
Efficient Universally-Verifiable Electronic Voting with Everlasting
Privacy

David Pointcheval

DIENS, École normale supérieure, CNRS, Inria, PSL University, Paris, France

Abstract. Universal verifiability is a must-to-have for electronic voting schemes. It is essential to ensure
honest behavior of all the players during the whole process, together with the eligibility. However, it should
not endanger the privacy of the individual votes, which is another major requirement. Whereas the first
property prevents attacks during the voting process, privacy of the votes should hold forever, which has
been called everlasting privacy.
A classical approach for universal verifiability is to add some proofs together with the encrypted votes,
which requires publication of the latter, while eligibility needs a link between the votes and the voters: it
definitely excludes long-term privacy. An alternative is the use of perfectly-hiding commitments, on which
proofs are published, while ciphertexts are kept private for computing the tally.
In this paper, we show how recent linearly-homomorphic signatures can be exploited for all the proofs,
leading to very efficient procedures towards universal verifiability with both strong receipt-freeness and
everlasting privacy. Privacy will indeed be unconditional, after the publication of the results and the proofs,
whereas the soundness of the proofs holds in the algebraic group model and the random oracle model.

1 Introduction

Electronic Voting.The first major requirement for a voting system is the privacy of the ballot. This
is essential to guarantee the freedom of expression by the voters. On the other hand, it is also wildly
admitted that an electronic voting system should additionally satisfy the following properties, for an
end-to-end verifiability that the result really reflects the votes, without having to trust any system or
any authority: individual verifiability, where each voter can check that her ballot was tallied; universal
verifiability, where anybody can check that the result corresponds to the public board, and tallied
ballots come from eligible voters (eligibility). Some of these properties can come in several steps:

– Individual verifiability: the more users verify, the better it is, as it can impact the reputation of
the system. They want to check Cast-as-Intended property: the voter is sure that the actual vote
corresponds to her intended choice. A classical approach is the so-called Benaloh Challenge, and
variants, which is an audit-or-cast technique, in the same vein as the cut-an-choose technique.
Another possibility is an open-source code on the voter-side, that can be publicly audited and
easily checked at execution time; and Recorded-as-Cast property: the voter is sure that the vote
recorded in the ballot-box corresponds to the actual vote. A simple way, in theory, is the publication
of the ballot-box, that allows anybody to control the presence of her ballot;

– Universal verifiability: once everybody is convinced by data on the public board (possibly the ballot-
box itself), thanks to the above individual verifiability, they check Tallied-as-Recorded property:
the result corresponds to the data on the public board. Everybody should also be able to check
eligibility of the voters.

Two major approaches exist for counting the tally from encrypted votes: either one applies a mixing-
network (mixnet), which permutes and randomizes the encrypted ballots, before decryption of all the
individual ballots to perform the counting in the clear, as one does with paper-based voting systems
when one opens the envelops after having mixed them to remove any link with the voters; or one uses
homomorphic encryption that allows to aggregate the encrypted ballots to get the encrypted tally,
that is the unique value eventually decrypted. However, both approaches require publication of the
ballot-box, with all the encrypted votes, for being universally verifiable. And eligibility verifiability
requires a link between the ballots and the voters. This is a risk if the encryption mechanism gets later
broken, or if the decryption key is leaked.

2 David Pointcheval

Everlasting Security. Publishing all the encrypted votes is indeed a huge threat, as any public-key
encryption scheme will possibly get broken in the future, either because of new algorithms or new kinds
of computers, or just because of the key-sizes that will become too small for the new technologies.

In a recent survey [HMMP23] on everlasting electronic voting systems, they defined two fami-
lies of protocols: B-ANON, which means the published information is anonymous; and B-ID, where
the published information is related to the voters. In the former class, everlasting privacy reduces to
publishing encrypted ballots anonymously, which has a strong impact on the individual verifiability
and the eligibility property; while in the latter class, public information is authenticated by the vot-
ers. They thus argue that B-ID is superior to B-ANON. But this is more difficult to achieve. The
best candidate is [CPP13], with Commitment Consistent Encryption (CCE), where a perfectly hid-
ing commitment is associated to each ciphertext. It is illustrated with ElGamal encryption [ElG85]
and Pedersen commitment [Ped92]. This commitment is perfectly hiding: even a powerful adversary
cannot recover the committed value. But it requires some additional proofs that might make the ap-
proach not homomorphic anymore, and not efficient for complex ballots. They extended the primitive
to CCE with Validity Augmentation (named CCVAE). A first solution then requires Paillier encryp-
tion [Pai99], which makes it inefficient. A second solution combines ElGamal encryption with the TC2
perfectly hiding commitment [AHO10], which requires group elements in both groups in a type III
pairing-friendly setting, with security proof under the SXDH assumption.

The survey [HMMP23] concludes that this approach with CCVAE is among the best, but may
not be appropriate for complex ballots (for the homomorphic version) and does not provide (strong)
receipt-freeness. It is thus essentially applicable with mixnets. But the mixing operation is quite long
to generate, and all the individual ballots must be decrypted, which can be prohibitive for large-scale
elections. Homomorphic encrypted tally is definitely the most appropriate solution, when the tally
just consists in counting the number of votes for each candidates, as it allows a fast publication of the
results, if verifications and aggregations are performed on-the-fly.

Strong Receipt-Freeness.As explained by Cortier and Smyth [CS11], privacy is more complex than
it appears, in particular when legitimate voters are ready to change their votes for money or to break
privacy of another vote. More advanced protections have to be considered: one must avoid replay at-
tacks, where voters can amplify Alice’s vote to learn her vote; and receipts that allow a voter to convince
a buyer of the content of her vote. Strong receipt-freeness prevents both attacks [CCFG16,CFL19].

A usual approach for excluding receipts is to randomize the ballots so that the voter does not
know anymore how to open it, but this should keep the validity proofs correct. Hence the need of
randomizable encryption/commitment with randomizable proofs of validity: Schnorr-like proofs can-
not be used by the voters. We will use linearly-homomorphic signatures with randomizable tags, as
introduced in [HPP20,Poi23], as they offer short and efficient homomorphic quasi-adaptive NIZKs,
which is well-suited for e-voting, with constant-time generation of the proof, and the randomizability
of the proof.

Contributions.We follow the path of the CCE/CCVAE primitives for homomorphic encrypted tally:
the ballot sent by the voter will consist of an ElGamal Ciphertext of the vector m⃗ of the votes (e.g.
a vector of 0/1 to cast multiple yes/no ticks in boxes), a Pedersen Commitment of that vector m⃗, an
encryption of the opening, a proof of consistency (the encrypted message and the committed message
are the same), and a proof of validity (the committed message is of correct format).

Thanks to the homomorphic property of ElGamal encryption, the usual homomorphic encrypted
tally can be computed, and decrypted in a distributed way. The Pedersen commitment being also
additively homomorphic, one can easily get a Pedersen commitment of the tally, and the correspond-
ing opening value exploits the homomorphic property of the encryption of each individual opening
values. We essentially extend [CPP13] to complex ballots. And using linearly homomorphic signatures
with randomizable tags [HPP20,Poi23], we show that proofs of both consistency and validity can be
efficiently generated, still being compatible with strong receipt-freeness. But contrarily to [Poi23] that
suggested the use of square Diffie-Hellman tags, we will use the more efficient FHS signature [FHS19],
as in [HPP20]: thanks to their perfect randomizability, we will get perfect privacy.

While privacy will be unconditional, soundness of the various verification steps will rely on Discrete-
Logarithm-like assumptions in the Algebraic Group Model (AGM) [FKL18] and the Random Or-

Efficient Universally-Verifiable Electronic Voting with Everlasting Privacy 3

acle Model (ROM) [BR93]. This is the cost to pay with our approach, compared to the original
CCE/CCVAE paper [CPP13]. But our goal is to obtain a practical solution, with efficient ballot
generation for the voter. One should note that our computational assumptions (for the soundness
only) are similar to the one required in cryptocurrencies, and namely for privacy with practical zk-
SNARKs [BCCT13,GGPR13], such as Groth16 [Gro16], which are even proven in the Generic Group
Model only. But contrarily to most of them, the CRS can be efficiently performed in a distributed way
in our case.

Organization.Whereas FHS signatures [FHS19] have already been proven unforgeable in the Generic
Group Model, as signatures on equivalent classes [BF20], we prove them unforgeable, as linearly-
homomorphic signatures, in the Algebraic Group Model, under Discrete-Logarithm-like assumptions
(see Section 3). While only under selective-message attacks, this unforgeability is enough for getting
the soundness of the proofs in our electronic voting scheme (see Section 4). Eventually, we provide
some benchmarks to illustrate concrete efficiency of our approach (see Section 5).

2 Preliminaries

2.1 Computational Assumptions

Our analysis will be performed in the Algebraic Group Model (AGM) [FKL18], where any algorithm
is assumed to be algebraic: any output group element comes together with a linear combination of the
input group elements. But we still require specific computational assumptions: first, in a group G of
prime order p, spanned by a public generator G, we have

Discrete Logarithm (DL) From U = xG, for x $← Zp, it is hard to compute x.
Computational Diffie-Hellman (CDH) Assumption. Given a generator G, and (U = x ·G,V =

y ·G), for x, y $← Zp, it is hard to compute xy ·G;
Decisional Diffie-Hellman (DDH) For U $← G, x, y $← Zp, the distributionsDdh = {(G, xG,U, xU)}

and G4
$ = {(G, xG,U, yU)} are hard to distinguish;

In a type III pairing-friendly setting (G, Ĝ,GT , p,G, Ĝ, e), where G and Ĝ are groups of prime order
p, spanned by public generators, respectively G and Ĝ, and e is a bilinear map from G × Ĝ into the
target group GT , we have additional assumptions:

Symmetric eXternal Discrete Logarithm (SXDL) From both U = xG and Û = xĜ, for x $← Zp,
it is hard to compute x;

Symmetric eXternal Square Discrete Logarithm (SXSDL) From U = xG, V = x2G, and Û =

xĜ, for x $← Zp, it is hard to compute x;
Symmetric eXternal Diffie-Hellman (SXDH) The DDH assumption holds in both groups G and

Ĝ;

2.2 Linearly-Homomorphic Signatures

The notion of homomorphic signatures dates back to [JMSW02], with notions in [ABC+12], but the
linearly-homomorphic signatures, that allow to sign vector subspaces, were introduced in [BFKW09],
with several follow-up by Boneh and Freeman [BF11b,BF11a] and formal security definitions in [Fre12].
In another direction, Abe et al. [AFG+10] proposed the notion of structure-preserving signature, where
keys, messages and signatures all belong in the same group. Later Libert et al. [LPJY13] combined
both notions and proposed a linearly-homomorphic signature scheme, that is furthermore structure-
preserving. More recently, those linearly-homomorphic signatures have been applied in various proto-
cols [HPP20,HP22,Poi23], and we follow this path here.

Definition. We start with the formal definition of linearly-homomorphic signature scheme with tags,
and the security requirement, the so-called unforgeability, where the adversary should not be able to
generate signatures of messages that are not in linear subspaces, identified by tags. We also deal with
randomizable tags, that will be the core of our privacy properties.

4 David Pointcheval

Definition 1 (Linearly-Homomorphic Signature Scheme with Tags (LH-Sign-Tag)). A linearly-
homomorphic signature scheme with tags, for messages in Gn and a set T of tags, consists of the
algorithms (Setup,NewTag,VerifTag,RandTag,Keygen,Sign,DerivSign,Verif):

Setup(1κ): Given a security parameter κ, it outputs the global parameter param, which includes the tag
space T ;

Keygen(param, n): Given the parameters param and an integer n, it outputs a signing-verification key
pair (sk, vk). We will assume that vk implicitly contains param and sk implicitly contains vk;

NewTag(param): Given the parameters param, it outputs a verifiable tag Tag and, possibly, its associ-
ated secret tag τ ;

VerifTag(param,Tag): Given the parameters param and a tag Tag, it outputs 1 if the tag is valid and
0 otherwise;

Sign(sk,Tag[, τ], M⃗): Given a signing key sk, a verifiable tag Tag, possibly the associated secret tag τ ,
and a vector-message M⃗ = (Mi)i ∈ Gn, it outputs the signature σ under the tag Tag;

RandTag(vk,Tag, M⃗ , σ): Given a verification key vk, any verifable tag Tag and a signature σ on a
vector-message M⃗ , it outputs a new verifiable tag Tag′ and a new signature σ′.

DerivSign(vk,Tag, (ωj , M⃗j , σj)
ℓ
j=1): Given a verification key vk, a verifiable tag Tag and ℓ tuples of

weights ωj ∈ Zp and signed messages M⃗j in σj, it outputs a signature σ on the vector M⃗ =∑ℓ
j=1 ωj · M⃗j under the tag Tag;

Verif(vk,Tag, M⃗ , σ): Given a verification key vk, a verifiable tag Tag, a vector-message M⃗ and a sig-
nature σ, it outputs 1 if both the tag Tag is valid and σ is also valid relative to vk and Tag, and 0
otherwise.

The DerivSign algorithm allows linear combinations of signatures under the same tag: for any key-pair
(sk, vk)← Keygen(param, n), if Verif(vk,Tag, M⃗j , σj) = 1 for any tag Tag and message-signature pairs
(M⃗j , σj) for j = 1, . . . , ℓ, and σ is defined as DerivSign(vk,Tag, {ωj , M⃗j , σi}ℓj=1) from some scalars ωj ,
then we should get Verif(vk,Tag,

∑ℓ
j=1 ωj · M⃗j , σ) = 1.

Unforgeability. However, other combinations should not be possible. This is the unforgeability notion
for linearly-homomorphic signatures, we formalize against selective message attacks using random tags:

Definition 2 (Unforgeability for LH-Sign-Tag under Selective Message Attacks). For a LH-
Sign-Tag scheme, for any probabilistic polynomial time adversary A that
1. outputs K lists of messages (M⃗k,j)k,j, for j = 1, . . . , Jk and k = 1, . . . ,K;
2. receives a verification key vk, random verifiable tags (Tagk)k and signatures (σk,j)k,j of (M⃗k,j)k,j

under (Tagk)k;
3. outputs a new valid tuple (Tag, M⃗ , σ)

then, with overwhelming probability, there exist an index k ∈ {1, . . . ,K} and coefficients (ωj)j=1,...,Jk

such that M⃗ =
∑Jk

j=1 ωj · M⃗k,j.

This unforgeability notion essentially says that any derived signature is for a message M⃗ ∈ ⟨(M⃗k,i)i⟩
for some k. The K lists of messages define K vector subspaces and M⃗ must lie in one of them.
Contrarily to [LPJY13], we do not expect Tag = Tagk, as we will allow randomizability of the tags.
Unfortunately, this is not necessarily a falsifiable definition [BF24]: in many cases, this might be hard
to decide whether the output of the adversary is a valid forgery or not. But we might have a stronger
unforgeability notion, that is falsifiable, when it requires a way to verify the linear relation:

Definition 3 (Extractable Unforgeability for LH-Sign-Tag under Selective Message At-
tacks). As in Definition 2, for the output of a new valid tuple (Tag, M⃗ , σ) from a probabilistic poly-
nomial time adversary A, there exists an extractor EA that outputs an index k ∈ {1, . . . ,K} and
coefficients (ωj)j=1,...,Jk such that M⃗ =

∑Jk
j=1 ωj · M⃗k,j, with overwhelming probability.

Efficient Universally-Verifiable Electronic Voting with Everlasting Privacy 5

LH-Sign-RTag. For some privacy reasons, we will expect an additional property on the tags, we call
randomizability [HPP20], hence the linearly-homomorphic signatures with randomizable tags (LH-
Sign-RTag). The correctness requires that if Verif(vk,Tag, M⃗ , σ) = 1, then Verif(vk,Tag′, M⃗ , σ′) = 1,
for the randomized tag Tag′ and signature σ′. The security notion is defined below.

Definition 4 (Tag Randomizability). An LH-Sign-RTag has computational (resp. statistical, or per-
fect) tag randomizability if, given a tuple (vk,Tag, M⃗ , σ) that is valid, the distance between the distribu-
tions of (Tag′, σ′) that comes either from the randomization (i.e., (vk,Tag′, M⃗ , σ′)← RandTag(vk,Tag, M⃗ , σ)),
or as a fresh tag (i.e., (Tag′, τ ′)← NewTag(param), σ′ ← Sign(sk,Tag′, τ ′, M⃗)) is computationally neg-
ligible (resp. statistically negligible, or zero).

This property provides unlinkability. With perfect randomizability of the tags (the two above distri-
butions are equal) we get unconditional unlinkability.

3 FHS as a Secure LH-Sign-RTag

In the following, we will use the FHS signature [FHS19,BF20], as in [HPP20]. Unforgeability was al-
ready proven in the Generic Group Model (GGM) in the original paper [BF20], for the equivalent-class
notion only. In this paper, we prove the Extractable Unforgeability (Definition 3 for LH-Sign-Tag) under
the SXSDL assumption, in the Algebraic Group Model (AGM) [FKL18]. This FHS signature is prefer-
able to the square-Diffie-Hellman scheme used in [Poi23], as the latter only provides computational
tag randomizability, and perfect tag randomizability will be essential for our privacy goals.

3.1 Linearly-Homomorphic Signature with Randomizable Tags

In a type III pairing-friendly setting, we define the LH-Sign-RTag:

Setup(1κ): Given a security parameter κ, it outputs param, that contains a pairing-friendly setting
(G, Ĝ,GT , p, P, P̂ , e);

Keygen(param, n): Given param and an integer n, it generates sk = s⃗
$← Zn

p , sets vk = s⃗ · P̂ = (P̂i =

si · P̂)ni=1 ∈ Ĝn, and outputs the key pair (sk, vk);
NewTag(param): Generates a verifiable tag Tag = (Q = 1/τ · P, Q̂ = 1/τ · P̂), for a random scalar

τ
$← Zp, the secret tag;

VerifTag(Tag): Parse Tag = (Q, Q̂) and checks whether e(P, Q̂) = e(Q, P̂);
Sign(sk,Tag, τ, M⃗): Given a signing key sk, a secret tag τ , and a vector-message M⃗ = (Mi)i ∈ Gn, it

outputs the signature σ = τ ·
∑
si ·Mi = τ · ts⃗ · M⃗ ∈ G;

RandTag(vk,Tag, M⃗ , σ): Given a verification key vk, a verifiable tag Tag = (Q, Q̂) and a signature σ
on a vector M⃗ , it chooses a random γ

$← Zp and outputs both Tag′ = (Q′ = 1/γ ·Q, Q̂′ = 1/γ′ · Q̂)
and σ′ = γ · σ;

DerivSign(vk,Tag, (wj , M⃗j , σj)
ℓ
j=1): Given a verification key vk and ℓ tuples of weights wj ∈ Zp and

signed messages M⃗j in σj , under the same tag Tag, it outputs the signature σ =
∑ℓ

j=1wj · σj , on
the vector M⃗ =

∑ℓ
j=1wj · M⃗j , valid under the same tag Tag;

Verif(vk,Tag, M⃗ , σ): Given a verification key vk, a verifiable tag Tag = (Q, Q̂), a vector-message M⃗ and
a signature σ, it outputs 1 if the tag Tag is valid (i.e., e(P, Q̂) = e(Q, P̂)) and e(σ, Q̂) =

∏
e(Mi, P̂i),

and 0 otherwise.

3.2 Security Properties

One contribution of this work is a proof of unforgeability under selective message attacks in the AGM
relative to the SXSDL. But in order to get a falsifiable result, we prove Extractable Unforgeability in
the AGM:

Theorem 5 (Extractable Unforgeability). Breaking extractable unforgeability of (Setup,NewTag,
VerifTag,RandTag,Keygen,Sign,DerivSign,Verif), under selective message attacks is equivalent to break-
ing the SXSDL assumption in the AGM.

6 David Pointcheval

The detailed proof can be found in the Appendix A, but it basically works in two steps: first, one
shows that the output tag-signature only involves one tag; then one shows the output message is an
explicit linear combination of the messages already signed under this tag. The reduction relies on both
the SXSDL and the SXDL assumptions, but the former is the strongest, as breaking SXDL allows to
break SXSDL. This proves extractable unforgeability under selective message attacks, when keys and
tags are honestly generated.

Furthermore, this is clear that the tag randomizability is perfect, as it generates a truly random
new pair, which will provide our everlasting privacy:

Theorem 6 (Tag Randomizability). Tag randomizability of (Setup,NewTag,VerifTag,RandTag,
Keygen, Sign,DerivSign,Verif) is perfect.

When the unique tag (1G, 1Ĝ) is used, a unique vector subspace is defined by the initial vectors. We
can ignore the tag. This is thus a Linearly-Homomorphic Signature scheme (LH-Sign) without tags.

4 Our Global Voting System

4.1 Format of the Ballot

Following the approach from [CPP13], we will consider a Secret Ballot-Box, denoted SBB, and a Public
Bulletin-Board, denoted PBB. The former will contain information available to the server only, to be
able to proceed to the tally; while the latter will contain information to allow universal verifiability.
No integrity will be needed in the SBB, this is the responsibility of the server, only the PBB must be
correct: individual verifiability will allow to get confidence in the PBB.

Hence, the ballot sent to the server will contain two parts, one for the SBB and one for the PBB.
We first model the vote as a vector m⃗, expected in {0, 1}n to express checked (1) or unchecked (0)
boxes. We then combine an ElGamal [ElG85] ciphertext (C0, C⃗) and a Pedersen [Ped92] commitment
D of m⃗, with a verification tag V , for two random scalars r, s $← Zp, in a group G of prime order p,
with a generator P :

C0 = r · P C⃗ = m⃗ · P + r · Z⃗ D = tm⃗ · Q⃗+ s ·Q0 V = s · Y

where Z⃗ = z⃗ · P ∈ Gn is the public encryption key (and z⃗ the private decryption key, that can be
generated in a distributed way among the electoral board), Y = y ·Q0 ∈ G is the public verification key
(and y the private verification key, that can be generated in a distributed way too), and Q0, Q⃗ = (Qi)i
are independent random generators of G. The scalars r, s are called the encryption randomness and
the commitment randomness, respectively. The voter eventually provides two additional proofs:
– a proof π of consistency of C = (C0, C⃗,D, V), that ensures the existence of the witnesses (m⃗, r, s);
– a proof Π of validity of D, that ensures the knowledge of the witness (m⃗, s), with possibly more

restrictions about m⃗. We expect Π to be a perfectly zero-knowledge proof of knowledge;
In order to be sure that the ciphertext (C0, C⃗) contains a message that is committed in D, where V
is a kind of opening information, the server must verify the proof π. This is its own responsibility,
as in the bad case, the following verifiability will fail. For the universal verifiability explained below,
when we target homomorphic tally, we additionally need the guarantee the vote m⃗ (which knowledge
is proven in Π) is of the appropriate format (e.g., with 0 or 1, only, or more generally m⃗ ∈ S), which
will be proven with Π too.

After the verification of π, this ballot will be split in two parts: the private part (C0, C⃗, V) and the
public part (D,Π). The former being stored (or even aggregated on-the-fly) in the secret ballot-box
SBB and the latter on the public bulletin-board PBB.

4.2 Tally Computation and Verification

While the secret ballot-box receives the votes, in an encrypted way in (C0, C⃗), the public bulletin-
board does not contain any information: because of the randomness of s, m⃗ is perfectly hidden in the
Pedersen commitment D. With the perfect zero-knowledge property of Π, we have the everlasting
privacy with only the public bulletin-board. All the process will exploit the homomorphic properties
of both the ElGamal ciphertext and the Pedersen commitment on all the voters V:

Efficient Universally-Verifiable Electronic Voting with Everlasting Privacy 7

– everybody can aggregate the commitments in PBB, that is correct thanks to the individual verifi-
ability performed by all the voters, and compute

E =
∑
V
DV =

∑
V

tm⃗V · Q⃗+
∑
V
sV ·Q0 =

t

(∑
V
m⃗V

)
· Q⃗+

(∑
V
sV

)
·Q0

– the server can aggregate, on its own and possibly on-the-fly to reduce storage, the values in the
SBB, and publish when the election closes:

F0 =
∑
V
CV,0 F⃗ =

∑
V
C⃗V W =

∑
V
VV

=

(∑
V
rV

)
· P =

(∑
V
m⃗V

)
· P +

(∑
V
rV

)
· Z⃗ =

(∑
V
sV

)
· Y

The aggregation E can be trusted: because of the individual verifiability in the PBB, where every voter
V can check her own value DV , all the DV ’s are correct, and so E is correct too. However, the other
aggregations come from the secret ballot-box and the server, that are not trusted. They have to be
verified later relative to E only.

Thanks to the decryption key z⃗, the electoral board can compute m⃗T ·P = (
∑

V m⃗V)·P = F⃗−z⃗ ·F0,
and then the tally m⃗T , as this should be only small discrete logarithms, which can be made public.

This vector m⃗T , if correct, is indeed the result of the election: m⃗T =
∑

V m⃗V . But it needs to be
publicly verifiable to be trusted by everybody: From this alleged value m⃗T , anybody can recover S =
(
∑

V sV)·Q0 = E−tm⃗T ·Q⃗. Then, with a Schnorr-like zero-knowledge proof πR, the electoral board can
show there exists y ∈ Zp so that both Y = y·Q0 andW = y·S. To this aim, the prover chooses a random
ρ ∈ Zp, and sends R = ρ ·Q0 and T = ρ ·S. From the random challenge e = H(Q0, S, Y,W,R, T) ∈ Zp,
it computes y′ = ρ− e · y mod p which should satisfy both R = y′ ·Q0 + e · Y and T = y′ · S + e ·W .
The proof thus consists of πR = (e, y′) such that e = H(Q0, S, Y,W, y

′ ·Q0 + e · Y, y′ · S + e ·W).
Note that this proof of Diffie-Hellman tuple for (Q0, S, Y,W) is statistically sound: even a powerful

adversary has a negligible chance to forge a valid proof for a wrong tuple, after a polynomial number
of queries to the random oracle H. The SBB can then be deleted as well as the secret keys y and z⃗.

4.3 Security Properties

During the global process, the only public information is the public bulletin-board PBB, which helps
to compute the trusted aggregation E, the result m⃗T and the opening value S, that is proven valid
with the above πR.

Privacy. As already noted, the only public information in PBB is (DV , ΠV) for each voter V, a perfectly
hiding commitment, that does not contain any information about the vote, and an additional proof
that is perfectly zero-knowledge, we thus have perfect privacy, forever, from only public information:
note that the server can aggregate on-the-fly the secret information (CV,0, C⃗V , VV) into (F0, F⃗ ,W),
which means that no sensitive information is kept. Only (DV , ΠV) is individually kept and published
in the PBB.

Theorem 7 (Everlasting Privacy). Given the public information PBB, m⃗T , E, S and πR, if the
proofs (ΠV)V and πR are perfectly zero-knowledge, all the individual votes are perfectly hidden, condi-
tioned to the tally m⃗T .

Proof. In the honest-but-curious setting, the distribution of the public view is D0 = {(V, DV = tm⃗V ·
Q⃗+sV ·Q0, ΠV)V , m⃗T =

∑
m⃗V , E =

∑
V DV , S = E−tm⃗T ·Q⃗, Y = y ·Q0,W = y ·S, πR}, for the voter’s

choices m⃗V , and random coins sV
$← Zp, with the proofs honestly generated using the random coins as

witnesses. This distribution can be first replaced by a distributionD1 that involves the simulators S and
SR of the perfectly zero-knowledge proofs: D1 = {(V, DV = tm⃗V · Q⃗+sV ·Q0, ΠV = S(DV))V , m⃗T , E =
tm⃗T ·Q⃗+(

∑
sV)·Q0, S = E−tm⃗T ·Q⃗, Y = y ·Q0,W = y ·S, πR = SR(Q0, S, Y,W)} where m⃗T =

∑
m⃗V ,

8 David Pointcheval

which is equal to D2 = {(V, DV = tm⃗V · Q⃗ + sV · Q0, ΠV = S(DV))V , m⃗T , E = tm⃗T · Q⃗ + s · Q0, S =
s ·Q0, Y = y ·Q0,W = y ·S, πR = SR(Q0, S, Y,W)} where m⃗T =

∑
m⃗V and s =

∑
sV . Now, we choose

s
$← Zp and a particular voter V∗: for all V ̸= V∗, DV

$← G, and DV∗ = tm⃗T · Q⃗+ s ·Q0 −
∑

V̸=V∗ DV .
Then, the new distribution D3 = {(V, DV , ΠV = S(DV))V , m⃗T , E = tm⃗T ·Q⃗+s ·Q0, S = s ·Q0, Y,W =
s · Y, πR = SR(Q,S, Y,W)} is still perfectly indistinguishable from D2, and thus from the initial
distribution D0. However, this is clear that no information leaks about individual votes (m⃗V)V from
D3, which proves the everlasting privacy. ⊓⊔

We stress that the perfect privacy holds only with respect to the public information in the PBB (even
if those values DV are associated to the voters V to provide eligibility verifiability). However, using
the commitment randomness sV , the voter could reveal her vote (from her DV) and sell it. Hence, to
provide receipt-freeness, we will let the server randomize sV before publishing the commitment in the
PBB. This randomization will not impact the verifiability, as shown below.

Verifiability. In order to be sure that the decryption of (F0, F⃗) will lead to a vector m⃗T that is
consistent with W , the server must verify the relations between (CV,0, C⃗V) and DV with the same
m⃗V , and between DV and VV with the same sV , from the zero-knowledge proof of consistency πV , for
each voter V. But this is just the responsibility of the server, as this proof is not part of the universal
verifiability.

For the universal verifiability explained below, we will also need a proof of validity ΠV for DV , that
must be a proof of knowledge of (m⃗V , sV) used in DV . Furthermore, when we target homomorphic
tally, we additionally need the guarantee the vote m⃗V is of the appropriate format (e.g., with 0 or 1,
only).

For the former proof πV , we will use basic LH-Sign, without tags. The latter proof of knowledge ΠV
will exploit LH-Sign-RTag [HPP20,Poi23], in the case m⃗V must be proven in a specific set S, as needed
for homomorphic tally. Both proofs being perfectly zero-knowledge, they satisfy the requirements of
the Theorem 7. For both proofs, knowledge-soundness will rely in the extractable-unforgeability of the
signature schemes, which hold under the SXSDL assumption in the Algebraic Group Model, with the
above FHS signature.

Theorem 8 (Soundness of the Universal Verifiability). Given the public information PBB, with
the valid proofs of knowledge (ΠV)V , E, m⃗T , and S, the proof πR (with statistical soundness) ensures
m⃗T is the result of all the votes committed in the DV by each voter, unless one can break the DL
assumption in the Algebraic Group Model.

Proof. Thanks to the proofs of knowledge ΠV ’s, one can extract (m⃗V , sV) for each commitment DV .
Then, one can provide an opening (m⃗∗

T , s
∗) of E: E = tm⃗∗

T · Q⃗+s∗ ·Q0. The vector m⃗∗
T is the expected

result of the election, and we want to show the announced result m⃗T is the same.
Thanks to the statistical soundness of πR, its validity ensures (Q0, S, Y,W) is a valid Diffie-Hellman

tuple, with overwhelming probability. Then, in the AGM, the algorithm (the voters together with the
server) that has generated such a valid W = y · S, whereas only Y = y · Q0 is known, is associated
to an extractor that outputs s such that S = s ·Q0, under the DL assumption: more formally, let us
be given a DL instance (Q0, Y = y · Q0), an algorithm that is given Y and S = s · Q0, and outputs
W = sy · Q0, in the AGM also outputs a linear combination of the inputs: W = sy · Q0 = s · Y =
a · S + b · Y = as ·Q0 + b · Y . Which leads to (s− b) · Y = as ·Q0. If one would know s ̸= b, then one
could extract y = as · (s− b)−1 mod p. Hence, necessarily, b = s and a = 0.

Eventually, S = s ·Q0 = E − tm⃗T · Q⃗: t(m⃗∗
T − m⃗T) · Q⃗ = (s∗ − s) ·Q0, for known s, s∗, m⃗T , m⃗

∗
T . If

the expected m⃗∗
T and the announced m⃗T are different, one can extract the discrete logarithm between

some of the components of Q⃗ and Q0, that is hard to get under the DL assumption. ⊓⊔

Using our explicit proofs (π,Π) that use LH-Sign and LH-Sign-RTag, with knowledge-soundness
under the SXSDL assumption in the AGM as explained below in the section 4.4, and πR, with statistical
soundness in the ROM as shown above in the section 4.2, as the SXSDL assumption implies the DL
assumption, we get:

Efficient Universally-Verifiable Electronic Voting with Everlasting Privacy 9

Corollary 9 (Universal Verifiability). Given the public information PBB, with the valid proofs of
knowledge (ΠV)V , E, m⃗T , and S, the proof πR ensures m⃗T is the result of all the votes committed in
the DV by each voter, unless one can break the SXSDL assumption in the Algebraic Group Model and
the Random Oracle Model.

4.4 Verifiable Ballot under Linear Relations

Let us now explain how one can prove a Verifiable Pedersen commitment/ElGamal ciphertext (C0 =
r · P, C⃗ = m⃗ · P + r · Z⃗,D = tm⃗ · Q⃗ + s · Q0, V = s · Y) ∈ G3+n actually contains an input message
m⃗ ∈ S ⊂ Zn

p , under the encryption key Z⃗ ∈ Gn, and the verification key Y ∈ G, when the valid set S
can be expressed with K matrices Hk ∈ Zℓk×n

p :

m⃗ ∈ S ⇐⇒ Hk · m⃗ · P ∈ Sk ⊆ Gℓk , for k = 1, . . . ,K.

We of course expect these proofs to be perfectly zero-knowledge, as no information should leak about
m⃗.

Consistency of Pedersen Commitment and ElGamal Ciphertext (π). To get consistency
between the ciphertext and the commitment, one wants to check that

C = (C0 = r · P, C⃗ = m⃗ · P + r · Z⃗,D = tm⃗ · Q⃗+ s ·Q0, V = s · Y)

= r · (P, Z⃗, 0, 0) +
∑
i

mi · (0, e⃗n,i · P,Qi, 0) + s · (0, 0⃗, Q0, Y)

for some witness (m⃗, r, s), where (e⃗n,i)i is the canonical basis of Zn
p . If the authority generates the

following LH-Sign signatures under a verification key VK for the messages in Gn+3:

Σ0 = Sign(SK, (P, Z⃗, 0, 0)), Σi = Sign(SK, (0, e⃗n,i · P,Qi, 0), for i = 1, . . . , n

Σn+1 = Sign(SK, (0, 0⃗, Q0, Y)),

using the witness (m⃗, r, s), the proof can be computed as π = Σ = r ·Σ0 +
∑n

i=1mi ·Σi + s ·Σn+1. It
consists of a unique group element, and can be checked as Verif(VK, (C0, C⃗,D, V), π). We stress that we
ignore tags Tag and τ , as we consider a unique vector subspace. Under the Extractable Unforgeability
of the LH-Sign, any ciphertext-commitment C = (C0, C⃗,D, V) that is associated to a valid signature
Σ, must be a linear combination (with known coefficients) of the initially signed messages, which
provides knowledge-soundness. On the other hand, using the signing key, one can simulate the proof
for any tuple C. We can thus claim the following statement, even if a simple zero-knowledge proof of
membership would be enough.

Theorem 10 (Zero-Knowledge Proof of Knowledge π). The above proof π is a Zero-Knowledge
Proof of Knowledge of (m⃗, s, r) such that C = (C0 = r·P, C⃗ = m⃗·P+r·Z⃗,D = tm⃗·Q⃗+s·Q0, V = s·Y).
The knowledge-soundness relies on the extractable unforgeability of the LH-Sign. It is furthermore
perfectly zero-knowledge.

Validity of Ballots (Π). However, the above proof π is for the server only, whereas we also need
a proof of knowledge of (m⃗, s) in D, for universal verifiability. In case of homomorphic tally, we
additionally need to enforce m⃗ to be a valid vote, in the set S, characterized by the L linear systems
(Hk ∈ Zℓk×n

p)k, for k ∈ {1, . . . ,K}. In the following, we denote Q⃗ℓk a vector of ℓk independent
generators. As ℓk is often smaller than n, it can be the truncation of Q⃗ to its ℓk first components.

Let us illustrate with one system Hk ∈ Zℓk×n
p , and thus on the set Sk = {m⃗k,1, . . . , m⃗k,Nk

} ⊂ Zℓk
p

of acceptable values. One builds a first component Pk as a fixed group element that depends on
the relation-set (Hk,Sk). It can be set as Pk = H(Hk,Sk) or Pk = H(k) where the function H
is assumed to be a full-domain hash function that outputs independent group elements for any new
query (modelled as a random oracle onto G). The authority generates LH-Sign-RTag signatures under a
verification key VK′ for messages in G3, and a tag Tagk,j , for j = 1, . . . , Nk: σk,j,0 on (Pk, 0,−tm⃗k,j ·Q⃗ℓk),

10 David Pointcheval

σk,j,i on (0, Qi, (
tHk · Q⃗ℓk)i), for i = 1, . . . , n, and σk,j,n+1 on (0, Q0, 0). As Hk · m⃗ must lie in Sk,

this is m⃗k,j for some j ∈ {1, . . . , Nk}. From linear properties, we can state the following relation,
tm⃗k,j · Q⃗ℓk = t(Hk · m⃗) · Q⃗ℓk = tm⃗ · (tHk · Q⃗ℓk), then

(Pk, 0,−tm⃗k,j · Q⃗ℓk) +
∑
i

mi · (0, Qi, (
tHk · Q⃗ℓk)i) + s · (0, Q0, 0)

= (Pk,
tm⃗ · Q⃗+ s ·Q0, 0) = (Pk, D, 0)

As a consequence, σ̃k = σk,j,0 +
∑n

i=1mi · σk,j,i + s · σk,j,n+1 is a valid signature of (Pk, D, 0) ∈ G3,
under VK′ and the tag T̃agk = Tagk,j . While the tag T̃agk reveals m⃗k,j , we can exploit the perfect
randomizability of (T̃agk, σ̃k) to perfectly hide m⃗k,j in both the tag Tagk and the signature σk.

Then, this pair (Tagk, σk) can be defined to be the proof of knowledge of (m⃗, s) such that D =
tm⃗ · Q⃗+ s ·Q0, and Hk · m⃗ · P ∈ Sk. The verification checks whether Verif(VK′,Tagk, (Pk, D, 0), σk) is
true or not.

Any such pair that passes the verification contains a valid signature σk. Extractable unforgeability
provides a linear combination of messages signed with the same tag Tagk,j∗ , for some j∗: (Pk, D, 0) =

a · (Pk, 0,−tm⃗k,j∗ · Q⃗ℓk) +
∑

imi · (0, Qi, (
tHk · Q⃗ℓk)i) + s · (0, Q0, 0). Necessarily, a = 0 and D =

tm⃗ · Q⃗+ s ·Q0. Furthermore, tm⃗k,j∗ · Q⃗ℓk = t(Hk · m⃗) · Q⃗ℓk . If Hk · m⃗ ̸= m⃗k,j∗ , one gets a non-trivial
relation between the components of Q⃗ℓk which can break the DL assumption. This provides knowledge-
soundness. On the other hand, using the signing key, one can simulate the proof for any D and any
k. Hence, Π = (Tagk, σk)k, which consists of 2K elements in G and K elements in Ĝ, proves the
knowledge of (m⃗, s) such that D = tm⃗ · Q⃗+ s ·Q0, and m⃗ ∈ S. The smaller K is, the smaller Π will
be. We can claim the statement:

Theorem 11 (Zero-Knowledge Proof of Knowledge Π). The above proof Π is a Zero-Knowledge
Proof of Knowledge of (m⃗, s) such that D = tm⃗ · Q⃗ + s · Q0 and m⃗ ∈ S, characterized by the L
linear systems (Hk ∈ Zℓk×n

p)k, for k ∈ {1, . . . ,K}. The knowledge-soundness relies on the extractable
unforgeability of the LH-Sign-RTag and the DL assumption. It is furthermore perfectly zero-knowledge.

Secret Ballot-Box and Public Bulleting-Board. The above verifiability requires the server to
check both π and Π, for each ballot.

Universal verifiability requires the integrity of the pairs (V, DV) and can then check the validity
of (DV , ΠV = (Tagk, σk)k) in PBB. The former integrity of the pairs (V, DV) is controlled by the
individual verifiability of each voter that has kept a fingerprint H(DV) of her DV to control it has
not been altered by the server. Hence, the PBB contains all the tuples (V, DV , ΠV = (Tagk, σk)k),
indexed by H(DV) that is the receipt of voter’s V, whereas SBB can store on-the-fly aggregation of
the ciphertexts (F0, F⃗ , E,W), thanks to the guarantee of the consistency between the ciphertexts and
the commitments, from the π’s, which verifications are the responsibility of the server: if consistency
does not hold, the secret y will not help to prove the final result m⃗T . Verification will fail.

4.5 Receipt-Freeness and Randomization

Unfortunately, because of the tuples (V, DV , ΠV = (Tagk, σk)k) in PBB, the knowledge of sV can help
a voter to prove her vote: H(DV) is a receipt to sell her vote. Hence, before storing the ballot in the
ballot box, the server must randomize sV in DV : D′

V = DV + s′V ·Q0, and the server must also adapt
the aggregation W with V ′

V = VV +s
′
V ·Y instead of VV . But the value D′

V cannot be checked anymore:
– together with ΠV = (Tagk, σk)k to verify the format of the vote;
– for the individual verifiability, that ensures the integrity PBB.

The former point is solved with the addition of σ′k, the signature of (0, Q0, 0) under Tagk and VK′, so
that the server can compute σ′′k , a randomization of σk + s′V · σ′k, the signature of (Pk, D

′
V , 0) under

Tag′k (randomized from Tagk). The proof ΠV is then replaced by Π ′
V = (Tag′k, σ

′′
k)k, which provides

the same guarantees from the universal verifiability point of view.
The latter point is solved in the classical way with a LH-Sign verification key vkV ∈ Ĝ2 chosen by

the voter V, to sign elements in G2: (P,DV) in σV and (0, Q0) in σ′V , so that the server can provide
the additional signature σ′′V on (P,D′

V), thanks to the linearity property.

Efficient Universally-Verifiable Electronic Voting with Everlasting Privacy 11

The PBB now contains (V, vkV , D′
V , Π

′
V = (Tag′k, σ

′′
k)k, σ

′′
V), indexed by the fingerprint H(vkV), the

proof of vote kept by the voter, to check D′
V is an appropriate randomization of DV , in the individual

verifiability, thanks to the extractable unforgeability of the LH-Sign.

4.6 Global Security

The individual verifiability allows voters to control the integrity of the D′
V ’s (no removed bulletins)

in the PBB; universal verifiability allows everybody to check the validity of the ballots (well-formed),
to compute the aggregation E of all the D′

V , and to eventually check the correctness of the result m⃗T

with respect to E. PBB is enough for the overall honest-behavior verification. There is no need to
check anything in SBB, except to make sure the result can actually be computed: integrity of SBB
will eventually be checked by the validity of the tally w.r.t. E; privacy of the individual ballots will
be ensured by the on-the-fly aggregation in (F0, F⃗ ,W). Once individual ballots have been aggregated
and deleted, even a powerful adversary has no way to get any information about the votes.

5 Efficiency

5.1 Complexity and Communications

For an election on n-bit votes, under K conditions defined by the matrices (Hk)k of size ℓk ≤ n each,
with Nk values in Sk, and for N =

∑
kNk, one first has to publish, as trusted global parameters of

the election. Then we detail the cost for the voter.

Global Parameters. The global parameters consists of
– the encryption and verification keys Z⃗ and Y , where the secret keys z⃗ and y must be kept secret:
n+ 1 elements in G;

– the commitment parameters Q0 and Q⃗, that must be generated as independent random generators:
n+ 1 elements in G, that can be generated from a random map from {0, 1}∗ to G;

– the verification keys VK ∈ Ĝn+3 and VK′ ∈ Ĝ3, where the secret signing keys are just kept during
the initialization phase to generate the signatures below: n+ 6 elements in Ĝ;

– the signatures Σi, for i = 0, . . . , n+ 1: n+ 2 elements in G;
– the tags Tagk,j and the signatures σk,j,i, for i = 0, . . . , n+1: n+3 elements in G and 1 element in

Ĝ, for k = 1, . . . ,K, and j = 1, . . . , Nk.
The global parameters contain (N + 3)(n+ 3)− 5 elements in G, and N + n+ 6 elements in Ĝ.

Distributed Generation. We stress they can all be generated in a distributed way to avoid relying
on a single truster party. The full generation of the global parameters is described and formally proven
in the Appendix B, but we present here the most complex one, which is the generation of the the
linearly-homomorphic signatures with randomizable tags. We consider the 2-party case, with P1 and
P2 that do not collude. All the tags, indexed by t, and all the messages M⃗t,i, are dealt in parallel, with
Rt,i = H(Election, “Signatures”, t, i) ∈ G:
– Client P1
• chooses SK′

1
$← Z3

p and computes VK′
1 = SK′

1 · P̂ ;
• chooses (αt,1

$← Zp)t and computes (σt,i,1 = αt,1 · (tSK′
1 · M⃗t,i +Rt,i))t,i;

• sends VK′
1 and (σt,i,1)t,i to P2;

– Client P2
• chooses SK′

2
$← Z3

p and computes VK′
2 = SK′

2 · P̂ ;
• chooses (αt,2

$← Zp)t and computes (σt,i,2 = αt,2 ·(tSK′
2 ·M⃗t,i−Rt,i))t,i and (σ′t,i,1 = αt,2 ·σt,i,1)t,i;

• sends VK′
2 and (σt,i,2, σ

′
t,i,1)t,i to P1;

– Client P1
• chooses (τt,1

$← Zp)t and computes (Qt,1 = 1/τt,1 ·P, Q̂t,1 = 1/τt,1 · P̂)t and (σ′t,i = τt,1 · (σt,i,2+
1/αt,1 · σ′t,i,1))t,i;
• sends (σ′t,i)t,i and (Qt,1, Q̂t,1)t to P2;

12 David Pointcheval

Public Parameters Voter Computation Ballot Size
elements in # scalar multiplications in # elements in
G Ĝ G Ĝ G Ĝ

(N + 3)(n+ 3)− 5 N + n+ 6 4K + n+ 8 K + 2 3K + n+ 7 K + 2

Fig. 1. Complexity of the Global Process, with Public Parameters including (Z⃗, Y,Q, Q⃗,VK,VK′) and the signatures
with tags (Σi)i, (Tagk,j , (σk,j,i)i)k,j , and the ballots contain the randomization signatures for receipt-freeness.

– Client P2
• chooses (τt,2

$← Zp)t and computes (Qt = 1/τt,2 ·Qt,1, Q̂t = 1/τt,2 · Q̂t,1)t and (σt,i = τt,2/αt,2 ·
σ′t,i)t,i;
• sends (σt,i)t,i and (Qt, Q̂t)t to P1;

– Everybody
• computes VK′ = VK′

1 + VK′
2;

• stores (Qt, Q̂t)t and (σt,i)t,i;
• checks LH-Sign-RTag.Verif(VK′, (Qt, Q̂t), M⃗t,i, σt,i), for all t and i.

We can prove (see the Appendix B) that no additional information leaks beyond the signatures on
the fixed messages with random tags under a random verification key VK′, to a semi-honest adversary
(honest-but-curious), unless one can break the DDH assumption in G. We stress this is important
for the soundness of the validity proofs, but it does not impact the privacy property, that is still
unconditional.

Ballot Generation. To produce her vote, the voter has to compute and publish:
– the tuple C = (C0 = r · P, C⃗ = m⃗ · P + r · Z⃗,D = tm⃗ · Q⃗ + s · Q0, V = s · Y): n + 3 scalar

multiplications in G to send n+ 3 elements in G, as m⃗ ∈ {0, 1}n;
– the signature Σ on C: 2 scalar multiplications in G to send 1 element in G;
– the signatures σk on (Pk, D, 0) with the randomized tags Tagk, for k = 1, . . . ,K: 3K scalar mul-

tiplications in G and K scalar multiplications in Ĝ to send 2K element in G and K element in
Ĝ.

– for additional receipt-freeness, the signature σ′k of (0, Q0, 0) under the randomized tag Tagk, and
a verification key vkV ∈ Ĝ2, with the signatures σV and σ′V of (P,D) and (0, Q0) respectively.

The voter performs 4K + n+8 scalar multiplications in G and K +2 scalar multiplications in Ĝ; and
sends 3K+n+7 elements in G and K+2 element in Ĝ. The global numbers are recalled in Figure 1.

5.2 Examples of Elections

The 1-out-of-n Votes is very classical, for votes m⃗ ∈ {0, 1}n with the additional condition
∑
mi ∈

{0, 1}: Hk =
[
e⃗n,k

]
, for ℓk = 1, with Sk = {0, 1}, for k = 1, . . . , n and Hn+1 =

[
1 1 . . . 1

]
, for ℓn+1 = 1

with Sn+1 = {0, 1}: K = n+ 1 and N = 2n+ 2.
This is the classical approach for such a vote: one proves each box to be 0 or 1, and then the

sum is also 0 or 1, as one does with Schnorr-like proofs. But then n+ 1 proofs are needed: this leads
to a costly and large ballot. With our particular proof technique, the generation complexity and the
final size of the proof can be much smaller, using H = Idn and S = {⃗0n, e⃗n,1, . . . , e⃗n,n}, for ℓ = n, as
N = n+ 1 and K = 1, see Figure 2 with the former basic (B) approach and the latter optimized (O)
approach.

The t-out-of-n Votes can be for votes m⃗ ∈ {0, 1}n with the additional condition
∑
mi ∈ {0, . . . , t}:

Hk =
[
e⃗n,k

]
, for ℓk = 1, with Sk = {0, P}, for k = 1, . . . , n and Hn+1 =

[
1 1 . . . 1

]
, for ℓn+1 = 1 with

Sn+1 = {0, 1, . . . , t}: K = n+ 1 and N = 2n+ t+ 1.
This is again the classical approach: one proves each box to be 0 or 1, and then the sum is at most

t, with n + 1 proofs. We can reduce the cost, with trade-offs, using H = Idn and S is the set of all
the possible votes, with consists of

(
n
t

)
≤ nt values: K = 1 and N ≤ nt. A large N only impacts the

size of the global parameters, but does not impact the generation of the ballots, as there is essentially

Efficient Universally-Verifiable Electronic Voting with Everlasting Privacy 13

the encryption of m⃗ (which is definitely required) and very few additional multiplications and group
elements. This is optimal from the voter’s point of view!

If nt becomes too large for a reasonable size of the global parameters, many trade-offs are possible:
with n = a × b, one can set Hk = 0b×(k−1)b||Idb||0b×(a−k)b and Sk is all the 2b possible vectors in
{0, 1}b, with ℓk = b, for k = 1, . . . , a, and Ha+1 =

[
1 1 . . . 1

]
, for ℓa+1 = 1, with Sa+1 = {0, 1, . . . , t}:

K = a+ 1 and N = a× 2b + t+ 1. Again, the smaller a is, the more efficient it is for the voter.

List Voting with Deletion is wildly used in France, where one can choose at most one list of
candidates, and delete some of the candidates on the chosen list. This leads to very complex constraints,
that are hard to be verified with classical approaches.

Let us consider the case with T lists of Rt candidates each. The vote can be expressed as a vector
m⃗ = (u1, v1,1, . . . , vi,Ri , . . . , uT , vT,1, . . . , vT,RT

) ∈ {0, 1}T+R, where R =
∑

tRt: (ut)t declares which is
the chosen list, so (ut)t contains at most one component to one, and (vt,j)t,j are the chosen candidates,
where (vt,j)j is not all zero if ut = 1, for any t ∈ {1, . . . , T}. The constraints are indeed
– each box is selected or not: for any t ∈ {1, . . . , T}, ut ∈ {0, 1} and vt,j ∈ {0, 1}, for j = 1, . . . , Rt;
– at most one list is selected: (ut)t ∈ {⃗0, e⃗T,1, . . . , e⃗T,T };
– as soon as at least one of the candidates in a list is selected, this list is selected too: for any
t ∈ {1, . . . , T}, (ut,

∑
j vt,j) ∈ {(0, 0), (1, 1), . . . , (1, Rt)}.

All these relations can be compressed into K = R+ T + 1 linear constraints:

vt,j ∈ {0, 1}, for t = 1, . . . , T and j = 1, . . . , Rt

∑
t

ut ∈ {0, 1}

(ut,
∑
j

vt,j) ∈ {(0, 0), (1, 1), . . . , (1, Rt)}, for t = 1, . . . , T

and they can be verified with

Ht,j =
(
0 0⃗R1 · · · 0 0⃗Rt−1 0 e⃗Rt,j 0 0⃗Rt+1 · · · 0 0⃗RT

)
Ht,j · m⃗ ∈ S0,

for t = 1, . . . , T and j = 1, . . . , Rt

H0 =
(
1 0⃗R1 · · · 1 0⃗Rt · · · 1 0⃗RT

)
H0 · m⃗ ∈ S0

Ht =

(
0 0⃗R1 · · · 0 0⃗Rt−1 1 0⃗Rt 0 0⃗Rt+1 · · · 0 0⃗RT

0 0⃗R1 · · · 0 0⃗Rt−1 0 1⃗Rt 0 0⃗Rt+1 · · · 0 0⃗RT

)
Ht · m⃗ ∈ St

for t = 1, . . . , T

where S0 = {0, 1} and St =
{(

0
0

)
,

(
1
1

)
, . . . ,

(
1
Rt

)}
, so N = 3R+ T + 2.

The first relations with matrices Ht,j are just to ensure 0 or 1 choices for vt,j . The same trade-offs as
above can be exploited to reduce both the voter’s computational cost and the ballot size, as illustrated
below in Figure 3, where P is the size of the packets (subvectors that are proven in {0, 1}P).

5.3 Benchmarks

We have implemented a basic proof of concept of the full protocol, with the type III pairing-friendly
curve BLS12-381 [BLS03] (G group elements are encoded on 48 bytes, while Ĝ group elements are
encoded on 96 bytes) and the Rust library (https://github.com/zkcrypto/bls12_381).

Figure 2 presents the classical single-member constituency, where one votes for at most one candi-
date (the 1-out-of-n choice), with the 2 types of approaches (the basic (B) approach and the optimized
(O) approach). Figure 3 illustrates timings and sizes for list voting with deletion. We also apply ballot
randomization before extraction to achieve receipt-freeness and show how trade-offs can be found with
our proof technique, and various packet sizes.

In the latter case, with most extreme parameters, for 10 lists of 20 candidates each, while the public
parameters are large, the ballot is still quite reasonable, in size and for generation time: less than 1
second for a 25kB ballot. This only depends on the number of relations to prove.

https://github.com/zkcrypto/bls12_381

14 David Pointcheval

Size Public Ballot PBB Tally
n T Size Size Generate Extract Verify Decrypt Proof Verify
25 B 96kB 8.83kB 93ms 209ms 391ms 4ms 13ms 407ms

O 53kB 2.19kB 39ms 102ms 24ms 38ms
50 B 327kB 16.84kB 294ms 369ms 944ms 5ms 25ms 786ms

O 178kB 3.55kB 67ms 149ms 25ms 50ms

Fig. 2. Benchmarks for a 1-out-of-n choice (B, is for the basic approach, and O for the optimized approach), with 5
bulletins in the tally phase, on a Macbook Pro M1 14in.

Size Public Ballot PBB Tally
T C P Size Size Generate Extract Verify Decrypt Proof Verify
5 10 1 533kB 18.2kB 309ms 390ms 821ms 6ms 28ms 878ms
5 10 5 1.23MB 7.5kB 119ms 206ms 231ms 268ms
5 10 10 16.82MB 6.2kB 99ms 183ms 158ms 186ms
10 10 1 1.96MB 35.8kB 1.07s 744ms 1.63s 12ms 55ms 1.72s
10 10 5 4.67MB 14.5kB 357ms 384ms 463ms 515ms
10 20 1 7.12MB 68kB 3.72s 1.45s 3.16s 18ms 102ms 3.19s
10 20 4 11.72MB 28kB 1.16s 710ms 948ms 1.05s
10 20 5 17.25MB 25kB 975ms 651ms 773ms 917ms

Fig. 3. Benchmarks for a List Voting with Deletion (T lists with C candidates each, and thus R = TC, using packets of
size P), with 5 bulletins in the tally phase, on a Macbook Pro M1 14in.

We stress that these trade-offs are impossible with other classical approaches: the Schnorr-like
proofs have both generation time and size at least linear in N and SNARKs have generation time at
least linear in N . With the above approach, generation time and size are completely independent of
N , which make them quite appropriate in electronic voting, where the client is the most limited party.

Acknowledgments

This work was supported in part by the France 2030 ANR Project ANR-22-PECY-003 SecureCompute.

References

ABC+12. Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, abhi shelat, and Brent Waters. Computing
on authenticated data. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 1–20. Springer,
Heidelberg, March 2012.

AFG+10. Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. Structure-
preserving signatures and commitments to group elements. In Tal Rabin, editor, CRYPTO 2010, volume
6223 of LNCS, pages 209–236. Springer, Heidelberg, August 2010.

AHO10. Masayuki Abe, Kristiyan Haralambiev, and Miyako Ohkubo. Signing on elements in bilinear groups for
modular protocol design. Cryptology ePrint Archive, Report 2010/133, 2010. https://eprint.iacr.org/
2010/133.

BCCT13. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and bootstrapping
for SNARKS and proof-carrying data. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
45th ACM STOC, pages 111–120. ACM Press, June 2013.

BF11a. Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial functions. In Kenneth G.
Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 149–168. Springer, Heidelberg, May
2011.

BF11b. Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures over binary fields and new tools
for lattice-based signatures. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors,
PKC 2011, volume 6571 of LNCS, pages 1–16. Springer, Heidelberg, March 2011.

BF20. Balthazar Bauer and Georg Fuchsbauer. Efficient signatures on randomizable ciphertexts. In Clemente Galdi
and Vladimir Kolesnikov, editors, SCN 20, volume 12238 of LNCS, pages 359–381. Springer, Heidelberg,
September 2020.

BF24. Balthazar Bauer and Georg Fuchsbauer. On security proofs of existing equivalence class signature schemes.
Cryptology ePrint Archive, Paper 2024/183, 2024.

BFKW09. Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. Signing a linear subspace: Signature schemes
for network coding. In Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages
68–87. Springer, Heidelberg, March 2009.

https://eprint.iacr.org/2010/133
https://eprint.iacr.org/2010/133

Efficient Universally-Verifiable Electronic Voting with Everlasting Privacy 15

BLS03. Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing elliptic curves with prescribed embedding
degrees. In Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, editors, SCN 02, volume 2576 of LNCS,
pages 257–267. Springer, Heidelberg, September 2003.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient proto-
cols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors,
ACM CCS 93, pages 62–73. ACM Press, November 1993.

CCFG16. Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David Galindo. BeleniosRF: A non-interactive
receipt-free electronic voting scheme. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, An-
drew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1614–1625. ACM Press, October 2016.

CFL19. Véronique Cortier, Alicia Filipiak, and Joseph Lallemand. BeleniosVS: Secrecy and verifiability against
a corrupted voting device. In Stephanie Delaune and Limin Jia, editors, CSF 2019 Computer Security
Foundations Symposium, pages 367–381. IEEE Computer Society Press, 2019.

CPP13. Edouard Cuvelier, Olivier Pereira, and Thomas Peters. Election verifiability or ballot privacy: Do we need
to choose? In Jason Crampton, Sushil Jajodia, and Keith Mayes, editors, ESORICS 2013, volume 8134 of
LNCS, pages 481–498. Springer, Heidelberg, September 2013.

CS11. Véronique Cortier and Ben Smyth. Attacking and fixing helios: An analysis of ballot secrecy. In Michael
Backes and Steve Zdancewic, editors, CSF 2011 Computer Security Foundations Symposium, pages 297–311.
IEEE Computer Society Press, 2011.

ElG85. Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4):469–472, 1985.

FHS19. Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-preserving signatures on equivalence
classes and constant-size anonymous credentials. Journal of Cryptology, 32(2):498–546, April 2019.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62.
Springer, Heidelberg, August 2018.

Fre12. David Mandell Freeman. Improved security for linearly homomorphic signatures: A generic framework. In
Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012, volume 7293 of LNCS, pages
697–714. Springer, Heidelberg, May 2012.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and succinct
NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg,
May 2016.

HMMP23. Thomas Haines, Rafieh Mosaheb, Johannes Müller, and Ivan Pryvalov. SoK: Secure E-voting with everlasting
privacy. PoPETs, 2023(1):279–293, January 2023.

HP22. Chloé Hébant and David Pointcheval. Traceable Constant-Size Multi-authority Credentials. In Clemente
Galdi and Stanislaw Jarecki, editors, SCN 2022 Security and Cryptography for Networks, volume 13409 of
LNCS, pages 411–434. Springer, 2022.

HPP20. Chloé Hébant, Duong Hieu Phan, and David Pointcheval. Linearly-homomorphic signatures and scalable
mix-nets. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020,
Part II, volume 12111 of LNCS, pages 597–627. Springer, Heidelberg, May 2020.

JMSW02. Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner. Homomorphic signature schemes.
In Bart Preneel, editor, CT-RSA 2002, volume 2271 of LNCS, pages 244–262. Springer, Heidelberg, February
2002.

LPJY13. Benoît Libert, Thomas Peters, Marc Joye, and Moti Yung. Linearly homomorphic structure-preserving
signatures and their applications. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II,
volume 8043 of LNCS, pages 289–307. Springer, Heidelberg, August 2013.

Pai99. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Jacques Stern,
editor, EUROCRYPT’99, volume 1592 of LNCS, pages 223–238. Springer, Heidelberg, May 1999.

Ped92. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Joan
Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer, Heidelberg, August 1992.

Poi23. David Pointcheval. Linearly-Homomorphic Signatures for Short Randomizable Proofs of Subset Membership.
Cryptology ePrint Archive, Paper 2023/1499, 2023.

A Proof of the Extractable Unforgeability

In this section, we detail the proof of the Theorem 5, on Extractable Unforgeability of the FHS
signature scheme as an LH-Sign-RTag. In the selective-message scenario, the adversary first outputs
K lists of messages (M⃗k,j)k,j , for k = 1, . . . ,K, and j = 1, . . . , Jk: in the AGM, they all come with
the scalars m⃗k,j such that M⃗k,j = m⃗k,j · P ; the challenger generates a random pair of keys (sk, vk)←
Keygen(param, n), as well as K random verifiable tags (Tagk = (Qk, Q̂k), τk) ← NewTag(param), for
k = 1, . . . ,K, and the signatures σk,j ← Sign(sk,Tagk, τk, M⃗k,j), for k = 1, . . . ,K, and j = 1, . . . , Jk;

16 David Pointcheval

from (P, P̂), vk = (P̂i)i, (Tagk = (Qk, Q̂k))k, and (σk,j)k,j), the adversary eventually outputs a new
tuple (Tag∗ = (Q∗, Q̂∗), M⃗∗, σ∗).

We will use index i = 1, . . . , n, for enumerating on the components of the vectors; index k =
1, . . . ,K, for enumerating on the lists of messages, and index j = 1, . . . , Jk, for enumerating messages
(M⃗k,j)j into each list. The algebraic adversary also outputs linear combinations, in the corresponding
groups G or Ĝ:

Q̂∗ = α · P̂ +
∑
i

βi · P̂i +
∑
k

γk · Q̂k Q∗ = δ · P +
∑
k

ϵk ·Qk +
∑
k,j

ϕk,j · σk,j

M∗
i = ρi · P +

∑
k

ζi,k ·Qk +
∑
k,j

κi,k,j · σk,j

σ∗ = ψ · P +
∑
k

µk ·Qk +
∑
k,j

νk,j · σk,j

They must satisfy both e(P, Q̂∗) = e(Q∗, P̂) and e(σ∗, Q̂∗) =
∏

i e(M
∗
i , P̂i).

Simplifications of the Formula. In a first step, we specify the notations. To this aim, we assume to
be given (G, x ·G, y ·G,U = xy ·G, x ·U, y ·U, V = xy ·U = x2y2 ·G, Ĝ, x ·Ĝ, y ·Ĝ, Û = xy ·Ĝ, x ·Û , y ·Û),
as well as si · U , xsi · U , ysi · U , and P̂i = si · Û , for all i, for some scalars x, y, and s⃗ = (si)i. We set
the generators P := U , P̂ := Û , and the first tag (Q1 := y ·G, Q̂1 := y · Ĝ), which means that τ1 = x,
while the other tags are (Qk := x/τ ′k ·G, Q̂1 := x/τ ′k · Ĝ), which means that τk = yτ ′k, for random τ ′k.
When only x is unknown, with an SXSDL instance (G, x ·G, x2 ·G, Ĝ, x · Ĝ), one can generate all the
elements with known y and s⃗. It is then hard to extract x. Similarly, for only y unknown, with an
SXSDL instance, this is hard to recover y. On the other hand, when only one si is unknown, from an
SXDL instance (si · P, si · P̂), this is hard to recover si:

Q̂1 = 1/x · P̂ = y · Ĝ Q1 = 1/x · P = y ·G
σ1,j = x · (tm⃗1,j · s⃗) · P = (tm⃗1,j · s⃗) · x2y ·G

Q̂k = 1/yτ ′k · P̂ = x/τ ′k · Ĝ Qk = 1/yτ ′k · P = x/τ ′k ·G
σk,j = yτ ′k · (tm⃗k,j · s⃗) · P = τ ′k · (tm⃗k,j · s⃗) · xy2 ·G

which leads to

Q̂∗ = α · Û +
∑
i

βi · P̂i + γ1 · y · Ĝ+
∑
k>1

xγk/τ
′
k · Ĝ

=

(
α · xy +

∑
i

βi · si · xy + γ1 · y +
∑
k>1

xγk/τ
′
k

)
· Ĝ

Q∗ = δ · U + ϵ1 · y ·G+
∑
k>1

ϵk/τ
′
k · x ·G+

∑
j

ϕ1,j · (tm⃗1,j · s⃗) · x2y ·G+
∑
k>1,j

ϕk,j · τ ′k · (tm⃗k,j · s⃗) · xy2 ·G

=
(
δ · xy + ϵ1 · y +

∑
k>1

ϵk/τ
′
k · x+

∑
j

ϕ1,j · (tm⃗1,j · s⃗) · x2y +
∑
k>1,j

ϕk,j · τ ′k · (tm⃗k,j · s⃗) · xy2
)
·G

Efficient Universally-Verifiable Electronic Voting with Everlasting Privacy 17

and

M∗
i = ρi · U + ζ1,i · y ·G+

∑
k>1

ζk,i/τ
′
k · x ·G+

∑
j

κ1,j,i · (tm⃗1,j · s⃗) · x2y ·G

+
∑
k>1,j

κk,j,i · τ ′k · (tm⃗k,j · s⃗) · xy2 ·G

=
(
ρi · xy + ζ1,i · y +

∑
k>1

ζk,i/τ
′
k · x+

∑
j

κ1,j,i · (tm⃗1,j · s⃗) · x2y

+
∑
k>1,j

κk,j,i · τ ′k · (tm⃗k,j · s⃗) · xy2
)
·G

σ∗ = ψ · U + µ1 · y ·G+
∑
k>1

µk/τ
′
k · x ·G+

∑
j

ν1,j · (tm⃗1,j · s⃗) · x2y ·G

+
∑
k>1,j

νk,j · τ ′k · (tm⃗k,j · s⃗) · xy2 ·G

=
(
ψ · xy + µ1 · y +

∑
k>1

µk/τ
′
k · x+

∑
j

ν1,j · (tm⃗1,j · s⃗) · x2y

+
∑
k>1,j

νk,j · τ ′k · (tm⃗k,j · s⃗) · xy2
)
·G

which can be simplified, with known scalars, from the extractor:

a =
∑
k>1

γk/τ
′
k a⃗ = (βi)i c =

∑
k>1

ϵk/τ
′
k

c⃗ =
∑
k>1,j

ϕk,j · τ ′k · m⃗k,j d⃗ =
∑
j

ϕ1,j · m⃗1,j

into

Q̂∗ =
(
α · xy + ta⃗ · s⃗ · xy + γ1 · y + a · x

)
· Ĝ

Q∗ =
(
δ · xy + ϵ1 · y + c · x+ td⃗ · s⃗ · x2y + tc⃗ · s⃗ · xy2

)
·G

and

u′i =
∑
k>1

ζk,i/τ
′
k u⃗i =

∑
k>1,j

κk,j,i · τ ′k · m⃗k,j v⃗i =
∑
j

κ1,j,i · m⃗1,j

u =
∑
k>1

µk/τ
′
k u⃗ =

∑
k>1,j

νk,j · τ ′k · m⃗k,j v⃗ =
∑
j

ν1,j · m⃗1,j

into

M∗
i =

(
ρi · xy + ζ1,i · y + u′i · x+ tu⃗i · s⃗ · xy2 + tv⃗i · s⃗ · x2y

)
·G

σ∗ =
(
ψ · xy + µ1 · y + u · x+ tu⃗ · s⃗ · xy2 + tv⃗ · s⃗ · x2y

)
·G

Analysis of the New Tag. We now target the new tag involved in the forgery, which satisfies the
relation

e(P, Q̂∗) = e(xy ·G,
(
α · xy + ta⃗ · s⃗ · xy + γ1 · y + a · x

)
· Ĝ)

=
(
α · x2y2 + ta⃗ · s⃗ · x2y2 + γ1 · xy2 + a · x2y

)
· e(G, Ĝ)

= e(Q∗, P̂) = e(
(
δ · xy + ϵ1 · y + c · x+ td⃗ · s⃗ · x2y + tc⃗ · s⃗ · xy2

)
·G, xy · Ĝ)

=
(
δ · x2y2 + ϵ1 · xy2 + c · x2y + td⃗ · s⃗ · x3y2 + tc⃗ · s⃗ · x2y3

)
· e(G, Ĝ)

18 David Pointcheval

which means, in basis e(G, Ĝ), using the scalars x, y and s⃗, in Zp:

α · x2y2 + ta⃗ · s⃗ · x2y2 + γ1 · xy2 + a · x2y

= δ · x2y2 + ϵ1 · xy2 + c · x2y + td⃗ · s⃗ · x3y2 + tc⃗ · s⃗ · x2y3

Knowing all the si’s, and y, with only the SXSDL challenge (G, x ·G, x2 ·G, Ĝ, x · Ĝ) for x ̸= 0, if the
relation is not trivial, with non-negligible probability, one can solve the quadratic equation and find
x. Hence, we must have, in Zp:

0 = td⃗ · s⃗ · y2 α · y2 + ta⃗ · s⃗ · y2 + a · y = δ · y2 + c · y + tc⃗ · s⃗ · y3 γ1 · y2 = ϵ1 · y2

Similarly, knowing all the si’s, with only the SXSDL challenge (G, y ·G, y2 ·G, Ĝ, y · Ĝ) for y ̸= 0, if the
relation is not trivial, with non-negligible probability, one can solve the quadratic equation and find
y. Hence, we must have, in Zp:

0 = td⃗ · s⃗ 0 = tc⃗ · s⃗ α+ ta⃗ · s⃗ = δ a = c γ1 = ϵ1

Eventually, keeping only one si unknown, if the relations are not trivial, with non-negligible probability,
one can solve the linear equation and find si. Hence, by symmetry on i, we must have, in Zp:

d⃗ = 0⃗ c⃗ = 0⃗ α = δ a⃗ = 0⃗ a = c γ1 = ϵ1

In particular: γ1 = ϵ1 and d⃗ =
∑

j ϕ1,j · m⃗1,j = 0⃗. By symmetry on k, we can extend to

γk = ϵk
∑
j

ϕk,j · m⃗k,j = 0⃗ for all k

As a conclusion:

Q̂∗ = (α · xy + γ1 · y + a · x) · Ĝ Q∗ = (α · xy + γ1 · y + a · x) ·G

A Unique List of Messages is Involved. In a second step, we show that exactly one tag (and the
corresponding list of messages) is involved in the forgery. To this aim, we consider the validity of the
signature:

e(σ∗, Q̂∗) = e(
(
ψ · xy + µ1 · y + u · x+ tu⃗ · s⃗ · xy2 + tv⃗ · s⃗ · x2y

)
·G,

(α · xy + γ1 · y + a · x) · Ĝ)
=
(
ψ · α · x2y2 + µ1 · α · xy2 + u · α · x2y + tu⃗ · s⃗ · α · x2y3

+ tv⃗ · s⃗ · α · x3y2 + ψ · γ1 · xy2 + µ1 · γ1 · y2 + u · γ1 · xy
+ tu⃗ · s⃗ · γ1 · xy3 + tv⃗ · s⃗ · γ1 · x2y2 + ψ · a · x2y + µ1 · a · xy
+ u · a · x2 + tu⃗ · s⃗ · a · x2y2 + tv⃗ · s⃗ · a · x3y

)
· e(G, Ĝ)

=
∏
i

e(M∗
i , P̂i) =

∏
i

e(
(
ρi · xy + ζ1,i · y + u′i · x+ tu⃗i · s⃗ · xy2 + tv⃗i · s⃗ · x2y

)
·G,

si · xy · Ĝ)

= e(
∑
i

(
ρi · si · x2y2 + ζ1,i · si · xy2 + u′i · si · x2y

+ tu⃗i · s⃗ · si · x2y3 + tv⃗i · s⃗ · si · x3y2
)
·G, Ĝ)

Again, in basis e(G, Ĝ), using the scalars x, y, and s⃗, this gives

ψ · α · x2y2 + µ1 · α · xy2 + u · α · x2y + tu⃗ · s⃗ · α · x2y3 + tv⃗ · s⃗ · α · x3y2

+ ψ · γ1 · xy2 + µ1 · γ1 · y2 + u · γ1 · xy + tu⃗ · s⃗ · γ1 · xy3 + tv⃗ · s⃗ · γ1 · x2y2

+ ψ · a · x2y + µ1 · a · xy + u · a · x2 + tu⃗ · s⃗ · a · x2y2 + tv⃗ · s⃗ · a · x3y

=
∑
i

ρi · si · x2y2 + ζ1,i · si · xy2 + u′i · si · x2y + tu⃗i · s⃗ · si · x2y3 + tv⃗i · s⃗ · si · x3y2

Efficient Universally-Verifiable Electronic Voting with Everlasting Privacy 19

Knowing all the si’s, and y, with only the SXSDL challenge (G, x ·G, x2 ·G, Ĝ, x · Ĝ) for x ̸= 0, if the
relation is not trivial, with non-negligible probability, one can solve the quadratic equation and find
x. Hence, we must have, in Zp:

tv⃗ · s⃗ · α · y2 + tv⃗ · s⃗ · a · y =
∑
i

tv⃗i · s⃗ · si · y2

ψ · α · y2 + u · α · y + tu⃗ · s⃗ · α · y3 + tv⃗ · s⃗ · γ1 · y2 + ψ · a · y + u · a+ tu⃗ · s⃗ · a · y2

=
∑
i

ρi · si · y2 + u′i · si · y + tu⃗i · s⃗ · si · y3

µ1 · α · y2 + ψ · γ1 · y2 + u · γ1 · y+tu⃗ · s⃗ · γ1 · y3 + µ1 · a · y =
∑
i

ζ1,i · si · y2

µ1 · γ1 · y2 = 0

Similarly, knowing all the si’s, with only the SXSDL challenge (G, y ·G, y2 ·G, Ĝ, y · Ĝ) for y ̸= 0, if the
relation is not trivial, with non-negligible probability, one can solve the quadratic equation and find
y. Hence, we must have, in Zp:

tv⃗ · s⃗ · α =
∑
i

tv⃗i · s⃗ · si tv⃗ · s⃗ · a = 0

tu⃗ · s⃗ · α =
∑
i

tu⃗i · s⃗ · si ψ · α+ tv⃗ · s⃗ · γ1 + tu⃗ · s⃗ · a =
∑
i

ρi · si

u · α+ ψ · a =
∑
i

u′i · si u · a = 0

tu⃗ · s⃗ · γ1 = 0 µ1 · α+ ψ · γ1 =
∑
i

ζ1,i · si

u · γ1 + µ1 · a = 0 µ1 · γ1 = 0

Eventually, keeping only one si unknown, if the relations are not trivial, with non-negligible probability,
one can solve the linear equation and find si. Hence, by symmetry on i, we must have, in Zp:

α · v⃗ = 0⃗ v⃗i = 0⃗ ∀i a · v⃗ = 0⃗ α · u⃗ = 0⃗ u⃗i = 0⃗ ∀i
ψ · α = 0 γ1 · v⃗ + a · u⃗ = (ρi)i u · α+ ψ · a = 0 (u′i)i = 0⃗ u · a = 0

γ1 · u⃗ = 0⃗ µ1 · α+ ψ · γ1 = 0 (ζ1,i)i = 0⃗ u · γ1 + µ1 · a = 0 µ1 · γ1 = 0

Which can be reordered as

α · u⃗ = 0⃗ γ1 · u⃗ = 0⃗ α · v⃗ = 0⃗ a · v⃗ = 0⃗

u⃗i = 0⃗ ∀i v⃗i = 0⃗ ∀i
ψ · α = 0 u · a = 0 µ1 · γ1 = 0

γ1 · v⃗ + a · u⃗ = (ρi)i (u′i)i = 0⃗ (ζ1,i)i = 0⃗

u · α+ ψ · a = 0 µ1 · α+ ψ · γ1 = 0 u · γ1 + µ1 · a = 0

This simplifies into

M⃗∗ = (ρi)i · xy ·G = (γ1 · v⃗ + a · u⃗) · xy ·G
σ∗ =

(
ψ · xy + µ1 · y + u · x+ tu⃗ · s⃗ · xy2 + tv⃗ · s⃗ · x2y

)
·G

Hypothesis: α ̸= 0 mod p. This implies, in Zp:

u⃗ = 0⃗ v⃗ = 0⃗ ψ = 0 u = 0 µ1 = 0 (ρi)i = 0

Then M⃗∗ = 0⃗ and σ∗ = 0, which is refused as a valid pair. We thus have α = 0, so ψ · a = ψ · γ1 = 0.

20 David Pointcheval

Hypothesis: a ̸= 0 mod p. This implies, in Zp:

v⃗ = 0⃗ u = 0 ψ = 0 µ1 = 0 a · u⃗ = (ρi)i

Then u⃗ ̸= 0⃗, otherwise M⃗∗ = 0⃗, so γ1 = 0:

M⃗∗ = a · u⃗ · xy ·G σ∗ = tu⃗ · s⃗ · xy2 ·G Q∗ = a · x ·G

Hypothesis: a = 0 mod p. This implies γ1 ̸= 0 mod p, to avoid M⃗∗ = 0⃗, and then:

u⃗ = 0⃗ µ1 = 0 γ1 · v⃗ = (ρi)i u = 0 ψ = 0

Then

M⃗∗ = γ1 · v⃗ · xy ·G σ∗ = tv⃗ · s⃗ · x2y ·G Q∗ = γ1 · y ·G

As a consequence, either

Q∗ = a · x ·G =

(∑
k>1

γk/τ
′
k

)
· x ·G =

(∑
k>1

γk/τk

)
· P

or Q∗ = γ1 · y ·G = γ1/τ1 · P

By symmetry, where either γ1 = 0 or all the other γk = 0, for k > 1, then there must exist a unique
k∗ such that γk∗ ̸= 0:

Q∗ = γk∗/τk∗ · P Q̂∗ = γk∗/τk∗ · P̂

The Message is in the Vector-Subspace. Eventually, we show that the message M⃗∗ is in the
appropriate vector-subspace. From the above notations, we can note that

M⃗∗ = γk∗ ·

∑
j

νk∗,j · m⃗k∗,j

 · P = γk∗ ·
∑
j

νk∗,j · M⃗k∗,j

σ∗ = τk∗ ·

∑
j

νk∗,j · m⃗k∗,j

 · s⃗ · P = τk∗ ·
∑
j

νk∗,j · ts⃗ · M⃗k∗,j

Hence, for the unique index k∗ such that γk∗ ̸= 0, with ν ′k∗,j = γk∗ · νk∗,j , for j = 1, . . . ,Kk∗ ,

M⃗∗ =
∑
j

ν ′k∗,j · M⃗k∗,j

Remark.With overwhelming probability, we are in the above situation, with known coefficients ν ′k∗,j ,
which leads to extractable unforgeability of the FHS signature, under selective message attacks, when
keys and tags are honestly generated.

B Distributed Generation of the Global Parameters

As noted above, during the setup, one must generate, in a trusted way:
– the ballot encryption/decryption keys (ek = Z⃗ = z⃗ · P, dk = z⃗)
– the commitment verification/secret keys (Y = y · P, y)
– the commitment key ck = (Q0, Q⃗) ∈ G×Gn,
– the basic signatures (VK, (Σ0, (Σi)i, Σn+1),VK

′, ((Tagk,j , σk,j,0, (σk,j,i)i, σk,j,n+1)j)k)

To this aim, we use the same type III pairing-friendly setting (G, Ĝ,GT , p, P, P̂ , e) as global param-
eters param, according to the common security parameter κ. We assume all the users have a pair of
encryption/decryption keys for receiving private informations.

Efficient Universally-Verifiable Electronic Voting with Everlasting Privacy 21

B.1 Generation of the Keys

The Ballot Encryption/Decryption Keys. To generate dk and ek in a distributed way, between
N clients with a threshold T to reconstruct, the i-th client
– generates n random polynomials (Pi,k)k of degree T − 1 in Zp;
– publishes Ui,k,j = Pi,k(j) · P ∈ G, for j = 0, 1, . . . , N ;
– sends ui,k,j = Pi,k(j) ∈ Zp to the j-th client, in a private way.

Everybody can compute Zk =
∑

i Ui,k,0 =
∑

i Pi,k(0) ·P = Pk(0) ·P , for the polynomials Pk =
∑

i Pi,k

of degree T − 1. This constitutes the encryption key ek = Z⃗ = (Zk)k.
Individually, each j-th client can compute zj,k =

∑
i ui,k,j =

∑
i Pi,k(j) = Pk(j). Then, any subset

S of T clients can use Lagrange interpolation to build zk =
∑

j∈S λj ·zj,k such that Zk = zk ·P . Hence,
z⃗ =

∑
j∈S λj · z⃗j such that Z⃗ = z⃗ · P .

This is enough to decrypt the ciphertext (F0, F⃗) without reconstructing the decryption key:
– each j-th client in S computes and publishes V⃗j = z⃗j · F0;
– everybody can compute V⃗ =

∑
j∈S V⃗j =

∑
j∈S z⃗j · F0 = z⃗ · F0;

– everybody can compute m⃗ ∈ Zn
p such that F⃗ − V⃗ = m⃗ · P .

This protocol is secure against honest-but-curious clients. To prevent malicious behaviors, all the
publication rounds can be first committed. The validity of the (Ui,k,j)i,k,j can be checked with linear
combinations; and the validity of V⃗j can be proven with a zero-knowledge proof à la Schnorr.

The Commitment Verification/Secret Keys. The same approach as above can be used to gen-
erate a secret sharing of y ∈ Zp, with Y = y · P , between N clients with a threshold T to reconstruct.

The Commitment Key. Using a hash function H onto G, one can publicly define

Q0 = H(Election, “Commitment”, 0), Qi = H(Election, “Commitment”, i), for i = 1, . . . , n,

where Election is a bit-string that describes the current election.

B.2 Generation of the Linearly-Homomorphic Signatures

In addition to be linearly-homomorphic on the messages, our signatures are linearly-homomorphic on
the keys:
– if sk =

∑
j λj · skj and σj = LH-Sign.Sign(skj , m⃗), for the same message m⃗, then

∑
i λj · σj =

LH-Sign.Sign(sk, m⃗);
– Similarly, if sk =

∑
j λj · skj and σj = LH-Sign-RTag.Sign(skj , τ, m⃗), for the same secret tag τ and

the same message m⃗, then
∑

i λj · σj = LH-Sign-RTag.Sign(sk, τ, m⃗).
The former property allows to generate VK and (SKj)j , and the signatures (Σ0, (Σi)i, Σn+1), as above.
However, for the LH-Sign-RTag, this is a bit more complex, so focus to the 2-party case, with P1 and
P2 that do not collude. The security analysis is provided in the semi-honest setting.

Description. We start with the first kind of signatures, for all the messages (M⃗i)i in parallel:
– Client P1
• chooses SK1

$← Zn+3
p ;

• computes VK1 = SK1 · P̂ ;
• generates (Σ1,i =

tSK1 · M⃗i)i;
• deletes SK1;
• publishes VK1, (Σ1,i)i;

– Client P2
• chooses SK2

$← Zn+3
p ;

• computes VK2 = SK2 · P̂ ;
• generates (Σ2,i =

tSK2 · M⃗i)i;

22 David Pointcheval

• deletes SK2;
• publishes VK2, (Σ2,i)i;

– Everybody
• computes VK = VK1 + VK2;
• computes (Σi = Σ1,i +Σ2,i)i;
• checks LH-Sign.Verif(VK, M⃗i, Σi), for all i.

One can note that VK = VK1 + VK2 = (SK1 + SK2) · P̂ = SK · P̂ , for a virtual signing key
SK = SK1 + SK2, and for i = 0, . . . , n + 1, Σi = Σ1,i + Σ2,i = t(SK1 + SK2) · M⃗i = tSK · M⃗i =

LH-Sign.Sign(SK, M⃗i). In addition, we have, for i = 0, . . . , n + 1, Σ1,i = LH-Sign.Sign(SK1, M⃗i) and
Σ2,i = LH-Sign.Sign(SK2, M⃗i). They can be verified.

Security in the Semi-Honest Setting. The view of the players is

VK1 = SK1 · P̂ (Σ1,i =
tSK1 · M⃗i)i

VK2 = SK2 · P̂ (Σ2,i =
tSK2 · M⃗i)i

For P1 who additionally knows SK1, this is equivalent to the following distributions, for random scalars
SK1,SK2

$← Zn+3
p ,

D = {SK1 VK1 = SK1 · P̂ VK2 = SK2 · P̂ (Σ1,i =
tSK1 · M⃗i Σ2,i =

tSK2 · M⃗i)i}
= {SK1 VK1 = SK1 · P̂ VK− VK1 (Σ1,i =

tSK1 · M⃗i Σ2,i = Σi − tSK1 · M⃗i)i}
= {SK1 VK1 = SK1 · P̂ VK (Σ1,i =

tSK1 · M⃗i Σ2,i = Σi)i}

for random scalars SK1
$← Zn+3

p , and signatures (Σi)i of (M⃗i)i under a random verification key
VK

$← Ĝn+3. Because of the symmetry, the same analysis holds for P2. This proves that no addi-
tional information leaks beyond the signatures on the fixed messages under a random key VK, to a
semi-honest adversary (honest-but-curious). Which was the information provided by the trusted setup.

B.3 Generation of the Linearly-Homomorphic Signatures with Randomizable Tags.

Again, we focus to the 2-party case, with P1 and P2 that do not collude. The security analysis is
provided in the semi-honest setting.

Description. All the tags, indexed by t, and all the messages M⃗t,i, are dealt in parallel, with Rt,i =
H(Election, “Signatures”, t, i) ∈ G:
– Client P1
• chooses SK′

1
$← Z3

p;
• computes VK′

1 = SK′
1 · P̂ ;

• chooses (αt,1
$← Zp)t;

• computes (σt,i,1 = αt,1 · (tSK′
1 · M⃗t,i +Rt,i))t,i;

• sends VK′
1 and (σt,i,1)t,i to P2;

– Client P2
• chooses SK′

2
$← Z3

p;
• computes VK′

2 = SK′
2 · P̂ ;

• chooses (αt,2
$← Zp)t;

• computes (σt,i,2 = αt,2 · (tSK′
2 · M⃗t,i −Rt,i))t,i and (σ′t,i,1 = αt,2 · σt,i,1)t,i;

σ′t,i,1 = αt,1αt,2 · (tSK′
1 · M⃗t,i +Rt,i)

• sends VK′
2 and (σt,i,2, σ

′
t,i,1)t,i to P1;

– Client P1
• chooses (τt,1

$← Zp)t;

Efficient Universally-Verifiable Electronic Voting with Everlasting Privacy 23

• computes (Qt,1 = 1/τt,1 · P, Q̂t,1 = 1/τt,1 · P̂)t;
• computes (σ′t,i = τt,1 · (σt,i,2 + 1/αt,1 · σ′t,i,1))t,i;

σ′t,i = τt,1αt,2 · (tSK′
2 · M⃗t,i −Rt,i) + τt,1αt,2 · (tSK′

1 · M⃗t,i +Rt,i) = τt,1αt,2 · t(SK′
1 + SK′

2) · M⃗t,i

• sends (σ′t,i)t,i and (Qt,1, Q̂t,1)t to P2;
– Client P2
• chooses (τt,2

$← Zp)t;
• computes (Qt = 1/τt,2 ·Qt,1, Q̂t = 1/τt,2 · Q̂t,1)t;

(Qt, Q̂t) = (1/τt,1τt,2 · P, 1/τt,1τt,2 · P̂) = (1/τt · P, 1/τt · P̂)

• computes (σt,i = τt,2/αt,2 · σ′t,i)t,i;

σt,i = σ′t,i = τt,1τt,2 · t(SK′
1 + SK′

2) · M⃗t,i

• sends (σt,i)t,i and (Qt, Q̂t)t to P1;
– Everybody
• computes VK′ = VK′

1 + VK′
2;

• stores (Qt, Q̂t)t and (σt,i)t,i;
• checks LH-Sign-RTag.Verif(VK′, (Qt, Q̂t), M⃗t,i, σt,i), for all t and i.

Security in the Semi-Honest Setting. The view of the players is

VK′
1 = SK′

1 · P̂ (σt,i,1 = αt,1 · (tSK′
1 · M⃗t,i +Rt,i))t,i

VK′
2 = SK′

2 · P̂ (σ′t,i,1 = αt,1αt,2 · (tSK′
1 · M⃗t,i +Rt,i) σt,i,2 = αt,2 · (tSK′

2 · M⃗t,i −Rt,i))t,i

(σ′t,i = τt,1αt,2 · t(SK′
1 + SK′

2) · M⃗t,i)t,i (Qt,1 = 1/τt,1 · P, Q̂t,1 = 1/τt,1 · P̂)t
(σt,i = τt,1τt,2 · t(SK′

1 + SK′
2) · M⃗t,i)t,i (Qt = 1/τt,1τt,2 · P, Q̂t = 1/τt,1τt,2 · P̂)t

For P1 who knows SK′
1 and (αt,1, τt,1)t, this is equivalent to,

SK′
1 SK′

2 · P̂ (τt,1)t (1/τt,1τt,2 · P, 1/τt,1τt,2 · P̂)t
(αt,2 · (tSK′

1 · M⃗t,i +Rt,i) αt,2 · (tSK′
2 · M⃗t,i −Rt,i))t,i

(αt,2 · t(SK′
1 + SK′

2) · M⃗t,i τt,1τt,2 · t(SK′
1 + SK′

2) · M⃗t,i)t,i

for random scalars SK′
1, SK

′
2

$← Z3
p, and (αt,1, τt,1, αt,2, τt,2

$← Zp)t. This is thus equivalent to the
following view

SK′
1 SK′ · P̂ (τt,1)t (1/τt · P, 1/τt · P̂)t

(αt,2 · tSK′
1 · M⃗t,i + αt,2 ·Rt,i αt,2 · tSK′ · M⃗t,i τt · tSK′ · M⃗t,i)t,i

for random scalars SK′
1, SK

′ $← Z3
p, and (τt,1, τt, αt,2

$← Zp)t. Even if one would know m⃗t,i ∈ Z3
p such

that M⃗t,i = m⃗t,i · P , this is

SK′
1 SK′ · P̂ (τt,1)t (1/τt · P, 1/τt · P̂)t

(tSK′
1 · m⃗t,i · αt,2 · P + αt,2 ·Rt,i

tSK′ · m⃗t,i · αt,2 · P tSK′ · m⃗t,i · τt · P

And under the DDH assumption in G,

(P,Rt,i, αt,2 · P, αt,2 ·Rt,i) ≈ (P,Rt,i, αt,2 · P,R′
t,i).

Hence, the above view is indistinguishable from

SK′
1 SK′ · P̂ (τt,1)t (1/τt · P, 1/τt · P̂)t

(αt,2 · tSK′
1 · M⃗t,i +R′

t,i αt,2 · tSK′ · M⃗t,i τt · tSK′ · M⃗t,i)t,i

24 David Pointcheval

for random scalars SK′
1,SK

′ $← Z3
p, and (τt,1, τt, αt,2

$← Zp)t, and random (R′
t,i

$← G)t,i. Which is
indistinguishable from

SK′
1 SK′ · P̂ (τt,1)t (1/τt · P, 1/τt · P̂)t

(At,i αt,2 · tSK′ · M⃗t,i τt · tSK′ · M⃗t,i)t,i

for random scalars SK′
1,SK

′ $← Z3
p, and (τt,1, τt, αt,2

$← Zp)t, and random (At,i
$← G)t,i, and thus from

SK′
1 VK′ (τt,1)t (Qt, Q̂t)t

(At,i Bt,i σt,i)t,i

for random scalars SK′
1

$← Z3
p, and (τt,1

$← Zp)t and random group elements (At,i, Bt,i
$← G)t,i, and

signatures with randomizable tags (Qt, Q̂t)t, (σt,i)t,i of (M⃗t,i)t,i under a random verification key VK′.
For P2 who knows SK′

2 and (τt,2)t, this is equivalent to,

SK′
2 SK′

1 · P̂ (τt,2)t (1/τt,1τt,2 · P, 1/τt,1τt,2 · P̂)t
(αt,1 · (tSK′

1 · M⃗t,i +Rt,i) τt,1τt,2 · t(SK′
1 + SK′

2) · M⃗t,i)t,i

for random scalars SK′
1, SK

′
2

$← Z3
p, and (τt,1, τt,2, αt,1

$← Zp)t, which view is indistinguishable, under
the DDH assumption in G, from

SK′
2 SK′

1 · P̂ (τt,2)t (1/τt · P, 1/τt · P̂)t
(αt,1 · tSK′

1 · M⃗t,i +R′
t,i τt · t(SK′

1 + SK′
2) · M⃗t,i)t,i

for random scalars SK′
1,SK

′
2

$← Z3
p, and (τt, τt,2, αt,1

$← Zp)t and random group elements (R′
t,i

$← G)t,i.
The above view is indistinguishable from

SK′
2 VK′ (τt,2)t (Qt, Q̂t)t

(At,i σt,i)t,i

for random scalars SK′
2

$← Z3
p, and (τt,2

$← Zp)t and random group elements (At,i
$← G)t,i, and

signatures with randomizable tags (Qt, Q̂t)t, (σt,i)t,i of (M⃗t,i)t,i under a random verification key VK′.
This proves that no additional information leaks beyond the signatures on the fixed messages with

random tags under a random verification key VK′, to a semi-honest adversary (honest-but-curious),
unless one can break the DDH assumption in G. We stress that this setup is important for the soundness
of the validity proofs, but it does not impact the privacy property, that is unconditional.

	Efficient Universally-Verifiable Electronic Voting with Everlasting Privacy

