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1 Introduction

Proxy re-encryption (PRE), introduced by Blaze, Bleumer, and Strauss [5], al-
lows re-encrypting ciphertexts encrypted under a secret key to a new encryption
of the same message under a different secret key without ever having to decrypt
the ciphertext. That is, PRE schemes allow for local delegation of keys. Such
schemes have been studied for a wide variety of applications such as encrypted
email forwarding, key escrow [14], encrypted file storage [4], secure payment sys-
tem for credit cards [23], sharing patient medical records with emergency care
providers [47, 6], and access control for data sharing in IoT [17, 50]. Multi-hop
PRE is a chain of multiple re-encryptions from a source to a destination where a
hop refers to a re-encryption. For example, multi-hop PRE solves such problems
associated with distributing sensitive information payloads within and across
trust boundaries while limiting distribution of encryption keys to within the
boundaries of a trust zone, or to pairwise interactions between trusted agents
across trust zone boundaries.

On the security side, many PRE schemes are cryptographically secure from
users outside the network (without secret keys) under chosen plaintext attacks
(IND-CPA), akin to many public-key encryption schemes. However, most appli-
cations necessitate security from adversaries within the network since otherwise
all users in a network would simply share a single symmetric key. One prominent
example of the need for security against internal adversaries is in 5G virtual net-
work slices [45], where a virtual network operator’s (VNO) leased hardware can
leak intermediate ciphertexts via side-channel attacks. Then, an adversary can
see the intermediate ciphertext, before re-encryption, as well as the re-encrypted
ciphertext under their secret key. Despite sounding harmless, this simple attack
can lead to secret key recovery attacks between users in the network. Cohen [14]
showed IND-CPA security does not suffice in this setting and developed honest
re-encryption (HRA) security for PRE to be robust against honest-but-curious
users within the network. Notably, Cohen showed that all prior PRE schemes
based on the (Ring)-Learning-With-Errors problem [48, 41], (R)LWE, notably
[47], suffer from honest-but-curious adversaries being able to recover the cipher-
text’s RLWE error which then allows for learning the secret key by solving a
linear system of equations.

Shortly after Cohen’s work [14], Li and Micciancio [39] applied a very sim-
ilar RLWE attack to an approximate FHE scheme, namely, the Cheon–Kim–
Kim–Song (CKKS) scheme [13], where the adversary gets a somewhat restricted
decryption oracle, called IND-CPAD security [39, Definition 2]. The underlying
implication of this connection is that the (R)LWE schemes for PRE are deeply
connected to the (R)LWE schemes for (approximate) FHE. Both Cohen’s fix for
(R)LWE PRE schemes and the fix for CKKS require some form of noise flooding
[40], but the latter introduced a fine-grained flooding technique for optimal pa-
rameters mixing both statistical and computational security whereas the former
relied on crude, theoretical noise flooding bounds [3]. The same fine-grained noise
flooding technique was recently used in threshold FHE as well [37]. Therefore,
there is currently a significant gap in the state of the art in concrete security for
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approximate and threshold FHE compared to the state of the art in concrete
security for lattice-based PRE schemes.

Lattice-based PRE schemes must be practical since they are the only class of
PRE schemes resistant to quantum attacks. For example, lattice-based schemes
were recently chosen by the National Institute of Standards (NIST) for stan-
dardized digital signatures and key-exchange mechanisms5. A simple quantum
attack is the “harvest now, decrypt later” attack, where an adversary stores
ciphertexts now and decrypts them once they have access to a quantum com-
puter. Post-quantum, hence lattice-based, schemes are cryptographic schemes
robust against these attacks.

In addition, a notable feature of RLWE schemes is that they support homo-
morphism and the popular fully-homomorphic encryption (FHE) schemes are
based on RLWE. These include the Brakerski/Fan–Vercauteren (BFV) [7, 21]
and Brakerski-Gentry-Vaikuntanathan (BGV) [8] schemes, two schemes in the
simultaneous-instruction-multiple-data (SIMD) paradigm with the same plain-
text spaces. FHE in the context of proxy-re-encryption enables delegating com-
putation and key responsibilities to the cloud. FHE-based PRE schemes also
enable an unlimited number of hops in the multi-hop setting since one can boot-
strap a ciphertext en-route whenever the noise budget diminishes after so many
hops.

1.1 Our Contributions

We introduce the tight, rigorously secure noise flooding technique recently pro-
posed by Li et al. [40] for approximate homomorphic encryption to lattice-based
PRE schemes with HRA security. This fine-grained noise flooding yields a pro-
cedure used for erasing the information about the previous secret key after re-
encryption in PRE schemes. We propose an efficient, provably-secure, HRA-
secure PRE scheme with precise security estimates by introducing a mixed,
statistical-computational security definition and analysis. We build our system
on top of the BGV FHE scheme, enabling PRE schemes with full homomorphism
and unlimited re-encryptions. The same underlying ideas can be extended to
BFV and CKKS FHE schemes as well.

We provide an efficient implementation of the PRE scheme using the OpenFHE
library, which implements all common FHE schemes [1]. We also implement a
networking application system (motivated by a use case in 5G virtual network
slice security) based on the PRE functionality with Google’s RPC framework
[29] for multiple hops where an AES symmetric key is the data payload. We
perform network simulation using the open-source RAVEN framework [34]. For
the single-hop setting, the re-encryption time in OpenFHE on an Intel® CoreTM

i7-9700 CPU with 64 GB RAM, a commodity desktop machine, for our HRA-
secure PRE scheme is about 2 milliseconds. The timing for a 13-hop parameter
set starts with 103 milliseconds for re-encrypting a fresh 6.5MB ciphertext, and
5 https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022
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ultimately drops down to 32 milliseconds for the last (13th) hop. Our PRE
scheme implementation is publicly available as part of the OpenFHE library [1].
Our networking application system implementation is also publicly available in
a separate OpenFHE project repository [19].

In addition, we explore lattice-based alternatives to our approach for achiev-
ing HRA security. In particular, we examine the divide-and-round technique of
de Castro et al. [12] used to achieve circuit privacy in homomorphic encryption
schemes. We conclude this technique does not allow a more efficient multi-hop
HRA-secure scheme. Furthermore, we show that the scheme presented in [16],
which uses simple ciphertext re-randomization without noise flooding, is not
HRA-secure despite their claims. (See Appendices A and B for more details.)

Connections to threshold and approximate FHE. Our work is closely
related to the state of the art in threshold FHE [3, 37] and approximate FHE
[40] since (R)LWE-based PRE, approximate FHE, and threshold FHE all com-
pute some form of approximate decryption, or the decryption function without
rounding. In PRE, this is achieved through key switching, enabled by (R)LWE’s
key homomorphism. Because the decryption error is not rounded away during re-
encryption, as in the full RLWE decryption algorithm, the new ciphertext carries
the old ciphertext’s error. We construct an optimal scheme based on the state
of the art in concrete security of this approximate decryption phenomenon. One
could, however, round away the error at each hop, but this requires the inefficient
bootstrapping procedure in FHE. (See Gentry’s thesis [25] for more information
on PRE using bootstrapping.) Our work shows how these three areas, RLWE-
based PRE, approximate FHE, and threshold FHE are deeply connected. In
short, an advancement in one of these areas yields an advance in the others.

1.2 Related work

Our work improves upon the Polyakov–Rohloff–Sahu–Vaikuntanathan (PRSV)
[6, 47] system whose underlying PRE scheme does not provide HRA security.
We fix this by applying the fine-grained noise flooding technique of [40] (used in
the context of approximate FHE) to RLWE-based PRE schemes. This technique
breaks any correlations among ciphertexts and former secret keys (as part of
re-encryption) and provides a tight security reduction. The resulting scheme is
multi-hop, uni-directional (re-encryption is one-way), and the initial ciphertext
grows with the number of hops due to the noise flooding technique, while the
re-encrypted ciphertext size drops at every hop due to modulus switching.

Attribute-based encryption (ABE) is another possible solution to building
an encrypted, distributed-trust system in a network. ABE is a generalization of
identity-based encryption (IBE) where the public key for encryption is created
using a set of attributes defined by an access policy. The access policy deter-
mines which consumers can access data published by a producer. ABE is more
appropriate for cloud systems where many users try to decrypt the same cipher-
text rather than for point-to-point communication. Many ABE schemes based
on bilinear pairings have been proposed in the literature [46] but are not post-
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quantum. Lattice-based ABE schemes are not efficient [30, 24] but offer richer
access policies than PRE.

Fine-grained PRE, first constructed by Zhou et al. [52] in the single-hop CPA-
secure setting and later improved to the multi-hop HRA setting [51], are PRE
schemes where the message, m, gets transformed to a known function, f(m).
The constructions in [52, 51] are based on lattice trapdoors [28, 42], similar to
the state-of-the-art ABE schemes. Therefore, these schemes are interesting from
a theoretical point of view but suffer the same practical efficiency issues faced by
lattice-based ABE schemes. Neither [52] nor [51] provide an implementation or
give practical parameters6. Our work improves these schemes on three fronts: 1)
we offer arbitrary homomorphism, 2) a tight security reduction and optimized
parameters, and 3) practical implementation and simplicity of design. Practical
deployments of PRE must be constant-time and making our scheme constant-
time (as we sample a discrete gaussian on ZN ) is much simpler than making
discrete gaussian sampling constant time in the trapdoor-lattice regime [43] since
the lattice in the latter setting is described by secret key, unlike ZN .

HRA security is now the standard in PRE schemes. The work in [16] presents
a PRE scheme as an extension of the scheme in [47] to achieve HRA security
and strong IND-post-compromise security (PCS). PCS ensures an adversary
cannot distinguish a re-encrypted ciphertext from random uniform assuming
the re-encryption key is known to the adversary and corruption of the pro-
ducer’s (sender’s) secret. The re-encryption from [47] is extended with a re-
randomization of the ciphertext, but it does not use an error distribution with
sufficiently large standard deviation to flood traces of the previous secret key
from the ciphertext, making it prone to an averaging attack. This is because the
noise in the ciphertext is correlated to the sender’s secret. Refer to Appendix B
for an outlined HRA attack on [16] using binary matrix (R)LWE attacks [32]
together with an averaging attack.

Fuchsbauer et al. [22] achieve adaptively secure PRE, where the adversary can
corrupt any party throughout the security game, with a general reduction which
is exponential in a parameter which depends on the adversary’s corruptions,
nO(logn) for a binary tree of corruptions and 2O(n) loss in general corruptions,
where n is the number of parties. Asymptotically, this super-polynomial loss
in security makes the scheme impractical for our use-case with many clients.
As for concrete efficiency, their scheme appears to be much slower than ours
because the former uses ciphertext sanitation, i.e., multiple FHE bootstrappings
[20], in addition to noise flooding, to achieve this for lattice-based PRE schemes.
They did not implement their scheme. Therefore, efficient, adaptively secure,
post-quantum PRE with a tight security reduction is an open problem.

An even more powerful PRE scheme is universal PRE, where re-encryption
is done between any public key scheme. Döttling and Nishimaki [18] achieve this

6 The parameter suggestions for security parameter λ = 128, lattice dimension 128 and
ciphertext modulus ∼ 270 do not meet the lattice cryptography security estimates
in the Homomorphic Encryption Standard https://homomorphicencryption.org/
standard/, for example. Therefore, these parameter estimates are asymptotic.
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by using either (probabilistic) indistinguishability obfuscation or garbled circuits
over the PKE schemes (not practically efficient).

Susilo et al. [49] show a lattice-based construction of attribute-based PRE.
Their construction used lattice-based ABE (lattice trapdoors) and is not imple-
mented. We expect their solution to be similar in computational and storage
complexity to the state of the art in lattice-based ABE.

PRE schemes based on the decisional bilinear Diffie–Hellman (DBDH) prob-
lem were presented in [4, 11, 35]. The scheme in [4] is IND-CPA secure and pro-
vides low performance run-times for 256 and 512 bits of classical security.

1.3 Organization

PRE and other background are reviewed in Section 2. Our PRE scheme is pre-
sented in Section 3 with correctness and security analysis. Section 4 describes
our network application. The logic for setting the parameters is explained in
Section 5. The experimental results are presented in Section 6, followed by con-
cluding remarks in Section 7. Appendix A shows the necessity of noise flooding
in RLWE schemes based on the PRSV scheme. We explore alternatives to noise
flooding in Appendix B. The rest of the appendices discusses the details of our
implementation for the networking use case.

2 Preliminaries

We use λ to denote some underlying computational security parameter. A func-
tion, f , is negligible in λ if it asymptotically satisfies f(λ) = λ−ω(1). We say a
probabilistic event happens with high probability if its complement happens with
negligible probability. All algorithms are probabilistic polynomial time (PPT) in
λ unless stated otherwise. For a PPT algorithm A with some input b, we denote
its randomized output as c← A(b).

2.1 Security under Honest Re-Encryption Attacks (HRA)

The IND-CPA security definition for PRE is adapted from the IND-CPA security
definition for encryption schemes. On a high level, it shows indistinguishability
of re-encrypted ciphertexts when the adversary is given access to a re-encryption
key generation oracle from corrupt to honest parties and corrupt to corrupt par-
ties. (A party is corrupt if the adversary knows this party’s secret key.) Cohen
showed IND-CPA security is not strong enough for most applications and in-
troduced HRA-security[14], a stronger security definition modeled against an
honest-but-curious adversary corrupting parties with re-encryption keys. HRA
security allows the adversary to query for re-encryption on non-challenge cipher-
texts from an honest key to a corrupted key as well, in addition to the access
allowed in the IND-CPA model.
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Definition 1 (Proxy Re-Encryption (PRE) Scheme). A proxy re-encryption
scheme (PRE) for a message spaceM is a tuple of algorithms (ParamGen,KeyGen,
Enc,Dec,ReKeyGen,ReEnc):

pp← ParamGen(1λ): Given a security parameter λ, the setup algorithm outputs
the public parameters pp.

(pk, sk)← KeyGen(pp): Given public parameters, the KeyGen algorithm outputs
a public key pk and a secret key sk7.

rki→j ← ReKeyGen(ski, pkj): Given a secret key ski and a public key pkj, where
i ̸= j, the re-encryption key generation algorithm outputs a re-encryption
key rki→j.

cti ← Enc(pki,m): Given a public key pki and a message m ∈M, the encryption
algorithm outputs a ciphertext cti.

ctj ← ReEnc(rki→j , cti): Given a re-encryption key from i to j rki→j and a
ciphertext cti, the re-encryption algorithm outputs a ciphertext ctj or the
error symbol ⊥.

m ← Dec(skj , ctj): Given a secret key skj and a ciphertext ctj, the (determin-
istic) decryption algorithm outputs a message m ∈ M or the error symbol
⊥.

Definition 2 (PRE Correctness). A proxy re-encryption scheme PRE is cor-
rect with respect to message spaceM, if for all possible pp← ParamGen(1λ) and
m ∈M:

1. with high probability over (pk, sk)← KeyGen(pp):

Dec(sk,Enc(pk,m)) = m

2. with high probability over (pki, ski), (pkj , skj) ← KeyGen(pp), and rki→j ←
ReKeyGen(ski, pkj):

Dec(skj ,ReEnc(rki→j ,Enc(pki,m))) = m

Note that our PRE scheme is based on RLWE and has a decryption failure
rate that can be determined by the parameters chosen. Refer to Section 6 for
discussion on decryption failure rate of our PRE scheme. Now we define HRA
security.

Definition 3 (HRA Security Game, Definition 5 in [14]). Fix some λ and
let A denote some PPT adversary. The HRA security game consists of running
A with the following oracles, in order.
Phase 1:

⋄ Setup: The public parameters pp← ParamGen(1λ) are generated and given to
A. A counter numKeys is initialized to 0, and sets Hon ← ∅ and Cor ← ∅
representing honest and corrupt parties, respectively, are initialized. Addi-
tionally the following are initialized: numCt to 0, sets C← ∅ and Deriv← ∅.
This oracle is executed first and only once.

7 For ease of notation, we assume that both pk and sk include pp and refrain from
including pp as an input to the other algorithms in a PRE scheme.
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⋄ Uncorrupted Key Generation: Sample (pknumKeys, sknumKeys) ← KeyGen(pp)
and give pknumKeys to A. The current value of numKeys is added to Hon and
numKeys is incremented.

⋄ Corrupted Key Generation: Sample (pknumKeys, sknumKeys) ← KeyGen(pp) and
give both keys to A. The current value of numKeys is added to Cor and
numKeys is incremented.

Phase 2: For each pair i, j ≤ numKeys, compute the re-encryption key rki→j ←
ReKeyGen(ski, pkj).

⋄ Re-encryption Key Generation OReKeyGen: On input (i, j) where i, j ≤ numKeys,
if i = j or if i ∈ Hon and j ∈ Cor, output ⊥. Otherwise return rki→j.

⋄ Encryption OEnc: On input (i,m), where i ≤ numKeys, compute ct← Enc(pki,m)
and increment numCt. Store ct in C with key (i, numCt). Return (numCt, ct).

⋄ Challenge Oracle: On input (i,m0,m1) where i ∈ Hon and m0,m1 ∈M, sample
a bit b ← {0, 1} uniformly at random, compute the challenge ciphertext
ct∗ ← Enc(pki,mb), and increment numCt. Add numCt to the set Deriv. Store
the value ct∗ in C with key (i, numCt). Return (numCt, ct∗). This oracle is
queried once.

⋄ Re-encryption OReEnc: On input (i, j, k) where i, j ≤ numKeys and k ≤ numCt,
if j ∈ Cor and k ∈ Deriv return ⊥. If there is no value in C with key (i, k),
return ⊥. Otherwise, let cti be that value in C, let ctj ← ReEnc(rki→j , cti),
and increment numCt. Store the value ctj in C with key (j, numCt). If k ∈
Deriv, add numCt to the set Deriv. Return (numCt, ctj).

Phase 3:

⋄ Decision: on input bit b′, return 1 iff b′ = b and 0 otherwise.

The HRA advantage of A is defined as AdvA(λ) = Pr(b′ = b), where the
probability is over the randomness of A and the oracles in HRA game. Given a
security parameter λ, a proxy re-encryption scheme is HRA-secure if for all prob-
abilistic polynomial-time adversaries A, there exists a negligible function negl(λ)
such that AdvAhra(λ) <

1
2 + negl(λ).

The formal definition of IND-CPA differs from HRA in OReEnc of Phase 2 where
it outputs ⊥ if i ∈ Hon and j ∈ Cor.

Now we define a re-encryption simulator from Cohen’s work [14]. We use the
term “statistically close” in the following definition as a place holder for arbitrary
closeness metrics or divergences. One such closeness measure is KL-divergence,
defined in Definition 5.

Definition 4 (Re-Encryption Simulatable, Definition 7 in [14]). A PRE
scheme is re-encryption simulatable if there exists a simulator ReEncSim such
that for all m ∈M, the distribution

{(ReEnc(rka→b, cta), aux)}

is statistically close to
{(ReEncSim(aux), aux)}
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where aux = (pp, pka, pkb, skb, cta, m). The strings in aux are honestly gener-
ated: pp ← ParamGen(1λ), (pka, ska) ← KeyGen(pp), (pkb, skb) ← KeyGen(pp),
rka→b ← ReKeyGen(ska, pkb), cta ← Enc(pka,m).

Our main technique in our HRA-secure construction will be leveraging the
following theorem, but we do this in a more fine-grained setting.

Theorem 1 (Theorem 5 in [14]). Let PRE be a IND-CPA-secure, re-encryption
simulatable PRE scheme. Then, PRE is HRA-secure.

The main idea in the theorem is that ctb ← ReEnc(rka→b, cta) breaks ctb’s
correlation to ska when the scheme is re-encryption simulatable. In (R)LWE
schemes, the error in the ciphertexts can be used to recover the secret key,
which is why Cohen’s attack [14] on PICADOR [6] is nearly the same attack as
Li and Micciancio’s attack on the CKKS scheme [39]. Breaking this correlation
is crucial to HRA security.

2.2 Concrete Security

Our main statistical measure for the concrete security of our PRE scheme is KL
divergence.

Definition 5. Let P,Q be two discrete distributions with common support X.
The Kullback-Leibler Divergence (from Q to P) is defined as

D(P||Q) =
∑

x∈X P(x) ln
P(x)
Q(x) .

Next, we define the adversary’s distinguishing advantage in state-of-the-art
concrete security measures and reductions via Micciancio and Walter’s work [44].
First, we define a generic distinguishing game, encompassing CPA and HRA
security for PRE.

Definition 6 (Indistinguishability Game [44]). Let
{D0

θ}θ, {D1
θ}θ be two distribution ensembles. The indistinguishability game for

these ensembles between a challenger C and an adversary A is as follows: C
picks a secret bit b← {0, 1} at random. Then, the adversary (adaptively) sends
query strings θi to C which returns a sample ci ← Db

θi
. Finally, the adversary

returns a guess bit b′ and wins if b′ = b. An adversary is allowed to output ⊥ as
an “I do not know" symbol.

We write G({D0
θ}θ, {D1

θ}θ) for the security game above, and G when the distribu-
tions are clear from context. We define the adversary’s distinguishing advantage
and the scheme’s resulting bit security below in Definition 7 .

Definition 7 (Advantage and Bit Security [44]). We define an adversary
A’s output probability in game G as αA = Pr[A ≠⊥] and its conditional success
probability as βA = Pr[b′ = b|A ≠⊥] where the probability is taken over the ran-
domness in the game G and the adversary’s internal randomness. An adversary’s
conditional success probability is defined as δA = 2βA − 1 and its advantage is
AdvA = αA(δA)2.
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Cryptographic schemes or protocols often rely on a mixture of computational
security (e.g., RLWE or DDH) and statistical security (noise-flooding or secret-
sharing). Li et al. [40] captured this intuition in their definition of (c, s) security
where c is a computational security parameter (often 128 − 256) and s is a
statistical security parameter (often 40-64 [15]). We abbreviate the time of an
adversary as T (A).

Definition 8 ((c, s) security [40]). Let Π be a cryptographic primitive and G
be a security game based on Π. Then, we say Π has (c, s) security for c, s > 0

if for any adversary A, either log2
T (A)

AdvA
≥ c or log2

1
AdvA

≥ s.

We use (λ, ν)-security to denote the security in Definition 8 throughout the
rest of the paper since we reserve λ to denote some computational security
parameter and ν to denote some statistical security parameter. Now we give a
lemma relating the loss in security with the number of queries an adversary has
with respect to the KL divergence.

Lemma 1 (Lemma 5 in [40]). Let G be an indistinguishability game (Defini-
tion 6) with distribution ensembles {Xθ}θ and {Yθ}θ and τ > 0. Then, for any
adversary A making at most τ queries in game G, AdvA ≤ τ

2 maxθ D(Xθ||Yθ).

We use the following generalized hybrid lemma.

Lemma 2 (Lemma 2 in [44]). Let {Hi}ki=1 be k distribution ensembles (θ is
implicit/suppressed) and let Gi,j be the indistinguisability game for Hi and Hj.
Let C be some (large) fixed constant, and let ϵi,j = maxA AdvA with T (A) ≤ C.
Then, ϵ1,k ≤ 3k

∑k−1
i=1 ϵi,i+1.

2.3 RLWE Algorithms

Bold letters denote vectors. For a,b ∈ RK
Q , a[i] ∈ Rq denotes the ith entry and

⟨a,b⟩ =
∑K

i=1 a[i] · b[i]. Let [a]p denote reducing a polynomial a’s coefficients
modulo p. Our noise flooding distribution is the (standard) discrete Gaussian,
denoted as Dσfl

.
Here we describe the necessary RLWE-related technical background needed

to understand our PRE scheme. We use the standard RLWE setting: RQ =
ZQ[X]/(XN + 1) is a polynomial ring of dimension N where N is a power of
2 and Q is an NTT8-friendly modulus, Q = 1 mod 2N . Let UQ be the uniform
distribution over RQ, χk denote the distribution of the secret and Dσe

be the
distribution of the noise. An RLWE secret key is sk = s for s← χk and a (BGV)
public key under s is pk = (pk0, pk1) = (as + pe,−a) where a ← UQ, p is a
positive integer that is the plaintext modulus such that p≪ Q and is coprime to
Q. Further, e← Dσe

is the RLWE noise. The secret distribution χk is assumed

8 NTT stands for the “Number Theoretic Transform”. Polynomials in NTT form can
be multiplied in linear time. However, Q being NTT-friendly allows us to switch
representations in O(N logN) modular multiplications and additions via the NTT.
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to be the distribution of polynomials in R = Z[X]/(XN + 1) with coefficients
in {0,±1} chosen uniformly at random. The noise distribution Dσe

is a discrete
Gaussian (Definition 9) of width 3.19 [2]. RLWE public key encryption for a
given message m ∈ Rp and a public key pk is done by v ← χk, e, e

′ ← Dσe , and
returning ct = (v ·pk0+pe′, v ·pk1+m+pe) = (c0, c1). Decryption of ct given sk
is given by m′ ← [[c0 + c1s]Q]p, where [·]p denotes reduction modulo p into the
range (−p/2, p/2]. Note, we do not use SIMD plaintext packing for our scheme,
but we can use it without changing the scheme’s parameters.

BGV works with a chain of distinct NTT-friendly moduli Q1, . . . , Ql, . . . , QL,
where Ql|Ql+1 for l = 1, . . . , L−1. The index l denotes the ciphertext level. The
largest modulus is a product of NTT-friendly machine-sized primes Q = QL =∏

qi, i = 1, . . . , L where each Qi =
∏

qj , j = 1, . . . , i. This allows us to use
the Residue Number System (RNS) representation (called the “double-CRT”
optimization elsewhere [26]).

Definition 9. The discrete Gaussian (over R represented as Zn) with param-
eter σ > 0 is the probability distribution over Zn given by the probability mass
function Pr{z} = e−∥z∥2

2/2σ
2

/(
∑

y∈Zn e−∥y∥2
2/2σ

2

). We abbreviate sampling from
this distribution as z← Dσ. Note, σ is approximately the standard deviation.

Discrete Gaussians can be efficiently sampled for relatively small σ’s, and for the
parameters we need for noise flooding, in constant time [43].

Modulus switching. The main noise-control method in BGV encryption is
modulus switching.

Definition 10. Let ct be a BGV ciphertext and Q = Q′D be a positive in-
teger coprime with p, and Q mod p = Q′ mod p = 1 mod p. Then, the BGV
modulus-switching operation is ct′ ← (Q′/Q) · (ct + δ) ∈ R2

Q′ , where δ =

p · ([−c0/p]D, [−c1/p]D) ∈ R2.

Brakerski et al. [8], showed that if ct = (c0, c1) was a BGV ciphertext encrypting
m ∈ Rp with ∥c0 + c1s mod Q∥∞ = ∥m + pe∥∞ ≤ Q

2 −
pD(1+N)

2 , then the
output ct′ is a ciphertext encrypting m/D mod p with noise ∥e′∥ ≤ ∥e∥∞/D +
1+δR

2 , where δR is the expansion factor introduced in [21]. Note that δR = N
corresponds to the worst-case bound. Halevi et al. [31] heuristically showed (using
subgaussian analysis) that δR = 2

√
N can be used in practice instead, while still

achieving practically negligible probability of decryption failure. We denote the
algorithm in Definition 10 as: ct′ ← ModSwitchQ

′

Q (ct).
Digit decomposition. Let k = ⌈log2 Ql⌉ be the bit-length of the current

ciphertext level. For a polynomial a(X) =
∑

i aiX
i ∈ RQl

, we denote its binary
decomposition as the vector of binary polynomials a =

∑
aiX

i where each
ai ∈ {0, 1}k ⊂ Rk

Ql
is the binary decomposition of ai:

∑
j ai[j]2

j = ai. Let
2 = (1, 2, . . . , 2k−1) denote the power of two vector in Rk

Ql
, then we have a(X) =∑

aiX
i =

∑
⟨ai,2⟩Xi = ⟨a,2⟩ by linearity. Often in practice we use a larger

radix base, ω = 2r, instead of 2, and the decomposition is with respect to ω. The
parameter r is the digit size. If we let dnum := ⌈k/r⌉ be the number of digits
in our decomposition and ω = (1, ω, ω2, . . . , ωdnum−1), then we have a(X) =
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aiX

i =
∑
⟨ai,ω⟩Xi = ⟨a,ω⟩ where ai is now the base-ω decomposition. We

use the following notation for these decompositions in the rest of the paper:

WDω(ai) := ([ai]ω, [⌊ai/ω⌉]ω, . . . , [⌊ai/ωdnum−1⌉]ω)
PWω(s) := ([s]Ql

, [sω]Ql
, . . . , [sωdnum−1]Ql

) = s · ω

where s is a polynomial in RQl
. We abuse notation for a polynomial a =

∑
aiX

i:

WDω(a) =
∑
i

WDω(ai)X
i ∈ Rdnum

Ql
.

Importantly, we have ⟨WDω(a),PWω(s)⟩ = a · s ∈ RQl
for all polynomials

a, s ∈ RQl
and that the norm of WDω(a) is relatively small since its coefficients

are no larger than ω. This allows us to perform homomorphic inner products in
RLWE-based cryptosystems while keeping the noise in control.

We use the RNS digit decomposition where we partition the current level
modulus’ factors into dnum′ digits {Q̃j}dnum

′

j=1 , QL =
∏dnum′

j=1 Q̃j , where each Q̃j

is approximately the same bit-length as the others. Then,

WDl(a) :=

[aQ̃1

Ql

]
Q̃1

, . . . ,

[
a
Q̃dnum′

Ql

]
Q̃dnum′

 , (1)

PW l(s) :=

([
s
Ql

Q̃1

]
Ql

, . . . ,

[
s

Ql

Q̃dnum′

]
Ql

)
. (2)

Just as above, we have ⟨WDl(a),PW l(s)⟩ = a · s ∈ RQl
for all polynomials

a, s ∈ RQl
and WDl(a) has a relatively small norm. Note, we can do a base ω

decomposition of [a]Q̃1
in Equations (1)-(2) as long as ω < Q̃i for all i.

Key switching. The main algorithm enabling our PRE scheme is key switch-
ing. Given a ciphertext ct = (c0, c1) encrypted under a secret sk, key switching
allows us to convert ct into a ciphertext ct′ = (c′0, c

′
1) under a different secret sk′

with the same message without knowing either secret key. It is generally used in
FHE schemes since many homomorphic operations change the underlying secret
key to a known function of the key.

BV key switching. The BV key-switching [9] method relies on digit decom-
position to control the magnitude of the noise in ct′. The key-switching key, swk,
in this case is a vector of encryptions of the secret sk = s multiplied by powers
of the radix base ω, PWω(s). In more detail, swk = (−as∗ + pe+PWω(s),a) ∈
Rdnum

Q is a switching key from s to s∗. Key-switching a ciphertext ct = (c0, c1)
where c0+c1s = pe+m is given by (⟨swk0,WDω(c1)⟩, ⟨swk1,WDω(c1)⟩)+(c0, 0)
= (−a′s∗+c0+c1s+pe′,−a′) = (−a′s∗+m+p(e′+e),−a′) for a′ := ⟨a,WDω(c1)⟩
and e′ := ⟨e,WDω(c1)⟩. Hence, the resulting noise in BV key switching is from
the inner product ⟨e,WDω(c1)⟩ modulo q where e is noise in the key-switching
key. Note, key switching in RLWE schemes always results in additive noise
growth.

Noise growth in BV key switching. Here we briefly discuss the noise
growth from BV key-switching in the RNS setting. See the appendix of [36]
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for more details. We use the RNS version of BV key switching for our HRA-
secure PRE scheme. Therefore, if the input ciphertext has noise e and the key-
switching key has error coefficients at most Berr, then the output ciphertext
has output noise at most ∥e∥∞ + dnum′Q̃BerrδR

2 if we use the decomposition in
Equations (1)-(2) and Q̃ = maxi Q̃i. Further, the noise magnitude is at most
∥e∥∞ + ⌈logω(Q̃)⌉dnum′ωBerrδR

2 if a base-ω decomposition is done for each Q̃i.
If we are not in the RNS setting, then the added noise growth from BV key

switching is no more than ⌈logω(Q)⌉ωBerrδR
2 .

Hybrid RNS key switching. We also use the hybrid key-switching tech-
nique that is commonly used in practice for improved performance in the RNS
setting. This performance gain is due to the the linear growth of the number of
NTTs with the number of RNS limbs in hybrid switching as compared to the
quadratic growth in BV. It combines the GHS [27] technique and the original
digit-decomposition-based (BV) [10] technique.

Definition 11. Let RQl
be a power of two cyclotomic ring where Ql =

∏
qi

is a product of machine-sized NTT-friendly primes, P be another NTT-friendly
prime, p a BGV plaintext modulus, together with dnum, PW l(·), andWDl(·) de-
fined above. For two RLWE secret keys s and s∗, a hybrid BGV key-switching key
is swk = (swk0, swk1) ∈ R2×dnum′

PQl
where swk1 ← Udnum′

PQl
and swk0 = −s∗swk1 +

pe + P · PW l(s). Then, the key-switching operation from s to s∗ on input ci-
phertext ct = (c0, c1) encrypted under s is given by

c∗0 ← c0 +ModSwitchQl

PQl
(⟨WDl(c1), swk0⟩), c∗1 ← ModSwitchQl

PQl
(⟨WDl(c1), swk1⟩).

and ct∗ = (c∗0, c
∗
1) is the outputted ciphertext under s∗. We denote this operation

as ct∗ ← KeySwitch(ct, swk).

Note that the key-switching key from s to s∗ can be generated with a public key
for s∗ and the secret key s since swk is just an encryption of P · PW l(s) under
s∗. We use public key encryption in ReKeyGen for security against an adversary
with access to secret s∗ and the key-switching/re-encryption key from s to s∗.

Noise growth in hybrid key switching. Our implementation chooses
P ≈ Q̃ = maxi Q̃i which is standard. Therefore, the noise added from hy-
brid RNS key switching is no more than ζnumdnum′δRBerr

2 + ζnum
1+δR

2 , where
ζnum is the number of RNS moduli divided by the number of Q̃i’s, ζnum =
⌈(L + 1)/dnum′⌉ where Q =

∏L
i=0 qi =

∏
j Q̃j . The additive noise is at most

ζnumdnum′ωδRBerr

2P + ζnum
1+δR

2 if a base-ω is used in addition to the RNS decom-
position in Equations (1)-(2). See the appendix of [36] for a detailed analysis.

3 Our HRA-Secure PRE Scheme

Our proposed PRE scheme is an HRA-secure extension of the scheme in [47]. We
rely on the tight noise-flooding analysis of [40] for precise security estimates. This
yields an efficient PRE scheme with HRA security. We show that our scheme
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and its tight security analysis is HRA-secure for our target application, both
with a single hop and multiple hops. Our implementation supports both BV and
hybrid key switching but uses hybrid for larger modulus in the RNS setting.

Although we describe and implement the scheme based on the BGV ho-
momorphic encryption scheme [8], the same underlying ideas can be used to
construct an efficient, HRA-secure PRE scheme with BFV (Brakerski, Fan, Ver-
cauteren [7]) or CKKS (Cheon, Kim, Kim, Song [13]) encryption.

The main challenge in constructing HRA-secure RLWE-based PRE schemes
is balancing the noise flooding needed to generate securely re-encrypted cipher-
texts together with achieving a high level of performance. In CPA-secure, but
not HRA-secure, schemes, users can fix a relatively small ciphertext modulus due
to the additive noise resulting from key switching. This gives CPA-secure PRE
schemes essentially the same performance as CPA-secure public-key encryption.
However, these re-encrypted ciphertexts are highly correlated to the secret key
under whose public key they were originally encrypted [14]. Noise flooding [3] is
a well-known technique to break such correlations.

Up until recently, it was believed that one needed λ bits of noise, e.g., 2λ-
wide discrete Gaussian or uniformly random vector, to achieve λ bits of concrete
security. This is a significant efficiency issue since any realistic λ is at least 128
to hedge against advances in cryptanalysis. Recent works changed this under-
standing [43, 44, 40]. The conclusion derived by Li et al. [40] is that we can flood
with a significantly narrower discrete Gaussian while achieving an acceptable
level of statistical security, nearly independent of the computational hardness
of the underlying RLWE parameters. Let τ be the number of ciphertext queries
allowed by the application, usually between 210 and 220, t be the size of the value
we are trying to flood, and ν being some statistical security parameter (ν ≥ 40
is often used in practice [15]). Then, a discrete Gaussian standard deviation of
σ =

√
12τ2ν/2t is used to achieve ν-bits of statistical security together with λ

bits of computational security where the latter is determined by the RLWE ring
dimension and modulus [40].

Our scheme is presented in Algorithms 1–6. Recall, a PRE scheme consists
of the algorithms (ParamGen, KeyGen, Enc, Dec, ReKeyGen, ReEnc) (Defini-
tion 1). Our ParamGen, KeyGen, Enc, Dec algorithms are the same as in the
IND-CPA secure scheme in [47], i.e., they correspond to standard BGV public
key encryption, but we modify the ReKeyGen and ReEnc algorithms for HRA
security. Our scheme achieves HRA security with tight parameters via the re-
fined noise flooding technique of Li et al. [40]. We denote encrypting a vector
of messages, m ∈ Rk, or the k-repeated public-key encryption algorithm, as
ct = (ct0, ct1)← Enc(pp, pk,m) where each cti is a fresh public key encryption
of mi (cti ← Enc(pp, pk,mi)).

Note that the ReEnc described in Algorithm 6 is key switching with a re-
encryption key rk (generated using ReKeyGen) together with a specialized re-
randomization process: adding an encryption of 0 and noise flooding. This spe-
cialized re-randomization process is needed to achieve HRA security (and in more
detail, re-encryption simulability [14]). In short, this re-randomization breaks the
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Algorithm 1 ParamGen(1λ, ν, h)

Input: computational security parameter λ > 0, a statistical security parameter λ ≥
ν > 0, and the number of hops h > 0.

Output: pp is a multi-hop PRE parameter set with (λ, ν) HRA-security with at least
h number of hops in the network.

1: return a (λ, ν)-HRA-secure RLWE parameter set pp = (QL, N, p, χk, Dσe , Dσfl)
given in Appendix 5 with h hops.

Algorithm 2 KeyGen(pp)

Input: pp is a multi-hop PRE parameter set.
Output: (pk, sk) is a valid public-key secret-key pair.
1: Sample a← UQL , s← χk, e← Dσe .
2: Set pk0 := as+ pe, pk1 := −a, pk := (pk0, pk1), and sk := s.
3: return (pk, sk).

Algorithm 3 Enc(pk,m)

Input: An RLWE public key pk ∈ R2
Q, and m ∈ Rp.

Output: Ciphertext ct, an encryption of m under (pk, sk).
1: Sample v ← χk, eβ , eα ← Dσe .
2: Compute c0 = pk0v + peβ +m and c1 = pk1v + peα.
3: return ct = (c0, c1).

Algorithm 4 Dec(sk, ct)

Input: RLWE secret key sk, and an RLWE ciphertext ct ∈ R2
Ql

.
Output: m′ ∈ Rp.
1: Compute m′ = [[c0 + s · c1]Ql ]p.
2: return m′.

Algorithm 5 ReKeyGen(sk, pk)

Input: A source sk = s and a target pk∗.
Output: A re-encryption key rks7→s∗ .
1: rks 7→s∗ = (rk0, rk1)← Enc(pp, pk∗,PW l(s))
2: return rks 7→s∗

Algorithm 6 HRA-Secure ReEnc(ct, rks7→s∗)

Input: A ciphertext ct ∈ R2
Ql

encrypted under s and a re-encryption key rks 7→s∗ as
described in ReKeyGen, and a public key for s∗, pk∗. Further, Dσfl is a discrete
Gaussian over R with width σfl =

√
12τt2ν/2 where τ is the number of adversarial

queries allowed by the application, t is an upper bound on the ciphertext noise,
and ν is a statistical security parameter.

Output: A ciphertext ct∗ encrypting the same message as ct under s∗.
1: Rerandomize: ct(0) ← ct+ Enc(pk∗, 0).
2: Generate the flooding noise ere ← Dσfl .
3: Flood the input ct(1) ← ct(0) + (pere, 0).
4: ct(2) ← KeySwitch(ct(1), rk).
5: Modulus switch: ct(3) ← ModSwitch

Ql−1

Ql
(ct(2)).

6: return ct∗ = ct(3).
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output ciphertext’s correlation with the input ciphertext’s secret key. This cor-
relation is why the scheme from [47] does not achieve Cohen’s HRA security.
Further, this correlation to the secret key is nearly the same correlation ob-
served by Li and Micciancio in their CKKS attack [39]. Analogously, we use the
refined flooding technique from Li et al. [40], together with plain ciphertext re-
randomization by adding an encryption of 0, as a way to break this correlation.

Correctness and noise analysis The correctness of Algorithm 6 follows
immediately from the correctness of KeySwitch(·, ·) and the correctness of
ModSwitch

Ql−1

Ql
(·). Let eks be the additive noise from key switching,

eks =
ζnumdnum′ωδRBerr

2P + ζnum
1+δR

2 if we use a base-ω decomposition in addition
to an RNS decomposition (Section 2). If the input ciphertext’s noise is e, then
the output of Algorithm 6 ciphertext’s noise is at most Ql−1

Ql
(∥e∥∞ + ∥ere∥∞ +

∥eks∥∞) + 1+δR
2 , where ere is flooding noise in Algorithm 6.

3.1 The Concrete Security of Our HRA PRE Schemes

Here we give a tight reduction tracking the concrete security of our HRA-secure
PRE scheme. We will use KL divergence in our proofs as a measure of statistical
closeness between two distributions. We first state our main theorem relating
concrete security in HRA-secure PRE schemes with the KL divergence of a re-
encryption simulator.

Theorem 2. Let Π be a λ-bit secure PRE CPA scheme. If Π has a re-encryption
simulator (Definition 4) with KL divergence ≤ ρ between the two distributions in
Definition 4, then the same scheme is (λ− log2 24, log2(1/ρ)− log2(τ)− log2 24)
HRA secure against any semi-honest adversary with at most τ queries.

Proof. Cohen [14] (restated in Theorem 1) first goes through re-encryption sim-
ulability, but we adopt his proof to the fine-grained setting (Definition 8). The
main idea is that there they transform a CPA scheme to a stronger security no-
tion, IND-CPAD, where the oracle added to the CPA game is simulatable. This
is the same for HRA-security in PRE.

Let G0 be the actual HRA security game, G1 be the HRA security game with
the simulator ReEncSim in place of the re-encryption oracle, and let G2 be the
original CPA game. Similar to Theorems 2 and 5 in [40], any adversary winning
in game G2 automatically wins in G0 since the oracle queries in G2 are a strict
subset of those in G0.

Now we fix the following distributions: H1 = G00 , H2 = G01 , H3 = G11 , and
H4 = G10 , where Gbj is game Gj with secret bit b. Let ϵi,j be the maximum
advantage of all adversaries distinguishing games Hi,Hj (with time complexity
at most 2λ). From Lemma 2, we have ϵ1,4 ≤ 12(ϵ1,2+ϵ2,3+ϵ3,4). From Lemma 1,
we have ϵ1,2+ϵ3,4 ≤ τρ. (Note that these two epsilons are where we move between
the actual game and the simulated query game.)

Therefore, we have maxA advAG0
≤ 12(maxB advBG1

+τρ) ≤ 24max(maxB advBG1
, τρ).

Now we consider both cases. If τρ ≥ maxB advBG1
, then minA log2(1/adv

A
G0
) ≥
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log2(1/ρ) − log2(24τ). On the other hand, minB(1/adv
B
G1
) ≤ minA(24/adv

A
G0
) if

τρ < maxB advBG1
and we have minC 1/adv

C
G2
≤ minB 1/advBG1

since the simulator,
ReEncSim, in G1 is perfectly simulatable within the CPA game.

Noise Flooding According to Corollary 2 of [40]9, we must add a discrete
Gaussian with standard deviation σ =

√
12τt2ν/2 to flood an error polynomial

with absolute value at most t > 0, allowing for τ adversary queries, and with a
statistical security parameter ν.

Lemma 3 (Lemma 6 in [40]). For any two vectors x,y ∈ Zn with euclidean
distance at most t, ∥x−y∥2 ≤ t, the KL divergence between the following smudged
distributions is at most ρ:

D(x+DZn, t√
2ρ
||y +DZn, t√

2ρ
) ≤ ρ.

Algorithm 7 ReEncSim for Algorithm 6.
Input: A ciphertext encrypted under s, cts ∈ R2

Ql
, a public key under s denoted pks,

a public key under s∗ denoted pks∗ , the secret key s∗, a message m.
Output: A simulated ciphertext ct∗ ∈ R2

Ql−1
encrypting the same message as ct under

s∗ with a noise distribution close to the output of Algorithm 6.
1: e← DR,σ for σ =

√
12τ2ν/2ct.t where ct.t is an upperbound on the key-switching

noise.
2: ct′ ← Enc(pks∗ ,m)

3: ct∗ ← ModSwitch
Ql−1

Ql
(ct′) + (pe, 0)

4: return ct.

Note that the real noise in the output of Algorithm 6 is eflood+eKS
qdrop

+ τ ′0 + τ ′1s
∗

whereas the noise in the output of the simulator, Algorithm 7, is eflood+efresh
qdrop

+τ0+

τ1s
∗ where τ0, τ1, τ

′
0, τ

′
1 are all identically distributed since they are the output

of the rounding function applied to (unseen, re-randomized) RLWE samples.

Theorem 3. The output of the re-encryption simulator, Algorithm 7, is within
a KL divergence of (24τ2ν)−1 from Algorithm 6. Furthermore, the re-encryption
algorithm, Algorithm 6, gives a (λ− log2 24, ν)-secure HRA PRE scheme if the
scheme uses RLWE with λ bits of computational security.

Proof. The KL divergence follows from plugging in σ2 = t2/2ρ in Lemma 3: 1
ρ =

2σ2

t2 = 2(
√
12τ2ν/2)2 = 24τ2ν . Furthermore, Theorem 2 boils down to plugging

in ρ = (24τ2ν)−1 into ν = log2(1/ρ)− log2(τ)− log2(24) to get (λ− log2(24), ν)
security.
9 We corrected this formula to remove an unnecessary factor of

√
2, as we show in

the proof of Theorem 3, and we removed the
√
N factor since our security game is

played in the coefficient domain and not the canonical embedding.
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Fig. 1. Example PRE network with three trust zones, one Key Server for each zone,
one producer, two consumers, and four brokers. Public, Secret, Re-encryption Keys and
ciphertext exchanges are shown as connecting arrows. Secure exchange of keys between
trust zones is shown in yellow.

4 Secure Multi-Hop Data Distribution System

As a motivating application for multi-hop PRE, we consider the design of a
system for secure multi-hop information (AES key) distribution for 5G virtual
network slices consisting of publishers and consumers with multiple trust zones.
In Figure 1, we show an example network with three trust zones, four brokers,
and a producer sharing content with two consumers in different trust zones.
Ciphertexts are re-encrypted through a chain of brokers as they pass through
multiple trust zones. Broker keys and their distribution are managed exclusively
by key servers running on trusted hardware. We label these key servers as KS.
They generate all keys for encryption, decryption, and re-encryption for the
brokers.

In the context of 5G virtul network slices, the orchestrator in the 5G slicing
architecture is trusted, so KS can be assumed to be in the same trust level as
the Orchestrator for security considerations. (“key authority” is another name for
an orchestrator in more general contexts.) Re-encryption keys are passed down
to the brokers from the KS. Brokers are not trusted with the ability to decrypt
since they can be deployed on untrusted hardware. Only consumers are trusted to
decrypt. This is possible because the KS generate re-encryption keys for brokers
but do not share secret keys with brokers. Note that brokers re-encrypt for the
next broker down-stream, whether or not they are in the same zone. This allows
trees of brokers to service a very large number of consumers. For example, a
binary tree of depth d could service 2d brokers. While multiple options exist for
moving keys between entities, the approach shown in Figure 1 limits cross-zone
key interactions to adjacent trusted key authorities. This keeps brokers from
possessing any keys required for decryption, minimizes secure communication,
and eliminates the need for a single central KS across trust zones.

Security considerations require careful design of allowed interactions among
producers, brokers, consumers, and key servers. Producers and consumers gener-
ate their own keys. For example, we implement a simple whitelist of authorized
consumers within the KS to limit generation of re-encryption keys to the brokers
with access control. More details are provided in Appendix C. There could also
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be a setting where the key authorities generate keys for producers and consumers
as well, depending on the application.

5 Parameter Selection

We implemented the scheme presented in Section 3 for three different security
modes: CPA-Secure, Bounded-Query HRA*-secure, and HRA-secure. The three
modes use the same ReKeyGen algorithm, Algorithm 5, to generate re-encryption
keys and only differ in their ReEnc algorithms.

IND-CPA-Secure Mode. The CPA-secure is the PRE scheme without
noise flooding in Step 3 and modulus switching in Step 5 of Algorithm 6. It can
be used for applications that do not require HRA security. The scheme is similar
to the IND-CPA scheme in [47], but adapted to the public-key setting.

Bounded-Query HRA*-Secure Mode. To achieve a trade-off between
performance and security, we implemented the Bounded-Query HRA*-Secure
mode10 that adds a fixed 20-bit noise in Step 3 of the ReEnc Algorithm 6 at
every hop instead of full noise flooding (no modulus switching is performed).
For example, the concrete security of Section 3.1 means that the (λ, ν)-HRA-
security is about (128, 20) if the adversary gets 29 = 512 adversarial queries,
minimal number of re-encryption queries and the key-switching noise is about 5.5
(≈
√
N for N = 2048) bits in absolute value and we start with a computational

security of at least 132 bits. This mode allows for smaller parameters, allowing
more hops and better performance.

HRA-Secure Mode. This mode is IND-HRA secure and implements Al-
gorithm 6 as described, with noise flooding. It supports both BV and hybrid
key switching. For the concrete security of the scheme in Section 3.1, the noise
flooding parameter needs to factor in the number of adversarial queries and the
desired statistical security, in addition to the noise bound for key switching. The
exact equation for this noise flooding distribution is a discrete Gaussian over R
with width σfl =

√
12τt2ν/2 for ν ≥ 48 and 218 queries.

5.1 Logic for Setting the Parameters

Our PRE scheme supports multiple hops, but the choice of optimal parame-
ters depends on many factors: security level required and security mode (CPA,
bounded HRA*, HRA-secure), encrypted payload size (in bits), number of bro-
ker hops required (number of re-encryptions), and other efficiency considerations
such as latency, throughput, computation time and ciphertext/key size. We use
the homomorphic encryption standard [2] for a given computational security
level (128, 192 or 256 bits of security) to select parameters such as the mod-
ulus bit-length log2 QL and the ring dimension N . For a given QL and N , we
are estimating the number of hops possible based on the decryption correctness

10 Bounded HRA*-secure mode provides better efficiency than the HRA-Secure mode
but limited protection against re-encryption attacks
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condition of the corresponding security mode. We may need to adjust (increase)
these parameters to achieve a desired number of hops. The overall efficiency
of the protocol also depends on the choice of the plaintext modulus p and the
decomposition digit size used in key switching. For a non-RNS modulus Q less
than 60 bits, the digit size r in BV switching is such that the digit decomposition
is done with base ω = 2r (Refer to Section 2.3). The digit size in BV switching
in the RNS setting is the size of each RNS moduli Qi while the digit size in
hybrid switching in the RNS setting is ⌈log2 Q⌉/dnum, where we use dnum = 3.
The best performance (latency) for re-encryption is usually achieved when p = 2
and digit size is 3 or 4 (as observed in [47]). So we start with r such that the
digit size is 3 while choosing the parameters. These values may be modified if
the resulting number of hops is insufficient for our scenario or if it results in a
larger ring dimension, as a trade-off.

In addition to re-encryption, homomorphic computation on ciphertexts is
possible as well. However, if brokers need to perform multiplication on an en-
crypted value, then one needs to increase the multiplicative depth by increas-
ing the modulus, QL. This will, in turn, increase the resulting ciphertext and
public/re-encryption key size. Since our initial scenario is to use PRE for key
distribution and secure access control, we have decided to select parameters as-
suming no computation is performed on the re-encrypted ciphertexts. We wrote
a python script for determining multi-hop cryptographic parameters based on
these criteria. The pseudocode for the program is given below. For an input com-
putational security parameter λ, a payload bit length, and a minimum number
of hops h > 0, we generate a BGV parameter set (N,QL, p, χk, Dσe , Dσfl

) as
follows:

– Pick a security level from HE standards which is the at least λ (128, 192, or
256 bits).

– Compute a minimum ring size = (payloadbits/log2(p)). Verify that the min-
imum ring size is within the allowable range for the standard (i.e., ≤ 32768),
note that to allow for multiple hops with noise flooding, the minimum ring
size required is 4096. If this is ≥ 32768, increase p if possible. (Otherwise,
the application will use multiple ciphertexts per message vector.)

– While ring size <= 32768:
• Determine the maximum logQL from λ and N using the tables in [2].
• Verify that logQL satisfies the noise flooding condition for min h hops,

ring size, p. Stop if satisfied, otherwise increase ring size by factor of two
and try again.

The bound B = ασ for noise from distribution Dσ determines the decryption
failure rates. Since erfc(6) ≈ 2−55, the probability that the norm of a random
variable (noise) sampled from Dσ is greater than B is 2−55. The same probability
is at most 2−40 while using a union bound with ring dimension up to 215. Hence,
we choose α = 6 in our implementation to target a decryption failure rate of at
most 2−40 [27]. The quality of the discrete Gaussian samples for noise flooding
is verified using the GLITCH framework [33].
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6 Experimental Results

We implemented our PRE scheme from Section 3 in OpenFHE by extending
its BGV scheme implementation. We measured and compared the runtimes
and key sizes for all three PRE modes: IND-CPA-secure, fixed-noise (bounded-
query) HRA*-secure, and provably secure HRA. For all experiments, we used an
Intel® CoreTM i7-9700 CPU with 64 GB RAM, running Ubuntu 20.04 with g++
v10.5.0. All experiments were run in the single-threaded mode using OpenFHE
v1.2.0. We first present the results for the single-hop scenario and then report
our results for 13 hops for the use case of secure multi-hop information sharing
described in Section 4.

6.1 Single-Hop Setting

The ciphertext expansion at different payload bit sizes for a single-hop PRE is
shown in Table 1 for the three security options. To measure the ciphertext size, we
use the size of serialized ciphertexts generated using the binary serialization mode
of OpenFHE [1]. The parameters are chosen to allow for decryption correctness
with single hop for each payload bits size. The digit size does not impact the
ciphertext expansion. For IND-CPA, larger plaintext moduli do not allow for one
hop when the digit size is larger than 1 for ring dimension N = 1024. So we use
the digit size of 1 for comparison with different values of p until the plaintext
modulus is large enough to require raising the ring dimension to 2048 for a
single hop. Figure 1 suggests that the smallest ciphertext expansion factor for
the IND-CPA-secure and HRA*-secure modes is about 16, and the corresponding
expansion factor for the HRA-secure mode is about 32.

Figure 2 presents the runtimes for all three modes at p = 2, which corresponds
to the AES secret key sharing use case. The IND-CPA and bounded HRA*-secure
mode have approximately the same runtimes except for the re-encryption, where
the bounded HRA*-secure mode adds a Gaussian with a 20-bit distribution
parameter.

6.2 Multi-Hop Setting

For the multi-hop setting, all parameters are chosen to allow a minimum of
13 hops with 128 bits of computational security. We fix the plaintext modulus
p = 2 for our application of key encapsulation that transfers 256-bit AES keys
from producers to consumers. The AES key is treated as a vector of bits when
encoding the message.

Table 3 presents the parameters for different security modes, along with max-
imum number of hops supported for each mode, public key size, re-encryption
key size and initial re-encrypted ciphertext size. The re-encryption key size is
influenced by the digit size: the larger the digit size, the smaller the resulting
re-encryption key size. However, changing the digit size also affects the number
of hops and might increase required modulus size and ring dimension for the de-
sired number of hops. In the case of our provable HRA-secure mode with hybrid
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Payload (bits) N logQ(P ) p
Digit
size r

ReEnc ct
Size

ct ex-
pansion

IND-CPA security
1024

1024 27

2

1 16.8 KB

134.34
2048 4 67.17
4096 16 33.59
8192 256 16.8

16384 2048 54 65536 18 32.8 KB 16.4

Bounded (fixed 20-bit noise) HRA* security
1024

2048 54

2

18 32.8 KB

262.5
2048 4 131.2
4096 16 65.6
8192 256 32.8
16384 65536 16.4

Provably-secure HRA security
1024

4096 109

2

56 65.0 KB

520.0
2048 4 260.0
4096 16 130.0
8192 256 65.0
16384 65536 32.5

Table 1. Single-hop ciphertext expansion (the ratio of plaintext size vs re-encrypted
ciphertext size). For IND-CPA and bounded HRA*-secure modes, BV key switching is
used. For the provable HRA-secure mode, the key switching technique is set to hybrid,
ν = 48, and τ = 218.

Security mode KeyGen (KS) ReKeyGen (KS) Enc (Producer) ReEnc (Broker) Dec (Consumer)
IND-CPA 0.21 0.50 0.18 0.19 0.032

Bounded HRA* 0.21 0.50 0.18 0.54 0.032

HRA-Secure 1.05 1.00 0.73 2.04 0.142

Table 2. Single-threaded runtime performance (in milliseconds) for different modes
of the PRE scheme for the single-hop setting. The plaintext modulus p is set to 2.
For IND-CPA and bounder HRA*-secure modes, N = 1024 and logQ = 27 (both use
BV key switching); for the HRA-secure mode, N = 4096 and logQP = 109 (other
parameters are the same as for Table 1). Each algorithm is labeled with the network
node name in parentheses (ReEnc is done by Brokers, etc.)

Security mode N logQ(P ) Max hops pk rk ReEnc ct ct reduction
IND-CPA 2048 54 + 32.65 KB 96.93 KB 32.80 KB -

Bounded HRA* 2048 54 + 32.65 KB 96.93 KB 32.80 KB -
HRA-Secure 32768 815 13 8.5 MB 25.5 MB 6.5 MB 0.50 MB/hop

Table 3. Parameters and resulting key sizes for a minimum of 13 hops for all security
modes, plaintext modulus p = 2 and a digit size of 3. We use + to denote a practically
unlimited number of hops (over a million). For the provable HRA-secure mode, ν = 48,
τ = 218, the key switching is hybrid, and the public key uses the extended modulus
QP to reduce the noise added as part of fresh public key encryption. ReEnc ct stands
for the re-encrypted ct largest size.
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Security mode KeyGen (KS) ReKeyGen (KS) Enc (Producer) ReEnc (Broker) Dec (Consumer)
IND-CPA 0.38 1.02 0.35 0.39 0.086

Bounded HRA* 0.38 1.02 0.35 1.10 0.086

HRA-Secure 51.2 124 38.6 from 103 to 32 from 20.7 to 1.2

Table 4. Single-threaded runtime performance (in milliseconds) for different PRE
modes for at least 13 hops (see the caption in Table 3 for other parameter values).
Each algorithm is labeled with the network node name in parentheses (ReEnc is done
by Brokers, etc.)

key switching, the re-encrypted ciphertext size reduces linearly with every hop
due to modulus switching at every hop. That is, every hop reduces the cipher-
text modulus by one machine-sized modulus. To reflect this, we show the initial
re-encrypted ciphertext size and the reduction in the size at every hop.

Table 4 shows the runtime performance of all PRE scheme operations. Note
that the key sizes, ciphertext sizes and runtimes in Tables 3 and 4 are larger
for the provably-secure HRA option. This is due to the larger ring dimension
and modulus Q(P ) size needed to allow for noise flooding. Since the ciphertext
modulus reduces at every hop with modulus switching for the provably-secure
HRA mode, the runtime for re-encryption reduces as well. Table 4 shows that
the re-encryption runtime decreases from 103 milliseconds for the first hop down
to 32 milliseconds for the last hop.

6.3 Extensions

Conceptually, multihop PRE resembles the leveled BGV setup; here, for each
hop we add an extra level. In a way, our proposal extends the (leveled) FHE
model, where a new “computation” is added called re-encryption (or key switch-
ing which hides the previous key). Therefore, our solution can be easily extended
to support both access delegation and homomorphic computations. For example,
BGV bootstrapping could be beneficial to keep the parameters smaller if a large
number of hops (say, more than 30) is required by an application.

7 Concluding remarks

We advance the state of the art in lattice-based HRA-secure PRE schemes by
proposing and implementing an HRA-secure PRE scheme with tight security.
Our implemented system is motivated by security issues in 5G virtual network
slices, which are segmented over multiple substrate networks, resulting in mul-
tiple trust zones. Such a system can also be used for securely transferring any
data payload in many other types of networks. The performance runtime, key
sizes and ciphertext sizes in OpenFHE are reported for different security modes.

Adding homomorphic computations at the broker level and further opti-
mizing for performance will be considered for future work. Furthermore, the
maliciously-secure setting is clearly of importance in the 5G virtual slice setting
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since there may be scenarios where the untrusted hardware acts maliciously. This
interesting direction is left to future work. We believe the technical challenges
here are similar to those encountered in constructing actively secure (threshold)
FHE. Another interesting research direction is to find a lower bound on the
number of noise-flooding bits one needs to add in order to hide all information
about the secret keys used throughout the network. Our work shows that Ω(ν/2)
noise-flooding bits suffices for ν bits of statistical security for HRA security.
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Appendices

A Why Simple Rerandomization is Not HRA Secure

Here we sketch a simple HRA attack showing that simple rerandomization, or
just adding fresh encryptions of 0 locally after key-switching, is not an HRA-
secure PRE scheme. This method was used in the work of Davidson et al. [16]
where they claimed this method to satisfy HRA security assuming RLWE. Below,
we show an attack with (R)LWE with a binary matrix (not binary error or binary
secret) and a simple averaging argument. The former was shown to be insecure
by Herold and May [32]. We leave an in-depth, experimental cryptanalysis to
future work since our goal is simply to demonstrate a lack of security in the
rerandomization approach without noise flooding. Note that the attack we sketch
may not be the most effective as there may be more efficient breaks on this
scheme in the HRA security model.

PRE without noise flooding. Recall, an HRA adversary gets access to
a honest-to-corrupt re-encryption oracle without ever seeing the associated re-
encryption key. Therefore, the adversary is going to query this oracle, decrypt,
and use the RLWE error to learn information about the honest secret key. The
main point is that the RLWE error is highly correlated to the honest secret key.

Here we review the algorithms in [16]. User A’s public-secret key pair is gen-
erated as a standard RLWE sample a← Rq, epk ← DR,σf

, sA ← {0,±1}n, b←
asA + pepk and pkA := (b, a) and skA = sA ∈ R where σf is small (often 3.2
in applications). Furthermore, public key encryption of m ∈ Rp is given by
v, e′, e′′ ← DR,σf

and the output is ct = (vb + pe′ + m, va + pe′′). Note that
the fresh encryption error is given by efresh = epk + e′ − sAe

′′. The re-encryption
key rks7→s∗ is generated by rki = Enc(pks∗ ,−s2i). Therefore, the noise in the
re-encryption key is simply the fresh noise as an i.i.d. vector.

Similar to ours, the scheme in [16] uses a digit decomposition step in re-
encryption (Algorithm 8 below). For simplicity, we give the attack where the
digit decomposition is given in binary digits, or r = 1, in Figure 8 in [16].

Attack. The main idea of our attack is to simply re-encrypt the many ci-
phertexts from the same honest party. The error will be structured in a way
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Algorithm 8 Re-Encryption Without Noise Flooding [16].
Input: A ciphertext c = (cα, cβ) ∈ R2

q encrypted under s, a re-encryption key rks 7→s∗ =
(rkβ , rkα) as described in ReKeyGen, and a pk public key to s.

Output: A ciphertext c∗ encrypting the same message as c under s∗.
1: Decompose c̃α = ⟨cα,2⟩.
2: Compute c∗β = cβ + ⟨cα, rkβ⟩, and c∗α = ⟨cα, rkα⟩.
3: c∗ = (c∗β , c

∗
α), c′ ← Enc(pks∗ , 0).

4: return c∗ + c′

which enables the receiver to recover the original ciphertext’s error. In turn, we
can recover the secret key just as Li and Micciancio [39] and Cohen [14] attack
approximate FHE and previous RLWE PRE schemes, respectively.

Re-encryption without noise-flooding is given in Algorithm 8. Let the vector
x denote the ciphertext error in the re-encryption key rks7→s∗ , x = epks∗v +

e′′ − s∗e′ ∈ R
log2 q
q . If the input ciphertext is ctin = (c0, c1) = (as + pect +

m, a) and the re-encryption key is rks7→s∗ , then the output is a randomized
ciphertext with noise ⟨x, c̃1⟩+efresh,s∗ +ect where c̃1 is a binary vector (vector of
binary polynomials) representing the bit-decomposition of the input ciphertext’s
second ring element c1. Note, that c̃1 is known to adversary since it is the bit
decomposition of the input.

Then, we can randomize the ciphertext by calling a new encryption from the
same party. Repeating this (many) times gives us the binary RLWE problem:
(Cx + e,C) where e is the vector e = ect1 + efresh,s∗ with ect as the original,
fixed, ciphertext error, and C is a public binary matrix. Once we get the vector
x, we can subtract the inner-product ⟨e,x⟩. This now reduces to an averaging
argument, by re-encrypting the same ciphertext repeatedly, to recover ect and
therefore recover the original secret s. Lastly, we note that the magnitude of ect
and the entries ofefresh,s∗ are all of similar magnitude since ect is a fixed error
resulting from a fresh encryption under s. Generic meaning finding algorithms
require a quadratic number of samples in order find a mean11.

We note that changing Algorithm 8 to rerandomize before digit decompo-
sition is still vulnerable to averaging attacks since the noise there is changed
to ⟨erk,b⟩ + es,f + ect where is a fixed vector representing the noise in the re-
encryption key, b is a uniformly random binary vector, es,f is a fresh encryption
noise from s’s public key, and ect is the fixed ciphertext noise we are trying to
recover.

B Circuit privacy technique of [12]

De Castro et al. [12] describe using a simple modulus reduction technique with
the BFV scheme for circuit privacy. Let roundQ→Q0

(y) = ⌊ y
Q∗

0
⌋Q0

for q = q0q
∗
0 .

11 This can be done with the Central Limit Theorem or concentration bounds, like
Bernstein and Hoeffding concentration inequalities [38]. See Lecture 3 of https://
cs.brown.edu/courses/csci1951-w/ for details on generic mean-finding algorithms.
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This is the modulus switching operation from Q to Q0. The high-level idea in
[12] is that the error-less portion of a BFV encryption, as + ∆m, is uniformly
random over RQ where Q = Q0Q

∗
0 and ∆ = ⌊Q/p⌋. Then, the function round

hides the circuit-dependent error, e in as + ∆m + e, as long as round(as +
∆m + e) = round(as + ∆m). For simplicity, assume m = 0. Then, this is the
same event that as is not within a distance of ∥e∥∞ of a multiple of q∗0 . The
technique hides the circuit dependent error with high probability for the right
choice of parameters as in Theorem 3.8 of [12]. We adapt the same technique to
re-randomize the ciphertext being re-encrypted. Since there is already a modulus
switching operation in the re-encryption algorithm, this allows to achieve HRA
security without the additional overhead of noise flooding.

Since we present our instantiation of the PRE scheme in Section 3 with
BGV scheme, we first show how this adapts to BGV and that it can be applied
for re-randomization in re-encryption. The re-encryption algorithm with this
technique is defined in Algorithm 9. Note that the procedure to obtain ct(1)

from a ciphertext ct being re-encrypted is exactly the same as Algorithm 1 of
[12]. For BGV, we see that multiplying by p−1 mod Q permutes ZQ. Then, the
probability that round(as+e) = round(as) is the same probability as round(p[as+
e] mod Q) = round(p · as mod Q) since multiplication by p mod Q is invertible
when (p,Q) = 1. Lastly, we note that as is uniformly random if and only if p ·as
is uniformly random. So, replace a by a′ = p−1a and we see

Pr{round(a′s) = round(a′s+ e)}
= Pr{round(p · a′s) = round(p · [a′s+ e])}
= Pr{round(as) = round(as+ pe)}.

Algorithm 9 HRA-Secure Re-Encryption with divide and round technique from
[12]
Input: A ciphertext ct ∈ R2

Q encrypted under s and a re-encryption key where Q =
Q0Q

∗
0 rks7→s∗ as described in ReKeyGen, and a public key for s∗, pk∗.

Output: A ciphertext ct∗ encrypting the same message as ct under s∗.
1: Rerandomize: ct(0) ← ct+ Enc(pk∗, 0).
2: Divide and round: ct(1) ← ModSwitchQ0

Q (ct(0)).
3: ct(2) ← KeySwitch(ct(1), rk).
4: return ct∗ = ct(2).

For decryption correctness and security, appropriate values are chosen for the
moduli Q0 and Q∗

0 respectively.
Security The security of the scheme can be shown using similar arguments

from Section 3 but with reduced number of queries. This is because Lemma 3.6 of
[12] uses statistical distance as a measure to show indistinguishability of the real
distribution and the noise free distribution. Using Pinsker inequality to adapt
this to KL-Divergence results in a quadratic factor increase of the statistical
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Fig. 2. Network topology used in RAVEN for PRE with three trust zones. Each service
- key server, producer, broker and consumer are run on virtual machines. Each trust
zone is separated by a router.

security parameter s. As a consequence, it results in reduced number of adver-
sarial queries for a given security level compared to the noise flooding approach.
In addition to a reduced number of queries, this approach is not favorable for
multiple hops. Suppose Q = Q0 . . . QL, then for every hop i, we need to choose
Qi such that 2n

Q0
∥e(0)∥ < 2−s from Theorem 3.8 of [12] where e(0) is the noise

in ciphertext ct(0). In the context of our PRE, the noise e(0) is the encryption
noise if ct is a fresh encryption or accumulated noise from prior evaluations.
For multihop, since we need every RNS moduli satisfy this condition for a given
statistical security s and for the larger modulus Q to fit the parameters with
respect to RLWE hardness, it either results in very few number of hops or low
statistical security s.

Correctness The choice of Q0 is such that Q0 > 2p(∥ems| + ∥eks∥) for
decryption correctness.

C Simulated Secure Data Distribution System using the
OpenFHE PRE functionality

Using the PRE functionality in OpenFHE, we built a multihop example system
that allows multiple trust zones (with a key server for each trust zone) to transfer
256-bit AES keys from multiple producers to multiple authorized consumers
using gRPC’s [29] authenticated remote procedure calls. We set the number of
trust zones to 3. (See Figure 1 for an example with three trust zones, where the
arrows represent authenticated gRPC transactions for the messages exchanged.)
The example implementation further supports secure communication with TLS
(Transport Layer Security) authentication using gRPC’s SSL/TLS API with a
dummy certificate setup. We used a simple user-name based access control for
the producer’s content. In general, the information flow is from producers to
consumers via (potentially multiple) brokers.

We performed the network simulation using the open-source RAVEN frame-
work [34]. Each service was run in a single thread on a virtual machine created
by the RAVEN framework running on a host machine. Our simulation code is
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flexible: the virtual machines can be configured according to the application and
the resources of the host machine. The example RAVEN topology we built is
shown in Figure 2. It has 3 trust zones with one key server and one broker for
each trust zone. Note that this figure shows our network setup for exactly the
information flow of Figure 1, the only difference being that Figure 1 has an addi-
tional broker in trust zone 2 to show that consumers can be present in either of
the trust zones. The number of trust zones, key servers, brokers, producers and
consumers can be adjusted by defining the topology and corresponding network
configuration in RAVEN and hence can be adjusted as needed.

We configured routers and switches to simulate a real-world network: each
trust zone is connected through a router and each router has a switch that
multiple services in the same trust zone can connect to, i.e., they are in the same
subnet mask. Services make function calls to the OpenFHE PRE functionality
to distribute keys.

We used an AMD EPYC 7302 16-Core Processor machine with 500 GB
memory as the host machine. Each service is run on virtual machines that are
set up to be nodes with 2 cores and 4 GB memory. This is possible because we
built the code for the example system and the OpenFHE code with the PRE
functionality using a builder node with a 16-core CPU and 64 GB memory.
The docker containers created by the builder node are then used in the actual
execution to run the system. We now describe each service in more detail.

Key Server (KS). This service is responsible for generating key pairs for
brokers and for generating re-encryption keys for the following flows: from the
producer to a downstream broker, from an upstream broker to a downstream
broker, and from a downstream broker to a consumer. The key server uses a
whitelist of consumers authorized for access control. This is implemented in
gRPC as an asynchronous server that handles requests from producers, con-
sumers, and brokers. There is one key server for each trust zone. PRE function
calls made by the KS service: KeyGen, ReKeyGen.

Producer. The producer is implemented as a gRPC client that sends its
ciphertext to its downstream broker and its key pair to the key server. The
downstream broker re-encrypts the ciphertext received to its own key and caches
it locally to respond to downstream requests. PRE function calls made by the
service: Encrypt.

Broker. This service is responsible for processing the ciphertext (in our
example application, an encapsulated AES key) sent from the producer. Each
broker acts as a server to its connected downstream brokers by sending them
re-encrypted ciphertexts. The broker also acts as a client to its upstream broker
by requesting ciphertexts from the upstream broker. This is also implemented
as an asynchronous server in gRPC. Note that since each broker can service
multiple downstream brokers, we can configure a large cascade tree of brokers to
distribute data to a large number of consumers with only a few hops. The PRE
function calls made by the service: ReEncrypt.

Consumer. The consumer is implemented as a gRPC client. The first time a
consumer requests a given producer’s ciphertext from its upstream broker, that
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broker sends a request for the re-encrypted ciphertext to its upstream broker
recursively until it reaches the broker connected to the producer. This is imple-
mented using routing tables to cache the route from a consumer to a producer
(known as a channel). Currently only one ciphertext per channel is supported.
The brokers cache local re-encrypted copies of the channel’s ciphertext, so that if
a different consumer requests the same source data, the broker can use its locally
cached ciphertext. Note that since a consumer is going to decrypt the ciphertext
(rather then re-encrypt), the broker returns a re-encrypted ciphertext specific to
the consumer’s secret key. The PRE function calls made by the service: Decrypt.


