zero
without either PZp

(χ) or PZq
(χ) being zero because if 2q > p > q, we know that

for P (χ) to be zero, then x ∗ y = kn. Because p|kn and q|kn, we know that p|xy
and q|xy. But we know that p ∤ y since y ∈ Zq and p > q, and we know that
pq ∤ x since n = pq > 2q. Thus, either PZp(χ) or PZq (χ) must be zero and from
our earlier result, only d ∗ p+ d ∗ q evaluations of P (χ) are zero and thus we get
the probability from Lemma 4.

Proof of Thm. 6 (Simulation extractability of ProveRecursive). This property of
Alg. 2 relies on the BB-extraction and binding of our underlying ciphertext and
scalar commitment scheme and associated protocols described in Section 5.1 and
constructed in Section 6. We can use the simulator in Alg. 6 in Section 5.3 for
this reduction. Because our simulator are zero knowledge, the BB-simulation-
extractability adversary gets no advantage when given these proofs.

First, we’ll start by proving why each Cz commitment is correctly committed
to y(n+1)/2. We can prove this by induction. We can see that in the final recursion
(when n = 1), Cz is proven to open to y (from Cy) with πz (on line 2). This forms
a base-case for our induction. If we can prove that a Cz is correctly computed at
any given step based on the assumption that C ′

z is correctly computed in the next
step, we’ll have proven that each Cz is correctly computed. At each step before
the last, we see that Cz is proven to open to (z′)2 where C ′

z is committed to z′.
If we assume that C ′

z (the commitment for the next step) is correctly computed
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i.e. a commitment to y(n+1)/4 then we know that the Cz in the current step
is a commitment to y(n+1)/2. Thus, by induction, at each step, Cz must be a
commitment to z = y(n+1)/2 at each step.

Next, we’ll prove that C is correctly computed and that we can extract the
witnesses for the relation. We can prove that we can extract recursively. As a
base case, we see that when ProveRecursive is called with n = 3, we know that in
the next recursive step, n′ = (n+ 1)/2− 1 = 1, which means we will prove that

C ′ is correctly computed in line 3 of Alg. 2 (i.e.: e′ = P ′(y) =
(n+1)/2−1∑

i=0

a′iy
i).

Thus, if we can prove that C is correctly computed, assuming that C ′ is correctly
computed, we can use induction to conclude that the original commitment given
to the recursion from Ψ2.P (on line 11 of Alg. 1) was correctly computed.

From the proof, πrec , we know that P ′(y) = e1 + αe3. We see that α is
computed from a hash of the transcript, including C1 and C2. Thus, the ad-
versary cannot make e1 or e3 depend on α, since this would reduce to either
distinguishing a random oracle or double opening C1 or C2. We now rewrite
these polynomials and fix y to reform these as: q(χ) = e1 + χe3 and q′(χ) =
(n+1)/2−1∑

i=0

yiai+
(n+1)/2−1∑

i=0

χyiai+(n+1)/2. For the proof to succeed, q(χ) must equal

q′(χ) when evaluated at the random value, α. We know from the Schwartz-Zippel
lemma (Lemma 3) that the probability of this occurring when q(χ) is distinct
from q′(χ) is 1/q. Thus, with overwhelming probability, these must be equiv-
alent polynomials. Because α is multiplied by the right term and not the left,
and (with overwhelming probability) the polynomials are equivalent, this further

proves that e1 =
(n+1)/2−1∑

i=0

yiai and e3 =
(n+1)/2−1∑

i=0

yiai+(n+1)/2. This is because

e1 is the 0-degree coefficient in q(χ) and
(n+1)/2−1∑

i=0

yiai is the 0-degree coeffi-

cient in q′(χ) (with similar reasoning for e3 and
(n+1)/2−1∑

i=0

yiai+(n+1)/2 for being

the 1-st degree coefficient of q(χ) and q′(χ)). We then see that πC proves that
e2 = ez3. Thus, e2 = ey

(n+1)/2

3 and since we proved e3 correctly with πC , we now

know that e2 =
(n+1)/2−1∑

i=0

χyi+(n+1)/2ai+(n+1)/2. We then see that πrec proves

that e = e1 + e2, which proves that e =
n∑

i=0

χyiai, thus, proving C to be cor-

rectly formed. Thus, after extracting all witnesses from the underlying NIZKs,
we know that these are correct witnesses for the relation.

Proof of Thm. 7 (BB-PSL). We assume in this theorem that we can extract
a witness for the relation RP in a black-box way (Thm. 6). Thus, we know
that the ciphertext (Csky) containing g(y) is correct, and thus, we can extract
g(y) = g∗(y, rẐ) by decrypting this ciphertext.
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Theorem 8 (g∗-BB-PSL for Ψ2). Our Ψ2 proof is a g∗-BB-PSL protocol,
where g∗(y, rẐ) = g(y).

Proof of Thm. 8 (BB-PSL). Because we know that ProveRecursive is a BB NIZK
for the relation RP (where RP is defined as RP ((C,Cyid

, X, n), (O,Oyid
, yid)) = 1

iff C = ComAH (EncAH (pkAH ,
⊕n

i=0( ai ⊙ yiid);O)) ∧ Cyid
= Com(y,Oyid

)) and
if Γsky = {KeyGensky ,Encsky ,Decsky} is a semantically secure g-semi-encryption
scheme from Thm. 6, this is clear from Thm. 7.

Algorithm 5 SimPoKS2

Ψ2
(hecpar , f,X,Cy, Ẑ)→ π

parse X = (pkAH , { ai }i∈[0...n]); rẐ = (r1, r2, r3)
1: y ←$MpkAH

2: yid ←$MpkAH
; (Cid , Oid) = Com(yid)

3: pksky ← S2(1
λ);Csky = Encsky(pksky , y; rsky)

4: πsky = Sim[Csky = Enc(pksky , y; rsky)]
5: E ← EncAH (e1) where e1 ←$MpkAH

6: (C,O)← ComAH (E)
7: πrec ← SimProveRecursive(C,Cid , X, n)
8: Y ← EncAH (e2) where e2 ←$MpkAH

9: (CY , OY )← ComAH (Y )
10: πẐ ← Sim[Com(yid , Oid) = Cid ∧ Com(y, ry) = Cy ∧ y = yattr ||yid
11: ∧ComAH (E , O) = C ∧ ComAH (Y , OY ) = CY

12: ∧Y = EncAH (pkAH , y; r3)
13: ∧

(
(E ⊙ r1)⊕Y ,E ⊙ r2

)
= Ẑ]

14: return C,Cid , πrec , πẐ , πsky , Csky
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Algorithm 6 SimProveRecursive(C,Cy, X, n, (Cz))→ π

1: parse X = (pkAH , { ai }i∈{0...n}),
2: if n = 1,
3: π2 ← Sim[Com(y, ry) = Cy

4: ∧ ComAH ( e , O) = C ∧ e =
n⊕

i=0

ai ⊙ yi]

5: ∧ Com(y; rz) = Cz

6: return π2

7: (C1, O1)← ComAH ( e1 ) where e1 ←$MpkAH

8: (C2, O2)← ComAH ( e2 ) where e2 ←$MpkAH

9: (C3, O3)← ComAH ( e3 ) where e3 ←$MpkAH

10: α← H(τ)
11: X ′ ← (pkAH , { a′

i }i∈[0...(n+1)/2]) where a′
i = ai ⊕ ai+(n+1)/2−1 ⊙ α

12: (C′, O′)← ComAH ( e′ ) where e′ ←$MpkAH

13: if Cz = Oz =⊥,
14: z ←$MpkAH

(Cz, Oz)← Com(z)
15: πC ← Sim[
16: ComAH ( e ,O) = C ∧ ComAH ( e′ , O′) = C′

17: ∧ ∀1 ≤ i ≤ 3 : ComAH ( ei , Oi) = Ci

18: ∧ ComAH ( e′ , O′) = C′;Com(z,Oz) = Cz

19: ∧ e = e1 ⊕ e3
20: ∧ e3 = zy ⊙ e2
21: ∧ e′ = e1 ⊕ (α⊙ e2 )]
22: z′ ←$; (C′

z, r
′
z) = Com(z′)

23: πz ←$MpkAH
Sim[Com(z, rz) = Com(z′, r′z) = Cz ∧ z = z′ ∗ z′]

24: return
(
C,C1, C2, C3, Cz, πz, πC , SimProveRecursive(C′, Cy, X

′, (n + 1)/2 −
1, (C′

z))
)
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5.4 Construction of NIZKs in ψ2 proof scheme

In Algs. 1 and 2, we perform the following four proofs:
πẐ ← NIZK[O,OY , r1, r2, r3,E ,Y , O,Oid , yid , y :

∧ Com(yid , Oid) = Cid ∧ Com(y, ry) = Cy ∧ y = (yattr , yid)

∧ ComAH (E , O) = C ∧ ComAH (Y , OY ) = CY

∧Y = EncAH (pkAH , y; r3)

∧
(
(E ⊙ r1)⊕Y ,E ⊙ r2

)
= Ẑ]

πα ← NIZK[O,O1, O2, O3, O
′, ry, y, Oz, z, rz, e , e1 , e2 , e3 :

ComAH ( e ,O) = C ∧ ComAH ( e′ , O′) = C ′

∧ ∀1 ≤ i ≤ 3 : ComAH ( ei , Oi) = Ci

∧ ComAH ( e′ , O′) = C ′;Com(z,Oz) = Cz;

∧ e = e1 ⊕ e3

∧ e3 = z ⊙ e2

∧ e′ = e1 ⊕ (α⊙ e2 )]

π2 ← NIZK[y, rz, y, O, ry : Com(y, ry) = Cy

∧ ComAH ( e , O) = C ∧ e =

n⊕
i=0

ai ⊙ yi

∧ Com(y; rz) = Cz]

πz ← NIZK[z, z′, rz, r′z : Com(z, rz) = Com(z′, r′z) = Cz ∧ z = z′ ∗ z′]
For πẐ , we see that we need to construct a proof for Ẑ =

(
(E ⊙ r1) ⊕ Y ,

E ⊙ r2
)
. We can prove each element in Ẑ separately. Proving Ẑ1 = r2 ⊙ E is

straightforward. The prover creates a commitment to r2 and then invokes our
multiplication protocol Provemultiply

AH for our ciphertext commitments and scalar
commitments.

For proving Ẑ2 = r1 ⊙ E ⊕ Y , the prover needs to create intermediate com-
mitments to r1 ⊙ E and Y , CE and CY . The proof for r1 ⊙ E will be formed
similar to our proof for r2 ⊙ E , i.e. by committing to r1 and then invoking our
Provemultiply

AH protocol. The prover then proves that C is committed to the product
of CE and CY . This can be done using our Proveadd function for commitments
to ciphertexts.

For πα, we have a number of addition and multiplication proofs. The prover
is trying to show that e = e1 ⊕ e3 and e3 = ze2 . This is straightforward
as the prover can apply Proveadd and Provemultiply directly to C1, C2, C3, and Cz.
For the last proof e′ = e1 ⊕ αe2 , the prover will need to create an interme-
diate commitment to αe2 and use Provemultiply to prove that it was computed
with C2, C1 and α (we can create a canonical commitment to α to reuse our
multiplication protocol as-is). We then compute Proveadd on this intermediate
commitment and C1 to prove the final product contained in C ′.
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For π2, the prover performs a number of intermediate commitments for each
i ∈ [n]. The prover computes and proves intermediate commitments to each
Hi = yi ⊙ ai and then computes and proves intermediate commitments to

larger products of the elements, Di =
i⊕

j=1

aiy
i for i ∈ [n], using the previous

commitment to prove the next, i.e. Di = Di−1 ⊕Hi.
Note that this could be done much more efficiently by having the verifier

compute the homomorphic operation on the commitment themselves, but using
intermediate commitments and proofs assumes less about our underlying com-
mitments. While this is easy to do with Pedersen commitments, the size of value
committed to by Damgård-Fujisaki commitments grows as homomorphic oper-
ations are performed on them. Having the prover use Proveadd and Provemultiply

ensures that our values stay low as discussed in Section 6.3 in Remark 1.
For πz, the prover creates commitment C ′

z to y(n+1)/4 and proves via Provemultiply

that the value in this commitment multiplied by itself is equivalent to Cz.

5.5 Multi-attribute HEC scheme

In this section, we provide a HEC scheme that satisfies Def. 9 and supports
multiple attributes. Including multiple attributes increases the size of values that
can be escrowed. In the case of ElGamal, this becomes poly(λ)ℓ and in the case of
Camenisch-Shoup, this becomes (Zn)

ℓ. Notice in the case of ElGamal, this allows
us to efficiently encrypt and decrypt public keys. This is still not as efficient as in
the case of Camenisch-Shoup as the key has to be broken up into logarithmically
sized chunks in the case of ElGamal. This makes proving properties of keys
escrowed with the ElGamal scheme inefficient while with Camenisch-Shoup, the
key can be encrypted while retaining more algebraic structure. This allows for
our Camenisch-Shoup scheme to potentially achieve more efficient proofs for
extended properties such as retrospective blueprints (discussed in Section 8).

Our function family for multi-attributes is {fn,k,ℓ}n,k,ℓ∈Z, where n is the
length of the auditor’s list x = {x1, . . . , xn} and k is the bit length of each user
attribute yattri , where the user’s input consists of the user’s identifier yid and ℓ
attributes: y = (yid , y

attr
1 , . . . , yattrℓ ). fn,k,ℓ is defined as follows:

fn,k,ℓ(x, y) =

{
y yid ∈ x

∅ otherwise
(1)

We construct a HEC scheme for this function in Fig. 5.2. In our previous
construction in Alg. 1 we have a commitment to E which is the commitment C.
Remember, C is a commitment to the auditor’s polynomial p(χ) evaluated at
the users identity yid . Thus, E will be an encryption of zero if the user is on the
watchlist (yid ∈ x). In Fig. 5.2, we then scale C with the different randomization
factors ({rE ,i}i∈[ℓ) yielding the new commitments: {Ci}i∈[ℓ] to these scaled en-
cryptions. If the user is not on the watchlist, these ℓ commitments now encrypt
random values. We then homomorphically add each scaled encryption Ci with
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the encryptions of attributes {Yi}i∈[ℓ] to ensure that they are only decryptable
if the user is on the watchlist. We need to use separate randomization scalars for
each attribute because we will reveal each encryption. If the encryptions used
the same random scalar, the adversary could homomorphically remove them by
dividing one encryption by the other. Using independent randomness ensures
that each of these commitments are scaled by a random factor and are indepen-
dent of one another. We still need to include an encryption of E scaled by a
random factor Znf = rnf ⊙ E to ensure non-framing. Because we only compute
one commitment to E , when modifying the ψ2 proof from Section 5 to work for
multiple attributes, we only need to perform the proof of correct encryption of E
once. Then, we simply use our auxiliary proofs of commitments to ciphertexts to
prove that the rest of the encryptions of attributes are correct, without needing
to reprove the commitment to E . This makes our ψ2 scheme’s communication
size equal to O(log(x) + ℓ) for multiple attributes.

Fig. 5.2: Multi-attribute HEC functions

HECeval(hecpar , fn,k,ℓ, X, y; rẐ)

1 : parse X = (pkAH , A1, ..., An+1),

y = (yid , y
attr
1 , ..., yattr

ℓ ),

rẐ = ({rE,1, ..., rE,ℓ}, {r1, ..., rℓ}, rnf )

2 : E ←
n+1⊕
i=1

(Ai ⊙ yi
id)

3 : ∀i ∈ [ℓ] : Yi ← Enc(pkAH , yattr
i ; ri)

4 : ∀i ∈ [ℓ] : Zi ← ((rE,i ⊙ E)⊕Yi

5 : Znf = rnf ⊙ E

6 : return Z = ({Z1, ..., Zℓ}, Znf )

HECdec(hecpar , d, Z)

1 : parse d = (skE , fn,k,ℓ, x),

Z = ({Z1, ..., Zℓ}, Znf )

2 : ∀i ∈ [ℓ] : yattr
g,i ← Dec(skE , Zi)

3 : yg ← Dec(skE , Znf )

4 : if yg ̸= g(0)

5 : return ∅
6 : for yid ∈ x

7 : if g(yid) = yg

8 : return (yid , y
attr
1 , ..., yattr

ℓ )

where ∀i ∈ [ℓ] : yattr
i ∈ domainf,y

∧ g(yattr
i ) = yattr

g,i

9 : return ∅

6 Constructions of Commitments to Ciphertexts

We first define variants of ElGamal and Camenisch-Shoup encryption, see 6.1.
We then construct commitments to ciphertexts and associated proof systems for
adding and multiplying ElGamal ciphertexts and Camenisch-Shoup ciphertexts.
Note that (Lifted) ElGamal is a g-semi-encryption as defined in Section 5 with
message space Mpk = Zp and g(x) = hm mod p. Camenisch-Shoup encryp-
tion has the advantage that it allows for the efficient computation of discrete
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logarithms in a subgroup of size n where n is an RSA modulus. Thus, with
Camenisch-Shoup encryption, we can efficiently decrypt ciphertexts when the
message space has exponential size. Thus, our Camenisch-Shoup construction is
a g-semi-encryption where g is the identity function (i.e. a standard encryption
scheme). In our Camenisch-Shoup construction, the message space isMpk = Zn.
In Section 6.2 we construct commitments to ElGamal ciphertexts. In Section 6.3
we construct commitments to Camenisch-Shoup ciphertexts.

6.1 Encryption Schemes

We review (Lifted) ElGamal encryption in Fig. 6.1a. We include an extra gen-
erator (h) for the lifting to exponents in ElGamal so that we can draw parallels
between ElGamal and Camenisch-Shoup (Lifted ElGamal encryption generally
uses the default generator, g). The scheme is still correct and secure if g = h. We
also slightly modify Camenisch-Shoup encryption in Fig. 6.1b, replacing some
values (parameter g ∈ Zn and ciphertext c) with their absolute values.

Modifying Camenisch-Shoup allows us to ensure the elements of our Camenisch-
Shoup ciphertexts exist in a “commitment-friendly” group GCS . We also define a
similar group (GElG) for ElGamal ciphertexts. The two commitment schemes are
very similar at a high-level and only differ due to limitations with the eqrep-n∗
protocol which is the protocol we use to prove relations between the ciphertexts
in Camenisch-Shoup commitments. Namely this limitation is that the eqrep-n∗
protocol only holds for the absolute values of group elements. The eqrep-p∗ proto-
col which we use for the relations between ciphertexts in ElGamal commitments
does not have this limitation and thus is much simpler.

Another modification we’ve made to the Camenisch-Shoup cryptosystem is
that we remove the third element from ciphertexts. Camenisch and Shoup [CS03]
construct their scheme with a third element to prove CCA security. We’ve re-
moved the third element from these ciphertexts as we do not need CCA security
for our scheme. Since we don’t need the third element to correctly decrypt honest
ciphertexts, we can simply drop the element and attain CPA security.

Description of GElG We can see that g and h in ElGamal are both elements
of GElG where GElG is a cyclic group of prime order p in which the decisional
and computational Diffie-Hellman assumptions are hard. This can be realized
by taking the group of quadratic residues of Zq where q is a safe prime, or
using elliptic curves. Note that this is an important advantage of the ElGamal
approach in practice, as g and h can be created by hashing into the group. As
commonly the case secure setup ceremonies for RSA-like groups are a lot more
involved. See for instance [KMV23].

Description of GCS To understand GCS we have to define the absolute value
function, shown in Equation 2:

|x| =

{
n2 − x x > ⌊n2/2⌋
x otherwise

(2)
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Subgroup Generators g and h are both in the group GCS = {|x| : x ∈ QRn2 ∧ x <
n2/2} We see that g is in GCS because it is equal to |(g′)2n|. Squaring g′ ∈ Zn2

ensures that the result is in QRn2 and taking the absolute value of an element
in QRn2 ensures the result is in GCS . We prove that h is ∈ QRn2 using Lemma
6 and h ∈ GCS follows from the fact that |1 + n| = 1 + n. We also see that
GCS comprises 1/4 of Z∗

n2 with an equal number of elements (disregarding 1) in
QRn2 and QNR+1

n2 . From Lemma 6 in Appendix A and the fact that g is in QRn2 ,
we can see that both elements of our modified Camenisch-Shoup ciphertexts are
in GCS . Thus, if we can create commitments to elements of GCS , we can use
them to commit to our modified Camenisch-Shoup ciphertexts and construct
the associated protocols for multiplication and exponentiation.

In Section 6.3, we’ll see that ensuring that Camenisch-Shoup ciphertexts are
in GCS is useful because GCS is cyclic (which helps with our hiding and ZK
proofs) and also (−1)x = x for elements in GCS . This is important because it
means that using eqrep-n∗ (as defined in 2.3) to prove relations between GCS el-
ements works perfectly, where-as for Zn2 it only holds for the absolute values of
these elements. As an example, if we wanted to prove that we know a such that
c = ga in Z∗

n2 , we could only prove that c = bga where b ∈ {−1, 1}. Intuitively,
what we really want is to ensure that after performing exponentiation and multi-
plication proofs over commitments to ciphertexts, the ciphertext decrypts to the
correct value. We can see in Fig. 6.1b that the encryption scheme decrypts the
absolute value of a ciphertext exactly the same as the original ciphertext. This is
clear from rewriting the decryption process as m = (((c21/(c

2
0)

x)t mod n2)−1)/n
where the first operation the decryptor does it square both elements of the ci-
phertext and the fact that |x|2 = x2 ∈ Zn2 .

Drawing more parallels, we see that both ElGamal and Camenisch-Shoup
have similar homomorphic properties. Specifically for two encryptions, (gr, krhm)
and (gr

′
, kr

′
, hm

′
), (gr ·gr′ , krhm ·kr′hm′

) is a valid encryption of m+m′ in both
encryption schemes (after taking the absolute value in Camenisch-Shoup). Also,
exponentiation is similar, i.e. ((gr)y, (krhm)y) is a valid encryption of ym in both
encryption schemes. Thus, if we can commit to elements of GElG and GCS and
provide generic protocols for proving the multiplication and exponentiation of
committed group elements, we can easily construct commitments to ciphertexts
for ElGamal and Camenisch-Shoup along with associated protocols. We use this
insight to construct commitments to ElGamal ciphertexts in Section 6.2 and
commitments to ciphertexts in Camenisch-Shoup ciphertexts in Section 6.3.

We quickly prove useful properties about our modified Camenisch-Shoup
encryption scheme below:

Correctness of simplified Camenisch-Shoup in Fig. 6.1a. Since the third element
is only used in [CS03] for CCA security, our decryption algorithm works for
honest encryptions. This is because hm = (1 + n)m =

∑m
i=0

(
m
i

)
1m−ini = 1 +

mn + (m − 1)n2 + ... = 1 + mn mod n2 and yr can be cancelled out with
ux. We can see that taking the absolute value of ciphertexts does not affect this
correctness because part of the decryption squares the ciphertexts. Because c2 =
(|c|)2, after squaring the ciphertexts our decryption algorithm works correctly.
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Fig. 6.1: Encryption schemes

Setup(1λ)→ params

1 : g, h←$ G
2 : return g, h,G

g2n

g2n

KeyGen(params)→ (pk, sk)

1 : x←$ Zp;

2 : return pk← gx, sk← x;

Enc(pk = k,m)→ c

1 : r ←$ Zp;

2 : return c = (gr, krhm)

Dec(sk, c = (c0, c1))→M

1 : z = csk0 = kr

2 : return c1/z = M = hm

(a) Lifted ElGamal

Setup(1λ)→ params

1 : Sample p′, q′ be two O(λ)-bit SG primes.
2 : p = 2p′ + 1, q = 2q′ + 1, n = pq, g′ ←$ Zn2 ,

3 : g = |(g′)2n|, h = (1 + n),

4 : return params = (n, g, h)

KeyGen(params)→ (pk, sk)

1 : sk = x←$ [n2/4], pk = k = gx mod n2

2 : return pk, sk

Enc(pk,m ∈ [n])→ c

1 : r ←$ [n/4],

2 : return c = (|gr|, |krhm|) mod n2

Dec(sk, c = (c0, c1))→ m

1 : t = 2−1 mod n

2 : return m = (((c1/c
x
0)

2t mod n2)− 1)/n

(b) Simplified Camenisch-Shoup

CPA security of simplified Camenisch-Shoup in Fig. 6.1a. Assume we have an
adversary that can defeat the CPA security of this scheme. We can then con-
struct a reduction to CCA security of [CS03] by having the reduction simply
pass through encryption queries to the CCA challenger and strip the third ele-
ment from encryptions when returning them to the adversary. Our reduction also
takes the absolute value of ciphertexts when passing them to the assumed adver-
sary. These modified encryptions look exactly like encryptions for our modified
scheme. Since the CPA adversary never issues decryption requests, our reduc-
tion does not need to decrypt any ciphertexts for the original scheme. Thus, our
reduction’s probability of success is the same as this adversary’s.

6.2 Commitments to GElG elements and ElGamal ciphertexts

In this section, we introduce commitments to group elements (in GElG) and then
construct a commitment scheme to ElGamal ciphertext in Fig. 6.3 which relies
on those commitments to group elements. Note that the generators g and h
used in this section are distinct from those used in the encryption schemes in
Section 6.1. In this section, g and h refer to commitment bases for a Pedersen
commitment.

Commitments to GElG group elements. In Alg. 6.2 we present a commitment
scheme for committing to group elements. Our parameters for the scheme are
the same as a Pedersen commitment, yielding g and h. We then commit to a
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group element by computing C1 = Mgs and C2 = gshr. We can see that C2 is
a Pedersen commitment and that s is hidden by C2. Thus, for any M,C1, C2 ∈
GElG , there exists an s, r that forms a valid opening. We can see that using the
opening information, the group element can be retrieved by computing M =
C1/g

s.

Proof of opening of an committed group element. We can create a ZK proof of
knowledge of an opening of the commitment C = (C1, C2) = ComGElG

(M) by
proving knowledge of an opening for C2 as a Pedersen commitment, i.e. it is the
proof of knowledge of representation of C2 in bases g and h.

Proof of equality of committed group elements. Proving that two group commit-
ments C = (C1, C2) = (Mgs, gshr) and C ′ = (C ′

1, C
′
2) = (M ′gs

′
, gs

′
hr

′
) are com-

mitted to the same value (M =M ′) reduces to a proof of knowledge of equality of
representations: NIZK[M,M ′, s, r, s′, r′ : C1/C

′
1 = gs−s′ ∧ C2/C

′
2 = gs−s′hr−r′ ].

We can see that this proof works because C1/C
′
1 = M ′gs/(M ′gs

′
) = gs−s′ and

C2/C
′
2 = gshr/(gs

′
hr

′
) = gs−s′hr−r′ . If the second commitment were committed

to a distinct value, then C1/C
′
1 would equal Mgs/(Mgs

′
) = (M/M ′)gs−s′ which

the adversary could not prove was equivalent to gs−s′ .

Proof of multiplication of committed group elements. We can also prove that a
commitment Cc = (Cc,1, Cc,2) = (cgsc , gschrc) opens to the product c of two
group elements a, b committed to by two other group element commitments,
Ca = (Ca,1, Ca,2) = (agsa , gsahra) and Cb = (Cb,1, Cb,2) = (bgsb , gsbhrb) us-
ing eqrep-p∗. This can be done by having the verifier and prover compute D1 =
Cc,1/(Ca,1Cb,1) = cgsc/(bgsbagsa) andD2 = Cc,2/(Ca,2Cb,2) = gschrac/(gsahragsbhrb).
We can see that if the relation is true, c will be cancelled out by ab in D1, leading
to D1 being simply the result of an exponentiation of g (we’ll label this exponent
β1 = sc−sa−sb). Further, we see that if the relation is true,D2 is a Pedersen com-
mitment to β1. The prover then proves the relation: PoKeqrep-p

∗[sa, sb, sc, ra, rb, rc, β1, β2 :
D1 = gβ1 ∧D2 = gβ1hβ2 ] where β1 = sc − sa − sb and β2 = rc − ra − rb. We
can see that if D1 can be represented as gβ1 and D2 can be represented as a
Pedersen commitment to β1, we know that Cc is a commitment to ab.

Proof of exponentiation of committed group elements. We can also prove the
exponentiation of a GElG commitment using a scalar in a Pedersen commit-
ment. This can be done by using the eqrep-p∗ relation described in Section
2.3. An exponentiation proof takes group element commitments Ca to GElG el-
ement, a, and Cb to element b. It also takes in a Pedersen commitment Cy

to y. The goal of this proof is to prove that a = by. To do this, we prove that
PoKeqrep-p∗ [y, ry, β1, β2 : Cy = gyhry ∧Ca,1 = Cy

b,1g
β1 ∧Ca,2 = Cy

b,2g
β1hβ2 ] where

β1 = sa−ysb and β2 = ra−yrb and where Cy = gyhry , Ca,1 = agsa , Cb,1 = bgsb ,
Cb,2 = gsbhrb , and Ca,2 = gsahra .

Another notable feature of this commitment scheme is that the commitments
are homomorphic, i.e. if C = ComGElG

(M ; (s, r)) and C ′ = ComGElG
(M ′; (s′, r′)),

then C · C ′ = ComGElG
(MM ′; (s+ s′, r + r′)).
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Fig. 6.2: Commitments to GElG elements

SetupGElG
(1λ)→ params

1: Generate a group of prime order p,GElG = ⟨g⟩.
(or using an existing group e.g. from a bilinear pairing)

2: Generate a random element h ∈ GElG as the base for opening.
3: return params = (GElG , g, h)

CommitGElG (params,M ∈ GElG)→ C,O

4: s←$ Zp; r ←$ Zp

5: C ← (C1, C2) = (Mgs, gshr)
6: return C,O = (s, r)

Theorem 9. Our construction in Fig. 6.2 is binding.

Proof of Thm. 9 If a PPT adversary can produce (C,M,M ′, s, s′, r, r′) such
that C1 = Mgs = M ′gs

′
and C2 = gshr = gs

′
hr

′
where M ̸= M ′, we can

double open C2 as a Pedersen commitment. We see that if M ̸=M ′, then s ̸= s′

because otherwise M = C1/g
s = C1/g

s′ = M ′. Thus, s ̸= s′ and s, r, s′, r′ is a
valid double opening for C2 as a Pedersen commitment. The binding property of
Pedersen commitments relies on the computational Diffie-Hellman assumption
and so our GElG commitments are computationally binding.

Theorem 10. Our construction in Fig. 6.2 is hiding.

Proof of Thm. 10 For any M,C1, C2 ∈ GElG , we see that ∃s, r such that C1 =
Mgs, C2 = gshr. This is because g is a generator for GElG and thus ∃ s such that
gs = C1/M . Because C2 is a Pedersen commitment which is perfectly hiding,
there exists an r such that C2 = gshr for our picked s. Finally, because s is
chosen randomly from Zp, we see that any M is equally likely given C and thus
this commitment scheme is perfectly hiding.

So far, we’ve constructed commitments to elements of GElG and discussed
their associated proof protocols for opening and multiplication. Next we’ll use
these commitments and the intuition about their protocols to build commitments
to ElGamal ciphertexts. We build these commitments to ElGamal ciphertexts in
Fig. 6.3. Verifying these proofs is a direct application of the eqrep-p∗ verification
protocol. We put square brackets [·] around secret values for proof functions. We
can see in this ElGamal commitment scheme that we set it up by generating
Pedersen commitment bases, g, h, while labeling the parameters for the ElGa-
mal encryption scheme as g′ and h′. To commit, we form a GElG commitment to
each the two elements of an ElGamal ciphertext, c = (c1, c2), yielding C1, C2 as
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a commitment to c1 and C3, C2 as a commitment to c2. Because our GElG com-
mitments are perfect hiding and computationally binding to elements of GElG ,
our ElGamal commitments are perfectly hiding and computationally binding as
well.

Proofs over commitments to ciphertexts. Inspecting our construction, we see that
many of our proofs (ProveopenElG ,Prove

add
ElG ,Prove

multiply
ElG ) consists of simply perform-

ing the proof on both group elements. For example, to prove knowledge of an
opening of an ElGamal commitment, we open the Pedersen commitments of each
GElG commitment, C2 and C4. This allows an extractor to recover s1, s2, r1, r2
allowing the extractor to compute c1 = C1/g

s1 and c2 = C3/g
s2 . This is how

we described opening those GElG commitments earlier in this section. As an-
other example, we see in ProveaddElG that we want to prove that Cc is committed
to ciphertext c where c = ab and Cb is committed to ciphertext b and Ca is
committed to ciphertext a. We label this add “addition” because multiplying
two ciphertexts results in the addition of their encrypted messages. Intuitively,
Provemultiply

ElG requires the verifier to use the homomorphic properties of the com-
mitment scheme to multiply two group elements and then requires the prover
to prove that the resulting commitment is equivalent to Ca. We can see in this
algorithm that D1 = Cc,1/(Ca,1Cb,1) will be a power of g if (and only if) c = ab
because D1 = cgsc/(agsabgsb) = cgsc−sa−sb/(ab). The same is true for D3 and
D4.

Proving a ciphertext is an encryption of a Pedersen committed message. Proving
that a committed ciphertext is an encryption of a Pedersen committed message
somewhat breaks our ciphertext commitment scheme’s paradigm of simply per-
forming proofs on either element in the ciphertext. In this proof, ProveencElG , the
prover must prove that the commitment is correctly formed for the message y
(whereas in the other proofs, we assume the ciphertexts are correctly formed
and proofs can be created without knowledge of the randomness of ciphertexts).
Thus, we prove that c1 = (g′)ρc and c2 = kρc(h′)y where g′ and h′ are the gener-
ators for the encryption scheme (in the case of ElGamal, g′ = h′ but in Section
6.3 we’ll see that these may differ). We can see that verifying π ensures that the
prover knows c (along with its randomness and message) such that is correct
ElGamal encryption of y with randomness ρc and Cy is a scalar commitment
to y.

Theorem 11 (Hiding of the commitments in Fig. 6.3). Our commitments
to ElGamal ciphertexts in Fig. 6.3 are statistically hiding.

Proof (Proof of Thm. 11). We can see that (C1, C2) is identical to a GElG

commitment to c1 and (C3, C4) is identical to a GElG commitment to c2, we can
see that they statistically hide c1 and c2.

Theorem 12 (Binding of the commitments in Fig. 6.3). Our commit-
ments to ElGamal ciphertexts in Fig. 6.3 are computationally binding.
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Fig. 6.3: Commitments to ElGamal ciphertexts

SetupElG(1λ, paramsElG)→ params

parse paramsElG = (GElG , g′, h′)
1: (g, h)←$ GElG

2: params = (g, h, paramsElG)
3: return params

CommitElG(params, c = (c1, c2)) →
C,O

1: s1, s2 ←$ Zp; r1, r2 ←$ Zp

2: C ← (C1, C2, C3, C4)
= (c1g

s1 , gs1hr1 , c2g
s2 , gs2hr2)

3: return (C,O = (s1, s2, r1, r2))

ProveopenElG (params, C,M,O)→ π

parse C = (C1, C2, C3, C4),
O = (s1, s2, r1, r2)

1: π = NIZKeqrep [s1, s2, r1, r2 :
C2 = gs1hr1 , C4 = gs2hr2 ]

2: return π

ProveencElG(params, pk = k, Cc, Cy,
[c, ρc, y, Oc, Oy])→ π

parse params = (g, h, paramsElG)
paramsElG = (GElG , g′, h′)
Oc = (sc,1, sc,2, rc,1, rc,2)
c = ((g′)ρc , kρc(h′)y),
Oy = (ry)

1: π = NIZK[
sc,1, sc,2, sy, ρc, rc,1, rc,2, ry, y :

2: Cy = gyhry

3: ∧Cc,1 = (g′)ρcgsc,1

4: ∧Cc,2 = gsc,1hrc,1

5: ∧Cc,3 = kρc(h′)ygsc,2

6: ∧Cc,4 = gsc,2hrc,2 ]
7: return π

Provemultiply
ElG (params, Ca, Cb, Cy,
[c, a, b, y, Oa, Ob, Oy])→ π

parse Oa = (sa,1, sa,2, ra,1, ra,2)
Ob = (sb,1, sb,2, rb,1, rb,2)
Oy = (ry)

1: β1 = sa,1 − ysb,1
2: β2 = ra,1 − yrb,1
3: β3 = sa,2 − ysb,2
4: β4 = ra,2 − yrb,2
5: π = NIZK[y, ry, β1, β2, β3, β4 :
6: Cy = gygry

7: ∧Ca,1 = (Cb,1)
ygβ1

8: ∧Ca,2 = (Cb,2)
ygβ1hβ2

9: ∧Ca,3 = (Cb,3)
ygβ3

10: ∧Ca,4 = (Cb,4)
ygβ3hβ4 ]

11: return π

ProveaddElG(params, Ca, Cb, Cc,
[a, b, c, Oa, Ob, Oc])→ π

parse Oa = (sa,1, sa,2, ra,1, ra,2)
Ob = (sb,1, sb,2, rb,1, rb,2)
Oc = (sc,1, sc,2, rc,1, rc,2)

1: D1 ← Cc,1/(Ca,1 ∗ Cb,1)
2: D2 ← Cc,2/(Ca,2 ∗ Cb,2)
3: D3 ← Cc,3/(Ca,3 ∗ Cb,3)
4: D4 ← Cc,4/(Ca,4 ∗ Cb,4)
5: β1 = sc,1 − sa,1 − sb,1
6: β2 = rc,1 − ra,1 − rb,1
7: β3 = sc,2 − sa,2 − sb,2
8: β4 = rc,2 − ra,2 − rb,2
9: π = NIZK[β1, β2, β3, β4 :

10: D1 = gβ1

11: ∧D2 = gβ1hβ2

12: ∧D3 = gβ3

13: ∧D4 = gβ3hβ4 ]
14: return π

Proof (Proof of Thm. 12). We can see that (C1, C2) is identical to a GElG com-
mitment to c1 and (C3, C4) is identical to a GElG commitment to c2, thus, if a
PPT adversary can produce a double opening such that one of these commit-
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ments opens to some c′1 or c′2 in GElG , we obtain a double opening for our GElG

commitments.

Theorem 13 (Zero-knowledge of Fig. 6.3). Our protocols in Fig. 6.3 (ProveopenElG ,
ProveencElG , Provemultiply

ElG , and ProveaddElG) are zero-knowledge against any PPT ad-
versary.

Proof (Proof of Thm. 13). We can see that in each of these NIZKs, we simply
return a proof computed from the eqrep−p∗ protocol. Thus, we can use the
simulator for this protocol to produce proofs in the zero knowledge games. Thus,
if a PPT adversary can distinguish these simulated proofs from real proofs, we
can break the zero knowledge of the eqrep−p∗ protocol.

Theorem 14 (Black box knowledge extraction of Fig. 6.3). Given a
PPT adversary that can produce a proof that verifies for our protocols in Fig.
6.3 (ProveopenElG , ProveencElG , Provemultiply

ElG , and ProveaddElG) there exists an extractor
with black-box access to the adversary that can extract a witness that proves the
relations true.

Proof (Proof of Thm. 14). Similar to our proof of zero-knowledge for these
protocols, because these protocols simply return eqrep-p∗ proofs, we can use the
black-box extractor for these proofs to extract the witnesses. This extractor is
described in Section 2.3.

6.3 Commitments to GCS Elements and Camenisch-Shoup
Ciphertexts

We will now explain our commitments to Camenisch-Shoup ciphertext. To con-
struct commitments to Camenisch-Shoup ciphertexts, we need to construct com-
mitments to the group in which elements of Camenisch-Shoup ciphertexts lie.
To construct efficient commitments, we need to use a group that retains similar
algebraic structure to Camenisch-Shoup ciphertexts. We accomplish this by us-
ing Damgård-Fujisaki commitments [DF02]. Similar to Pedersen commitments
for ElGamal, we adapt them to commit to elements of GCS .

Modifications to Damgård-Fujisaki Damgård and Fujisaki [DF02] construct a
commitment scheme to integers which works over a generic group G as long as
G is efficiently recognizable and sampleable and has certain properties. Mainly,
G must have hidden order. They then prove that the group Zn satisfies these
properties. We prove that QRn2 also has these properties and then use the
Damgård-Fujisaki commitment scheme over QRn2 as a building block to com-
mit to group elements of GCS to construct commitments to Camenisch-Shoup
ciphertexts. We also need to prove that Zn2 satisfies the properties outlined in
[DF02] in order for the proofs to be extractable. This is because QRn2 is not
efficiently recognizable and thus a malicious prover may submit a commitment
in this group. We do this in Section 6.3.
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Fig. 6.4: Simplified Damgård-Fujisaki commitments in QRn2

Setup(1λ)→ params :

1: Sample O(λ)-bit SG primes p′, q′ and compute p = 2p′+1, q = 2q′+1, n = pq.
2: Sample a random h′ ∈ Zn2 and compute h = (h′)2.
3: Compute g = hα where α←$ [2B+λ].
4: return params = (g, h)

Commit(params,m)→ (C,O) :

1: To commit to integer, m, compute: C = gmhrb
where r ←$ [2B+λ] and b = 1.

2: Compute the opening as O = (r, b).
3: return (C,O)

Proving that Damgård-Fujisaki commitments are secure for G = Zn2

Damgård and Fujisaki [DF02] list four properties sufficient for an abelian group
to create an integer commitment scheme. They then prove that the group Zn

satisfies these properties. We will prove these properties for the group QRn2 to
ensure our commitment scheme is secure.

Proof that Construction in Figure 6.4 is secure. We can see that the only differ-
ence between [DF02] and our scheme is that g and h are always in QRn2 . In our
modified setup, we simply square g and h, ensuring that they are in QR. In the
original scheme, h is sampled randomly from Zn2 and |QRn2 |/|Zn2 | = 1/4, thus,
there is a 1/4 chance in the original scheme that h is in QRn2 . In this case, our
modified scheme is identical to the original scheme. Thus, if an adversary can
defeat any security property of this hybrid scheme, they can defeat the original
scheme with non-negligible probability.

The assumptions required in [DF02] to prove their integer commitment scheme
secure are shown below. In [DF02] they provide a construction and prove that if
a group meets all four requirements, their construction is secure. We will modify
these requirements slightly and prove that Zn2 satisfies them. In these assump-
tions, C is some number which is super polynomial in the security parameter,
but smaller than the primes, p, q, p′, q′.

Damgård-Fujisaki commitment properties:

1. Strong root property - Let Adv be any PPT algorithm. After generating
the group with security parameter, λ, then, with a description of the group,
G, (without the trapdoor) and a random h ∈ G, Adv is tasked with outputting
y ∈ G and a number, t > 1, such that yt = h. The probability of this
occurring is negligible.
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2. Small order property - Let Adv be an PPT algorithm. With a description
of the group, G, Adv is tasked with outputting b ∈ G, σ ∈ Z such that b ̸= 1,
b2 ̸= 1, 0 < σ < C, and bσ = 1. The probability of this occurring is negligible.

3. No large even powers in orders - Any element in G of the form a2t has
odd order.

4. Many elements with only large prime factors in orders - If h is chosen
randomly in G, then theres is an overwhelming (1−O(2−λ)) probability that
the order of h has no prime factors less than C.

In [DF02], they prove that Zn satisfies these properties where n = pq and
p ≡ q ≡ 3(mod 4) and p, q are safe primes. p, q are not given to the adversary in
these assumptions.

There is an additional property that Damgård and Fujisaki do not explicitly
mention: the group needs to be efficiently decidable, i.e., given any encoding, a,
there must exist an algorithm such that f(a) = 1 if and only if a is an encoding
of an element of QRn2 . We see that QRn2 does not have this property, and
thus, we must also prove that these commitments are secure for Zn2 , which
does have this property. Because all proofs include an extraction of gshrb, then,
because the properties hold for Zn2 , and g, h ∈ QRn2 , no adversary can produce
a commitment and open or complete a proof such that gs, hr ̸∈ QRn2 . Thus
ensuring that gs is in QRn2 .

We now prove that these properties hold for Zn2 with n formed the same
way as in Damgård-Fujisaki [DF02]. If these properties hold in Zn2 , they will
also hold for QRn2 (except for DF Property 4). This is because QRn2 is a
subgroup of Zn2 and so any elements of QRn2 output by an adversary would
still work for Zn2 . In DF Property 4, since the element is chosen randomly, we
don’t immediately get that property holding in Zn2 means it holds in QRn2 . But,
because #QRn2/#Zn2 = 1/4, there is a non-negligible change that a random
element chosen from Zn2 will also be in QRn2 , thus if DF Property 4 holds for
Zn2 , it also holds for QRn2 .

We review the strong RSA assumption as shown in [DF02] in Assumption 1.
And prove a useful lemma (Lemma 5).

One more useful property of this modified scheme is that we see that an
adversary cannot double open a commitment for distinct (r, b) and (r′, b′). This
is notable since binding only requires that the adversary cannot open a com-
mitment to distinct s, s′. We can see that we can modify the scheme such that
h = gα and the two schemes are indistinguishable. This is because both h and g
are random elements in QRn2 and thus they generate QRn2 with high probabil-
ity. Since α is much larger than the order of QRn2 , g and h are indistinguishable
from random elements in QRn2 and thus we can simply swap them in setup to
make the scheme binding on r. Since s and r are now binding, b is uniquely
determined.

Assumption 1 (Strong RSA assumption[DF02]) Given n = pq (where |n| =
O(2λ)), and a number, t ∈ Zn, no PPT algorithm can find a pair, v, e such that
ve = t and e > 1 with non-negligible probability in λ.
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Lemma 5. If a = b mod n2, then a = b mod n.

Proof of Lemma 5 Take values a, b ̸= 0 ∈ Zn2 such that a = b mod n2. This
implies that a = mn2 + d, b = on2 + d for some m, o ∈ Z where 0 < d < n2.
This implies that a = m′n + d, o′n + d where m′ = mn, o′ = on. If we take the
remainder of d mod n, as d = ln + ρ for some l ∈ Z where 0 < ρ < n, we find
that the following equation holds: a = (m′ + l)n+ ρ, (o′ + l)n+ ρ. Since division
with remainder is unique for 0 ≤ ρ < n, we’ve shown that a and b are equal mod
n.

Proof of DF Property 1 for Zn2 . Assume we have a PPT algorithm that given
t ∈ Zn2 can produce a g ∈ Zn2 , y such that gy = t mod Zn2 . We are then tasked
with creating a reduction to strong RSA in Zn. Let our reduction take t in Zn

and give t + bn mod n2 to this adversary where b is a random number drawn
from 0 to n−1. The adversary then provides g, y such that gy = (t+bn) mod n2.
Since this equality holds in Zn2 , it holds in Zn as well due to Lemma 5. We can
see that t + bn = t mod n. Thus gy = t mod n. Lastly, we have to prove that
(t + bn) is distributed indistinguishably from a uniform drawing from Zn2 . We
can see that t+bn can “reach” almost every element of Zn2 since if t = n−1 and
b = n−1, then t+bn = n−1+(n−1)n = n−1+n2−n = n2−1 and if t = 1, b = 0,
we get 1. Then, we see that there are no duplicates of t + bn across this range
since no t, b, t′, b′ ∈ {0, ...,m − 1} exist such that t + bn = t′ + b′n. There are
(n − 1)n possible possible combinations of t and b from our ranges. Thus, each
value mapped to by t + bn uniformly maps to a random element of Zn2 except
for values of Zn2 where n is a factor. There are only n samples of Zn2 that are
divisible by n out of a total of n2 instances and thus the probability of drawing
one of these samples is negligible and our assumed strong RSA adversary in Zn2

must be able to solve problems when the challenge is not a multiple of n with
non-negligible probability.

Proof of DF Property 2 for Zn2 . The only possible orders of elements in Zn2 are
2, 4, p, q, p′, q′ or some product of these. If the adversary outputs a b with σ = 2,
we see that is must be that b2 = 1 and thus this is not a valid solution. If σ is
a multiple of p, q, p′, or q′, then σ > C and thus this solution doesn’t work for
this property. Thus, the only possible values for σ is 4. We can see that, in this
case, if b2 is a non-trivial root of 1 (i.e. b2 ̸= −1) we can factor by rewriting
(b − 1)(b + 1) = 0 mod n2 thus ensuring that taking the gcd of b − 1 or b + 1
with p, q, p′, or q′ yields a factorization. We see that if b4 = 1 and b2 = −1, this
must be true in Zp and Zq due to the Chinese remainder theorem. We can see
that because p ≡ 3 mod 4, it must be that p = 4k+3 and thus (p− 1)/2 is odd
and so (−1)(p−1)/2 = −1 implying that (−1) is not a quadratic residue mod p.
Thus, if b4 = 1 but b2 = −1, this would be a contradiction and thus b2 must be
a non-trivial square root allowing us to factor.

Proof of DF Property 3 for Zn2 . We see that the order of ϕ(n2) is 2pqp′q′ and
thus, if a2t has even order, then a has order 4k but 4 ∤ 2pqp′q′ and thus does not
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Fig. 6.5: GCS-DF-Commitments

SetupG(1
λ)→ (params, τ)

1: Sample O(λ)-bit SG primes p′, q′ and compute p = 2p′+1, q = 2q′+1, n = pq.
2: Sample a random h′ ∈ Zn2 and compute h = (h′)2.
3: Compute g = hα where α←$ [2B+λ].
4: return params = (n, g, h), τ = (p, q, p′, q′)

ComG(params,M)→ C,O

1: s←$ [2B+λ]; r ←$ [2B+λ]; a←$ {−1, 1}; b←$ {−1, 1}
2: C = (C1, C2) = (Mgsa, bgshr)
3: return C,O = (s, r, a, b)

divide the order of the group and thus we have a contradiction and a2t cannot
have even order.

Proof of DF Property 4 for Zn2 . If we find a non-trivial square root of 1, we
factor and we showed in the proof of DF Property 2 that if we find a 4-th root
of 1, it must be that when we square the value, we can factor. Thus, these must
be hard to sample, otherwise, it would be trivial to factor. Thus, the only orders
of sampleable elements (by a PPT algorithm) must be some product of p, q, p′
and q′. We can simply set C < p, q, p′, q′ and p, q, p′, q′ ≈ O(2λ) to satisfy this.

Next, by employing Damgård-Fujisaki commitments, we can construct a
scheme for committing to elements of GCS . We show this scheme in Fig. 6.5.
We refer to such commitments as GCS-DF-Commitments since they commit to
elements of GCS using Damgård-Fujisaki commitments as a building block. We
can see that these GCS commitments are multiplicatively homomorphic, i.e. if
you take two GCS commitments, c = (c1, c2) committed to element, M and
d = (d1, d2) committed to element, N then if you compute their pair-wise mul-
tiplication: e = (c1 ∗ d1, c2 ∗ d2), the resulting commitment will be committed to
M ∗N with opening information sc + sd, rc + rd, ac ∗ ac, bc ∗ bc.

Proofs of hiding and binding for GCS-DF-commitments in Fig. 6.5 We
provide number theory background in Appendix A.

Hiding proof for Fig. 6.5. We can see that since n = pq where p, q are safe
primes, then g with overwhelming probability generates QRn2 due to Lemma 7.
Let’s create a hybrid scheme where instead of choosing s, we choose u←$ QRn2 .
The hybrid scheme keeps Setup identical.

If s is large, gs is indistinguishable from a random element of QRn2 since
s is much larger than ord(g) (Lemma 10). In Comhybrid

G , a challenger needs to
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Fig. 6.6: GCS-DF-Commitments - hybrid scheme

Comhybrid
G (params,M)→ C,O

1: u←$ QRn2 ; r ←$ [2B+λ]; a←$ {−1, 1}
2: C = (C1, C2) = (Mua, uhr)
3: return C,O = (u, r)

know the factorization of n to sample randomly from QRn2 but because the
indistinguishiability holds statistically, it doesn’t matter that our hybrid must
know the factorization of n. Thus our hybrid commitment algorithm, Comhybrid

GCS

is indistinguishable from our original algorithm, ComGCS
in Fig. 6.5.

To prove that our commitments are hiding, we need to prove that for any
M1,M2 ∈ GCS , the chance that this commitment, C is created from an honest in-
vocation of ComGCS

is equal, i.e. |Pr[C|Comhybrid
GCS

(M1) = C]−Pr[C|Comhybrid
G (M2) =

C]| ≤ negl(λ).
First, we’ll prove that for an honestly created C1, either C1 ∈ QRn2 or C1 ∈

QNR+1
n2 . If C1 ̸∈ QRn2 , then we know that if M ̸∈ QRn2 , then M ∈ QNR+1

n2 due
to Lemma 8 and our number theory background. We also know that a ∈ QRn2

or a ∈ QNR+1
n2 due to Lemma 9 (and because 1 ∈ QRn2). Thus, due to Lemma

12, Mua is either in QRn2 or QNR+1
n2 and thus if C1 is honestly created and

C1 ̸∈ QRn2 , then C1 ∈ QNR+1
n2 .

Next, we’ll prove that a (u, a) pair exists for any M such that C1 = Mua.
To do this, we’ll examine possible subgroups of Zn2 in which C1/M lies and
find a (u, a) for any possible group. If C1,M ∈ QRn2 then C1/M ∈ QRn2 due
to the fact that QRn2 is a group and thus 1/M ∈ QRn2 and Lemma 12. If
C1 ∈ QNR+1

n2 and M ∈ QRn2 , we see that C1/M is in QNR+1
n2 due to Lemma 12.

If C1 ∈ QRn2 and M ∈ QNR+1
n2 , then −M ∈ QRn2 due to Lemmas 8 and 9 and

thus (−1)C1/M ∈ QRn2 and due to Lemma 8, C1/M ∈ QNR+1
n2 .

Now we’ll look at two cases: (1): C1/M ∈ QRn2 and (2): C1/M ∈ QNR+1
n2 . In

case (1), we set u = C1/M and a = 1 and find that this ensures that C1 =Mua.
In case (2), we set u = (−1)C1/M and a = −1. We know that (−1)C1/M ∈ QRn2

due to Lemmas 8 and 9. Thus, we find that C1 =Mua. Thus, a (u, a) pair exists
such that C1 =Mua for any M .

Thus far, we’ve proven that a (u, a) exists to make any C,M a valid com-
mitment/message pair. Next, we’ll prove that the probability of any C1 being
output by an honest invocation of Comhybrid

G is equally probable for a given M .
We can see that the possible values of C1 are QRn2 ∪QNR+1

n2 . We can see that if
Mua =Mu′a′ and (u, a) ̸= (u′, a′) then we have that aM/u = a′M/u′. If a = a′,
then u = u′ and thus for (u, a) ̸= (u′, a′) to be true it must be that a ̸= a′. Thus
−M/u = M/u′. This implies that u′ = −u, but we know that −u is not in
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QNR+1
n2 (since it is sampled randomly from QRn2) and thus, by contradiction,

no u, u′ ∈ QRn2 can be chosen such that u, u′, a, a′ exists and Mua =Mu′a′ but
(u, a) ̸= (u′, a′). There are 2∗#QRn2 choices for (u, a) and we see that #QRn2 =

#QNR+1
n2 due to Lemma 13. Thus, Comhybrid

G (M ; ·) must be bijective over the
space of possible values of C1 and since (u, a) are chosen uniformly, we see that
Pr[C1|Comhybrid

G (M1) = C] = Pr[C1|Comhybrid
G (M2) = C]. Finally, because the

element C2 in our scheme is a Damgård-Fujisaki commitment, we know that it
hides any s and thus our hybrid commitment (in Construction 6.6) hides any u
value. Thus |Pr[C|Comhybrid

G (M1) = C]− Pr[C|Comhybrid
G (M2) = C]| ≤ negl(λ).

Binding proof for GCS-DF-commitments in Fig. 6.5. If a PPT adversary can
open a commitment C = (C1, C2) to two values M,M ′ ∈ {|x| : x ∈ GCS}
(providing openings, s, s′, a, a′, r, r′, b, b′) such that M ̸=M ′, we see that it must
be that C1/g

s ̸= C1/g
s′ . If s ̸= s′, we see that C2, (s, r, b), (s

′, r′, b′) is a double
opening Damgård-Fujisaki commitment scheme. Thus, s = s′, we see that it
must be that a ̸= a′. Because a ∈ {−1, 1} we see that M = −M ′. But, we
see that both M,M ′ ∈ {|x| : x ∈ GCS} where GCS is {|x| : x ∈ QRn2}. We
see that that either M ̸∈ GCS or M ′ ̸∈ GCS thus contradicting the assumption
that both M,M ′ are both in GCS . Thus, no a ̸= a′ exists when s = s′ such
that C1 = Mua = Mu′a′ and thus it is impossible for a PPT adversary to
double open our GCS commitments without double opening a Damgård-Fujisaki
commitment.

Auxiliary proofs for commitments to GCS In this section, we describe pro-
tocols that we can use to create proofs of opening, multiplication, and exponen-
tiation of elements in GCS which can be verified using only their commitments.

Proof of knowledge of opening for GCS-DF-commitments We can see that the
second element of a GCS commitment is simply an integer commitment from
Damgård-Fujisaki [DF02]. If we use their opening protocol to create a proof
of opening of the second part of the commitment, this suffices as a proof of
opening for a GCS commitment as we can extract s, r, b from C2 and compute:
M = C1/(g

s).

Proof of multiplication of GCS-DF-commitments. We can perform a proof of
knowledge for multiplication of GCS elements over their commitments by uti-
lizing homomorphic property of the commitments. This proof operates over
CM , CN , CP committed to GCS elements M,N,P , and proves that M = N ∗
P ∈ GCS . Examining these commitments, we see that CM = (CM,1, CM,2) =
(MaMg

sM , bMg
sMhrM ), CN = (CN,1, CN,2) = (NaNg

sN , bNg
sNhrN ), and CP =

(CP,1, CP,2) = (PaP g
sP , bP g

sP hrP ). To begin this proof, both the prover and the
verifier computeD1 = CM,1/(CN,1CP,1) andD2 = CM,2/(CN,2CP,2). The prover
then uses eqrep−n∗ (from Section 2.3) to prove the relationR((γ1, γ2, β1, β2), (D1,
D2)) = 1 iff D1 = β1g

γ1 ∧ D2 = β2g
γ1hγ2 ∧ β1 ∈ {−1, 1} ∧ β2 ∈ {−1, 1}. The

Prover uses γ1 = sM − sN − sP and γ2 = rM − rN − rP to satisfy this relation.
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We see that this implies that D1 is a commitment to 1 ∈ GCS . This is because
β1, β2 ∈ {−1, 1} which does not flip the sign of the element that GCS is com-
mitted to (because −1 ̸∈ GCS). Thus, this proves that dividing CM by CN ∗CP

cancels out the elements they are committed to and thus proves they are equal.

Proof of exponentiation of GCS-DF-commitments with Damgård-Fujisaki com-
mitments. We can again prove this with eqrep−n∗ from Section 2.3. This proof
operates over two GCS commitments CM , CN to GCS elements M,N and one
scalar commitment Cy to scalar y and proves that N = My. Examining these
commitments, we see that CM and CN are formed just like in our multipli-
cation proof above and Cy = gyhry . This can be proven with the relation
R((γ1, γ2, β1, β2), (CM , CN , CP )) = 1 iff CM,1 = β1C

y
N,1g

γ1∧CM,2 = β2C
y
N,2g

γ1hγ2∧
β1 ∈ {−1, 1}∧β2 ∈ {−1, 1}. The Prover uses γ1 = sM −ysN and γ2 = rM −yrN
to satisfy this relation. Because CM,1 = β1C

y
N,1g

γ1 and CM,2 = β2C
y
N,2g

γ1hγ2 ,
we know that M = ±Ny. Thus, M = Ny ∈ GCS since only either Ny or −Ny

exists in GCS .

Remark 1 (Reducing the size of scalars.). Our protocols for commitments must
have a have a maximum size of the witnesses (the committed values). We label
this as T . This bound ensures that our ptocotols remain zero knowledge. For our
Camenisch-Shoup scheme, this will need to be T = Zn since Zn is our message
space for these ciphertexts. We run into a problem with GCS commitments that
we didn’t have with GElG commitments here because the scalar commitments
we use (Damgård-Fujisaki commitments) do not directly commit to the message
space of Camenisch-Shoup commitments. Thus, in order to keep exponents small
after an exponentiation proof, we’ll also include a proof of modular arithmetic
over n in our exponentiation proof. This ensures that the values needed in the
proofs never grow large enough to violate our zero knowledge property. This proof
of moduluar arithmetic works by computing a commitment to n and then proving
that a remainder of n in a commitment is equal to the original commitment
summed with a multiple of n. This ensures that honest provers can reduce the
size of the commitments while still proving equivalency mod n. As an example,
let a prover have two GCS commitments and one scalar commitment, CM =
(MgsMaM , g

sMhrM ), CN = (NgsNaN , g
sNhrN ), Cy = gyhr. To prove that N =

My mod n, the prover will construct GCS commitment CP = (PgsP aP , g
sP hrP )

where P = My and CQ = (QgsQaQ, g
sQhrQ) where Q = Mn. They will then

prove that N = My mod n ∗ (Mn)k where k = y − (y mod n). This can be
done generically using eqrep−n∗ described in Section 2.3. Notice that a prover
could select an incorrect k value in this proof. This is not a problem because
larger scalars only affects zero knowledge and not soundness. Thus any honestly
created commitments and proofs will remain zero knowledge and any malicious
proofs will remain sound.

Commitments to Camenisch-Shoup encryptions Since we constructed
commitments to elements of G along with their associated proof protocols, we
can use these commitments to build the construction in Fig. 6.7. This figure uses
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eqrep-n∗ from Section 2.3 to prove relations. We also leave b and a values out of
our Camenisch-Stadler witnesses when is it clear from context (the b values in
relations are combinations of the a and b values from witnesses). While we don’t
explicitly invoke ComGCS

, we see that in the ComCS scheme, C1, C2 is exactly
a GCS commitment to the first element of the ciphertext, c1, and C3, C4 is a
GCS commitment to the second element, c2. Realizing this, we can then see that
our proof protocols (ProveencCS , Provemultiply

CS , ProveexpCS , and ProveopenCS ) are similar
to the proofs over GCS commitments that we discussed earlier in this section.
We prove Theorems 15, 16, and 17 in Section 6.3.

Theorem 15 (Hiding and binding of the commitments in Fig. 6.7).
Our commitments to Camenisch-Shoup ciphertexts in Fig. 6.7 are statistically
hiding and computationally binding.

Theorem 16 (Zero-knowledge of proofs in Fig. 6.7). Our protocols in Fig.
6.7 (ProveopenCS , ProveencCS , Provemultiply

CS , and ProveaddCS ) are zero-knowledge against
any PPT adversary.

Theorem 17 (Black box knowledge extraction of proofs in Fig. 6.7).
Given a PPT adversary that can produce a proof that verifies for our protocols in
Fig. 6.7 (ProveopenCS , ProveencCS , Provemultiply

CS , and ProveaddCS ) there exists an extractor
with black-box access to the adversary that can extract a witness that proves the
relations true.

Proofs for commitments to Camenisch-Shoup ciphertexts We split Thm.
15 into two theorems, Thm. 18 and Thm. 19.

Theorem 18 (Hiding of the commitments in Fig. 6.7). Our commitments
to Camenisch-Shoup ciphertexts in Fig. 6.7 are statistically hiding.

Proof (Proof of Thm. 18). We can see that (C1, C2) is identical to a GCS com-
mitment to c1 and (C3, C4) is identical to a GCS commitment to c2, we can see
that they statistically hide c1 and c2.

Theorem 19 (Binding of the commitments in Fig. 6.7). Our commit-
ments to Camenisch-Shoup ciphertexts in Fig. 6.7 are computationally binding.

Proof (Proof of Thm. 19). We can see that (C1, C2) is identical to a GCS com-
mitment to c1 and (C3, C4) is identical to a GCS commitment to c2, thus, if a
PPT adversary can produce a double opening such that one of these commit-
ments opens to some c′1 or c′2 in GCS , we obtain a double opening for our GCS

commitments.

Proof (Proof of Thm. 16). We can see that in each of these NIZKs, we simply
return a proof computed from the eqrep−p∗ protocol. Thus, we can use the
simulator for this protocol to produce proofs in the zero knowledge games. Thus,
if a PPT adversary can distinguish these simulated proofs from real proofs, we
can break the zero knowledge of the eqrep−p∗ protocol.
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Fig. 6.7: Commitments to Camenisch-Shoup ciphertexts

SetupCS (1
λ, paramsCS )→ params

1: parse paramsCS = (Cp, g′, h′)
2: g, h←$ GCS

3: params = (G, g, h, paramsCS )
4: return params

CommitCS (params, c)→ C,O

5: parse c = (c1, c2)
6: s1, s2 ←$ [2B+λ]
7: r1, r2 ←$ [2B+λ]
8: a1, a2, b1, b2 ←$ {−1, 1}
9: C1 ← a1c1g

s1

10: C2 ← b1g
s1hr1

11: C3 ← a2c2g
s2

12: C4 ← b2g
s2hr2

13: C ← (C1, C2, C3, C4)
14: O ← (a1, a2, s1, s2, r1, r2, b1, b2)
15: return (C,O)

Provemultiply
CS (params, Ca, Cb, Cc,

[a, b, c, Oa, Ob, Oc])→ π

16: parse Ca = (Ca,i)i∈[4]

17: Cb = (Cb,i)i∈[4]

18: Cc = (Cc,i)i∈[4]

19: Oa = (aa,i, sa,i, ra,i, ba,i)i∈[2]

20: Ob = (bb,i, sb,i, rb,i, bb,i)i∈[2]

21: Oc = (bc,i, sc,i, rc,i, bc,i)i∈[2]

22: ∀i ∈ [4], Di ← Cc,i/(Ca,i ∗ Cb,i)
23: γ1 ← sc,1 − sa,1 − sb,1
24: γ2 ← rc,1 − ra,1 − rb,1
25: γ3 ← sc,2 − sa,2 − sb,2
26: γ4 ← rc,2 − ra,2 − rb,2
27: β1 ← ac,1/(aa,1 ∗ ab,1)
28: β2 ← bc,1/(ba,1 ∗ bb,1)
29: β3 ← ac,2/(aa,2 ∗ ab,2)
30: β4 ← bc,2/(ba,2 ∗ bb,2)
31: π = NIZK[{γi, βi}i∈[4] :
32: D1 = β1g

γ1

33: ∧D2 = β2g
γ1hγ2

34: ∧D3 = β3g
γ3

35: ∧D4 = β4g
γ3hγ4

36: ∧ {βi}i∈[4] ∈ {−1, 1}]
37: return π

ProveopenCS (params, C, [M,O])→ π

1: parse C = (C1, C2, C3, C4),
2: O = (a1, a2, s1, s2, r1, r2, b1, b2)
3: π = NIZK[O :

C2 = b1g
s1hr1 ∧ C4 = b2g

s2hr2

∧ b1 ∈ {−1, 1} ∧ b2 ∈ {−1, 1}]
4: return π

ProveexpCS (params, Ca, Cb, Cy,
[a, b, y, Oa, Ob, Oy, by, {bi}i∈[4]])→ π

5: parse Ca = (Ca,i)i∈[4]

6: Cb = (Cb,i)i∈[4]

7: Oa = (aa,i, sa,i, ra,i, ba,i)i∈[2]

8: Ob = (bb,i, sb,i, rb,i, bb,i)i∈[2]

9: γ1 ← sa,1 − ysb,1
10: γ2 ← ra,1 − yrb,1
11: γ3 ← sa,2 − ysb,2
12: γ4 ← ra,2 − yrb,2
13: β1 ← aa,1/ab,1

14: β2 ← ba,1/bb,1
15: β3 ← aa,2/ab,2

16: β4 ← ba,2/bb,2
17: π = NIZK[{γi, βi}i∈[4] :
18: Cy = byg

ygry

19: ∧ Ca,1 = b1(Cb,1)
ygγ1

20: ∧ Ca,2 = b2(Cb,2)
ygγ1hγ2

21: ∧ Ca,3 = b3(Cb,3)
ygγ3

22: ∧ Ca,4 = b4(Cb,4)
ygγ3hγ4

23: ∧ βy, β1, β2, β3, β4 ∈ {−1, 1}]
24: return π

ProveencCS (params, pkAH = k, Ca, Cy,
[a, ra, y, Oa, Oy, by, {bi}i∈[4]])→ π

25: parse Ca = (Ca,i)i∈[4]

26: Oa = (aa,i, sa,i, ra,i, ba,i)i∈[2]

27: π = NIZK[Oa, sy, ra, ry, y :
Cy = byg

yhry

∧ Ca,1 = b1(g
′)ragsa,1

∧ Ca,2 = b2g
sa,1hra,1

∧ Ca,3 = b3k
ragygsa,2

∧ Ca,4 = b4g
sa,2hra,2

∧ by, b1, b2, b3, b4 ∈ {−1, 1}]
28: return π
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Proof (Proof of Thm. 17). Similar to our proof of zero-knowledge for these
protocols, because these protocols simply return eqrep-p∗ proofs, we can use the
black-box extractor for these proofs to extract the witnesses. This extractor is
described in Section 2.3.

7 Discussion on Non-frameability vs. Deniability

Non-frameability is a desirable feature, but it is fundamentally at odds with
deniability. In a deniable system, data may be authenticated at the moment
when it is received, but this authentication information quickly becomes useless.
This way, Alice cannot use her authenticated transcript from a conversation with
Bob to prove to a third party what Bob did or did not say. Typically, to define
deniability, one would explicitly give Alice an algorithm to “frame” Bob, i.e., to
authenticate any transcript on his behalf. That way, a real transcript will not
be any more believable than a bogus one, and Bob may convincingly deny ever
talking to Alice. Deniability of a ciphertext’s origin, for example, is valuable for
encrypted messaging systems, especially when users might face coercion, and
in other contexts [PEB21,GKL21]. Kohlweiss and Miers [KM15] attempted to
address the question whether the properties of non-frameability and deniability
can both be achieved together and reached disappointing conclusions, as did
Bartusek et al. [BGJP23].

In a system like PPBs, deniability would allow for an efficient algorithm
for creating a convincing-looking escrow that would decrypt to any value the
algorithm takes as input. A deniable PPB would give an auditor a meaningful
ability to monitor the system only so long as it trusts the escrow recipients
that they did not make up the escrows but in fact collected them as part of
a legitimate transaction. It may be an interesting direction to pursue in future
work if well-motivated in practice.

In this work, however, similarly to Bartusek et al. [BGJP23], we prioritized
non-frameability and thus abandoned deniability, because, in our view, systems
like ours that are designed to detect illegal activity require not only the ability to
identify a watchlisted user’s actions but also the means to only convince a judge
of these actions if they have in fact taken place. It is more important to us that
innocent users cannot be credibly accused of wrongdoing than that perpetrators
be able to deny theirs activities.

8 Retrospective Blueprints and Future work

The blueprint scheme of [KLN23] requires that the auditor fixes the value x and
posts the resulting pkA to the user before any targeted transactions occur.

In this section we discuss a (weak) version of the retrospective case. In this
new scheme, let xt be the auditor’s information at time t. As before, users have
long-term identity information yid, but users now also have transaction infor-
mation yt at time t. In the watchlist use-case of retrospective blueprints, the
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watchlist xt can evolve, and future matches with it at time t can reveal infor-
mation yt′ about transactions that have occurred earlier, say, at time t′, for
t′ ≤ t.

In a (P, f)-retrospective blueprint scheme the identity information yid and
transaction information yt of a user are evaluated on both a predicate P (xt, yid, yt)
and a function f(yid, yt).

Let n be the considered lifetime of the system. The guarantees for the user
are that, if none of the predicates P (x1, yid, y1), . . . , P (xn, yid, yn) are true, no in-
formation about yid or any of the transactions y1, . . . , yn is revealed (except that
these predicate evaluations are false). However, if any P (xt, yid, yt), 1 ≤ t ≤ n is
true, then only f(yid, y1), . . . , f(yid, yn) is revealed.10 The additional secondary
filtering process offered by f is in contrast to leaking the seed of a CBDC scheme,
which would immediately deanonymize all of a users transactions.11

Another downside of using blueprints in the context of CBDCs is that even
if suspected users turn out to be innocent after investigation, and their iden-
tity subsequently removed from the suspect list, their long-term key k would
nevertheless remain under the control of the auditor, meaning that they remain
traceable indefinitely. When a scheme protects former suspects’ privacy after
they have been removed from the watchlist, we say it has post-investigation pri-
vacy. Formally, if the last time the predicate is true is t, then a post-investigation
private retrospective blueprint scheme only reveals f(yid, y1), ..., f(yid, yt) about
the user and their transaction.

While the retrospective property of blueprints is a tool for auditors to scru-
tinize past transactions of individuals flagged on the watchlist, conversely, post-
investigation privacy ensures the protection of future messages or transactions
if the suspect recovers from a compromise or is removed from the watchlist after
investigation. Although seemingly contradictory, we believe that achieving both
retrospective access and post-investigation privacy is feasible building on our
proposed blueprint scheme. To realize this, users would need to update keys in
a manner that only allows for the derivation of old keys.

Another important avenue of future work is to incorporate blueprint schemes
into larger cryptographic systems like anonymous credential systems and group
signature schemes. Users should be made cognizant of the trade-offs in security
and privacy that blueprint schemes entail, especially when being used in the

10 In order to achieve strong privacy via a simulation-based notion, escrows of non-
suspicious users must be independent of the user’s transaction information. To avoid
the need for expensive non-committing encryption, we provide the simulator either
with no information and a promise that P is always 0, or always provide f(yid, yt).
We refer to this notion as non-adaptive privacy against dishonest auditors.

11 The function f(yid, yt) is a relatively more specific function that only reveals infor-
mation based on the user identity and transactions. A more general way to express
the information revealed to the auditor once the key is revealed is f(xt, yid, yt) - the
information revealed would be dependent on both the auditor input xt as well as the
user information yid and yt. We instead use f(yid, yt) here for ease of understanding
and presentation.
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context of larger systems. Careful analysis is required of these systems as a
whole to be able to provide concrete security guarantees to the end user.

Our work also introduced a completely new framework for verifiable com-
putation on additively-homomorphically encrypted data. We used it to improve
the realisation of the blueprint scheme and make it more efficient. Nonetheless,
this novel framework can be applied independently of the blueprint functionality
and in various other research settings. It will be particularly useful in improv-
ing the efficiency of schemes where there is a need to compute over committed
ciphertexts without opening them and proving and verifying correctness of com-
putation on encrypted data.

9 Acknowledgements

Anna Lysyanskaya and Scott Griffy were supported by NSF Grants 2312241,
2154170, and 2247305 as well as the Peter G. Peterson Foundation. Markulf
Kohlweiss and Meghna Sengupta were supported by Input Output (iohk.io)
through their funding of the University of Edinburgh ZK Lab. We’d also like
to acknowledge Victor Youdom Kemmoe for his helpful discussions.

References

BCL04. Endre Bangerter, Jan Camenisch, and Anna Lysyanskaya. A cryptographic
framework for the controlled release of certified data. In Security Protocols
Workshop, volume 3957 of Lecture Notes in Computer Science, pages 20–42.
Springer, 2004.

BCM05. Endre Bangerter, Jan Camenisch, and Ueli Maurer. Efficient proofs of
knowledge of discrete logarithms and representations in groups with hidden
order. In Serge Vaudenay, editor, PKC 2005, volume 3386 of LNCS, pages
154–171. Springer, Heidelberg, January 2005.

BdMW16. Florian Bourse, Rafaël del Pino, Michele Minelli, and Hoeteck Wee. FHE
circuit privacy almost for free. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 62–89.
Springer, Heidelberg, August 2016.

BG13. Stephanie Bayer and Jens Groth. Zero-knowledge argument for polyno-
mial evaluation with application to blacklists. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS,
pages 646–663. Springer, Heidelberg, May 2013.

BGJP23. James Bartusek, Sanjam Garg, Abhishek Jain, and Guru-Vamsi Policharla.
End-to-end secure messaging with traceability only for illegal content. In
Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V,
volume 14008 of LNCS, pages 35–66. Springer, Heidelberg, April 2023.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser, ed-
itor, ITCS 2012, pages 309–325. ACM, January 2012.

BL13. Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS
2013, pages 1087–1098. ACM Press, November 2013.



PPBs via Verifiable Computation 59

Boy. Dennis Boyle. The problem of “parallel construction” in
criminal investigations. https://www.boylejasari.com/
the-problem-of-parallel-construction-in-criminal-investigations/.
Accessed: 2024-02-13.

BV11. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS,
pages 97–106. IEEE Computer Society Press, October 2011.

CDN01. Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty com-
putation from threshold homomorphic encryption. In Birgit Pfitzmann, ed-
itor, EUROCRYPT 2001, volume 2045 of LNCS, pages 280–299. Springer,
Heidelberg, May 2001.

CFN90. David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In
Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 319–
327. Springer, Heidelberg, August 1990.

Cha90. David Chaum. Showing credentials without identification transferring sig-
natures between unconditionally unlinkable pseudonyms. In Jennifer Se-
berry and Josef Pieprzyk, editors, AUSCRYPT’90, volume 453 of LNCS,
pages 246–264. Springer, Heidelberg, January 1990.

CHK+06. Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyan-
skaya, and Mira Meyerovich. How to win the clonewars: Efficient periodic
n-times anonymous authentication. In Ari Juels, Rebecca N. Wright, and
Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages 201–210.
ACM Press, October / November 2006.

CHL05. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-
cash. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS,
pages 302–321. Springer, Heidelberg, May 2005.

CHL06. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Balancing ac-
countability and privacy using e-cash (extended abstract). In Roberto De
Prisco and Moti Yung, editors, Proceedings of the 5th International Con-
ference on Security and Cryptography for Networks (SCN), volume 4116 of
Lecture Notes in Computer Science, pages 141–155. Springer, 2006.

CL01. Jan Camenisch and Anna Lysyanskaya. An identity escrow scheme with
appointed verifiers. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of
LNCS, pages 388–407. Springer, Heidelberg, August 2001.

CL02. Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and ap-
plication to efficient revocation of anonymous credentials. In Moti Yung,
editor, CRYPTO 2002, volume 2442 of LNCS, pages 61–76. Springer, Hei-
delberg, August 2002.

CL04. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anony-
mous credentials from bilinear maps. In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 56–72. Springer, Heidelberg,
August 2004.

CS03. Jan Camenisch and Victor Shoup. Practical verifiable encryption and de-
cryption of discrete logarithms. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 126–144. Springer, Heidelberg, August 2003.

CV02. Jan Camenisch and Els Van Herreweghen. Design and implementation of
the idemix anonymous credential system. In Vijayalakshmi Atluri, editor,
ACM CCS 2002, pages 21–30. ACM Press, November 2002.

DD22. Nico Döttling and Jesko Dujmovic. Maliciously circuit-private FHE
from information-theoretic principles. Cryptology ePrint Archive, Report
2022/495, 2022. https://eprint.iacr.org/2022/495.

https://www.boylejasari.com/the-problem-of-parallel-construction-in-criminal-investigations/
https://www.boylejasari.com/the-problem-of-parallel-construction-in-criminal-investigations/
https://eprint.iacr.org/2022/495


60 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

DF02. Ivan Damgård and Eiichiro Fujisaki. An integer commitment scheme based
on groups with hidden order. In ASIACRYPT 2002, volume 2501 of LNCS,
2002.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of STOC 2009, pages 169–178, 2009.

GKL21. Matthew Green, Gabriel Kaptchuk, and Gijs Van Laer. Abuse resistant
law enforcement access systems. In Anne Canteaut and François-Xavier
Standaert, editors, EUROCRYPT 2021, Part III, volume 12698 of LNCS,
pages 553–583. Springer, Heidelberg, October 2021.

GKR08. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating
computation: interactive proofs for muggles. In Richard E. Ladner and
Cynthia Dwork, editors, 40th ACM STOC, pages 113–122. ACM Press,
May 2008.

GM82. Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to
play mental poker keeping secret all partial information. In 14th ACM
STOC, pages 365–377. ACM Press, May 1982.

Gov22. United States Government. Technical design choices for
a U.S. central bank digital currency system. https:
//www.whitehouse.gov/wp-content/uploads/2022/09/
09-2022-Technical-Design-Choices-US-CBDC-System.pdf, 2022.

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryp-
tion from learning with errors: Conceptually-simpler, asymptotically-
faster, attribute-based. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92. Springer, Hei-
delberg, August 2013.

HHKP23. Charlotte Hoffmann, Pavel Hubácek, Chethan Kamath, and Krzysztof
Pietrzak. Certifying giant nonprimes. In Alexandra Boldyreva and Vladimir
Kolesnikov, editors, PKC 2023, Part I, volume 13940 of LNCS, pages 530–
553. Springer, Heidelberg, May 2023.

IR90. K. Ireland and M.I. Rosen. A Classical Introduction to Modern Number
Theory. Graduate Texts in Mathematics. Springer, 1990.

KKS22. Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh. PEReDi:
Privacy-enhanced, regulated and distributed central bank digital currencies.
In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM
CCS 2022, pages 1739–1752. ACM Press, November 2022.

KL20. J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman &
Hall/CRC Cryptography and Network Security Series. CRC Press, 2020.

KLN23. Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen. Privacy-
preserving blueprints. In Carmit Hazay and Martijn Stam, editors, EURO-
CRYPT 2023, Part II, volume 14005 of LNCS, pages 594–625. Springer,
Heidelberg, April 2023.

KM15. Markulf Kohlweiss and Ian Miers. Accountable metadata-hiding escrow: A
group signature case study. PoPETs, 2015(2):206–221, April 2015.

KMV23. Dimitris Kolonelos, Mary Maller, and Mikhail Volkhov. Zero-knowledge
arguments for subverted RSA groups. In Alexandra Boldyreva and Vladimir
Kolesnikov, editors, PKC 2023, Part II, volume 13941 of LNCS, pages 512–
541. Springer, Heidelberg, May 2023.

LRSW99. Anna Lysyanskaya, Ron Rivest, Amit Sahai, and Stefan Wolf. Pseudonym
systems. In Howard Heys and Carlisle Adams, editors, Selected Areas in
Cryptography, volume 1758 of LNCS, 1999.

https://www.whitehouse.gov/wp-content/uploads/2022/09/09-2022-Technical-Design-Choices-US-CBDC-System.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/09/09-2022-Technical-Design-Choices-US-CBDC-System.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/09/09-2022-Technical-Design-Choices-US-CBDC-System.pdf


PPBs via Verifiable Computation 61

Lys02. Anna Lysyanskaya. Signature schemes and applications to cryptographic
protocol design. PhD thesis, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, September 2002.

OPP14. Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky.
Maliciously circuit-private FHE. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 536–553.
Springer, Heidelberg, August 2014.

Pai99. Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of
LNCS, pages 223–238. Springer, Heidelberg, May 1999.

PEB21. Charlotte Peale, Saba Eskandarian, and Dan Boneh. Secure complaint-
enabled source-tracking for encrypted messaging. In Giovanni Vigna and
Elaine Shi, editors, ACM CCS 2021, pages 1484–1506. ACM Press, Novem-
ber 2021.

Pie19. Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum,
editor, ITCS 2019, volume 124, pages 60:1–60:15. LIPIcs, January 2019.

Sch80. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. J. ACM, 27(4):701–717, oct 1980.

Sha90. Adi Shamir. IP=PSPACE. In 31st FOCS, pages 11–15. IEEE Computer
Society Press, October 1990.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
256–266. Springer, Heidelberg, May 1997.

Sta23. Jay Stanley. Paths toward an acceptable public digital currency.
ACLU White Paper, 2023. https://www.aclu.org/wp-content/uploads/
legal-documents/cbdc_white_paper_-_0882_0.pdf.

TBA+22. Alin Tomescu, Adithya Bhat, Benny Applebaum, Ittai Abraham, Guy
Gueta, Benny Pinkas, and Avishay Yanai. UTT: Decentralized ecash with
accountable privacy. Cryptology ePrint Archive, Report 2022/452, 2022.
https://eprint.iacr.org/2022/452.

A Number theory background

Lemma 6. (n+ 1) ∈ QRn2

Proof of Lemma 6. In Ireland and Rosen’s textbook [IR90] Proposition 5.1.1
gives us that an element, a, in Zn2 if a quadratic residue iff a(p−1)/2 = 1( mod p)

and a(q−1)/2 = 1( mod q). We can see that (n+ 1)(p−1)/2 =
(p−1)/2∑

i=0

1(p−1)/2−i ·

n(p−1)/2−i = 1 + kn for some k. Since n is divisible by both p and q, this value
is simply 1 mod p and q. Thus, (n+ 1) is in QRn2 .

We label the Jacobi value of an element in Zm as Jm(x). The Jacobi symbols
is always Jm(x) ∈ {−1, 1} for all m,x. The Jacobi symbol behaves differently if
m is a prime or not. If m is a prime, we can compute this as Jm(x) = x(m−1)/2

mod m. Further, x is in QRm if and only if Jm(x) = 1. If m is composite, then
Jm(x) is efficiently computable without knowledge of its prime factors. Though,
computing Jp(x) for an RSA modulus n = pq is hard. Further, Jm(x) =

∏
Jpi

(x)
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where {pai
i }i∈[k] is the prime factorization of m. Lastly, x ∈ QRm if and only

if ∀i ∈ [k] : Jpi
(x) = 1. We label the set of elements such that Jm(x) = 1 but

x ̸∈ QRm as QNR+1
n2 .

Lemma 7 (Any element to the 2-nd power likely generates QRn2).
Formally, no PPT algorithm can produce an element a such that ⟨a2⟩ ≠ QRn2 .
As a corollary, we know that sampling a random element in QRn2 or squaring
a random element in Zn2 results in a generator of QRn2 .

Proof of Lemma 7. QRn2 is cyclic and thus every element in QRn2 can be
represented as gi for some g. We see that any gi doesn’t generate QRn2 when
i|#QRn2 . The order of QRn2 is pqp′q′ and thus, this only occurs when i is a
multiple of p, q, p′, q′. Thus, there are at most pqp′+pqq′+pp′q′+ qp′q′ elements
that don’t generate QRn2 . When we compare this to the total elements, we see:
(pqp′ + pqq′ + pp′q′ + qp′q′)/pqp′q′ = 1/q′ + 1/p′ + 1/p+ 1/q which is negligible
if p, q, p′, q′ are large.

Lemma 8. If x ̸= |x| (mod m) then Jp(x) = −Jp(|x|) for any prime p such
that p|m and p = 3 mod 4.

Proof of Lemma 8. For any x, if |x| ̸= x, then |x| = m − x. We see that

Jp(|x|) = (m − x)(p−1)/2 =
(p−1)/2∑

i=0

(
(p−1)/2

i

)
mi(−x)(p−1)/2−i = (−x)(p−1)/2 +(

(p−1)/2
1

)
(−x)(p−1)/2−1m + .... In this binomial expansion, we can see that all

terms for i > 0 are a multiple of m and thus vanish mod p since p|m. Thus, the
Jacobi symbol for m − x is (−x)(p−1)/2 = (−1)(p−1)/2(x)(p−1)/2 = (−1)(p−1)/2b
where b = x(p−1)/2. Since p = 3 mod 4, we see that this equals (−1)(k4+2)/2b =
(−1)k2+1b = −b. Thus Jp(x) = −Jp(|x|).

As a corollary of Lemma 8, we see that Jn2(x) for RSA modulus n = pq is the
same for x and |x| since if |x| ≠ x, Jn(x) = Jp(x)Jq(x) = (−1)Jp(|x|)(−1)Jq(|x|) =
Jn(|x|).

Lemma 9. (−1) ∈ QNR+1
n2 for RSA modulus, n.

Proof of Lemma 9. Since p = 3 mod 4, we can see that (−1)(p−1)/2 = (−1)(k4+2)/2 =
(−1)k2+1 = −1 for some k. Thus, Jp(−1) = Jq(−1) = −1 and thus (−1) ∈
QNR+1

n2 .

Lemma 10. If 2B > ord(g) then no PPT adversary running in time polynomial
to λ can distinguish distribution {gs : s←$ 2B+λ} from {u : u←$ ⟨g⟩} for any g
such that g ∈ Zn2 and ord(g) > 2.

We refer to [DF02] for a proof of Lemma 10.

Lemma 11. If x, x′ ∈ QRp and y, y′ ∈ QNRp then xy ∈ QNRp, xx′, yy′ ∈ QRp.

Lemma 12. For n = pq where p, q are safe primes, if x, x′ ∈ QRn2 and y, y′ ∈
QNRn2 then xy ∈ QNR+1

n2 , xx′, yy′ ∈ QRn2
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Lemma 13. #QRn2 = Zn2/4 and #QNR+1
n2 = Zn2/4.

Proofs of Lemmas 12, 11, and 13 are present in [KL20] (deriving Lemma 13
from [KL20] is a trivial exercise).

Lemma 14. The map: f : QRn2 → QNR+1
n2 defined by f : x 7→ (−1)x is bijec-

tive.

Proof of Lemma 14. We can see that (−1)x is n2 − x since n2 − x + x = 0.
Thus, this maps an element to it’s additive inverse. Because Zn2 is a group over
addition, inverses must exist and be unique for any non-zero element in Zn2 .
Thus, this map must be bijective since QRn2 ,QNR+1

n2 ⊂ Z∗
n2 .

B Examples of using eqrep

B.1 Constructing eqrep-p∗

In Alg. 7 we show how to implement a eqrep-p∗ protocol from an underlying eqrep
protocol by construction intermediate Pedersen commitments. In this example,
we are proving that a Pedersen commitment Ca is committed to the product of
the values in three other Pedersen commitments, Cb, Cc, and Cd. Formally, Alg. 7
proves the following relation: R((Ca, Cb, Cc, Cd), (a, b, c, d, ra, rb, rc, rd)) = 1 iff
Ca = gahra ∧ Cb = gbhrb ∧ Cc = gchrc ∧ Cd = gdhrd ∧ a = bcd. Because E
is a commitment to bc with fresh randomness, revealing it to the verifier does
not affect the zero knowledge of the scheme. The only other communication in
this proof for eqrep-p∗ is the proof for an eqrep relation. Thus this scheme is
zero knowledge. We can see that the relation proves that E = gbchcβ2 which is
a valid Pedersen commitment to bc. Thus, because the prover also proves that
Ca = Edhβ2 , the verifiers knows that Ca = gbcdhdβ2 which is a valid Pedersen
commitment to bcd and thus, a = bcd. This means we’ve proven soundness with
extraction for this protocol. Using the notation from Def. 4, the map µ would be
µ(a) = {b, c, d} (and µ(x) = {x} otherwise). This would ensure that the witness
a = bcd with no constraints on the other witnesses. To build an eqrep-p∗ protocol
for more multiplications of witnesses, more commitments for intermediate values
would be used. It should be clear from the example how to do this for any map
µ from Def. 4.

B.2 Constructing eqrep-n∗

Construction 1 shows an example construction of a proof os a relation for
eqrep-n∗ defined in Section 2.3. We note that to reduce a construction of eqrep-n∗
to the soundness of Damgård-Fujisaki commitments, we need to create Damgård-
Fujisaki commitments to each witness in the relation and use a proof of opening
in the protocol to ensure we can extract the witnesses. This step is not necessarily
required, but is sufficient to realize eqrep-n∗ and allows us to reduce to the aux-
iliary proofs for Damgård-Fujisaki commitments rather than number theoretic
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Algorithm 7 Example eqrep-p∗ proof

1: ρ←$ Zp;E = gbchρ

2: β1 = ρ− crb;β2 = ra − dρ
3: Send E to the verifier
4: Prove the following relation via eqrep
5: PoKeqrep [a, b, c, ra, rb, rc, β1, β2 :

Ca = gahra ∧ Cb = gbhrb ∧ Cc = gchrc ∧ Cd = gdhrd

∧ E = Cc
bh

β1 ∧ Ca = Edhβ2 ]

lemmas. In this example, we’ll use Damgård-Fujisaki commitments in Zn2 which
we prove are secure in Section 6.3. In this example, we prove the exponentiation
of an element in a GCS commitment (which we define in Section 6.3) by a scalar
committed to by a Damgård-Fujisaki commitment. This proof can be seen as
proving the relation R((c1, c2, t, d1, d2), (x1, r1, x2, r2, x3, r3,M,N, x1, x2, x3)) =
1 iff c2 = gx1hr1 ∧ t = gx2hr2 ∧ d2 = gx3hr3 ∧ c1 = Mgx1 ∧ d1 = Ngx3 ∧
N =Mx2 .

For this proof, both the prover P and the verifier V have a scalar commit-
ment t to value x2 along with two GCS commitments c = (c1, c2) and d = (d1, d2)
to two Zn2 elements, M , and N . The prover wants to show that N = Mx2 .
Damgård and Fujisaki [DF02] give a multiplication protocol which yields a com-
mitment scheme for integers in any group that satisfies certain properties. We
prove in Section 6.3 that QRn2 and Zn2 both satisfy these properties. We can
see that the second elements of both of our GCS commitments (c2 and d2) are
exactly Damgård-Fujisaki commitments. We also note that our commitments to
scalars (the commitment t in this example) are simply Damgård-Fujisaki com-
mitments. The Damgård-Fujisaki exponentiation proof is a Σ-protocol and thus
has transcripts a, e, z. If the prover uses the z value from a proof of opening
of the scalar commitment (t) and reuses this z value in a relation to the GCS

commitments, the prover can prove this exponentiation property for the c, and
d commitments. We construct this exponentiation protocol in Construction 1.
This example should give the reader enough intuition to build a proof for any
eqrep-n∗relation by adding more Damgård-Fujisaki commitments to witnesses
similar to the extension of eqrep.

The prover must also prove knowledge of the opening of each commitment
in addition to running this protocol.

Construction 1 (GCS-DF-commitments - proof of exponentiation) Goal:
Prove that the GCS-DF-commitment d is committed to N = Mx2 where c is a
GCS-DF-commitment to M and t is a Damgård-Fujisaki commitment to the in-
teger x2.

Public values: c = (c1, c2), t, d = (d1, d2) where c2 = gx1hr1 , t = gx2hr2 ,
d2 = gx3hr3 , c1 =Mgx1 , d1 =Mx2gx3 .

Secret values: x1, x2, x3, r1, r2, r3,M .
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First, the prover uses the proof of knowledge of commitment opening from
Damgård and Fujisaki [DF02] to prove that t = gx2hr2 . The prover then shows
that the prover can open c and d such that M = ±c1/gx1 and N = ±d1/gx3 .
The prover and verifier then engage in the following sigma protocol:

P ↔ V

ρ1 will hide ex2
ρ1 ←$ [CT2λ]

ρ2 will hide er2
ρ2 ←$ [C2B+2λ]

ρ3 will hide e(−x2x1 + x3)

ρ3 ←$ [CT 22λ]

ρ4 will hide e(−r1x1 + r3)

ρ4 ←$ [CT2B+2λ]

a1 = gρ1hρ2

a2 = cρ1

1 g
ρ3

a3 = cρ1

2 g
ρ3hρ4

a1, a2, a3 →
e←$ [C]

← e

z1 = ρ1 + ex2

z2 = ρ2 + er2

z3 = ρ3 + e(−x1x2 + x3)

z4 = ρ4 + e(−r1x2 + r3)

z1, z2, z3 →
gz1hz2 = a1t

e

cz11 g
z3 = a2d

e
1

cz12 g
z3hz4 = a3d

e
2

Lemma 15 (Strong special soundness property of [DF02]). If we find
a, e, e′, z1, z

′
1, z2, z

′
2 such that a, e, z1, z2 and a, e′, z′1, z′2 are both valid transcripts

for a Damgård-Fujisaki opening protocol. If gz1hz2 = ace and gz
′
1hz

′
2 = ace

′
,

where c is a Damgård-Fujisaki commitment, then we know that (e− e′)|(z1− z′1)
and (e−e′)|(z2−z′2) and we can extract a b such that bg(z1−z1)/(e−e′)h(z2−z′

2)/(e−e′) =
c

Proof of Lemma 15 can be found in [DF02]. This is stronger than simple extrac-
tion as it ensures that e− e′ divides both z1 − z′1 and z2 − z′2.

Theorem 20. Our exponentiation protocol in Construction 1 has special sound-
ness i.e. given two accepting transcripts, there exists an efficient extractor that
extracts an opening of d to Mx2 , c to M and t to x2.
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Special soundness proof overview. Over the course of the proof, we’ll extract
∆e = e − e′ as well as ∀i ∈ [4], ∆zi = zi − z′i, δzi = ∆zi/∆e∀i ∈ [4] along with
β1, β2, and β3 such that: b1gδz1hδz2 = t, b2c

δz1
1 gδz3 = d1, and b3c

δz1
2 gδz3hδz4 = d2.

Our proof will proceed as follows: First, we’ll extract the opening of t, then
we’ll extract the values from the third equation, cz12 g

z3hz4 = a3d
e
2, and use our

knowledge of the opening of t to help us. Lastly, we’ll extract values from the
second equation (cz11 g

z3 = a2d
e
1) using our knowledge of the last two extrac-

tions (from the first and third equations). Using these extracted values, we’ll
be able to prove that the commitments are sound. We need to proceed in this
order to ensure we’ve extracted enough values to compute (z3− z′3)/(e− e′) and
(z4− z4)/(e− e′). Without knowing previously extracted values, we cannot triv-
ially reduce to the soundness of the proof of knowledge of opening protocol in
[DF02] because c1 and c2 are used as the bases for verification in the second two
equations. We will see that we can carefully craft final messages s1, s2 to give
to the [DF02] challenger which will allow us to compute (z3 − z′3)/(e − e′) and
(z4 − z′4)/(e− e′) in the final two equations to prove them secure. In the proof,
we’ll use ∆ and δ to refer to values used in the extraction. For example, ∆z1 will
refer to z1 − z′1 after rewinding a prover and δz1 will refer to (z1 − z′1)/(e− e′).

Proof of special soundness. Since we have the prover prove they know the open-
ings of t, c, and d individually, our extractor can compute c = (Mgx1ad, g

x1hr1),
d = (Ngx3ad, g

x3hr3), and t = gx2hr2bt.
Using rewinding, we can extract ∆z1 = z1−z′1, ∆z2 = z2−z′2, ∆z2 = z2−z′2,

∆z3 = z3 − z′3, ∆z4 = z4 − z′4, and ∆e = e − e′. We can see that the first
equality, gz1hz2 = a1t

e appears exactly like a proof of opening for Damgård-
Fujisaki commitments, and thus, we can extract δz1 = ∆z1/∆e, δz2 = ∆z2/∆e,
b1, from this due to Lemma 15. To show why we can extract, we can create a
reduction to the soundness of proof of opening of [DF02].

Our reduction will take t from our adversary, then claim to the [DF02] open-
ing soundness challenger that we can open this. We can discard all other values
from the adversary when doing this. Then, we also pass a1 to the challenger
and we receive the challenge, e from the challenger and pass this to the adver-
sary. The adversary will then produce z1, z2, and we can discard the other z
values and simply pass the first two to the challenger. We see that this satisfies
gz1hz2 = a1t

e and thus is a valid proof and thus we can rewind and use the
same algorithm as the challenger in the knowledge proof of [DF02] to extract
δz1 , δz2 , b1 such that t = gδz1hδz2 b1 and b21 = 1.

The rest of our proof will create more reductions to the soundness game in
[DF02], but the details will be omitted.

Next, we observe that we can continue rewinding until we obtain an even
e − e′. See that any subset of [C] must be at least half even or odd and the
adversary must be able to answer a super polynomial subset of [C]. Thus, with
probability at least 1/4 it will be the case that e and e′ will both be even or
both be odd, thus ensuring that e − e′ is even. Let us focus on the case where
e− e′ is even, knowing that we’ll only reduce our chance of breaking soundness
in this case by 1/4 which is still efficient.
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Next, we’ll prove that because our extractor can open c2, if we can’t extract
δz3 = ∆z3/∆e, δz4 = ∆z4/∆e, and β3 such that cδz12 gδz3hδz4β3 = d2, we can
reduce to the proof of opening protocol. We can see that this is true with another
reduction similar to our reduction for t. We pass d2, a3 to the challenger to
receive e to pass back to the adversary. After our adversary proves they can
open c2, we receive x1, r1, b3 such that gx1hr1b3 = c2 and b23 = 1. We see that
the verifier accepts, so, cz12 g

z3hz4 = a3d
e
2 and thus, c∆z1

2 g∆z3h∆z4 = a3d
∆e
2 . We

can replace this with (β3)
∆z1 gx1∆z1hr1∆z1 g∆z3h∆z4 = a3d

∆e
2 . Since e − e′ is

even and we know that e − e′ divides ∆z1 , we know that ∆z1 is even. Because
b2 = 1 and ∆z1 is even, we see that gx1∆z1hr1∆z1 g∆z3h∆z4 = a3d

∆e
2 . We then

give: s1 = x1∆z1 + ∆z3, s2 = r1∆z1 + ∆z4 to the challenger, which satisfies
gs1hs2 = a3d

e
2. Thus, because of the knowledge extractor for proof of opening,

we know we can rewind the adversary and compute δs1 = (s1 − s′1)/(e − e′) as
well as δs2 = (s2 − s′2)/(e − e′) and β3. Because the adversary proved opening
of d2, we have x3, r3, bd2

such that δs1 = x3, δs2 = r3, bd2
= β3. We can then

extract δz3 with the following equation: δz3 = x3 − x1δz1 = (z3 − z′3)/(e− e′)
This is because δs1 = x1 implies that:
x3(e− e′) = s1 − s′1 = x1z1 + z3 − x1z′1 − z′3
x3(e− e′)− x1z1 + x1z

′
1 = z3 − z′3

x3(e− e′)− x1(z1 − z′1) = z3 − z′3
x3(e− e′)− x1δz1 ∗ (e− e′) = z3 − z′3
x3 − x1δz1 = (z3 − z′3)/(e− e′)
We then know that:
δs2 = (s2 − s′2)/(e− e′) = (r1z1 + z4 − r1z′1 − z′4)/(e− e′)
And that r3 = δs2 and thus:
r3(e− e′) = (r1z1 + z4 − r1z′1 − z′4)
r3(e− e′)− r1z1 + r1z

′
1 = (z4 − z′4)

r3(e− e′)− r1(z1 + z′1) = (z4 − z′4)
And we know that δz1 = (z1 + z′1)/(e− e′), so:
r3(e− e′)− δz1 ∗ (e− e′) = (z4 − z′4)
δz4 = r3 − δz1 = (z4 − z′4)/(e− e′)
This gives us that d2 = gx1δz1+δz3hr1δz1+δz4β3. Which must agree with x3, r3, bd2

.
Because we know that δz1 = x2 from the opening of t, we know that d2 =
gx1x2+δz3hr1x2+δz4 bd2 .

We will now rewind the second equation, c2z11 g2z3 = a2d
2e
1 to extract values

and prove them sound. We know that gx1 = c1/M from the opening of c.
Since we know that ∆z1 and ∆z3 are divisible by ∆e, we can proceed to

extract the structure of d1.
cz11 g

z3 = a2d
e
1

Mz1gx1z1gz3 = a2d
e
1

Mz1−z′
1gx1(z1−z′

1)gz3−z′
3 = de−e′

1

M (z1−z′
1)gx1(z1−z′

1)g(z3−z′
3) = d

(e−e′)
1

M (z1−z′
1)/(e−e′)gx1(z1−z′

1)/(e−e′)g(z3−z′
3)/(e−e′) = d1

bMδz1 gx1δz1 gδz3 = d1
bMx2gx1x2gδz3 = d1
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bgx1x2+δz3 = d1/M
x2

We can see that b ∈ {−1, 1} since be−e′ = 1 and thus, d is a correct commit-
ment to |Mx2 |.

Honest verifier zero knowledge. If the ranges are adjusted correctly, our con-
struction achieves this, similar to [DF02].

C Definition of an f-Blueprint Scheme

A blueprint scheme has three parties - an auditor, a set of users and a set of
recipients. It is defined as follows:

Definition 13. For a non-interactive commitment scheme (CSetup,Com),
an f -blueprint scheme consists of the following probabilistic polynomial time
algorithms:

Setup(1λ, cpar) → Λ: This algorithm takes as input the security parameter 1λ

and the commitment parameters cpar output by CSetup(1λ). It outputs
the public parameters Λ which includes 1λ and cpar . For the remainder of
the paper, Com is used synonymously with Comcpar to reduce notational
overhead.

KeyGen(Λ, x, rx)→ (pkA, skA): The key generation algorithm for auditor A takes
1λ, Λ, and commitment value and opening (x, rx) as input, and outputs the
key pair (pkA, skA). The values (x, rx) define a commitment Cx.

VerPK(Λ, pkA, Cx) → 1 or 0: This is the algorithm that, on input the auditor’s
public key pkA and a commitment Cx, verifies that the auditor’s public key
was computed correctly for the commitment Cx.

Escrow(Λ, pkA, y, ry) → Z: This algorithm takes Λ, pkA, and commitment value
and opening (y, ry) as input and outputs an escrow Z for commitment
C = Com(y; ry).

VerEscrow(Λ, pkA, C, Z)→ 1 or 0: This algorithm takes the auditor’s public key
pkA, a commitment C, and an escrow Z as input and verifies that the escrow
was computed correctly for the commitment C.

Dec(Λ, skA, C, Z) → f(x, y) or ⊥: This algorithm takes the auditor’s secret key
skA, a commitment C and an escrow Z as input. It decrypts the escrow and
returns the output f(x, y) if C is a commitment to y and VerEscrow(Λ, pkA,
C, Z) = 1.

[KLN23] also defines a secure f -blueprint scheme as one that possesses the fol-
lowing properties:

Correctness of VerPK and VerEscrow: For honestly generated values (cpar ,
pkA, Cx, C, Z), the algorithms VerEscrow and VerPK should accept with proba-
bility 1.

Correctness of Dec: For honestly generated values (cpar , pkA, skA, C, Z),
Dec(Λ, skA, C, Z) = f(x, y) should hold with overwhelming probability .
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Soundness: For all PPT adversariesA involved in the experiment in Fig. C.1,
there exists a negligible function ν such that:

AdvSoundAdv,Blu(λ) = Pr
[
SoundAdvBlu (λ) = 1

]
= ν(λ)

SoundAdvBlu (λ)

1 : cpar ← CSetup(1λ)

2 : Λ← Setup(1λ, cpar)

3 : x, rx ← Adv(1λ, Λ)

4 : (pkA, skA)← KeyGen(Λ, x, rx)

5 : (C, y, ry, Z)← Adv(pkA)

6 : return [C = Com(y; ry)∧
7 : VerEscrow(Λ, pkA, C, Z) ∧ Dec(Λ, skA, C, Z) ̸= f(x, y)]

Fig. C.1: Experiments SoundAdvBlu (λ)

Definition 14 (Blueprint Hiding). The blueprint-hiding property makes sure
that pkA just reveals that x is a valid first argument to f . Otherwise, x is hidden
even from an adversary who (1) may already know a lot of information about x
a-priori; and (2) has oracle access to Dec(Λ, skA, ·, ·).

This is formalized by requiring that there exist a simulator Sim = (SimSetup,
SimKeygen,SimDecrypt) such that for any PPT adversary the following two games
are indistinguishable:

1. Real Game: Λ is chosen honestly, the public key pkA is computed correctly
for adversarially chosen x, rx, and the adversary’s decryption queries (C,Z)
are answered with Dec(Λ, skA, C, Z).

2. Ideal Game: Λ is computed using SimSetup, the public key pkA is computed
using SimKeygen independently of x (although with access to the commit-
ment CA), and the adversary’s decryption query Zi is answered by first
running SimDecrypt to obtain enough information about the user’s data yi
to be able to compute f(x, yi). "Enough information" means that for an
efficiently computable f∗ and a function g such that f(x, y) = f∗(x, g(y))
for all possible inputs (x, y), SimDecrypt obtains y∗i = g(yi).

Formally, for all probabilistic poly-time adversaries Adv involved in the game
described in Fig. C.2, the advantage function satisfies:

AdvBHAdv,Sim(λ) =
∣∣∣Pr [BHrealAdvBlu (λ) = 0

]
− Pr

[
BHidealAdvBlu,Sim(λ) = 0

] ∣∣∣ = ν(λ)

for some negligible ν.
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BHrealAdvBlu (λ)

1 : cpar ← CSetup(1λ)

2 : Λ← Setup(1λ, cpar)

3 : (x, rx, stAdv)← Adv(1λ, Λ)

4 :

5 : (pkA, skA)← KeyGen(Λ, x, rx)

6 : return AdvO0(pkA,skA,·,·)(pkA, stAdv)

BHidealAdvBlu,Sim(λ)

1 : cpar ← CSetup(1λ)

2 : (Λ, st)← SimSetup(1λ, cpar)

3 : (x, rx, stAdv)← Adv(1λ, Λ)

4 : dsim ← (|x|,Com(x; rx))

5 : (pkA, skA)← SimKeygen(1λ, st, dsim)

6 : return AdvO1(pkA,st,x,·,·)(pkA, stAdv)

O0(pkA, skA, C, Z)

1 : if ¬VerEscrow(Λ, pkA, C, Z)

2 : return ⊥
3 : return Dec(Λ, skA, C, Z)

O1(pkA, st, x, C, Z)

1 : if ¬VerEscrow(Λ, pkA, C, Z)

2 : return ⊥
3 : y∗ ← SimDecrypt(st, C, Z)

4 : return f(x, y) = f∗(x, y∗)

Fig. C.2: Experiments BHrealAdvBlu (λ) and BHidealAdvBlu,Sim(λ)

Definition 15 (Privacy against Dishonest Auditor). There exists a sim-
ulator such that the adversary’s views in the following two games are indistin-
guishable:

1. Real Game: The adversary generates the public key and the data x cor-
responding to this public key, honest users follow the Escrow protocol using
adversarial inputs and openings.

2. Privacy-Preserving Game: The adversary generates the public key and
the data x corresponding to this public key. Next, for adversarially chosen in-
puts and openings, the users run a simulator algorithm that depends only on
the commitment and f(x, y) but is independent of the commitment openings.

More formally, there exists algorithms Sim = (SimSetup,SimEscrow) such that,
for any PPT adversary Adv involved in the game described in Fig. C.3, the
following equation holds for some negligible function ν:

AdvPADAAdv,Blu,Sim(λ) =
∣∣∣Pr [PADAAdv,0

Blu,Sim(λ) = 1
]
− Pr

[
PADAAdv,1

Blu,Sim(λ) = 1
] ∣∣∣ = ν(λ)

Definition 16 (Privacy with Honest Auditor). There exists a simulator
Sim such that the adversary’s views in the following two games are indistinguish-
able:

1. Real Game: The honest auditor generates the public key on input x pro-
vided by the adversary, and honest users follow the Escrow protocol on input
adversarially chosen openings.
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PADAAdv,b
Blu,Sim(λ)

1 : cpar ← CSetup(1λ)

2 : Λ0 ← Setup(1λ, cpar); (Λ1, st)← SimSetup(1λ, cpar)

3 : (x, rA, pkA, stAdv)← Adv(1λ, Λb)

4 : if VerPK(Λb, pkA,Com(x; rA)) = 0 : return ⊥

5 : return AdvOb(·,·)(stAdv)

O0(y, ry)

1 : return Escrow(Λ0, pkA, y, ry)

O1(y, ry)

1 : return SimEscrow(st, Λ1, pkA,Com(y; ry),

2 : f(x, y))

Fig. C.3: Game PADAAdv,b
Blu (λ)

2. Privacy-Preserving Game: The honest auditor generates the public key
on input x provided by the adversary. On input adversary-generated com-
mitments and openings, the users run a simulator that is independent of y
(although with access to the commitment Cy) to form their escrows.

In both of these games, the adversary has oracle access to the decryption algo-
rithm.

We formalize these two games in Fig. C.4. We require that there exists a
simulator Sim = (SimSetup,SimEscrow) such that, for any PPT adversary Adv
involved in the game described in the figure, the following equation holds:

AdvPWHA
Blu,Sim(λ) =

∣∣∣Pr [PWHAAdv,0
Blu,Sim(λ) = 0

]
− Pr

[
PWHAAdv,1

Blu,Sim(λ) = 0
] ∣∣∣ = ν(λ)

for some negligible function ν.

D Constructions of HEC Schemes

D.1 KLN construction of HEC from Fully Homomorphic
Encryption (FHE)

Definition 17 (Circuit-private fully homomorphic encryption). Algo-
rithms (FHEKeyGen,FHEEnc,FHEDec,FHEEval) form a secure fully homomor-
phic public-key encryption scheme [Gen09,BV11,BGV12,GSW13] if:

Input-output specification: FHEKeyGen(1λ, Λ) takes as input the security
parameter and possibly system parameters Λ and outputs a secret key FHESK
and a public key FHEPK . FHEEnc(FHEPK , b) takes as input the public key
and a bit b ∈ {0, 1} and outputs a ciphertext c. FHEDec(FHESK , c) takes as
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PWHAAdv,b
Blu,Sim(λ)

1 : cpar ← CSetup(1λ)

2 : Λ0 ← Setup(1λ, cpar);Λ1 ← SimSetup(1λ, cpar)

3 : M ← [ ]

4 : x, rx ← Adv(1λ, Λb)

5 : (pkA, skA)← KeyGen(Λb, x, rx)

6 : return AdvO
Escrow
b (·,·),ODec(Λb,skA,·,·)(pkA)

OEscrow
0 (y, ry)

1 : return Escrow(Λ0, pkA, y, ry)

OEscrow
1 (y, ry)

1 : C = Com(y; ry)

2 : Z ← SimEscrow(st, Λ1, pkA, C)

3 : M [C,Z]← f(x, y)

4 : return Z

ODec(Λ1, skA, C, Z)

1 : if M [C,Z] is defined return M [C,Z]

2 : return Dec(Λ1, skA, C, Z)

Fig. C.4: Game PWHAAdv,b
Blu,Sim(λ)

input a ciphertext c and outputs the decrypted bit b ∈ {0, 1}. FHEEval(FHEPK ,
C, c1, . . . , cn) takes as input a public key, a Boolean circuit C : {0, 1}n 7→
{0, 1}, and n ciphertexts and outputs a ciphertext cC; correctness (below) en-
sures that cC is an encryption of C(b1, . . . , bn) where ci is an encryption of
bi.

Correctness of evaluation: For any integer n (polynomial in λ) for any cir-
cuit C with n inputs of size that is polynomial in λ, for all x ∈ {0, 1}n, the
event that FHEDec(FHESK , C) ̸= C(x) where (FHESK ,FHEPK ) are output
by FHEKeyGen, c1, . . . , cn are ciphertexts where ci ← FHEEnc(FHEPK , xi),
and cC = FHEEval(FHEPK , C, c1, . . . , cn), has probability 0.

Security: FHE must satisfy the standard definition of semantic security.
Compactness: What makes fully homomorphic encryption non-trivial is the

property that the ciphertext cC should be of a fixed length that is indepen-
dent of the size of the circuit C and of n. More formally, there exists a
polynomial s(λ) such that for all circuits C, for all (FHESK ,FHEPK ) out-
put by FHEKeyGen(λ) and for all input ciphertexts c1, . . . , cn generated by
FHEEnc(FHEPK , ·), cC generated by FHEEval(FHEPK , C, c1, . . . , cn) is at
most s(λ) bits long.

Circuit-privacy: As defined by [Gen09,OPP14,BdMW16,DD22] an FHE scheme
is circuit private for a circuit family C if for any PPT algorithm Adv |pAdv,0−



PPBs via Verifiable Computation 73

pAdv,1| = ν(1λ) for a negligible ν, where for b ∈ {0, 1}, pAdv,b is the probability
that the following experiment outputs 0:

FHECircHideExpt(1λ)

(R, C0, C1, (x1, r1), . . . , (xn, rn))← Adv(1λ)

if C0 /∈ C ∨ C1 /∈ C ∨ C0(x1, . . . , xn) ̸= C1(x1, . . . , xn) : reject

(FHEPK ,FHESK ) = FHEKeyGen(1λ;R)

for i ∈ {1, . . . , n} :
ci = FHEEnc(FHEPK , xi; ri)

Z0 ← FHEEval(FHEPK , C0, c1, . . . , cn)
Z1 ← FHEEval(FHEPK , C1, c1, . . . , cn)
return Adv(Zb)

Construction of HEC for any f from CP-FHE. For a Boolean function
g : {0, 1}ℓx × {0, 1}ℓy 7→ {0, 1}, an ℓy-bit string y and a value z ∈ {0, 1}2, let
Cgy,z(x) be the Boolean circuit that outputs g(x, y) if z1 = 0, and z2 otherwise.

Recall that our goal is to construct a secure f -HEC scheme with a direct
encryption algorithm; suppose that the length of the output of f is ℓ; for 1 ≤
j ≤ ℓ, let fj(x, y) be the Boolean function that outputs the jth bit of f(x, y).
Suppose we are given an FHE scheme that is circuit-private for the families of
circuits {Cj} defined as follows: Cj = {C

fj
y,z(x) : y ∈ {0, 1}ℓy , z ∈ {0, 1}2}.

HECsetup(1λ)→ Λ : Generate the FHE parameters Λ, if needed.
HECenc(1λ, Λ, f, x)→ (X, d) : Generate (FHESK ,FHEPK )← FHEKeyGen(1λ,

Λ). Let |x| = n; set ci ← FHEEnc(FHEPK , xi). Output X = (FHEPK , c1,
. . . , cn), and decryption key d = FHESK .

HECeval(hecpar , f,X, y) → Z : Parse X = (FHEPK , c1, . . . , cn). For j =

1 to ℓ, compute Zj ← FHEEval(FHEPK , Cfjy,00, c1, . . . , cn). Output Z =
(Z1, . . . , Zℓ).

HECdec(hecpar , d, Z)→ z : Output (FHEDec(d, Z1), . . . ,FHEDec(d, Zℓ)).
HECdirect(hecpar , X, z) → Z : Parse X = (FHEPK , c1, . . . , cn). For j =

1 to ℓ, compute Zj ← FHEEval(FHEPK , Cfj
0ℓ,1zj

, c1, . . . , cn). Output Z =

(Z1, . . . , Zℓ).

Theorem 21. If (FHEKeyGen,FHEEnc,FHEDec,FHEEval) is a fully-homomorphic
public-key encryption scheme that is circuit-private for circuit family {Cfj : f ∈
F} defined above, then our construction above constitutes a homomorphic-enough
encryption for the family F .

The proof of Theorem 21 is provided in [KLN23].

D.2 Additional proofs for consistent HEC scheme

Proof of Thm. 3 Because we include Znf = E ⊙ r3 in the escrow, an auditor
can prove that this is an encryption of 0. This ensures that the yid is actually
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on the watchlist as the polynomial has roots at each entry of the watchlist.
Formally, if an adversary were to be able to produce a (f, x, st, r, y, rZ) such that
Z ← HECeval(hecpar , f,X , y; rZ) but HECdec(hecpar , d, Z) ̸= f(x, y), we see
that E ⊙ r3 = 0 in this case, which implies that r3P (y) = 0. This is only true
if y ∈ x since r3 > 0. In this case, because HECeval is proven to be correctly
computed, E ⊙ r1 decrypts to 0. Thus, y′ = Dec(Y ). Thus, this decrypts to the
correct value.

We split Theorem 4 into Theorems 22, 23, and 24.

Theorem 22 (Security of DirectZ for Fig. 5.1). Our construction in
Fig. 5.1 achieves security of DirectZ defined in Definition 11.

Proof of Thm. 22 We prove the theorem for the two separate cases of when the
user is in the watchlist and when they are not.

For the former, since the user is on the watchlist, f(x, y) ̸= 0. In HECeval,
(Zid , Zattr ) is an encryption of f(x, y) and in HECdirect, Znf is an encryp-
tion of 0. Considering the experiments DirectZAdv

0 and DirectZAdv
1 , since the

ciphertext of f(x, y) is output in both cases, the indistinguishability of the ex-
periments can be reduced to the IND-CPA security of the underlying encryption
scheme.

In the case where the escrower is not on the watchlist, f(x, y) = ∅. Since
separate randomness is used for each of r1, r2, and r3 in HECeval, therefore
each ciphertext is the encryption of a random value, Zid = r1P (yid)+yid , Zattr =
r2P (yid) + attr and Znf = r3P (yid) because P (yid) ̸= 0. This makes the three
ciphertext values indistiguishable from random in DirectZAdv

0 . In experiment
DirectZAdv

1 , the HECdirect function simply encrypts random values when
f(x, y) = 0. Therefore, the two experiments are indistinguishable and we achieve
security of DirectZ.

Theorem 23 (Security of x and y for Fig. 5.1). Our construction in Fig.
5.1 achieves security of x and y from third parties.

Proof of Thm. 23. Let us assume there exists an adversary for whom |pSecXY
Adv,0 (λ)−

pSecXY
Adv,1 (λ)| is non-negligible. This implies that either (i) the adversary can dis-

tinguish an encryption of x0 from x1 or (ii) the adversary can distinguish an
encryption of y0 from y1. From Thm. 24, the adversary distinguishing an en-
cryption of x0 from an encryption of x1 can be reduced to the IND-CPA game
of the underlying scheme. This holds similarly for y0 and y1.

Theorem 24 (Security of x for Fig. 5.1). Our construction in Fig. 5.1
achieves Security of y

Proof of Thm. 24. Let us assume there exists an adversary Adv for whom
|pSecX

Adv,0 (λ)−pSecX
Adv,1 (λ)| is non-negligible. Let x0 and x1 be the input for which Adv

wins the SecX game by correctly distinguishing the ciphertext of x0 from the
ciphertext of x1. In that case, we can construct an IND-CPA adversary Adv′ that
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wins the IND-CPA game by using the same input x0 and x1. This is possible
since Adv does not possess the secret key for the HEC scheme. Thus, IND-CPA
security of the underlying encryption scheme implies the SecX security of the
HEC scheme.
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