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ABSTRACT
Provable privacy typically requires involved analysis and is often

associated with unacceptable accuracy loss. While many empirical

verification or approximation methods, such as Membership Infer-

ence Attacks (MIA) and Differential Privacy Auditing (DPA), have

been proposed, these do not offer rigorous privacy guarantees. In

this paper, we apply recently-proposed Probably Approximately

Correct (PAC) Privacy to give formal, mechanized, simulation-based

proofs for a range of practical, black-box algorithms: K-Means, Sup-

port Vector Machines (SVM), Principal Component Analysis (PCA)

and Random Forests. To provide these proofs, we present a new

simulation algorithm that efficiently determines anisotropic noise
perturbation required for any given level of privacy. We provide

a proof of correctness for this algorithm and demonstrate that

anisotropic noise has substantive benefits over isotropic noise.

Stable algorithms are easier to privatize, and we demonstrate

privacy amplification resulting from introducing regularization

in these algorithms; meaningful privacy guarantees are obtained

with small losses in accuracy. We also propose new techniques in

order to canonicalize algorithmic output and convert intractable

geometric stability verification into efficient deterministic stability

verification. Thorough experiments are included, and we validate

our provable adversarial inference hardness against state-of-the-art

empirical attacks.

KEYWORDS
PAC Privacy; Differential Privacy; Black-box Security Proof; Infer-

ence Hardness; Membership Attack.

1 INTRODUCTION
The expansion of data collection and increasing complexity of data

processing are happening at unprecedented rates. Concerns on

information leakage are receiving increasing attention, while pri-

vacy preservation is simultaneously challenged by fast-paced and

sophisticated advancements. Efficient and widely-applicable risk

quantification has become a fundamental and urgent problem in

privacy research.

Most existing provable privacy analyses of data processing re-

quire strong algorithmic assumptions. For example, Differential

Privacy (DP) [12] requires bounded sensitivity
1
, which can only

be tightly computed in a few simple applications such as aggre-

gation or linear queries; Maximal Leakage (MaxL) [19] requires

the knowledge of the likelihood function produced by each input

selection, and thus is not applicable to a continuous or infinite input

space. Moreover, to ensure these input-independent indistinguisha-
bility guarantees, artificial modifications are typically required to

1
In the context of DP, sensitivity captures the worst-case influence of an individual on

the output, which is in general NP-hard to compute [36].

decompose most algorithms into multiple simpler and analyzable

components, such as mean estimation or majority voting to en-

able tractable analysis; Differentially-Private Stochastic Gradient

Descent (DP-SGD) [1] and PATE [26] are representative examples.

Unfortunately, artificial modifications usually come with limits on

algorithms and data structures, and often with a significant com-

promise on utility.

As a consequence, the lack of powerful risk quantification tools

heavily restricts the study and design of defensive methods for

leakage control, as the privacy implications of many operations are

not well-understood. Even for perturbation, the most popular and

straightforward privacy-preserving technique, the minimal noise

to produce required security parameters, largely remains open for

most practical algorithms. In addition, the definition of sensitive

information varies across different processing tasks and different

individual preferences. For example, for image data, people may

worry about whether the adversary can reconstruct sensitive face

features; for health data, the privacy objective can be the relation-

ship between certain associations between patients and diseases;

and in anonymous communication, identities are sensitive. Univer-

sal risk quantification is thus highly desirable to capture diverse

and customized concerns.

Besides provable analyses, there is also a long line of works fo-

cusing on empirical defenses against adversarial inference. Privacy

verification has been extensively studied, in particular, for member-

ship inference attacks (MIA) [5, 18, 32]. For example, many oper-

ations such as regularization [25, 32], data augmentation [21, 37],

and model compression [34] are empirically shown to resist certain

kinds of attacks. However, qualitative analysis for those strategies

is challenging and largely remains open, especially in involved

data processing algorithms. Though carefully-designed empirical

simulations can provide meaningful approximation of the lower

bound of privacy risks with respect to specific adversarial strategies,
a rigorous proof is desired to show worst-case guarantees against

arbitrary adversaries. Closing this gap remains a key and open

problem in security and privacy research.

One recent effort to technically address the risk quantification

for black-box data processing is PAC Privacy [35]. From a statistical

inference perspective, Xiao and Devadas [35] develop a new frame-

work to semantically interpret privacy risk as concrete inference

hardness for a computationally-unbounded adversary to recover

sensitive information satisfying a certain criterion, which can be ar-

bitrarily selected. A set of new tools are also established in Xiao and

Devadas [35] to provably convert the objective inference hardness

into simulatable quantities, which enables high-confidence estima-

tion from end-to-end black-box simulations to provide a privacy

proof. However, as a theoretical solution to conduct privacy analysis

for a black-box processing, there are two important aspects of PAC

Privacy which have not been systematically explored. First, how
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can we efficiently determine the (near-)optimal anisotropic noise2

to add to each exposed output, and provide an associated privacy

proof? Second, how can we stabilize a black-box data processing
algorithm to provably produce a stronger privacy guarantee or a

sharpened utility-privacy tradeoff?

In this paper, we contribute an initial comprehensive study to

answer these questions, as summarized below.

(1) Novel algorithm for efficient simulation proofs: We

present an algorithm in Section 4 that adds anisotropic

noise, but is more computationally efficient than the algo-

rithm (Algorithm 1) in [35] which requires running Singular

Value Decomposition (SVD) on the entire output dimension,

and can be prohibitively expensive. Efficiency is further

enhanced through faster convergence; our algorithm only

needs to accurately estimate variance of output along each

direction, as opposed to converging on a covariance matrix

as in [35]. We prove the correctness of our algorithm.

(2) Efficient privatization for black-box algorithms: We

implement PAC-private versions of several classic algo-

rithms. We provide noise estimates and utility tradeoffs,

demonstrating that these algorithms can generally achieve

meaningful privacy with a small losses in utility. We show

that adding anisotropic noise has significant utility benefits

over adding isotropic noise using 𝑙2-norm estimation.

(3) Sharpening privacy-utility tradeoffs: We first charac-

terize the root of instability in these classic algorithms, and

separate them into two large categories – superficial and in-

trinsic. Then, we provide novel canonicalization techniques

to improve upon superficial instability, while exploring clas-

sic and novel techniques, based on regularization and data

augmentation techniques, to improve intrinsic instability.

In particular, we show how the use of a random unitary ma-

trix in Principal Component Analysis (PCA) can essentially

eliminate superficial instability.

(4) Empirical verification for end-to-end privacy: Finally,
we provide experimental support, based on simulated at-

tacks to validate our privacy guarantees. We convert the

theoretical mutual information guarantees into posterior

guarantees and demonstrate that our privatized algorithms

more than satisfy these guarantees against state-of-the-art

attacks.

2 BACKGROUND
We first introduce the PAC Privacy model to describe information

leakage and privacy risk in general. Let 𝑋 denote the sensitive

input, which is randomly generated from a (possibly black-box)

distribution D, andM denote a (possibly black-box) processing

mechanism, where the output, M(𝑋 ), is released and observed

by an adversary. We challenge the adversary as to whether they

can return some estimation �̃� satisfying a certain criterion, which

can be described by some indicator function 𝜌 . Such an inference

challenge can be used to capture arbitrary privacy concerns and

customized leakage control that a user is comfortable with. For

example, to capture a membership inference attack [32], 𝜌 can

be selected as 𝜌 (𝑋, �̃� ) = 1 if �̃� predicts the membership of some

2
Noise varying across output dimensions

particular datapoint 𝑢0 correctly in 𝑋 ; 𝜌 may also capture data

reconstruction [3, 17] and we may set 𝜌 (𝑋, �̃� ) = 1 iff ∥𝑋 − �̃� ∥2 ≤ 1,

i.e., the adversary can recover the input with error in 𝑙2-norm

smaller than 1. For side-channel attacks on a cryptographic protocol

[16], where 𝑋 corresponds to the secret key, 𝜌 can capture the

colliding bits between 𝑋 and �̃� .

Now, given the data entropy, determined by D, and the objective
inference task, we can define the optimal a priori success rate (1 −
𝛿
𝜌
𝑜 ) that an adversary can return a satisfied estimation before they

observe the releaseM(𝑋 ), i.e.,
𝛿
𝜌
𝑜 = min

�̃�𝑜

Pr

𝑋∼D
(𝜌 (𝑋, �̃�𝑜 ) ≠ 1) .

Similarly, we can define the posterior success rate (1− 𝛿) to cap-
ture the probability for an adversary to return a satisfied estimation

after observing the release. With the above preparation, we can

now formally define PAC Privacy.

Definition 1 ((𝛿, 𝜌,D) PAC Privacy [35]). For a processing func-
tionM : X∗ → O, some data distribution D, and an inference crite-
rion function 𝜌 (·, ·), we sayM satisfies (𝛿, 𝜌,D)-PAC Privacy if the
following experiment is impossible:

A user generates data 𝑋 from distribution D and sendsM(𝑋 ) to
an informed adversary. The adversary who knows D andM is asked
to return an estimation 𝑋 on 𝑋 such that with probability at least
(1 − 𝛿), 𝜌 (𝑋,𝑋 ) = 1.

Equivalently, M can be defined as (Δ𝑓 𝛿, 𝜌,D) PAC-advantage
private if the posterior advantage measured in 𝑓 -divergence satisfies

Δ𝑓 𝛿 = D𝑓 (1𝛿 ∥1𝛿𝜌𝑜 ) = 𝛿
𝜌
𝑜 𝑓 (

𝛿

𝛿
𝜌
𝑜

) + (1 − 𝛿𝜌𝑜 ) 𝑓 (
1 − 𝛿

1 − 𝛿𝜌𝑜
),

where (1 − 𝛿𝜌𝑜 ) represents the optimal prior success rate,

𝛿
𝜌
𝑜 = min

𝑋 ′∈X∗
Pr

𝑋∼D
(𝜌 (𝑋 ′, 𝑋 ) ≠ 1),

and 1𝛿 and 1𝛿𝜌𝑜 represent two Bernoulli distributions of parameters 𝛿

and 𝛿𝜌𝑜 , respectively. Here, D𝑓 is some 𝑓 -divergence.

In [35], D𝑓 is selected to be the KL-divergence and it is shown

that,

Δ𝐾𝐿𝛿 = D𝐾𝐿 (1𝛿 ∥1𝛿𝜌𝑜 ) ≤ MI
(
𝑋 ;M(𝑋 )

)
, (1)

where MI(·, ·) represents mutual information and D𝐾𝐿 (1𝛿 ∥1𝛿𝜌𝑜 ) =
𝛿 ln( 𝛿

𝛿
𝜌
𝑜

) + (1 − 𝛿) ln( 1−𝛿
1−𝛿𝜌𝑜
).

We now define the standard Membership Inference Attack (MIA)

[32], formalized to match PAC Privacy below.

Definition 2 (Membership Inference Attack). Given a finite
data pool U = {𝑢1, 𝑢2, · · · , 𝑢𝑁 } and some processing mechanismM,
𝑋 is an 𝑛-subset of U randomly selected. An informed adversary is
asked to return an 𝑛-subset 𝑋 as the membership estimation of 𝑋
after observingM(𝑋 ). We sayM is resistant to (1 − 𝛿𝑖 ) individual
membership inference for the 𝑖-th datapoint 𝑢𝑖 , if for an arbitrary
adversary, Pr

𝑋←U,�̃�←M(𝑋 ) (1𝑢𝑖 ∈𝑋 = 1
𝑢𝑖 ∈�̂� ) ≤ 1 − 𝛿𝑖 . Here, 1𝑢𝑖 ∈𝑋

(1
𝑢𝑖 ∈�̂� ) is an indicator which equals 1 if 𝑢𝑖 is in 𝑋 (𝑋 ).

In this paper, we will use PAC Privacy to provably and auto-

matically measure the privacy risk. We will also qualitatively (and

occasionally quantitatively) compare our results to prior work with

Differential Privacy (DP); its formal definition is presented below.
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Definition 3 ((𝜖, ¯𝛿) Differential Privacy [12]). Given a data
universe X∗, we say that two datasets S,S′ ⊆ X∗ are adjacent,
denoted as S ∼ S′, if S = S′ ∪ 𝑠 or S′ = S ∪ 𝑠 for some additional
datapoint 𝑠 . A randomized processing functionM is said to be (𝜖, ¯𝛿)-
differentially-private (DP) if for any pair of adjacent datasets S,S′
and any set 𝑜 in the output space O ofM, it holds that Pr(M(S) ∈
𝑜) ≤ 𝑒𝜖 · Pr(M(S′) ∈ 𝑜) + ¯𝛿.

We can interpret DP in a context of the posterior success rate for

successful membership inference. In the same setup of Definition

2, if 𝑛 = 𝑁
2

3
, i.e., each datapoint is included in 𝑋 with probability

1/2, andM satisfies (𝜖, ¯𝛿)-DP, then by [20], the posterior success

rate (1 − 𝛿𝑖 ) is upper bounded by

1 − 𝛿𝑖 ≤ 1 − 1 − ¯𝛿

1 + 𝑒𝜖 . (2)

3 AUTOMATIC PRIVATIZATION
3.1 A template for provable privacy
In this section, we present a formal template for privatizing black-

box algorithms using PAC Privacy. The key steps of this technique

are summarized in Figure 1.

Figure 1: A simple 4-step process to automatically privatize
a black-box algorithmM. We first measure the stability of
M by computing 𝑌𝑖 = M(𝑋𝑖 ) on varying subsets of data 𝑋𝑖 .
We then use the variance of the output distribution 𝑌𝑖 to
estimate the required noise necessary to privatizeM. Finally,
we release a noisy version of the learned vector.

In particular, we consider any black-box algorithmM. The goal

of our template is to release 𝑌 =M(𝑋 ) for a secret input 𝑋 . We

want to bound the posterior advantage the adversary gains upon

observing𝑌 =M(𝑋 ) by adding noise to𝑌 .𝑌 is an arbitrary learned

statistic about the input 𝑋 that is exposed to the adversary. We

denote 𝑋𝑡𝑟𝑎𝑖𝑛 as the complete training dataset which 𝑋 is sampled

from. We then subsample 𝑋1 · · ·𝑋𝑚 ⊂ 𝑋𝑡𝑟𝑎𝑖𝑛 , which are indepen-

dent and identically distributed subsets of 𝑋𝑡𝑟𝑎𝑖𝑛 and |𝑋𝑖 | = |𝑋 |.
We denote

𝑟 :=
|𝑋𝑖 |
|𝑋𝑡𝑟𝑎𝑖𝑛 |

3
For the general case, one can perform similar reasoning by solving a constrained

linear program with respect to Type I and Type II errors as described by Eqn. (1) in

[20].

as the subsampling rate of the privatization procedure. For our

experiments, we choose 𝑟 = 0.5, or 50%. In our privacy analysis,

we make the conservative assumption that the adversary observes

𝑋𝑡𝑟𝑎𝑖𝑛 , which is not typically true in the real world. Importantly,

the computed posterior advantage will hold for this adversary or a

weaker one with only partial or no knowledge of 𝑋𝑡𝑟𝑎𝑖𝑛 . Note that

the sampled 𝑋 is hidden from the adversary, and therefore the

participation of a particular data element in 𝑋 is unknown to the

adversary.

We represent each 𝑥 ∈ 𝑋𝑖 as a 𝑑-dimensional vector, with its 𝑙2-

norm bounded by a known constant. In order to provide a private

representation of 𝑌 = M(𝑋 ), we follow the framework of PAC

Privacy [35] to determine the minimal noise we must add to the

vector 𝑌 . We aim to minimize the noise in order to maximize the

utility of the output vector 𝑌 . Following the steps described in

Figure 1, we can use the stability ofM on distinct 𝑋𝑖 ’s in order to

determine the required noise to provide privacy forM.

To do this, we first evaluateM on distinct subsampled datasets

𝑋1 . . . 𝑋𝑚 , producing output vectors 𝑌1 . . . 𝑌𝑚 . We can then use the

(co)variance of the𝑌𝑖 ’s (along with appropriate security parameters)

to estimate the minimum noise required to add to the output ofM,

in order to provide a meaningful bound on the mutual information,

which in turn bounds the posterior advantage.

The posterior advantage holds for an arbitrary inference task

𝜌 on the input dataset 𝑋 . The classic membership attack by [32]

defines a specific 𝜌 , where the goal is to determine whether a fixed

sample 𝑥 was included in 𝑋 ; that is 𝜌 (𝑥, 𝑋 ) = 1 if the adversary

correctly guesses if𝑥 ∈ 𝑋 . Other attacksmay include reconstruction

attacks (recovering 𝑋 ), norm estimation, or others, e.g., [3, 17].

We make a few key observations about this template:

(1) M is treated as a black-box. The magnitude of the added

noise depends solely on the output distribution of 𝑌𝑖 ’s. This

allows for us to generate a privacy template for complex

black-box algorithms, in an instance-specific (i.e., specific

to 𝑋𝑡𝑟𝑎𝑖𝑛) manner.

(2) We observe that the magnitude of noise added only impacts

the posterior advantage of the inference task. We make no
assumptions on the specific inference task of the adversary;

rather, PAC privacy allows us to bound the mutual informa-

tion between the output𝑌 and the secret input𝑋 , bounding

the maximal posterior advantage. We further discuss the

relationship between mutual information and the poste-

rior advantage for specific membership inference attacks

in Section 8.

(3) In order to meaningfully measure the (co)variance across

𝑌𝑖 ’s, the outputs on varying inputs 𝑋𝑖 must lie on the same

output space. In particular, we must canonicalize our out-
puts. That is, if we assume 𝑌𝑖 is a learned vector, it must

remain in the same order and even simpler, the same length.

For certain tasks, like regression, this appears obvious, since

a learned weight vector has fixed dimension and order.

However, for unsupervised learning tasks or even certain

classification algorithms, this becomes non-trivial.

We can then use Equation (1) to convert the mutual information

guarantee to arbitrary inference maximal posterior advantage. We
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Mutual Posterior Success Rate (𝑝𝑜 )
Information Prior 𝑝 = 50% Prior 𝑝 = 1%

1/64 58.815% 3.213%

1/32 62.434% 4.364%

1/16 67.490% 6.200%

1/8 74.464% 9.171%

1/4 83.789% 14.057%

1/2 95.181% 22.177%

1 100% 35.729%

2 100% 58.103%

4 100% 92.582%

Table 1: Mutual information can be related to the theoretical
maximal posterior success rate for different prior success
rates using Equation (3).

can expand Equation (1) below as

𝑝𝑜 ln

(
𝑝𝑜

𝑝

)
+ (1 − 𝑝𝑜 ) ln

(
1 − 𝑝𝑜
1 − 𝑝

)
≤ MI(𝑋𝑖 ;𝑌𝑖 ) (3)

where 𝑝 is the prior success rate and 𝑝𝑜 is the posterior success rate.

Table 1 provides the theoretical maximal posterior success rates for

two different prior success rates of 50% and 1%. The prior success

rate 𝑝 for a subsampling rate 𝑟 equals max(𝑟, 1−𝑟 ) for an individual
membership inference task; we choose 𝑟 = 0.5 to minimize 𝑝 to

50%.
4
However, 𝑝 can be much lower for a generalized membership

inference task for the same 𝑟 (e.g., 1%) (cf. Section 8.2).

We can use Equation (2) to interpret (𝜖, ¯𝛿)-DP parameters as

posterior success rate. For example, a (0.36,0)-DP ((2.98,0)-DP) cor-

responds to a posterior success rate of 58.815% (95.181%) for a prior

of 50%. This is useful in calibrating mutual information in Table 1

with a DP 𝜖 .

3.2 Privacy vs. utility
In this section, we discuss techniques to canonicalize the outputs of
our algorithms. That is, we first classify varying causes of instability

in the output distributions for a black-box algorithmM. In general,

we can consider two major causes of instability for an algorithm:

(1) Intrinsic instability:We denote an algorithm’s intrinsic

instability as instability that cannot be reduced without

semantically changing the output of the algorithm.

(2) Superficial instability: We denote an algorithm’s superfi-

cial instability as an instability in the output that does not
reflect a semantic difference in the output.

In this work, we explore techniques to reduce both types of

instability in a set of widely-used algorithms.

We first consider a simple example of superficial instability in

unsupervised learning algorithms. In general, unsupervised learn-

ing algorithms provide a mechanism for clustering. However, by
definition, these clusters do not have labels. Thus, an algorithm

could return the same set of clusters in any order; while the or-

dered vector appears very different, the true result is semantically

the same. In this case, reducing the instability of the algorithm is

near-trivial; we can simply assign arbitrary labels to each cluster

and choose labels to minimize the variance across 𝑌𝑖 ’s.

4
The prior success rate of positive identification of individual membership equals 𝑟 .

We now consider an example of intrinsic instability. In this, we

consider the random forest algorithm. The goal of this algorithm is

to classify different classes within a dataset, by constructing several

decision trees. Each decision tree chooses a subset of features to

train on; then, each level of the tree splits the dataset into subsets in

order to minimize entropy or Gini impurity [4]. These algorithms

are known to be unstable, since small changes to the input dataset

can lead to significant changes in the threshold values. In Section 5,

we discuss how we modify this algorithm to provide meaningful

guarantees in our framework.

Finally, we note that in the classic non-private setting for these

algorithms, stability is useful primarily as a proxy for understand-

ing the generalizability of these algorithms. However, in our setting,

stability directly affects the utility of the privatized algorithm, since

it is inversely correlated with the total added noise. This implies

that efficiently privatizing these algorithms involves an inner opti-

mization problem, similar to the hyperparameter search typically

done using cross-validation. We discuss heuristic strategies for this

search and empirical results in Section 6.

4 EFFICIENTLY COMPUTING ANISOTROPIC
NOISE

In this section, we formally describe a “best of both worlds” algo-

rithm that is as efficient as the isotropic noise addition algorithm

of [35] while computing anisotropic noise that minimally affects

utility.

We then prove that the noise mechanism satisfies the mutual

information guarantees. The algorithm in full is described in Al-

gorithm 1. We denote 𝑛 as the number of input elements, 𝐴 as a

unitary projection matrix,𝑚 as the number of trials, and 𝑑 as the

output dimension. After computing ΣB , we add Gaussian noise

B ∼ N(0, ΣB𝐴𝑇 ) to each element of the outputM(𝑋 ). For our
experiments, we choose 𝐴 = I𝑑 .

Algorithm 1 Anisotropic Noise Determination of Deterministic

MechanismM
Input: A deterministic mechanismM : X𝑛 → Y𝑑 , data

distribution D, mutual information requirement 𝛽 , number of

trials𝑚, 𝑑 × 𝑑 unitary projection matrix 𝐴.

(1) for 𝑘 = 1, 2, . . . ,𝑚:

(a) Generate data 𝑋 (𝑘 ) from D.

(b) Record 𝑦 (𝑘 ) =M(𝑋 (𝑘 ) ).
(2) For each 𝑦 (𝑘 ) , calculate 𝑔 (𝑘 )

𝑖
= 𝑦 (𝑘 ) · 𝐴𝑖 .

(3) Calculate the empirical variance 𝜎𝑖 for each 𝑔𝑖 .

(4) Calculate the required noise in each direction 𝑖 as

𝑒𝑖 :=

√
𝜎𝑖

𝑑∑
𝑖=1

√
𝜎𝑖

2𝛽
.

(5) Return a diagonal matrix ΣB , where ΣB [𝑖] [𝑖] = 𝑒𝑖 .

Theorem 1. For an arbitrary deterministic mechanismM, a pub-
lic unitarymatrix𝐴, and Gaussian noise of the formB ∼ N(0, ΣB𝐴𝑇 ),
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where 𝜎𝑖 = Var(M(𝑋 ) ·𝐴𝑖 ) and Σ𝐵 is a diagonal matrix with entries

𝑒𝑖 :=

√
𝜎𝑖

𝑑∑
𝑖=1

√
𝜎𝑖

2𝛽
,

the output𝑀 (𝑋 ) + B satisfies

MI(𝑋 ;M(𝑋 ) + B) ≤ 𝛽.

Proof. We first recall Theorem 3 of Xiao and Devadas [35]; this

theorem states that,

MI(𝑋 ;M(𝑋 ) + B) ≤ 1

2

ln det(I𝑑 + ΣM(𝑋 )Σ−1

B ).
We then note that

MI(𝑋 ;M(𝑋 ) + B) = MI(𝑋 ;M(𝑋 )𝐴 + B𝐴),
since 𝐴 is unitary and public.

ByHadamard’s inequality, since ΣM(𝑋 )𝐴 is positive semi-definite,

det(ΣM(𝑋 )𝐴) ≤ det(diag(ΣM(𝑋 )𝐴)),
where diag(ΣM(𝑋 )𝐴) is the diagonal matrix with 𝑖’th element 𝜎𝑖 .

By construction, B𝐴 has variance ΣB , which is a diagonal matrix

with elements 𝑒𝑖 . Thus,

MI(𝑋 ;M(𝑋 )𝐴 + B𝐴) ≤ 1

2

ln det(I𝑑 + ΣM(𝑋 )𝐴Σ−1

B )

≤ 1

2

ln det(I𝑑 + diag(ΣM(𝑋 )𝐴)Σ−1

B )

=
1

2

ln

∏
𝑖

(1 + 𝜎𝑖
2𝛽

√
𝜎𝑖

∑
𝑖
√
𝜎𝑖
)

=
1

2

∑︁
𝑖

ln(1 +
2𝛽
√
𝜎𝑖∑

𝑖
√
𝜎𝑖
)

≤ 1

2

∑︁
𝑖

2𝛽
√
𝜎𝑖∑

𝑖
√
𝜎𝑖

≤ 𝛽,
where the fifth inequality uses the fact that ln(1 + 𝑥) ≤ 𝑥 .

□

The primary advantage of our algorithm is that it avoids building

the covariance matrix and subsequent SVD (as in Algorithm 1 of

[35]), while determining sufficient anisotropic noise for privacy.

The optimal 𝐴 for minimal noise can be determined by estimating

the covariance matrix and using SVD. Using the identity matrix

and thus only estimating the variance of each output further results

in requiring substantially fewer trials (lower𝑚) for convergence

(cf. Section 7).

We can provide tighter bounds on the required noise when con-

sidering specific inference tasks, e.g., individual membership infer-

ence attacks (cf. Definition 2), which we use to provide a quantita-

tive comparison between PAC and DP for mean estimation.

Individual Privacy Guarantees: In particular, we consider a 𝑑-

dimensional mean estimation mechanismM. We may decompose

M asM1, · · · ,M𝑑 , whereM𝑖 is the 𝑖-th coordinate average of

input 𝑋 and follow the composition results (Theorem 7) of [35] to

upper bound the mutual information ofMI
(
𝑋 ;M(𝑋 )

)
by the sum

of the KL divergence bound of eachM𝑖 (𝑋 ).
In particular, for individual privacy where the adversary aims to

infer whether a datapoint 𝑥∗ is selected in the input set or not, rather
than calculating the empirical variance over all possible subsets,

we can simply compute the average expected distance between sets

which contain the point 𝑥∗ and sets which do not. Formally, as in

Xiao and Devadas [35], — to calculate the privacy guarantee for an

individual point 𝑥∗, we compute

MI(𝑥∗,M(𝑋 ) [𝑖] + B[𝑖])
≤ E𝑋∼𝑋D𝐾𝐿 (M(𝑋 ) [𝑖] + B[𝑖] ∥M(𝑋 [𝑖]) + B[𝑖])

≤
E𝑋∼𝑋

[ M(𝑋 ) [𝑖] −M(𝑋 ) [𝑖]2
]

2𝑒𝑖
.

where 𝑋 and 𝑋 are adjacent datasets, denoted by 𝑋 ∼ 𝑋 , and

M(𝑋 ) [𝑖] (M(𝑋 ) [𝑖]) represents the 𝑖-th coordinate of the output

M(𝑋 ). Without loss of generality, we assume that 𝑋 and 𝑋 only

differ in the first element: the first element of 𝑋 is 𝑥∗ and the first

element of 𝑋 is element 𝑥 ≠ 𝑥∗.
Therefore, suppose we add independent Gaussian noises B[1:𝑑 ] ,

in a form N(0, 𝑒𝑖 ), for 𝑖 = 1, 2, · · · , 𝑑 , to each coordinate, to ensure

that MI
(
𝑋 ;M(𝑋 ) + B

)
is upper bounded by 𝛽 , it suffices to select

𝑒 [1:𝑑 ] such that

𝑑∑︁
𝑖=1

𝜎𝑖

2𝑒𝑖
≤ 𝛽,

where 𝜎𝑖 := E𝑋∼𝑋
[ M(𝑋 ) [𝑖] −M(𝑋 ) [𝑖]2

]
. This enables us to

compute the anisotropic noise as in Theorem 1 where the optimal

𝑒𝑖 is of the form

𝑒𝑖 =

√
𝜎𝑖

∑𝑑
𝑗=1

√
𝜎 𝑗

2𝛽
.

Finally, we note that we take the maximum 𝑒𝑖 over all individual

datapoints 𝑥∗ to provide an individual membership guarantee for

any chosen point.

5 ALGORITHMS
In this section, we discuss several classic algorithms and the re-

quired modifications to automatically privatize them.

For all the algorithms, we first normalize our data and separate

it into a training dataset and a test dataset. We then measure “accu-

racy” (also referred to as utility) on the test dataset. All randomized

algorithms are run with a fixed seed.

5.1 Clustering: K-Means
The K-Means clustering algorithm, originally developed by Lloyd

in 1982, aims to partition an input set 𝑋 into 𝐾 non-overlapping

subsets or clusters [2, 24]. Each subset 𝑖 ∈ [1, 𝐾] is defined by its

centroid, 𝜇𝑖 . The objective is to minimize the sum-of-squares within

each cluster, over all the clusters, i.e.,

arg min

𝜇

𝑛∑︁
𝑖=0

min

𝜇 𝑗

𝑥𝑖 − 𝜇 𝑗 2

.

That is, the classic algorithm outputs a list of centroids, corre-

sponding to each cluster. We observe that K-Means requires mini-

mal changes to fit into our PAC privacy framework. The 𝑥𝑖 ’s are
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the secret input, and the learned centroids 𝜇𝑖 ’s are the exposed
output.

In order to canonicalize the output, we simply order these cen-

troids by inferring appropriate cluster labels. For supervised learn-

ing, we do this by choosing the label that is best associated with

each cluster. We then measure test accuracy by comparing the

inferred cluster label with the true class label on the test dataset.

The K-Means algorithm is not inherently designed for imbal-

anced datasets. To improve stability and generalization, we explore

oversampling techniques such as SMOTE to automatically balance

the classes [9].

5.2 Classification: SVM
Consider the multi-class support vector machine algorithm [6, 14].

The linear support vector machine problem solves the following

optimization problem:

min

𝑤,𝑏

1

2

𝑤𝑇𝑤 +𝐶
𝑛∑︁
𝑖=1

max(0, 1 − 𝑦𝑖 (𝑤𝑇 𝑥𝑖 + 𝑏)) . (4)

Here, the 𝑥𝑖 ’s are the features, and the 𝑦𝑖 ’s are the labels; these both

correspond to the secret inputs. The learned weight vector𝑤, 𝑏 is

the exposed output.

We use the regularization weight 𝐶 to trade off between the

hinge loss and the norm of the learned weight vector. Without any

modification, the standard value of 𝐶 used is 1. To accommodate

multi-class strategies, we consider a one-versus-rest classification

strategy. That is, we train 𝐾 classifiers for 𝐾 distinct classes [29].

After the weight vector has been trained, we can use it to com-

pute a “per-class” score for a new point 𝑥𝑖 . The predicted label 𝑦𝑖 is

the class with the highest score. Similar to K-Means, wemeasure the

accuracy of the test dataset by computing the class label predicted

by SVM to the true label.

We note that this algorithm may or may not have a lot of super-

ficial instability. That is, the learned weight vectors are inherently

ordered by the labels of their corresponding classes; it thus requires

almost no modification to fit into the PAC privacy framework. How-

ever, there may be several near-optimal solutions with no obvious

ordering when regularization is not applied appropriately. Strong

regularization (low values of𝐶) can reduce the algorithm’s intrinsic

instability, though it may come with a utility tradeoff.

5.3 Dimensionality Reduction: PCA
Consider the classic dimensionality reduction algorithm, principal

component analysis (PCA) [28]. PCA is used to decompose a multi-

variate dataset into orthogonal components that explain the most

variance.

Unlike the other algorithms considered, PCA is not indepen-

dently used for a regression or classification task; rather, it is typi-

cally a subroutine. We consider an initial data matrix 𝑋 ∈ R𝑚×𝑑 ,
with𝑚 samples of dimension 𝑑 , where 𝑋 ⊂ 𝑋𝑡𝑟𝑎𝑖𝑛 is secret. We

then reduce the dimensionality of 𝑋 to be in R𝑚×𝑑
′
using PCA;

that is, we compute the top 𝑑′ principal components and denote

them as a matrix 𝑆 ∈ R𝑑×𝑑 ′ . 𝑆 is the exposed output.

We observe that PCA has significant superficial instability. In

particular, we consider the subspace defined by the basis vectors

[0, 1] and [1, 0]; this subspace is R2
. However, there are an infinite

number of basis vectors with the same span; in fact, any two linearly-

independent vectors span R2
. This implies that two calls to the PCA

algorithm can return the same subspace, represented by significantly
different basis vectors.

In order to canonicalize the basis vectors, we consider two in-

stances of the PCA algorithm and denote the returned basis vectors

as 𝑆1 and 𝑆2, where |𝑆𝑖 | = 𝑑′ for 𝑖 = 1, 2. We observe that we can

choose a unitary matrix𝑀 and compute𝑀𝑆2 as an equivalent repre-

sentation of the basis chosen by 𝑆2. The goal is now to choose𝑀 in

order to minimize the distances between 𝑆1 and 𝑆2; we use this for-

mulation and the properties of singular value decomposition (SVD)

to compute the optimal𝑀 . We note that the SVD decomposition is

unique up to the sign of the right and left singular vectors.

Consider the following optimization problem:

min

𝑀 ;𝑀𝑇𝑀=𝐼
∥𝐴 −𝑀𝐵∥2𝐹 ,

where𝐴, 𝐵 are matrices of basis vectors, with dimensionality 𝑑′ ×𝑑
and𝑀 is any unitary matrix. We first observe that this models our

PCA problem exactly; that is, PCA returns to us a set of 𝑑′ basis
vectors with dimensionality 𝑑 . We can freely optimize over the

matrix𝑀 as long as it remains unitary, since𝑀 is simply a linear

map.

Claim 1. The optimal choice for𝑀 is of the form𝑀 = 𝐶 [0 : 𝑑′, 0 :

𝑑′], where
𝐶 = 𝑉𝐴𝑉

𝑇
𝐵 ,

and 𝑉𝐴,𝑉𝐵 are the right singular vectors of 𝐴 and 𝐵, respectively.

Proof. We prove this directly from the optimization problem.

That is,𝑀 is chosen to minimize

min

𝑀 ;𝑀𝑇𝑀=𝐼
∥𝐴 −𝑀𝐵∥2𝐹 ,

for fixed matrices 𝐴 and 𝐵 of dimension 𝑑′ × 𝑑 . We suppress the

unitary requirement on𝑀 for succinctness in the remainder of this

argument. We first denote the SVDs of 𝐴 and 𝐵 as 𝑈𝐴Σ𝐴𝑉𝐴 and

𝑈𝐵Σ𝐵𝑉𝐵 , respectively. We observe that𝑈𝐴 ∈ R𝑑
′×𝑑 ′

, Σ𝐴 ∈ R𝑑
′×𝑑

,

𝑉𝐴 ∈ R𝑑×𝑑 . We further note that Σ𝐴 has 𝑑′ real values on the

diagonal and the remaining entries are 0, since the underlying rank

of 𝐴 is assumed to be 𝑑′. We can thus denote Σ−1

𝐴
as the inverse of

Σ𝐴 where Σ−1

𝐴
Σ𝐴 = [𝐼𝑑 ′ |0]. The same constraints follow for 𝐵.

We then observe that

min

𝑀
∥𝐴 −𝑀𝐵∥2𝐹

= min

𝑀
∥𝑈𝐴Σ𝐴𝑉𝐴 −𝑀𝑈𝐵Σ𝐵𝑉𝐵 ∥

= min

𝑀

Σ−1

𝐴 𝑈𝑇𝐴𝑈𝐴Σ𝐴𝑉𝐴 − Σ
−1

𝐴 𝑈𝑇𝐴𝑀𝑈𝐵Σ𝐵𝑉𝐵


= min

𝑀 ′

[𝐼𝑑 ′ |0] −𝑀′ [𝐼𝑑 ′ |0]𝑉𝐵𝑉𝑇𝐴  .
We note that the fourth equality switches from optimizing over

𝑀 to optimizing over a different matrix𝑀′ after factoring out the
relevant components of the SVD of 𝐵; however, since𝑀 and𝑀′ are
both free variables, this does not affect correctness. The optimal

solution for this is 𝑀 = 𝑉𝐴𝑉
𝑇
𝐵
, truncated to the first 𝑑′ rows and

columns. □
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By canonicalizing our output, we reduce the superficial instabil-

ity; “nearby” subspaces are represented by “nearby” basis vectors.

Without the appropriate canonicalization, the PCA algorithm is

very unstable and difficult to privatize.

For a given input 𝑋𝑡𝑒𝑠𝑡 , after running PCA, the projection of

𝑋𝑡𝑒𝑠𝑡 is computed as 𝑋𝑡𝑒𝑠𝑡𝑆 , representing the best projection of

𝑋𝑡𝑒𝑠𝑡 into the learned rank-𝑑
′
subspace. We can then “restore”𝑋𝑡𝑒𝑠𝑡

into the original rank-𝑑 subspace by computing 𝑋𝑡𝑒𝑠𝑡𝑆𝑆
𝑇
, also

known as the PCA inverse transform; we denote this matrix as 𝑋 ′

and calculate the restoration error as

Restoration error (RE) :=

∥𝑋 ′ − 𝑋𝑡𝑒𝑠𝑡 ∥
∥𝑋𝑡𝑒𝑠𝑡 ∥

. (5)

We use the restoration error as a proxy of our accuracy metric

for other algorithms, since low RE would imply high success rate

on any secondary task.

5.4 Boosting: Random Forest
As mentioned in Section 3, random forest algorithms typically

involve both superficial and intrinsic instability, making them an

interesting case study for our template.

We first describe the classic random forest algorithm [4] and then

describe our modifications for canonicalization. The classic random

forest algorithm is an ensemble learning technique which combines

several weak classifiers (decision trees) to make an ensemble model

which performs better than any of the individual trees. Typically,

these decision trees are trained on subsets of the provided dataset

and the final classification is the plurality vote of the individual

trees. For each tree, the algorithm chooses a feature (or subset

of features) to split on. Then, the “value” to split on is chosen to

minimize a metric – in our case, we use the metric of weighted

entropy. The provided dataset is the secret input, and the learned

trees are the exposed output: a number of trees with corresponding

structures and weights.

In our setting, we require that the trees all have the same struc-
ture. To simplify this, we ensure that all the trees are complete

and split on the same order of features. Thus, our random forest

algorithm has two hyperparameters: the number of trees (a classic

requirement for an ensemble model) and the ordered list of the fea-
tures to split on for each tree, denoted here as 𝐿. The latter is unique

to our setting and is required for us to measure the variance across

different trials. The structure of a tree is fully determined from the

ordered set of features; that is, if there are 𝑑 features, then the tree

will have exactly 2
𝑑
leaf nodes. Each node at level 𝑖 will split on

feature 𝐿[𝑖]; the exact value of the split threshold is determined

by computing the minimum weighted entropy across all possible

values of the feature 𝐿[𝑖].
In particular, each possible “split” on the feature 𝐿[𝑖] at value 𝑣

splits the dataset into two sets 𝑆𝑟 (𝑣) (containing elements where

feature 𝐿[𝑖] has value ≥ 𝑣) and 𝑆𝑙 (𝑣) (containing elements where

feature 𝐿[𝑖] has value < 𝑣). We can calculate the entropy of each

split as

𝐻 (𝑆) =
∑︁
𝑗

−𝑝 𝑗 log𝑝 𝑗 ,

where 𝑝 𝑗 is the empirical probability of element 𝑗 (the frequency

of item 𝑗 in 𝑆 divided by |𝑆 |). The total entropy of a split can be

calculated as

𝐻𝑣 := |𝑆𝑙 (𝑣) |𝐻 (𝑆𝑙 (𝑣)) + |𝑆𝑟 (𝑣) |𝐻 (𝑆𝑟 (𝑣)) .
We then choose the split that minimizes the weighted entropy.

We consider the choice of ordered features akin to early work in

bagging schemes, where subsets of features were chosen for each

tree.We pass in all the data to each decision tree and output a simple

majority vote of the trees as the final decision of our random forest.

In this setting, the features 𝑥𝑖 and the labels 𝑦𝑖 for our training

data represent our secret input. The coefficients of the learned

trees represent the exposed output. As with the prior algorithms,

after the trees are exposed, we can measure the test accuracy by

comparing the learned classification of a test data point to its true

label.

We note that classic regularization schemes on decision trees (or

random forests) focus on pruning the depth of the tree or allowing

the tree to split on a maximum number of features at each level [4].

Neither of these are consistent with our framework. In particular,

the former does not allow for an efficient canonicalization since

the trees will have different structures. The latter is irrelevant for

us, since our trees split on a single feature at each level.

We use two techniques intended to increase the stability of the

random forest algorithm, following the form of regularization and

data augmentation defenses suggested in Nasr et al. [25] and Kaya

and Dumitras [21]. First, we define a data augmentation defense.

That is, we first discretize the possible split values of each level.

Thus, the possible split values of a feature 𝐿[𝑖] are in the range

[0, 1], evenly divided into 1/𝑝 segments of length 𝑝 , where 𝑝 is

a tunable hyperparameter (typically 0.01). Then, rather than just

calculating the entropy of the split, we calculate our final split value

as

𝑣 := arg min

𝑣
(1 −𝑤1)𝐻𝑣 +𝑤1 (𝐻𝑣−𝑝 + 𝐻𝑣+𝑝 ) .

We denote the tuple (𝑤1, 𝑝) as our augmentation regularization

parameter. If the entropies of the neighbors (𝑣 − 𝑝 and 𝑣 + 𝑝) are
also low, then this suggests that the split value 𝑣 is robust to small

amounts of perturbation. Increasing the weight𝑤1 forces the algo-

rithm to choose a split that is more robust.

Second, we add 𝑙1 regularization, which adds a penalty of the form
|𝑤2𝑣 | for any split value 𝑣 . This follows the classic 𝑙1 regularization

scheme, where we encourage sparsity in the learned split vector.

This is especially important in our setting; intuitively, we only want

the complete tree to learn a non-degenerate split if the change in

entropy is significant and thus, the learned split is stable. Thus, our

overall regularization parameter is of the form (𝑤1, 𝑝,𝑤2).

6 EXPERIMENTS
6.1 Datasets
Iris dataset: The Iris dataset is available in the UC Irvine Machine

Learning Repository [15]. It is a classic dataset used in machine

learning for supervised and unsupervised learning tasks. The goal

is to classify three class of irises; there are 50 instances of each class

and 4 features; its small size makes privatization difficult. We use

100 datapoints as our training set and 50 as the test dataset.

Rice dataset: The Rice dataset is available in the UC Irvine

Machine Learning Repository [11]. It contains 3,810 instances of

rice, from two distinct species: Osmancik and Cammeo; the goal
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is to classify the species of rice. Each example contains 7 features

such as area, perimeter and eccentricity. We use 70% of the dataset

for training and the remaining 30% as the test dataset.

Dry Bean dataset: The Dry Bean dataset is available in the UC

Irvine Machine Learning Repository. This dataset contains seven

different types of dry beans; there are 13,611 instances of data with

16 features each [22]. Example features include area, perimeter

and eccentricity. We use 70% of the dataset for training and the

remaining 30% as the test dataset.

CIFAR-10 dataset: Finally, we consider the CIFAR-10 dataset [23].
This dataset consists of 60,000 images across 10 classes. The classes

represent varying objects (e.g., “cat” or “deer”) and there are 6,000

images per class. Each image is represented as a length-3072 vector,

where each element of the vector contains information about the

RGB values about a given pixel. We use 50,000 images as the train-

ing dataset and the remaining 10,000 as the test dataset. We only

use CIFAR-10 for the PCA algorithm; images are not particularly

appropriate for K-Means, SVM, and Random Forest.

6.2 Experimental Design
For each of our experiments, we follow the template from Figure 1.

We first choose our required privacy guarantee, represented by an

upper bound on the mutual information (MI) between the input

and output to our algorithm,M. In our experiments, we varyMI
between

1

64
= 2
−6

and 4 = 2
2
. We then estimate the stability of

M, on the training data 𝑋𝑡𝑟𝑎𝑖𝑛 . To do this, we repeatedly randomly

sample 𝑋𝑖 ⊂ 𝑋𝑡𝑟𝑎𝑖𝑛 where each 𝑋𝑖 from 𝑖 = 1 . . .𝑚 satisfies |𝑋𝑖 | :=
0.5|𝑋𝑡𝑟𝑎𝑖𝑛 |. We denote𝑚 as the number of simulation trials. We

then compute the stability ofM as a function of the variance of

M(𝑋𝑖 ) over all subsets 𝑋1 . . . 𝑋𝑚 . We use this to compute the noise

required to privatizeM, which we denote as Δ(M,MI).
For all of our algorithms (Mean, K-Means, SVM, PCA, and Ran-

dom Forest), we implement the noise estimation algorithm of Sec-

tion 4 to determine additive noise. For all of the experiments, we

choose a trial complexity𝑚, such that each output estimate con-

verges to a precision level of 10
−6
; more details are provided in

Section 7.

We measure the utility of the baseline and both the isotropic and

anisotropic privatized versions ofM. In particular, we first runM
on the entire𝑋𝑡𝑟𝑎𝑖𝑛 and calculate the accuracy ofM(𝑋𝑡𝑟𝑎𝑖𝑛) on the
test dataset𝑋𝑡𝑒𝑠𝑡 . This provides our accuracy metric for the baseline

non-private algorithm; we denote this as the “baseline accuracy” of

M. Then, we construct two privatized algorithms by, respectively,

adding the required anisotropic noise and isotropic Gaussian noise

to each element of the trained vectorM(𝑋 𝑗 ), following the tem-

plate of Figure 1, and using Algorithm 1. This creates two privatized

trained vectors,M𝑃 (𝑋 𝑗 ) (anisotropic noise) andM𝑄 (𝑋 𝑗 ) (isotropic
noise); we then compute the accuracy ofM𝑃 (𝑋 𝑗 ) andM𝑄 (𝑋 𝑗 ) on
𝑋𝑡𝑒𝑠𝑡 ; these are, respectively, the anisotropic and isotropic “priva-

tized accuracy” ofM, averaged over 1000 trials for each setting.

We now provide results across varying datasets and algorithms.

All code used is provided at https://github.com/mayuri95/pac_algs.

6.3 Warmup: Estimating the Mean
Mean estimation is simple enough that we can provide a quanti-

tative, head-to-head comparison between PAC and DP, since DP

does not require significant changes beyond 𝑙2-norm clipping for

bounded sensitivity. For our experiments, we do a search to find

the optimal clipping threshold to minimize the overall distance

between the privatized mean estimate and the true mean. For a

given clipping threshold 𝐶 and dataset size 𝑛, the global sensitivity

for the mean estimate is𝐶/𝑛. The required noise to provide an 𝜖-DP
guarantee is then a Laplacian with scale 𝐶/(𝑛𝜖) [13].

In contrast to DP, which can use the entire dataset, PAC requires

an input distribution, which we derive from subsampling. PAC does

not require clipping. We chose the subsampling rate 𝑟 = 0.5 to

minimize prior success rate for an individual membership inference

attack. (Any 0 < 𝑟 < 1 can be used, with different privacy-utility

tradeoffs; we do not explore those here.)

To make a meaningful comparison, we compare DP and PAC

fixing the posterior success rate. A given posterior success rate

for membership inference can be translated to a particular 𝜖-DP

guarantee using Equation (2). Similarly, mutual information bounds

and posterior success rates are related by Equation (3) (also see Table

1). We can therefore compare the expected 𝑙2 distance between DP

and PAC estimated means and the true means for the same success

rates in Table 2.

As discussed in Section 4, we compare DP with PAC for both

individual privacy and arbitrary inference tasks (denoted as global

privacy). For individual privacy, we observe that most of the PAC

error is due to subsampling and there is little noise addition re-

quired for all values of MI. The overall error between DP and PAC

Individual Privacy is comparable for this task. The difference be-

tween isotropic and anisotropic noise with PAC Individual Privacy

is negligible.

We observe that for PAC Global Privacy, the error for small

values of MI is larger than its corresponding DP error. Isotropic

noise with PAC Global Privacy increases the 𝑙2-norm distance after

privatization by up to 1.35×. It is important to note that DP and

PAC privacy guarantees are not equivalent in the semantic sense;

in particular, PAC Global Privacy provides a posterior bound for ar-
bitrary inference tasks, e.g., the generalized membership inference

of Section 8.2.

6.4 K-Means
As previously discussed, we expect K-Means to be easily compatible

with the PAC Privacy framework; results are provided in Figure 2.

We observe that the baseline accuracy on our test set is above

90% for the Iris and Rice datasets. On small datasets like Iris, we

observe a small gap between the baseline and privatized algorithms

forMI < 2
−4

. On the Rice dataset, the centroids are quite stable and

thus, we see no meaningful difference between privatized accuracy

and the non-private baseline.

In the Dry Bean dataset, the underlying baseline accuracy is quite

low (≈ 70%). The anistropic privatized accuracy nearly matches it

atMI ≥ 1, but the isotropic accuracy remains significantly worse.

As discussed in Section 5, we posit that the low baseline accuracy

for Dry Bean is due to the class imbalance. Thus, we explore using

oversampling techniques, as seen in Figure 3.

We observe negligible differences due to oversampling for the

Iris and Rice datasets, since the original datasets do not have a class

imbalance. However, in the Dry Bean dataset, we first observe a

https://github.com/mayuri95/pac_algs
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Dataset Metric
𝝐 = 1.64;

1 − 𝜹 = 0.84;
MI = 1/4

𝝐 = 0.73;
1 − 𝜹 = 0.67;
MI = 1/16

𝝐 = 0.36;
1 − 𝜹 = 0.59;
MI = 1/64

Iris Differential Privacy (0.004, 0.024) (0.012, 0.05) (0.027, 0.098)

Iris PAC Individual Privacy (0.045, 0.045) (0.045, 0.045) (0.044, 0.048)

Iris PAC Global Privacy (0.044, 0.045) (0.043, 0.059) (0.045, 0.16)

Rice Differential Privacy (1.5 ×10
−4
, 0.0017) (5.0 ×10

−4
, 0.0037) (0.0017, 0.007)

Rice PAC Individual Privacy (0.0076, 0.0076) (0.0079, 0.0079) (0.0078, 0.0078)

Rice PAC Global Privacy (0.0078, 0.0078) (0.0078, 0.0081) (0.0079, 0.011)

Dry Bean Differential Privacy (2.9 ×10
−4
, 0.001) (2.9 ×10

−4
, 0.002) (9.3 ×10

−4
, 0.004)

Dry Bean PAC Individual Privacy (0.0054, 0.0054) (0.0054, 0.0054) (0.0054, 0.0054)

Dry Bean PAC Global Privacy (0.0053, 0.0054) (0.0055, 0.0056) (0.0054, 0.0069)

Table 2: Quantitative comparison of DP vs. PAC Privacy for private mean estimation. We provide PAC Privacy estimates for
both global and individual guarantees as discussed in Section 4. DP uses ¯𝛿 = 0 for varying posterior success probabilities, (1 − 𝛿).
DP cells provide 𝑙2 distance after clipping and after clipping and privatization; PAC cells provide 𝑙2 distance after subsampling
and after subsampling and anistropic privatization using Algorithm 1. All results are averaged over 1000 trials.

Figure 2: We plot the accuracy of the K-Means algorithm
without privatization in blue. We then show the anisotropic
privatization in orange and isotropic privatization in green.
The accuracy ismeasured acrossmutual information varying
from 2

−6 to 2
2. As expected, we observe better utility using

anisotropic noise across all datasets and mutual information
values. The Rice dataset is the easiest to privatize, while the
Dry Bean dataset is the hardest.

significant increase (≈ 15%) in the baseline accuracy. Moreover, we

observe that the oversampling also increases the stability of the

algorithm. In particular, we observe negligible utility differences

between the anisotropic privatized accuracy and the baseline for

MI ≥ 2
−2

, with a privatized accuracy > 80%. We consider this a cru-

cial win-win situation, where stability techniques like oversampling

can improve both privacy and utility.

Figure 3: We observe a significant improvement in the Dry
Bean baseline accuracy from ≈ 70% to ≈ 85%. The algorithm
also becomes easier to privatize.

6.5 Support Vector Machines (SVM)
Our initial results on SVM, without any additional regularization

(𝐶 = 1.0), are summarized in Figure 4
5
.

We first consider the Iris dataset. For sufficiently large MI (> 1),

the utility loss due to privatization is minimal. However, when

we tighten the mutual information guarantee, the magnitude of

required noise increases until the utility impact is quite severe – at

anMI guarantee of 2
−4

, the privatized algorithm has a utility ≈ 41%.

The Dry Bean dataset is a more stark example of this phenomenon—

the noise added is so large that the privatized utility does not achieve

5
The Dry Bean SVM experiments are run to a precision of 10

−5
for computational

efficiency.
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Figure 4: Without additional regularization, we observe that
it is difficult to privatize the Iris dataset (significant utility
loss forMI ≤ 2

0) and nearly impossible to privatize the Dry
Bean dataset. The Rice dataset is easier to privatize and shows
minimal utility losses for MI ≥ 2

−2.

> 50% until MI > 2. While the gap is not large, the anisotropic

utility is consistently better than the isotropic counterpart.

We observe a similar trend on the Rice dataset for lowMI values.
However, the Rice dataset achieves stability at MI ≈ 2

−1
, where

both baseline and privatized algorithms achieve accuracy of > 90%.

There are many possible reasons for the difference in perfor-

mance between the baseline and privatized algorithms. We consider

two main cases, corresponding to superficial and intrinsic insta-

bility, respectively. We observe that many sources of superficial

instability can be resolved by regularization. That is, regularization
provides a technique to order multiple solutions which provide

similar utility, by simply choosing the simplest one (lowest norm).

However, increasing regularization too much can interfere with

the baseline results – intuitively, we can prioritize simple solutions

over those with higher utility. Thus, this cannot successfully resolve

issues where the underlying algorithm is unstable due to inherent
instability, without a significant utility impact.

We experiment with the stability of the SVM algorithm by in-

creasing the regularization. We vary the regularization parameter

𝐶 from Equation (4) and our results are in Figure 5.

We first consider the Iris dataset; the results here are plotted

for 𝐶 = 0.05. We first observe that the non-private version of the

algorithm shows a decrease in accuracy, across all possible mutual

information bounds – that is, the baseline accuracy drops from

> 90% to≈ 75%. This shows that the regularization is strong enough

to overpower the loss in utility; that is, for the chosen value of 𝐶 ,

the optimization problem prefers a stable low-norm solution more

than the ≈ 15% increase in accuracy. However, we observe that the

privatized version of the algorithm shows a significant increase

in accuracy, with minimal utility losses for MI as low as 2
−4
. We

observe similar results with the Dry Bean dataset, although stronger

regularization is required. That is, we return to the privacy versus

utility discussion, touched upon in Section 3. In the non-private

Figure 5: Regularization for SVM affects our datasets in sig-
nificantly different ways. In the Iris dataset, the baseline
algorithm suffers a significant utility loss due to the strong
regularization (from > 90% to ≈ 75%). However, the gap be-
tween the privatized and baseline accuracy decreases, sug-
gesting that strong regularization is optimal for tight mutual
information guarantees. We observe similar results on the
Dry Bean data set which achieves stability with small utility
losses for MI ≥ 2

−3 at 𝐶 = 0.005. In the Rice dataset, regu-
larization removes instability from the algorithm without a
significant loss in baseline utility.

setting,𝐶 = 0.05 for Iris represents regularization that is too strong

since the error on the test dataset is higher than with 𝐶 = 1.0.

We observe our best results on the Rice dataset. In this setting,

we choose a regularization parameter of 𝐶 = 0.05 – the baseline

accuracy increases by 0.1% due to the regularization. Additionally,

the stability of our algorithm is improved significantly and we

can achieve negligible utility loss for the privatized version. This

suggests that even complex algorithms with sufficiently large and

representative datasets can achieve stability with appropriate regu-

larization techniques.

6.6 Principal Component Analysis
We then consider the principal component analysis algorithm for

dimensionality reduction. For this algorithm, we evaluate its per-

formance by measuring the distance between the reconstructed

test matrix 𝑋 ′ and the original test matrix 𝑋𝑡𝑒𝑠𝑡 as defined in Equa-

tion (5). We first explore the underlying rank of the datasets.
6
These

results are summarized in Figure 6.

In general, we expect that the PCA algorithm will be inherently

unstable at tight MI guarantees when there are several principal

components with similar “importance”. That is, if there are two

principal components that both explain ≈ 1% of the underlying

variance, we expect that either could be returned arbitrarily, even

for extremely similar datasets. We first investigate 𝑑 = 1 in Figure 7.

6
We do not use the Iris dataset due to its small dimension.
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Figure 6: We measure the percentage of explained variance
by the top principal components for each dataset. The Rice
dataset has a total of 7 features, while the Dry Bean dataset
has 16 features. The CIFAR-10 dataset has 3072 features — we
only plot the explained variance for the top 20 dimensions,
which account of 70% of the total variance.

Figure 7: We observe that our algorithm is stable on all the
datasets for all MI values. We observe a relatively low RE (<
20%) for theRice andDryBean datasets due to the significance
of the top eigenvector. Meanwhile, CIFAR-10 has a larger RE
(≈ 40%), but similar stability guarantees.

As observed in Figure 6, most of the variance in the Rice and

Dry Bean dataset are explained in the first component. Thus, we

observe in Figure 7 that the restoration error is < 20% for all mutual

information values and we can largely recover the original matrix.

In contrast, less than 50% of the variance of the CIFAR-10 dataset is

explained by the first component. Thus, this shows a much higher

restoration error ≈ 40%. Across all the datasets, we observe negli-

gible changes in RE for all mutual information values, indicating

that the algorithm is stable in identifying the top eigenvector.

Figure 8: We run PCA with varying numbers of components
(𝑑 in the plots) for the different datasets. With large 𝑑 , the
baseline restoration error drops to near zero for Rice and
Dry Bean. This indicates that we can privatize these algo-
rithmswith negligible impact. In contrast, we choose𝑑 = 3 for
CIFAR-10 in order to provide meaningful privatized utility;
however, the baseline RE remains high due to the relatively
low dimension. Increasing 𝑑 further significantly reduces the
stability, making the privatized algorithm unusable.

We then consider the same algorithm with higher dimensions,

as seen in Figure 8. Here, we observe that all the datasets show a

significant decrease in restoration error for the non-private baseline;

this is expected since we are increasing the number of dimensions

kept and thus, capturing more of the variance in the original matrix.

For the Rice dataset, we observe that the anisotropic noise con-

sistently provides privatized RE ≤ 5%, which is a significant im-

provement, indicating the stability of the algorithm. The Dry Bean

dataset shows similar results, with both converging to a negligible

change in RE by MI ≈ 2
−3
. This suggests that we can privatize

PCA on such large datasets with large enough dimension to capture

most of the variance. In both of these cases, we observe the benefit

of anisotropic noise — the corresponding isotropic algorithm often

has much worse results in higher dimensions.

The CIFAR-10 dataset, in contrast, can only be privatized for 𝑑 =

3. In particular, the eigenvectors for𝑑 > 3 have similar “importance”

and the stability of the algorithm drops significantly (the 𝑙1 norm

of the noise added from 𝑑 = 3 to 𝑑 = 4 increases by 100×). The
anisotropic algorithm RE for 𝑑 = 3 varies from ≈ 40% for MI = 2

−6

to ≈ 33% for MI = 2
2
, which is a small improvement over 𝑑 = 1.

6.7 Random Forest
Finally, we consider the random forest algorithm. As discussed in

Section 5, the random forest algorithm is known to be unstable and

is quite difficult to adapt to our framework. We first test the naïve

algorithm with no additional regularization on the Iris and Rice

datasets.
7
Our results are summarized in Figure 9. We use a single

7
For this algorithm, we do not use the Dry Bean dataset for computational efficiency.
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tree for the Iris dataset with depth 3. We use 3 trees for the Rice

dataset, with depth 3. In each iteration of the algorithm, the chosen

features for each tree are randomly sampled and the variance across

the threshold values is measured.

Figure 9: The naïve random forest algorithm shows signifi-
cant instability on the Iris and Rice datasets. The Iris dataset
achieves over 90% accuracy in the non-private case, but shows
a dramatic loss in utility (down to < 50% for MI < 2

−2) af-
ter privatization. The Rice dataset shows better results, with
≈ 93% accuracy in the baseline and ≈ 73% accuracy after
anisotropic privatization atMI = 2

−4.

As expected, the privatized version of random forest without ad-

ditional regularization shows significant instability for our datasets.

Further investigation shows that there are several possible causes

for the instability within a tree:

• When there are a small number of samples that are in a

path, the optimal “threshold” value to split on is unstable.

We resolve this by providing regularization penalties.

• The exact threshold value to split on can be noisy due to

the exact set of points that are observed. To improve stabil-

ity, we consider a fixed set of threshold values with finite

precision.

• The threshold values are sometimes unstable due to the

non-uniform spread of the feature values. To address this,

we calculate a weighted average of the entropy.

We choose these three techniques in order to address the issue that

the trees cannot be pruned while maintaining a canonical ordering

that can be compared across iterations. We now experiment with

adding regularization of the form (𝑤1, 𝑝,𝑤2) (cf. Section 5) for the

Iris and Rice datasets.

We first consider the Iris dataset. As seen in Figure 10, we add

significant regularization; however, we note that our baseline non-

private accuracy actually increases by ≈ 2% after regularization.

Further, regularization improves the privatized algorithm’s utility

to ≥ 70% for MI > 2
−3
. We observe that the anisotropic noise

provides a significant utility benefit over the isotropic setting.

We next analyze the Rice dataset. For this dataset, we suffer a

small utility loss (93% to 87% baseline accuracy) due to our increased

regularization. However, the improvement in stability is significant;

there is thus a negligible loss in utility between the privatized and

baseline algorithm after the increased regularization for all MI
values. This again shows that unstable algorithms can be privatized

Figure 10: On the Iris dataset, we achieve over 70% priva-
tized utility for MI > 2

−3. In the Rice dataset there is a much
smaller utility loss in the baseline due to regularization (base-
line accuracy is ≈ 87%). However, the privatized accuracy in-
creases to achieve similar utility due to the improvements in
stability.

Figure 11: We choose our trial complexity𝑚 for Algorithm 1
by measuring the change in our variance estimate in each
direction 𝑔𝑖 . When all of the directions are stabilized within
10
−6, we return the current variance estimate.

with little utility cost when the dataset is sufficiently large and

stable.

7 CONVERGENCE OF ALGORITHM 1
In this section, we discuss our empirical convergence guarantee. We

observe that Theorem 1 provides a mutual information bound when

the variances are estimated exactly. For practical guarantees, we

choose trial complexity large enough such that each element of our

variance estimate converges with very small precision (𝑝 = 10
−6
).

In particular, we run our noise estimation algorithm and estimate

our variance vector after every 10 instances. We converge when

none of the estimates in our output vector have changed by more

than 𝑝 . We choose 𝑝 sufficiently small such that the impact of

adding noise in the order of 𝑝 is negligible. Results are shown in

Figure 11.

Figure 11 provides the change in the first element of our variance

vector for varying algorithms on the Iris dataset. We observe that
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the trial complexity varies across algorithms and datasets. Stable

algorithms (e.g., SVM with strong regularization) converge more

than 10× faster than SVM without regularization.

Convergence on the covariance matrix would require an order

of magnitude more trials.

8 EMPIRICAL PRIVACY ESTIMATION
8.1 Empirical membership inference attacks
Although PAC Privacy allows us to provably bound the posterior

advantage for any attack, in this section, we focus on membership

inference attacks for concreteness and validation. The objective of

membership inference attacks (MIA) is defined in Shokri et al. [32]

as follows: given a machine learning model and a single datapoint

𝑥 , the goal is to determine whether 𝑥 was used to train the model.

For our purposes, we define our machine learning model as the

trained output vector𝑌𝑖 , representing some statistic about our input

data 𝑋𝑖 ⊂ 𝑋𝑡𝑟𝑎𝑖𝑛 . In K-Means, this vector corresponds to the list of

centroids; for SVM, the vector represents the list of hyperplanes

separating the classes. We vary the mutual information bound and

focus on the Iris dataset. We observe that our model is trained on a

subset 𝑋𝑖 where |𝑋𝑖 | = 0.5( |𝑋𝑡𝑟𝑎𝑖𝑛 |) in all of our experiments. This

indicates that for any particular datapoint 𝑥 , the prior Pr[𝑥 ∈ 𝑋𝑖 ] =
0.5. Table 1 gives a theoretical maximal posterior advantage, which

can be compared to the empirical advantage observed.

We consider the Likelihood-Ratio Attack (LIRA) as described in

Carlini et al. [5] and adapt it to the K-Means and SVM algorithms.

The Likelihood-Ratio Attack by [5] exploits the idea that when a

model is trained on a particular point 𝑥 , its “confidence” on clas-

sifying 𝑥 into a particular class or cluster will be higher than on

a point it is not trained on. The original work by Carlini et al. [5]

exploits this by framing a membership attack as a hypothesis test.

In particular, they approximate the distribution 𝑄 (𝑋𝑖 ) observed
when 𝑥 ∉ 𝑋𝑖 . Then, they compute 𝜙 (M(𝑥)), denoting the confi-

dence ofM on 𝑥 . Finally, they explore a varying set of thresholds

𝑡 where the attack concludes 𝑥 ∈ 𝑋𝑖 if and only if 𝜙 (M(𝑥)) ≥ 𝑡 .
Each threshold 𝑡 has corresponding true and false positive rates,

and we simply consider the maximum accuracy over all thresholds

𝑡 , which represents the maximum posterior advantage achievable

by LIRA.

Unlike Carlini’s work, we do not directly produce confidence

values from our algorithms. We instead translate our output vectors

to approximate confidence values. For the K-Means algorithm, we

compute a confidence metric 𝜙 (𝑥) := 1 − 𝑑 (𝑥), where 𝑑 (𝑥) repre-
sents the normalized distance to the cluster that 𝑥 is assigned to.

For SVM, we use Platt calibration to translate the distance from the

point to the hyperplane into a confidence metric [30], i.e.,

𝜙 (𝑥, 𝑖) = 1

1 + exp(−𝑑 (𝑥, 𝑖)) ,

where 𝑑 (𝑥, 𝑖) represents the distance between 𝑥 and the hyper-

plane for class 𝑖 . Then, 𝜙 (𝑥) = max𝑖 𝜙 (𝑥, 𝑖). We observe that the

distribution of 𝜙 (𝑥) is not always Gaussian. Hence, rather than
approximating them with Gaussians, we use 1,000 trials to approxi-

mate the CDF 𝑄 (𝑋𝑖 ).
Our results on the Iris dataset are summarized in Figure 12. PAC

Privacy is necessarily conservative; in Figure 12, the empirical

Figure 12: Empirical posterior advantage from LIRA over
1,000 trials. The empirical posterior advantage of the sub-
sampled algorithms are all at most 11%. For the privatized
algorithms, the empirical advantages are always below the
theoretical posterior advantages of Table 1. The K-Means
and naïve SVM algorithm show the largest average reduction
in posterior advantage due to privatization of ≈ 3% over all
values ofMI.

posterior advantages (denoted as 𝑝𝑒 ) for the privatized algorithms

are significantly lower than the upper bounds given by Table 1

across all mutual information bounds.

We observe a decrease in the privatized posterior advantage

across all the algorithms. In the K-Means algorithm, we observe

the most significant change, from ≈ 9.61% to 1.15% at MI = 1/64.

In the SVM algorithms, the baseline advantage of the non-private

algorithm is significantly lower at ≈ 5.4% without regularization

and ≈ 4.4% at𝐶 = 0.05. For𝐶 = 1.0, we observe an average decrease

of ≈ 3% in 𝑝𝑒 ; for 𝐶 = 0.05, the difference is ≈ 1%.

8.2 A generalized membership attack
We observe that the prior guarantee of 0.5 is specific to member-

ship attacks where we are trying to identify the membership of a

single datapoint 𝑥 . Thus, we first consider a generalization of the

membership attack where there is a fixed number of points 𝑘 that

must be correctly identified.

As before, we have a data distribution represented by the total

set of points 𝑋𝑡𝑟𝑎𝑖𝑛 and our model is trained on 𝑋𝑖 ⊂ 𝑋𝑡𝑟𝑎𝑖𝑛 , where
|𝑋𝑖 | = 0.5|𝑋𝑡𝑟𝑎𝑖𝑛 |. However, our inference task is to guess a set 𝑋 ′

of size 0.5|𝑋𝑡𝑟𝑎𝑖𝑛 |, such that at least 𝑘 points in 𝑋 ′ are classified
correctly. That is, there exists a subset 𝑋 ∗ ⊆ 𝑋 ′, such that every 𝑥

in 𝑋 ∗ is correctly classified and |𝑋 ∗ | ≥ 𝑘 .
We observe that for any point 𝑥 , our prior remains at 50% for

correctly identifying whether 𝑥 ∈ 𝑋𝑖 . However, for any fixed size



Mayuri Sridhar, Hanshen Xiao, and Srinivas Devadas

Figure 13: The prior from the generalizedmembership attack
(Equation (6)) drops below 5% for 𝑘 ≥ 30. This indicates that
looseMI guarantees can bemeaningful for harder adversarial
inference tasks.

𝑘 , our prior probability becomes

𝑝 := 1 −

𝑘−1∑︁
𝑘 ′=0

(
𝑛/2
𝑘′

)
2

(
𝑛

𝑛/2

) . (6)

As 𝑘 increases, this indicates that our prior success probability

drops, as seen in Figure 13. In fact, when we consider 𝑛 = 100 and

𝑘 = 32, our prior probability drops below 1%, providing meaningful

posterior bounds for large values of MI as discussed in Table 1. For

stronger reconstruction attacks, where we consider 𝑘 as a function

of 𝑛, this allows for loose MI guarantees to still be meaningful.

Table 1 gives meaningful posterior success guarantees for mutual

information bounds of up to 4 for a prior of 1%. For instance, a gen-

eralized membership attack with 𝑘 = 35 and a mutual information

guarantee of 1, provides a ≤ 14.56% posterior success guarantee, by

solving Equation (3) given the appropriate prior.

9 RELATEDWORK
Quantitative comparisons to DP for generic mean estimation were

provided in Section 6.3. For more complex algorithms, small 𝜖-

DP guarantees are harder to provide and often involve signifi-

cant changes to algorithm implementation. Even with white-box

changes, the resulting algorithm often requires a large dataset with

small data dimension to provide meaningful utility guarantees. In

contrast, PAC provides instance-specific guarantees with reason-

able utility loss, even when subsampling small datasets of ≈ 1,000

datapoints with large dimension. Given the substantial algorith-

mic differences between DP white-boxed algorithms and the PAC

black-box approach, and the semantic difference in privacy guaran-

tees, we restrict ourselves to qualitative comparisons between our

PAC-privatized algorithms and state-of-the-art DP algorithms for

the various problems.

We first consider K-Means. Early work by Su et al. [33] devel-

oped DPLloyd, a DP version of Lloyd’s algorithm for K-Means

clustering. Intuitively, DPLloyd adds Laplacian noise each time the

approximate centroids are computed. We observe that even for a

simple algorithm, providing DP required significant changes to

the algorithmic structure, e.g., fixing the number of iterations for

convergence. Further, we observe that K-Means is known to be

sensitive to the initial centroids chosen; thus, DPLloyd requires a

new private initialization procedure as well.

We then consider SVM classifiers; there has been a long history

of developing SVMs with DP guarantees [7, 31]. In general, these

techniques use the SVM algorithm to compute the optimal weight

vector and add appropriate noise to provide DP guarantees. How-

ever, as observed by Zhang et al. [38], large training sets led to

large weight vectors with increased noise. Moreover, often there

were strong restrictions on the objective function (e.g., convexity)

to enable tight bounds on the noise. Zhang et al. [38] suggests a

novel method in order to solve the dual problem of SVM, which

approaches the non-private SVM accuracy for sufficiently large

training sets. However, note that this is still a white-box mecha-

nism to achieve privacy, i.e., Laplacian noise was added in each
iteration and in each iteration, an inner loop is required to choose

the pairs of dual variables to update.

Random forests with differential privacy have been explored

less extensively. Patil and Singh [27] suggests that differentially-

private random forests can be constructed by allocating a privacy

budget across trees, and then across levels of each tree. Each tree

is “complete” when either all the features are used, the remaining

samples all belong to the same class or when a maximum height is

reached. Consul and Williamson [10] expands this work and con-

structs differentially-private median forests, which also improve the

stability of the data structure. However, they still observe significant

utility losses for sufficiently small 𝜖 .

Finally, we consider DP for identifying principal components.

Chaudhuri et al. [8] constructs a near-optimal technique for identi-

fying principal components while providing DP. Their technique

requires datasets with a large number of datapoints, but the noise

scaleswith the original dimension,making it impractical for datasets

with large dimension, even if the true rank is constant. We further

observe that their resulting utility guarantees are upon a secondary

classification task, rather than the restoration of the original matrix

task that we evaluate on. In practice, we expect the latter to be a

stronger guarantee since a perfectly restored matrix would provide

the best utility guarantee on any secondary task.

10 CONCLUSIONS
We have shown how PAC Privacy can be applied to privatize black-

box algorithms, by giving a template that can be applied to virtually

any algorithm. Using Algorithm 1 to add anisotropic noise is critical

to improving privacy-utility tradeoffs.

An exciting aspect of PAC Privacy that is demonstrated most

clearly by our K-Means results is the potential win-win situation in

the algorithm tradeoff space. Stability with respect to input changes

is a desirable feature of algorithms, because stable algorithms gen-

eralize better to new inputs, and have better worst cases. Concomi-

tantly, stable algorithms require less additive noise on their outputs

for privatization.

Future work includes using the compositional properties of mu-

tual information to tackle unstable algorithms such as Stochastic

Gradient Descent (SGD).
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