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Abstract. The Cheon–Kim–Kim–Song (CKKS) fully homomorphic en-
cryption scheme is designed to efficiently perform computations on real
numbers in an encrypted state. Recently, Drucker et al [J. Cryptol.]
proposed an efficient strategy to use CKKS in a black-box manner to
perform computations on binary data.
In this work, we introduce several CKKS bootstrapping algorithms de-
signed specifically for ciphertexts encoding binary data. Crucially, the
new CKKS bootstrapping algorithms enable to bootstrap ciphertexts
containing the binary data in the most significant bits. First, this allows
to decrease the moduli used in bootstrapping, saving a larger share of the
modulus budget for non-bootstrapping operations. In particular, we ob-
tain full-slot bootstrapping in ring degree 214 for the first time. Second,
the ciphertext format is compatible with the one used in the DM/CGGI
fully homomorphic encryption schemes. Interestingly, we may combine
our CKKS bootstrapping algorithms for bits with the fast ring packing
technique from Bae et al [CRYPTO’23]. This leads to a new bootstrap-
ping algorithm for DM/CGGI that outperforms the state-of-the-art ap-
proaches when the number of bootstraps to be performed simultaneously
is in the low hundreds.

Keywords: Fully Homomorphic Encryption · CKKS · Bootstrapping ·
Binary computations.

1 Introduction

Currently competitive Fully Homomorphic Encryption (FHE) schemes include
BGV [BGV12] and BFV [Bra12, FV12] which are designed to operate on fi-
nite fields, DM [DM15] and CGGI [CGGI16a] which are designed to operate
on binary inputs, and CKKS [CKKS17] which focuses on approximations to
real and complex numbers. Among them, those relying on RLWE-format cipher-
texts [SSTX09, LPR10], namely BGV, BFV and CKKS, provide high throughput
thanks to Single-Instruction Multiple-Data (SIMD) computations. In contrast,
those based on LWE-format ciphertexts [Reg05], namely DM and CGGI, provide
lower latency.
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In this work, we focus on the efficiency of homomorphic evaluation of binary
circuits. It is usually considered that DM and CGGI are the prime choice for
binary computations as their message space is already binary. However, as put
forward in [DMPS24], CKKS can be used to perform binary operations by iden-
tifying a bit b ∈ {0, 1} with the real number b+ ε for some ε satisfying |ε| ≪ 1
and operating on those real numbers to emulate binary gates. Indeed, any binary
gate can be implemented as a real-arithmetic circuit of multiplicative depth 1,
while preserving the above binary-to-real encoding. For instance, the binary gate
evaluation a∧ b for a, b ∈ {0, 1} can be computed as a · b, and a∨ b can be com-
puted as a+ b−a · b. Such homomorphic operations make the error term ε grow,
but it may be reduced by applying the coarse approximation h1 to the step func-
tion introduced in [CKK20]. As shown in [DMPS24, Fig. 3], when the parallelism
is sufficiently high (e.g., when evaluating a given circuit many times in paral-
lel), CKKS outperforms DM/CGGI. This was further illustrated in [ADE+23],
which used the approach from [DMPS24] to homomorphically perform AES-128
decryption of 512KB of data in only 11.5 minutes by running the HEaaN li-
brary [Cry22] on a GPU. In contrast, the authors from [TCBS23] relied on the
TFHE library [CGGI16b] and the TFHE programmable bootstrapping [CJP21]
to decrypt a single AES-128 block in 28 seconds on a 16-thread workstation.
While comparing these results is difficult due to heterogeneous computing envi-
ronments, this indicates that CKKS outperforms DM/CGGI for high-throughput
computations. It is noteworthy that the approach from [DMPS24] relies on the
CKKS scheme in a black-box manner, and one may then wonder whether the
performance of CKKS for homomorphic computations on binary data can be
further improved by adapting CKKS to this specific type of computations.

This state of affairs suggests to use a hybrid construction for homomorphi-
cally evaluating binary circuits, à la CHIMERA [BGGJ20]: the hybrid would rely
on DM/CGGI when the circuit is deep and thin (i.e., it is relatively sequential),
and on CKKS when the circuit is sufficiently wide (i.e., the computation en-
joys heavy parallelism). Unfortunately, the ciphertexts formats from DM/CGGI
and [DMPS24] do not seem readily compatible. More concretely, DM/CGGI
consider LWE-format ciphertexts ct ∈ Zn+1

q satisfying

ct · sk ≈ (q/4) · b mod q , (1)

where sk is the secret key, b ∈ {0, 1} is the encrypted bit and the symbol ≈
hides an error whose magnitude is small compared to q/4. The RLWE-format
ciphertexts ct from [DMPS24] belong to the module (Zq[X]/(XN + 1))2 for N
a power of 2. In the case of slots-encoding, they satisfy

ct · sk ≈ ∆ · iDFT(b) mod q , (2)

where sk is the secret key, b ∈ {0, 1}N/2 corresponds to N/2 bits, ∆ is a scaling
factor that is small compared to q but still large compared to the error hidden
in the ≈ symbol, and iDFT : CN/2 → Z[X]/(XN + 1) refers to (an adaptation
of) the inverse Discrete Fourier Transform. In the case of coefficients-encoding,
they satisfy

ct · sk ≈ ∆ · ι(b) mod q , (3)
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where ι(b) ∈ Z[X]/(XN + 1) has binary coefficients containing b. A RLWE-
format ciphertext can be readily viewed as many LWE-format ciphertexts. Go-
ing the other way, i.e., converting many LWE-format ciphertexts into a RLWE-
format ciphertext, is known as ring packing. This operation has been extensively
studied (see [CGGI17, MS18, BGGJ20, CDKS21, LHH+21, BCK+23]). Beyond
the formats (LWE or RLWE) of the ciphertexts, the ways the plaintexts are en-
coded in the ciphertexts seem difficult to reconcile. The encodings of (2) and (3)
are compatible via the CtS (coefficients to slots) and StC (slots to coefficients)
procedures used in CKKS bootstrapping [CHK+18a]. Going from a scaling fac-
tor ∆ ≪ q as in (3) to a scaling factor equal to q/4 as in (1) can be implemented
by multiplying the ciphertext by ≈ (q/4)/∆. Going the other way, i.e., decreas-
ing the scaling factor, seems significantly more complex. One way to decrease
the scaling factor ∆, or equivalently to increase the modulus while maintaining
the scaling factor ∆, is to extract ι(b) from ∆ · ι(b) + q · I for some integer poly-
nomial I, where the q · I term corresponds to the “mod q” operation. The latter
is implemented in CKKS bootstrapping by using a polynomial approximation
to the sine function, whose degree and hence evaluation cost grow fast when the
scaling factor ∆ nears the modulus q.

Main contribution.We design two bootstrapping algorithms for CKKS cipher-
texts whose underlying plaintexts consist of bits: BinBoot raises the modulus of a
single ciphertext encoding a vector of bits, whereas GateBoot raises the modulus
and (SIMD-)evaluates a gate for two ciphertexts encoding vectors of bits. These
bootstrapping algorithms allow to obtain lower latency and higher throughput
than achieved with the black-box use of CKKS for binary data from [DMPS24]:
we conjecture that our approach is preferable to DM/CGGI for homomorphically
evaluating binary circuits when the parallel repetition is as low as around 100,
and that it outperforms those schemes by close to three order of magnitudes for
massively parallel computations. See Table 1. Further, our bootstrapping proce-
dures are compatible with the DM/CGGI ciphertext formats. In fact, combining
the efficient ring packing technique from [BCK+23] with GateBoot leads to an
alternative gate bootstrapping for DM/CGGI. Our implementation is advanta-
geous when there are as low as around 200 DM/CGGI gate bootstraps to be
performed (for the same gate). See Table 2.

We stress that our implementation is not optimized: its purpose is only to
highlight the strength of the proposed bootstrapping techniques. For example,
optimizing the RNS arithmetic ([CHK+18b]) to 32-bit moduli as well as the
relinearization parameters (see, e.g., [KLSS23]) are likely to give runtime savings
by more than a factor 2.

Technical overview. Let us first recall the high-level structure of CKKS boot-
strapping. We start with a ciphertext ct in the form of Equation (3) for some
small modulus q = q0. At this stage of the discussion, the plaintext b is not re-
stricted to be binary and can be a real number. The ciphertext ct is interpreted
as a ciphertext modulo a large modulus Q, whose inner product with sk is ≈
∆·ι(b)+q0 ·I for some small-magnitude integer polynomial I. This computation-
ally vacuous step is referred to as ModRaise. It is followed by the CtS step relying
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Table 1. Throughput comparison with [LMSS23], [CGGI16b] and [DMPS24]. The
‘Naive’ variant of [DMPS24] is the direct implementation of the method introduced
in that work, while the ‘Improved’ variant is obtained by more efficient placement of
cleaning functions and the use of complex bootstrapping (see Section 5.2 for more
details). The first two timings are borrowed from [LMSS23] which used a computing
environment similar to ours, whereas the last three are obtained with our implemen-
tation.

Number of
plaintext slots

Amortized bootstrapping
time per gate

[LMSS23]
1

6.49ms
[CGGI16b] 10.5ms

[DMPS24]
Naive 215 92.6µs

Improved
216

27.7µs
This work (BinBoot-Param16) 17.6µs

Table 2. Comparison between several DM/CGGI bootstrapping implementations. The
winning threshold gives the minimal number of gate bootstraps to be performed in par-
allel for the same gate, for which our implementation becomes preferable. The timing
of [DMPS24] is measured as evaluating a gate and bootstrap given two ciphertexts,
and using the FGb parameters of [Cry22].

Number of
plaintext slots

Tboot
Winning
threshold

DM/CGGI
Compatibility

[LMSS23]
1

6.49ms 262 YES
[CGGI16b] 10.5ms 162 YES

This work 214 1.70s YES

[DMPS24] 215 9.76s NO

on (an adaptation of) the discrete Fourier transform. Its purpose is to obtain a
new ciphertext ct′, whose inner product with sk is ≈ iDFT(∆·ι(b)+q0 ·I) mod Q′

for some Q′ lower than Q: it has the coefficients of ∆ · ι(b)+q0 ·I in the complex
slots. At this stage, the ciphertext is in the form of Equation (2), which enables
SIMD computations on the underlying data. The goal of the EvalMod step is
to remove the q0 · I term. It achieves the latter by evaluating a polynomial ap-
proximation of a proper scaling of the sine function. The key point is that for
inputs x + (2π) · I for an integer I and a small-magnitude real number x, we
have sin(x+(2π) · I) ≈ x. Once the q0 · I term has been removed, a SIMD arith-
metic circuit can be performed on slots. Finally, the StC step reverses the CtS
transformation, to obtain a ciphertext in the form of Equation (3) that is ready
for another bootstrap.

Enhanced CKKS-bootstrapping for binary data. Once we fix the inputs to be
in {0, 1}, we can construct a better approximation for approximate modular
reduction (EvalMod). Instead of evaluating the sine function on x + (2π) · I
for an integer I and a small-magnitude real number x carrying the plaintext
data, we use the extrema of a trigonometric function for a binary input mapped
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to b ∈ {0, 1} ⊆ R:

∀b ∈ {0, 1},∀I ∈ Z :
1

2
(1− cos (b · π + I · 2π)) = b .

The function and its domain of interest are plotted in Figure 1. This choice
eliminates the need for b to be small compared to the period, i.e., the need for ∆
to be small compared to q0. As a result, the scaling factor ∆ can be close to q0,
which is compatible with the DM/CGGI ciphertext format. This also leads to a
significant efficiency gain compared to general-purpose CKKS and its use for bi-
nary inputs [DMPS24]. In the latter case, one typically sets q0/∆ ≈ 210, whereas
we can take q0/∆ = 2: the base modulus q0 can be decreased by almost 10 bits.
This significantly reduces modulus consumption during CtS and EvalMod: recall
that each multiplication level consumes modulus; those corresponding to CtS
and EvalMod have higher modulus consumption as they encode plaintexts that
contain the term q0 ·I; the bit-size gain for q0 is hence multiplied by the combined
multiplicative depth of CtS and EvalMod when we consider the overall modulus
consumption. In total, this amounts to more than 100 bits. This gain then allows
to consider more levels of computation in a bootstrapping cycle.

−0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

−0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

Fig. 1. The trigonometric functions used to approximate the modular reduction func-
tion, for conventional CKKS (left) and binary bootstrapping (right). The bold areas
correspond to valid plaintexts.

Another significant advantage of the modified use of the sine function is that
bootstrapping also reduces the error term. As CKKS operates on real numbers,
the plaintext is not exactly b ∈ {0, 1} but rather b + ε for some ε ≪ 1. In this
case, we have

∀b ∈ {0, 1},∀I ∈ Z :
1

2
(1− cos ((b+ ε) · π + I · 2π)) = b+O(ε2) .

The error shrinks quadratically. This is in contrast with using the sine function
for inputs x near 0, which has a linear behaviour even if x encodes a bit. As a
result, there is less need to clean the error terms than in [DMPS24].
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CKKS-style gate bootstrapping. To evaluate a binary gate on two ciphertexts
modulo q0, one could run the above binary bootstrapping twice in parallel and
then evaluate a binary gate on the bootstrapped ciphertexts as in [DMPS24]. We
now propose an alternative CKKS-style gate bootstrapping algorithm inspired
from DM/CGGI gate bootstrapping. The objective is to perform most of the
work related to the gate on the input small-modulus ciphertexts rather than on
high-modulus bootstrapped ciphertexts.

Assume we are given two ciphertexts ct1 and ct2 such that cti · sk ≈ (q/4) ·
ι(bi) mod q0 for i ∈ {1, 2}, where ι(bi) is a binary polynomial containing the
coefficients of bi ∈ {0, 1}N/2. We first add the ciphertexts to obtain ct such that
ct · sk ≈ (q/4) · ι(b1 + b2) mod q0. Then we note that any symmetric gate G
evaluated (SIMD-wise) on b1 and b2 is in fact the (SIMD-wise) evaluation of
a function of b1 + b2. Importantly, the latter addition occurs over the integers
rather than modulo 2. (We observe that b1 + b2 can take only three values
and we could hence replace q/4 by q/3, allowing for a small gain in overall
modulus consumption.) The ciphertext ct then goes through ModRaise and CtS.
The EvalMod bootstrapping step is modified by changing the sine function for
another trigonometric function that allows to send each real x ∈ {0, 1, 2} to the
proper output in {0, 1} depending on the specific gate. See Figure 3.

The main benefit of the above CKKS-style gate bootstrapping over the bi-
nary bootstrapping approach is that one can evaluate gates even at the very
bottom level of the multiplication ladder. This is particularly interesting when
we are given as inputs LWE ciphertexts with a small modulus, which is likely
when we consider the context of ring packing as described in [BCK+23]. This is
notably the case if one aims at gate-bootstrapping numerous DM/CGGI cipher-
texts in parallel with CKKS. A drawback compared to binary bootstrapping is
that it does not contain an error reduction functionality. One can apply the h1

error cleaning function from [CKK20, DMPS24] after evaluating the modified
EvalMod, at the cost of two multiplication levels. Alternatively, one can modify
EvalMod further to use three local extrema of a combination of trigonometric
functions. The resulting bootstrapping, GateBoot′, can, from this respect, be
viewed as an extension of BinBoot (which relies on two extrema). We refer to
the full version of this work for more details.

The design of CKKS-style gate bootstrapping is quite flexible. By relying on
trigonometric interpolation, we show that it can handle asymmetric binary gates,
gates with more than two binary inputs (such as the majority gate) and gates
whose inputs are not binary. The latter corresponds to functional/programmable
bootstrapping in the context of DM/CGGI [CJL+20, CLOT21, KS23]. In the full
version, we also discuss how to evaluate several gates on the same inputs for a cost
that is close to evaluating a single gate, similarly to multi-value bootstrapping
in the context of DM/CGGI [CIM19, GBA21].

Parameter selection and experiments. In conventional CKKS, parameters are
typically set to obtain a relatively high precision (of the order of 20 bits) for
each unit homomorphic operation (relinearization, rescaling, etc), in order to
achieve sufficient precision at the end of deep real/complex arithmetic circuits.
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In case of binary data, we only need to maintain relatively low precision per gate.
Indeed, we have a single bit of interest, and we only want to maintain sufficient
margin between this bit and the noise resulting from computations. This margin
should not be too small, so that the computation can go through with only
few noise cleaning steps, either inside binary bootstrapping or based on the h1

function. Evaluating h1 consumes two multiplication levels, and has the effect of
(essentially) squaring the error term. On the other hand, the smaller the margin,
the smaller the moduli in the modulus chain. This in turns can help to obtain
parameters with smaller moduli and ring degree, or to optimize throughput with
more non-bootstrapping multiplication levels.

We design two sets of CKKS parameters for binary data. The first one aims at
minimizing latency. Based on the moduli optimizations above and GateBoot, we
provide the first description of bootstrappable parameters for CKKS with ring
degree N = 214. This parameter set handles 213 gate bootstrappings at once in
less than 1.4s for a single-thread execution on an Intel Xeon Gold 6242 at 2.8GHz
with 503GiB of RAM running Linux. It enjoys 2 extra multiplicative levels, which
may be used to evaluate second and third binary gates for a negligible cost before
another bootstrap is required.

The second parameter set targets high throughput. The ring degree is fixed
at N = 216. In 23s with the same computing environment as above, it bootstraps
216 bits. The number of available multiplication levels is 28, 8 of which we use for
regularly cleaning the error term. This gives an amortized cost per binary gate
of ≈ 18µs. This is several hundreds times faster than state-of-the art DM/CGGI
bootstrapping [Klu22, BIP+22, LMK+23, LMSS23, XZD+23]. This is also an
improvement over [DMPS24] by a factor of the order of 5.3.4

Related works. The two bootstrapping algorithms introduced above rely on
a modification of EvalMod, which approximately evaluates modular reduction
with respect to the base modulus q0. This is the most depth-consuming step
in CKKS bootstrapping. The use of trigonometric functions has been a typi-
cal approach. Initial works [CHK+18a, CCS19, HK20] used trigonometric sine
function with Taylor expansion or Chebyshev approximation. In order to reduce
the error coming from the difference between the sine and modular reduction
functions, approaches based on the inverse sine function [LLL+21] and on the
sine series [JM22] have been suggested. Another line of works focuses on directly
approximating the modular reduction function. These work rely on Lagrange
interpolation [JM20], Least Squares [LLKN20], and Error Variance Minimiza-
tion [LLK+22]. In our case, we change the function to be evaluated rather than
optimize its evaluation.

As seen above, our technique can be viewed as enabling high throughput for
DM/CGGI encryption. An independent line of works [MS18, LW23a, LW23b,
MKMS23, GPL23] considers the same goal, but by means of modifying the

4 We note that the h1 noise-reducing function is run after every binary gate
in [DMPS24], which is over-conservative as noted in [ADE+23]; a saving of a fac-
tor 3.4 can be obtained by calling the h1 function less frequently and using complex
bootstrapping.
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DM/CGGI bootstrapping algorithms rather than relying on another FHE ap-
proach. From a theoretical perspective, this allows to rely on hardness of LWE
and RLWE with noise rates polynomially bounded as a function of the LWE
dimension and RLWE degree (and a circular security assumption). Timings are
only reported in [GPL23] and show that the approach would require further
improvements to reach a competitive performance.

One may also consider using the BGV [BGV12] and BFV [Bra12, FV12]
schemes to evaluate binary circuits. One approach is to use binary plaintext do-
mains, but, to have SIMD computations, one cannot use the cyclotomic rings
Z[X]/(XN + 1) with degree N that is a power of 2 as the polynomial XN + 1
does not factor into N distinct linear terms modulo 2. A possibility is then to
switch to more complex cyclotomic rings, as chosen for instance in HELib [HS14].
However, as can be seen in [HS14, Table 3], this approach still does not provide
N -wise parallelism.5 Overall, this remains slower than (regular) CKKS boot-
strapping [BP23]. Another approach is to keep a power-of-2 cyclotomic ring and
use plaintext domain modulo a larger p such that XN +1 factors into N distinct
linear terms in order to enjoy N -wise parallelism, and only consider plaintext
elements in {0, 1} ⊂ Zp. This choice, made for example in Lattigo [EPF22],
however makes bootstrapping more complex and less efficient. We note that re-
cent works [KSS24, MHWW24] however show significant progress for bootstrap-
ping performance in this regime. Using BFV for SIMD binary gate evaluations
and bootstrapping DM/CGGI has been recently investigated in [LW23c, LW24],
though the performance remains limited compared to ours, using CKKS.

2 Preliminaries

Given a power-of-two integer N , we define the rings RN = Z[X]/(XN + 1) and
Rq,N = RN/qRN . Let DFT : R[X]/(XN + 1) → CN/2 be (the variant of) the
discrete Fourier transform defined as

∀p ∈ RN : DFT(p) =
(
p(ζ5

i

)
)
0≤i<N/2

where ζ is a primitive (2N)-th root of unity. We let iDFT : CN/2 → RN denote
its inverse.

Vectors are denoted in bold. For a vector b, we let ∥b∥ denote its 2-norm.
This notation is extended to elements of RN by first transforming the considered
polynomial in the vector of its coefficients. The notation b ·b′ refers to the inner
product of the vectors b and b′ over their ring of definition.

For a function f : C → C, we let f⊙ denote its component-wise application
to a vector over C.
5 This is actually intrinsic. The number of slots s modulo 2 is exactly the number
of distinct factors modulo 2 of the cyclotomic polynomial and the degrees of these
factors are all equal. Assume N is the degree of the cyclotomic polynomial, and
d the degree of the factors: the number of distinct factors is s ≤ N/d. We also
have s ≤ 2d, the number of polynomials modulo 2 of degree < d. The second bound
implies that d ≥ log2(s) and the first one then gives s · log2(s) ≤ N .
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2.1 The CKKS scheme

We first recall some necessary material on the CKKS fully homomorphic encryp-
tion scheme [CKKS17, CHK+18a].

Coefficients and slots. The Discrete Fourier Transform DFT is a ring homo-
morphism sending elements in the ring RN (the coefficients space) to complex
vectors in CN/2 (the slots space). Importantly, it maps polynomial multiplication
to component-wise multiplication.

The decoding map Dcd : RN → CN/2 is defined as

∀p ∈ RN : Dcd(p) =
1

∆
· DFT(p) ,

where ∆ denotes the scaling factor associated to the plaintext polynomial p. The
encoding map Ecd : CN/2 → RN is an approximation of its inverse, defined as

∀z ∈ CN/2 : Ecd(z) = ⌊∆ · iDFT(z)⌉ .

The data z ∈ CN/2 to be computed upon is stored in the slots, and the plaintext
polynomial m is ≈ Ecd(z).

Note that DFT is a scaled 2-norm isometry: it satisfies ∥DFT(p)∥2 =
√
N/2 ·

∥p∥2 for all p ∈ RN . Therefore, any error produced in RN is amplified by factor√
N/2 in 2-norm when considered in CN/2. This implies that the scaling fac-

tor ∆ should be at least
√
N/2 times the desired precision. Looking forward,

the scaling factor is the amount by which one has to rescale after each homo-
morphic multiplication, implying that there must be at least some amount of
modulus reserved for each multiplication level even if one aims very low plaintext
computation precision.

Ciphertexts. A ciphertext ct = (b, a) ∈ R2
q,N decrypting to a (polynomial)

plaintext m ∈ RN under a secret key sk = (1, s) satisfies the following equation
over Rq,N :

ct · sk = ct · (1, s) = b+ as = m ,

where m ∈ RN has small-magnitude coefficients compared to q and may corre-
spond to a desired polynomial up to some small error term. For z ∈ CN/2, we
write ct = Encsk(z) to refer to a ciphertext ct ∈ R2

q,N that decrypts to∆·iDFT(z)
under sk.

Given a ciphertext ct ∈ R2
q,N for a key sk′ and an RLWE switching key swk ∈

R2
qp,N from sk′ to sk for some auxiliary integer p, the key switching procedure

KS : R2
q,N × R2

qp,N → R2
q,N outputs a ciphertext KS(ct, swk) decrypting to

approximately the same message as ct but using the new secret key sk.
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Homomorphic operations. Homomorphic addition/subtraction is performed
by adding/subtracting ciphertexts in R2

q,N . The inputs and the output are all
defined with respect to the same modulus q. The plaintexts are being homomor-
phically added/subtracted as the decryption equation and the Ecd function are
additive homomorphisms (up to some small error terms).

Homomorphic multiplication proceeds in several steps: tensoring, to multi-
ply the underlying plaintexts; relinearization, to decrease the dimension back to
the one of the inputs; and rescaling, to master the growth of the error terms.
Homomorphic multiplications are significantly more expensive than homomor-
phic additions/subtractions as they involve polynomial multiplications. Further,
because of rescaling, the output is with respect to a modulus q/q′ that is smaller
than the modulus q of the inputs. To appropriately handle error growth, one
typically sets q′ ≈ ∆. A multiplication between a ciphertext and a plaintext
polynomial can be done similarly but without relinearization.

CKKS also supports homomorphic application of any ring automorphism
ϕ : RN → RN . This can be used to move data across slots (i.e., apply a permu-
tation of coordinates over CN/2) and to take the complex conjugate (i.e., apply
complex conjugation to a vector of CN/2). The latter is denoted by conj. Ring
automorphisms require polynomial multiplications but do not consume modulus.

Because of the modulus consumption of homomorphic multiplication, it is
convenient to view an arithmetic circuit in terms of multiplication levels: addi-
tions and ring automorphisms do not change the level whereas a multiplication
decreases the level by 1. Each level is associated to a modulus.

Bootstrapping. As each homomorphic multiplication consumes modulus, one
eventually reaches the base modulus q0 after some amount of multiplication
depth. The bootstrapping allows to recover the modulus budget: it increases the
modulus back to a certain point. The conventional CKKS bootstrapping consists
of four steps: StC, ModRaise, CtS, and EvalMod.

z
StC−−→ z(x)

ModRaise−−−−−→ z(x) + q0I(x)
CtS−−→ z+ q0I

EvalMod−−−−−→ z

• Slots-to-Coefficients. Given a ciphertext decrypting to a vector z, StC
converts it to a ciphertext decrypting to a (polynomial) plaintext z(x) whose
coefficients are entries of z. It consists in homomorphically multiplying by
the DFT matrix.

• Modulus Raising. Given a ciphertext ct ∈ R2
q0,N

at the very smallest

modulus, we embed it to R2
q,N with a large modulus q. This introduces

a q0I(x) term whose coefficients are small-magnitude integer multiples of
the base modulus q0.

• Coefficients-to-Slots. A ciphertext decrypting to a (polynomial) plaintext
z(x) + q0I(x) is converted to a ciphertext decrypting a vector z+ q0I whose
entries are the coefficients of z(x) + q0I(x). It consists in homomorphically
multiplying by the DFT matrix.

• Modular Reduction. We homomorphically evaluate the modulo-q0 func-
tion in order to remove the q0I term. This is implemented using proper
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polynomial approximations such as a combination of sine and inverse sine
function [LLL+21] or a direct polynomial approximation built to minimize
the error variance [LLK+22].

2.2 BLEACH

We now recall a strategy introduced in [DMPS24], called BLEACH, that enables
Boolean operations using CKKS. We note that this work also covers other types
of discrete data such as small integers, which we do not recall here as we are
focusing on binary operations.

The values true and false are respectively identified to 1 and 0. By properly
using addition, subtraction and multiplication over the real (or complex) num-
bers, one can emulate any symmetric binary gate. For instance, the ‘and’, ‘or’,
and ‘xor’ gates are respectively obtained as

x ∧ y = x · y, x ∨ y = x+ y − x · y, x⊕ y = (x− y)2 .

When performing those operations on approximate inputs x + εx and y + εy
with |εx|, |εy| < 1/4, the output error has magnitude no more than 5 times
the maximum of |εx| and |εy| (see [DMPS24, Le. 2]). After several sequential
operations, this error becomes significant and must be decreased. This is achieved
by means of a cleanup functionality. Cleanup functions send real values near 0
or 1 closer to 0 or 1, respectively. For instance, the h1 map from [CKK20],
defined as h1(x) = −2x3+3x2 for all x ∈ R, has a cleaning functionality because
h1(0) = 0, h1(1) = 1, and h′

1(0) = h′
1(1) = 0.

2.3 Modulus engineering

Modulus is a valuable resource in the CKKS scheme: when one runs out of it,
then bootstrapping must be performed. Recall that one divides the modulus by
an integer at every homomorphic multiplication. More concretely, we consider
a top modulus QL of the form QL = q0 · . . . · qL and, at level i ∈ {0, . . . , L},
the current ciphertext modulus is Qi = q0 · . . . · qi. To provide efficient RNS
arithmetic [CHK+18b], the qi’s are chosen co-prime and small enough to fit on
a 64-bit machine word [CHK+18b]. To save modulus, state-of-the-art CKKS
implementations such as [Cry22, EPF22] use optimizations for the choice of
moduli.

A common optimization6 is to multiply by an integer c before bootstrapping
and to divide by c after bootstrapping, as described in Algorithm 1. Note that c
is chosen integral to avoid additional modulus consumption due to homomorphic
multiplication by an arbitrary scalar. In practice, one typically sets c as a small
power of 2, such as c = 24. For the sake of simplicity, we only describe the
idea for bootstrapping real-valued inputs. The input modulus q is the Qi for the

6 As far as we are aware of, it has not been formally described so far in an article, but
it is used in [EPF22, Cry22].
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level i corresponding to the start of StC and the output modulus Q is the Qj

for the level j ≥ i reached after EvalMod. In Step 3, the function conj refers to
homomorphic complex conjugation.

Algorithm 1: Advanced CKKS bootstrapping

Parameter: c ∈ Z>0.
Input : ct = Encsk(m) ∈ R2

q where m ∈ [−1, 1]N/2.
Output : ctout ∈ R2

Q.
1 ct1 ← c · ct
2 ct2 ← CtS ◦ModRaise ◦ StC(ct1)
3 ct3 ← (conj(ct2) + ct2)/2
4 ctout ← 1

c
· EvalMod(ct3)

5 return ctout

The purpose of multiplying by c is to increase the CKKS precision for boot-
strapping. Indeed, the errors occurring during bootstrapping are typically larger
than those occurring during the levels reserved for useful computations (be-
tween EvalMod and StC). Using c allows to balance out these two types of errors.
The multiplication of the ciphertexts by c implies that the scaling factors used
for the bootstrapping levels are a factor c larger than the others. This in turn
leads to taking the base modulus q0 a factor c larger than the non-bootstrapping
moduli, as the ratio between the base modulus and its corresponding scaling fac-
tor determines the accuracy of the polynomial approximation used for EvalMod
and hence its depth consumption and runtime.

Now, we explain how the other qi’s in the moduli chain are chosen. For
computation levels that are not part of bootstrapping, they are set to be close
to the default scaling factor ∆. One may choose higher or lower moduli for
the computations requiring higher or lower precision, respectively, but often the
magnitudes of moduli are set to be similar because it is a priori unknown which
specific operations are going to be performed. For the bootstrapping levels, the
general strategy is to choose the moduli to be as large as the encrypted plaintext
polynomials. In StC, the plaintext polynomials have magnitudes ≈ ∆, so one
first tries to set the modulus near ∆. Similarly, in CtS and EvalMod, the starting
point is the estimated magnitude of the q0I(x) term added by ModRaise. Given
a first trial for a moduli chain, one then fine-tunes it by considering the overall
bootstrapping precision. In StC and CtS, one often ends up with moduli that
are significantly smaller than the starting point. The main reason is that the
scaling factors in StC and CtS are only used to scale up the coefficients of the
matrices used to homomorphically evaluate DFT and iDFT, and the induced error
is usually the smallest among all errors coming from homomorphic computations.

Explicit examples of moduli chains are provided in [BMTPH21, BCC+22].
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3 BinBoot: Combined Binary Bootstrap and Clean

In this section, we propose a bootstrapping variant for the case where the plain-
text underlying the input ciphertext corresponds to binary data.

3.1 Description of BinBoot

In the prior works on CKKS bootstrapping, including [CHK+18a] and [CCS19],
a gap of typically ≈ 10 bits between the base scaling factor ∆0 and the base
modulus q0 is required for bootstrapping. This is because the EvalMod relies
on an approximation to the mod-q0 function that is accurate only partially.
To be specific, the EvalMod step handles ∆0z + q0I, the result of CtS, as a
message ∆0z/q0 + I with scale factor q0. The fact that the approximation to
the modular reduction function is accurate only in the vicinity of integer points,
leads to the requirement that we have ∥∆0z/q0∥ ≪ 1, or in other words that we
have ∆0 ≪ q0. The modular reduction function is discontinuous and, as a result,
it is not possible to find a low-degree high precision polynomial approximation
of it for a large domain. By using a value of ∆0 that is smaller than q0, one
inserts a buffer between I and the desired output ∆0z/q0. In turn, this enables
the use of a polynomial approximation of moderate degree. Decreasing the gap
between ∆0 and q0 would require the use of a polynomial approximation of a
much higher degree.

Now, consider the case of a message space restricted to binary vectors, i.e.,
of the form ∆0z+q0I with z ∈ {0, 1}N/2 (and I integral, as above). Although we
still need a process of removing the q0I term, in this case, it now suffices to use a
function that is only required to send 0+ q0Z to 0 and ∆0+ q0Z to 1. This leads
considering functions that are 1-periodic (after rescaling by q0), which send 0+Z
to 0 and ∆0/q0+Z to 1, and whose derivatives around those points are moderate
in order not to limit error amplification. There are plenty of solutions to these
constraints, among which we choose the following:

∀x ∈ R : fBinBoot(x) =
1

2
(1− cos(2πx)) .

The function fBinBoot is plotted in Figure 2. Beyond satisfying the constraints
and enjoying some simplicity, it has two very significant advantages. First, it
corresponds to setting ∆0 = q0/2. The significantly reduced gap between the
scaling factor and the modulus allows to choose a smaller q0 and leads to signifi-
cant overall savings in modulus consumption. Second, as the derivative of fBinBoot
vanishes for x ∈ (1/2) ·Z, applying fBinBoot reduces numerical inaccuracy rather
than merely not amplifying it too much.

Algorithm 2 describes BinBoot, the proposed binary bootstrapping method.
It takes as input a ciphertext ct modulo q0 and with scaling factor ∆0 = q0/2,
which decrypts to ≈ φ ∈ {0, 1}N/2 under the secret key sk. At Step 1, we have
that ct′ = Encsk((φ+ε1)/2+I) for some small-magnitude integer vector I ∈ ZN/2

and some small-magnitude ε1 ∈ CN/2 related to ε and the precisions used in StC
and CtS. Step 2 homomorphically takes the real part of (φ+ ε1)/2+ I to obtain
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−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

(0, 0)

( 12 , 1)(− 1
2 , 1)

Fig. 2. Graph of the trigonometric function fBinBoot use in Algorithm 2. Note that the
derivative vanishes for inputs in (1/2) · Z.

Algorithm 2: BinBoot

Setting: ∆0 = q0/2.
Input : ct = Encsk(φ+ ε) ∈ R2

q with φ ∈ {0, 1}N/2 and ∥ε∥∞ ≪ 1.
Output: ctout ∈ R2

Q.
1 ct′ ← CtS ◦ModRaise ◦ StC(ct)
2 ct′′ ← (conj(ct′) + ct′)/2
3 ctout ← EvalfBinBoot(ct

′′)
4 return ctout

ct′′ = Encsk((φ + ε2)/2 + I) with ε2 a small-magnitude vector in RN/2. At
Step 3, algorithm EvalfBinBoot is the homomorphic evaluation of fBinBoot(x) = (1−
cos(2πx))/2 via appropriate polynomial approximation. By design of fBinBoot (see
also Figure 2), we obtain that ctout = Encsk(φ+ εout) for some small-magnitude
εout ∈ RN/2.

3.2 Correctness of BinBoot

We start by studying the cleaning functionality of the chosen trigonometric func-
tion fBinBoot: the distance of the output to 0 (resp. 1) is essentially the square of
the distance of the input to 0 + Z (resp. 1/2 + Z) when the latter is sufficiently
small. This means that fBinBoot roughly doubles the precision of the considered
data.

Lemma 1 (Cleaning functionality of fBinBoot). Let ε ∈ R, φ ∈ {0, 1} and
I ∈ Z. Then the following holds:∣∣∣∣fBinBoot (I + φ+ ε

2

)
− φ

∣∣∣∣ ≤ π2

4
ε2 .

Proof. Observe that

fBinBoot

(
I +

φ+ ε

2

)
=

1− cos((φ+ ε)π)

2
= sin2

(
(φ+ ε)π

2

)
.
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We thus have: ∣∣∣∣fBinBoot (I + φ+ ε

2

)
− φ

∣∣∣∣ = sin2
(επ

2

)
,

where, for φ = 1, we use the identities sin(π/2+x) = cosx and cos2(x)+sin2(x) =
1 which hold for all x ∈ R. The proof can be completed by using the inequality
| sin(x)| ≤ |x|, which also holds for all x ∈ R. ⊓⊔

We are now ready to state our main theorem on binary bootstrapping.

Theorem 1 (Binary bootstrapping). Consider an execution of BinBoot (as
defined in Algorithm 2). Take an input ciphertext ct = Encsk(φ + ε) with φ ∈
{0, 1}N/2 and ε ∈ RN/2 such that ∥ε∥∞ ≤ B for some B. Assume that:

1. there exist B2 and BI such that ct′′ = Encsk((φ+ε+ε2)/2+I) for some ε2 ∈
RN/2 and I ∈ ZN/2 with ∥ε2∥∞ ≤ B2 and ∥I∥∞ ≤ BI;

2. there exist B3 and PBinBoot ∈ R[x] such that ctout = Encsk(P
⊙
BinBoot((φ+ ε+

ε2)/2 + I) + ε3) for some ε3 ∈ RN/2 with ∥ε3∥∞ ≤ B3 (recall that P⊙
BinBoot

refers to the component-wise evaluation of PBinBoot);
3. there exists Bappr such that for all x with min(|x|, |x−1/2|) ≤ (B+B2)/2 and

all integer I with |I| ≤ BI, we have |PBinBoot(x+I)−fBinBoot(x+I)| ≤ Bappr.

Then we have:

ctout = Encsk (φ+ εout) with ∥εout∥∞ ≤ π2

4
(∥ε∥∞ +B2)

2
+B3 +Bappr.

Proof. By using the assumptions, we obtain that:

ctout = Encsk

(
f⊙
BinBoot

(
φ+ ε+ ε2

2
+ I

)
+ ε3 + εappr

)
,

for some ε2, ε3, εappr and I satisfying ∥ε2∥∞ ≤ B2, ∥ε3∥∞ ≤ B3, ∥εappr∥∞ ≤ Bappr

and ∥I∥∞ ≤ BI. Now, Lemma 1 gives that∥∥∥∥f⊙
BinBoot

(
φ+ ε+ ε2

2
+ I

)
−φ

∥∥∥∥
∞

≤ π2

4
(ε+ ε2)

2 .

To complete the proof, it suffices to define:

εout =

(
f⊙
BinBoot

(
φ+ ε+ ε2

2
+ I

)
−φ

)
+ ε3 + εappr . ⊓⊔

The assumptions may seem cumbersome at first sight, but they merely mean
that every usual step of CKKS bootstrapping behaves as expected. Item 1 states
that StC, ModRaise, CtS and the homomorphic real part extraction lead to a
ciphertext for a plaintext to which an unknown integer vector I is added as
well as a homomorphic computing error ε2. Note that the size of I is driven
by the size of sk, which is typically chosen ternary (and most often sparse as
well). Items 2 and 3 state that the evaluation of fBinBoot is performed by means
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of the evaluation of a polynomial PBinBoot. Item 2 states that the homomorphic
evaluation of PBinBoot induces a small error term ε3. Item 3 states that PBinBoot

is an accurate approximation of fBinBoot on the relevant domain. We refer the
reader to [CHK+18a] for more details.

By carefully crafting the CKKS moduli chain, it can be arranged that the
bootstrapping error bounds B2, B3 and Bappr are all small compared to the
maximum allowed value of ∥ε∥∞.

3.3 Modulus engineering for BinBoot

Recall that in the usual EvalMod step of CKKS bootstrapping, the mod-q0 reduc-
tion is approximated by a polynomial near integer points only. This is because
any polynomial is continuous but modular reduction is not. This leads to set-
ting a gap between the base modulus q0 and the base scaling factor ∆0 so that
∆0 = ϵ ·q0 for a small ϵ > 0. The typical choice of ϵ is around 2−10, leading to 10
extra bits of modulus consumption per level during the CtS and EvalMod steps
compared to multiplications outside bootstrapping.

BinBoot uses a much smaller gap between q0 and ∆0, which means less mod-
ulus consumption during CtS and EvalMod. Keeping ∆0 and reducing the size
of q0 leads to a reduction in modulus consumption, while maintaining the mul-
tiplication precision the same as before. Since CtS and EvalMod are responsible
for most of the modulus consumption in bootstrapping, this saves a significant
amount of modulus. For example, given a conventional bootstrapping which re-
quires 10 depths in CtS and EvalMod and has 10-bit gap between q0 and ∆0,
using BinBoot allows to save (10−1)×10 = 90 bits of modulus. This estimate is
conservative (to a lesser or larger extent) compared to the data in [BMTPH21,
Table 5] and [BCC+22, Tables 6 & 7].

Further, as opposed to a typical CKKS scenario where one aims at real or
complex arithmetic with a significant precision of more than 20 bits, here we deal
with binary data, i.e., with a single relevant bit. The binary data comes with a
noise, inherited from the inaccuracy of the initial encoding and the homomorphic
computations. This noise keeps growing during the computations, but it can be
reduced with BinBoot (see Theorem 1) or an application of the h1 cleaning map
as explained in [DMPS24]. Overall, in terms of precision, we need 1 bit for the
binary data, and a few more bits to separate the binary data from the noise. The
precision is driven by the default and base scaling factors ∆ and ∆0, so we may
set them smaller than usually done for CKKS. To concretely set ∆ and ∆0, one
should consider the precision loss in each operation and the amount of precision
recovery during cleaning. For example, if there are 5 remaining multiplicative
depths after bootstrapping, and there is a loss of 1 bit of precision after each bi-
nary gate, and if we rely on BinBoot only for cleaning, about 10 bits of precision
after bootstrapping could suffice. As a binary gate consumes a single multiplica-
tive depth, there would remain a 5-bit margin between data and noise after
the 5 multiplicative levels are exhausted, and this margin would be essentially
doubled back to 10 bits thanks to the quadratic noise reduction of BinBoot. A
typical choice of ∆ in CKKS is around 40 bits (see, e.g., [BMTPH21, BCC+22])
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achieving a bit more than 20 bits of precision. With the 10-bit precision toy
example above, it means we can decrease the typical choice of ∆ by 10 bits for
binary computations. This saving is multiplied by the total number of levels. We
note that this improvement is independent from BinBoot and could be applied
to [DMPS24] as well.

The parameters we propose in Section 5 exploit the two improvements de-
scribed above.

3.4 Comparison with BLEACH

The experiments from [DMPS24] relied on conventional CKKS bootstrapping
from the HEaaN library [Cry22, version 3.1.4]. In the latter, the most relevant
parameters for our discussion are set as ∆ = 242, ∆0 = 245 and q0 ≈ 258. This
corresponds to the first parameter set of Table 3. Note that ∆ and ∆0 differ, as
Algorithm 1 is used for c > 1. We now analyze the effects of both improvements
described in Section 3.3.

In the second parameter set of Table 3, we consider keeping the same pre-
cision for computations (i.e., keeping the scaling factors ∆ = 242 and ∆0) but
reducing q0/∆0 from 213 down to 2. This leads to setting q0 ≈ 2∆0 = 246 instead
of 258, saving 12 bits of modulus for all levels corresponding to CtS and EvalMod
(additionally to the bottom level). While keeping the maximum key switching
modulus to be roughly the same, we can increase the available multiplication
levels by converting the modulus gain into extra multiplication levels. The new
parameter set leads to 13 levels for non-bootstrapping computations compared
to 9 levels in the parameter set used in [DMPS24]. Note that our bootstrap-
ping has inherent cleaning functionality but the one in [DMPS24] does not. The
cleaning functionality of BinBoot is quadratic, which is equivalent to the one
of the h1 map, whose evaluation consumes two multiplicative levels. Assuming
that we need exactly one cleaning between two consecutive bootstraps (which
is enabled by the high precision provided by large scaling factors), the multi-
plication depth available for actual computations in a bootstrapping cycle is 7
for [DMPS24] and 13 in our case, i.e., a gain of almost a factor 2. Since the gad-
get rank dnum is fixed and the numbers of moduli are similar in both parameter
sets, the bootstrapping performance should be very similar.

When we further optimize the moduli chain by reducing ∆, aiming at 10
bits of precision, we have 29 available multiplication levels outside of bootstrap-
ping. Although we would need more frequent use of cleaning functions, it is still
more efficient than the naive approach. For instance, one may clean after every
five multiplications, leading to using four h1(x) = 3x2 − 2x3 cleaning and 21
remaining levels for binary gate evaluations.

4 GateBoot: Combined Bootstrapping and Binary Gate

In this section, we propose an alternative bootstrapping algorithm for binary
data that evaluates a binary gate at the same time as it bootstraps.
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Table 3. Comparison with BLEACH [DMPS24] using concrete parameters. The ring
degree is denoted N , the largest considered modulus is log2(PQ), the total depth is L,
the number of levels for actual computations (outside of bootstrapping and clean-
ing) is denoted by depth, the key switching gadget rank is denoted by dnum (see,
e.g., [HK20]) and ∆, ∆0 and q0 are as in the text. The parameters rely on a ternary
secret with Hamming weight 192, and are almost 128 bit secure according to the lattice
estimator [APS15]. The ‘Proposed - naive’ parameter set keeps the same scaling fac-
tors as in [DMPS24], whereas the ‘Proposed - optimized’ parameter set also decreases
the precision. In the second table, the ‘log2(q)’ columns contain the list of bit-sizes of
the primes in the moduli chain, split according to their use. Mult corresponds to the
non-bootstrapping levels. The ‘log2(p)’ column contains the list of primes’ bit-sizes for
the auxiliary moduli used in key switching. The format X × Y in an entry means that
there are X primes of Y bits each.

Parameter set N log2(QP ) L dnum depth ∆ ∆0 q0
HEaaN FGb [DMPS24, Cry22]

216
1555 24 5 7 242 245 258

Proposed - naive 1546 28 5 13 242 245 246

Proposed - optimized 1550 44 5 21 228 233 234

Parameter set
log2(q) log2(p)Base StC Mult EvalMod CtS

HEaaN FGb [DMPS24, Cry22] 58 42× 3 42× 9 58× 9 58× 3 59× 3 + 60× 2

Proposed - naive 46 42× 3 42× 13 46× 9 46× 3 46× 6

Proposed - optimized 34 30× 2 26× 29 34× 9 30× 3 34× 9

4.1 Description of GateBoot

Suppose we have two ciphertexts ct1 and ct2 that encode binary data φ1,φ2 ∈
{0, 1}N/2, and that we want to evaluate a symmetric binary gate G (e.g., NAND)
in a SIMD manner on φ1 and φ2. Assume that ct1 and ct2 are at the last level
before bootstrapping, i.e., they are defined modulo q. We could be using BinBoot
on both and then evaluate gate G with a degree-1 polynomial in each variable
as proposed in [DMPS24].

GateBoot (Algorithm 3) follows a different blueprint. It first adds the two ci-
phertexts ct1 and ct2 before bootstrapping, so that the resulting ciphertext ctadd
decrypts to φ1 + φ2 ∈ {0, 1, 2}N/2. It is important that the addition on the
plaintexts is performed over the integers rather than modulo 2 not to lose infor-
mation. The rationale behind this step is the same as in DM/CGGI: the output
of G on x1, x2 ∈ {0, 1} can be expressed as a function of x1 + x2 ∈ {0, 1, 2},
since G is symmetric. As we are considering only ternary vectors at the bottom
level, we may set q0 = 3∆0. Note that DM/CGGI usually relies on a power-of-2
ratio rather than a ratio set to 3. We prefer the factor 3 as it provides equally
spaced relevant real numbers modulo 1 (namely 0, 1/3 and 2/3), hence allowing
to tolerate a slightly higher amount of noise.

Steps 2 and 3 of GateBoot are identical to Steps 1 and 2 of BinBoot. They
consist in running StC, ModRaise, CtS and extracting the real parts of the slots.
This results in ct′′ that contains (φ1 + φ2 + ε)/3 + I in its slots, for some
small-magnitude ε ∈ RN/2 and some small-magnitude integer vector I ∈ ZN/2.
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Step 4 consists in homomorphically evaluating a trigonometric function fG that
removes I and sends φ1+φ2 toG

⊙(φ1,φ2). As in conventional CKKS bootstrap-
ping and in BinBoot, it is in fact a polynomial PG that is being homomorphically
evaluated, where PG is an approximation of the trigonometric function fG. The
approximation is required to be accurate for the values of interest, i.e., near x+I
for x close to 0, 1/3 or 2/3 and I small. In short, Step 4 clears the period and
evaluates the (rest of the) gate simultaneously.

Algorithm 3: GateBootG for a symmetric binary gate G

Setting: q0 = 3∆0.
Input : cti = Encsk(φi + εi) ∈ R2

q for i = 1, 2 with φi ∈ {0, 1}N/2 and
∥εi∥∞ ≪ 1.

Output: ctout ∈ R2
Q.

1 ctadd ← ct1 + ct2
2 ct′ ← CtS ◦ModRaise ◦ StC(ctadd)
3 ct′′ ← (conj(ct′) + ct′)/2
4 ctout ← EvalfG(ct′′), with fG as in Table 4
5 return ctout

It remains to find trigonometric functions fG with period 1 such that fG((x1+
x2)/3) = G(x1, x2) for all x1, x2 ∈ {0, 1, 2} and all symmetric binary gates G.
Functions for the six nontrivial symmetric binary gates are given in Table 4. For
example, consider the NAND gate:

if x0 = x1 = 0, then x0 + x1 = 0 and fNAND(0) = 1 = NAND(0, 0);

if x0 = 1, x1 = 0, then x0 + x1 = 1 and fNAND(1/3) = 1 = NAND(1, 0);

if x0 = x1 = 1, then x0 + x1 = 2 and fNAND(2/3) = 0 = NAND(1, 1).

The graphs of these functions are plotted in Figure 3.

Table 4. The trigonometric functions used for the nontrivial symmetric binary gates.

Gate G fG(x)

AND 1
3

(
1− 2 sin(2πx+ π

6
)
)

OR 2
3
(1− cos(2πx))

XOR 1
3

(
1 + 2 sin(2πx− π

6
)
)

NAND 2
3

(
1 + sin(2πx+ π

6
)
)

NOR 1
3
(1 + 2 cos(2πx))

XNOR 2
3

(
1− sin(2πx− π

6
)
)

4.2 Correctness of GateBoot

Unfortunately, the functions from Table 4 do not have a noise cleaning function-
ality like fBinBoot (see Lemma 1). Each function evaluates only one relevant input
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Fig. 3. Graphs of fAND, fOR, fXOR, fNAND, fNOR and fXNOR used in GateBoot.

(out of three) in a local extremum. If gates are being evaluated on random in-
puts, then some cleaning occurs in statistical sense, but this property is not easy
to exploit. To clean the noise, one may additionally evaluate a noise cleaning
function such as h1. Alternatively, we could have chosen period-1 trigonometric
functions fG that have local extrema in 0, 1/3 and 2/3. However, they become
more complex and lead to deeper evaluation circuits, and we could not find any
advantage of this approach compared to applying h1 after evaluating the func-
tions from Table 4. In the lemma below, we analyze the noise growth incurred
by evaluating the functions from Table 4.

Lemma 2. Let G be any nontrivial symmetric binary gate and fG : R → R as
in Table 4. Let ε be a real number satisfying |ε| ≤ 1, φ1, φ2 ∈ {0, 1} and I ∈ Z.
Then, we have:

∣∣∣∣fG (
φ1 + φ2 + ε

3
+ I

)
−G(φ1, φ2)

∣∣∣∣ ≤ 2
√
3π

9
|ε|+ 2π2

27
|ε|2 .

Proof. By symmetry of the fG’s, it suffices to prove the result for a single non-
trivial symmetric binary gate. We choose G = NAND. Let φ = φ1 + φ2. Since
the φ = 0 and φ = 1 cases are symmetric, we only consider the φ = 0 and φ = 2
cases.

◦ Assume that φ = 0. We must have φ1 = φ2 = 0 and NAND(φ1, φ2) = 1.
Hence, we have, using the triangle inequality and the fact that the inequality
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| sin(x)| ≤ |x| holds for all x ∈ R:∣∣∣∣fNAND (
φ1 + φ2 + ε

3
+ I

)
− NAND(φ1, φ2)

∣∣∣∣
=

1

3

∣∣∣∣2 sin(2πε

3
+

π

6

)
− 1

∣∣∣∣
=

1

3

∣∣∣∣√3 sin

(
2πε

3

)
+ cos

(
2πε

3

)
− 1

∣∣∣∣
=

1

3

∣∣∣∣√3 sin

(
2πε

3

)
− 2 sin2

(πε
3

)∣∣∣∣
≤

√
3

3

∣∣∣∣sin(2πε

3

)∣∣∣∣+ 2

3
sin2

(πε
3

)
≤ 2

√
3π

9
|ε|+ 2π2

27
|ε|2.

◦ Assume that φ = 2. We must have φ1 = φ2 = 1 and NAND(φ1, φ2) = 0.
Hence, we have ∣∣∣∣fNAND (

φ1 + φ2 + ε

3
+ I

)
− NAND(φ1, φ2)

∣∣∣∣
=

2

3

∣∣∣∣1 + sin

(
2πε

3
− π

2

)∣∣∣∣
=

2

3

∣∣∣∣1− cos

(
2πε

3

)∣∣∣∣
=

4

3
sin2

(πε
3

)
≤ 4π2

27
|ε|2 ≤ 2

√
3π

9
|ε|+ 2π2

27
|ε|2.

In the last inequality, we used the assumption that |ε| ≤ 1.

This completes the proof. ⊓⊔

Using Lemma 2, we can proceed to the main result on GateBoot.

Theorem 2 (Gate bootstrapping). Consider an execution of GateBoot (as
defined in Algorithm 3) for a nontrivial symmetric binary gate G. Take two
input ciphertexts cti = Encsk(φi + εi) with φi ∈ {0, 1}N/2 and εi ∈ RN/2 such
that ∥εi∥∞ ≤ B for i ∈ {1, 2} and some B. Let φ = φ1 + φ2 ∈ {0, 1, 2}N/2

and ε = ε1 + ε2 ∈ RN/2. Assume that:

1. there exist B3 and BI such that ct′′ = Encsk((φ+ε+ε3)/3+I) for some ε3 ∈
RN/2 and I ∈ ZN/2 with ∥ε3∥∞ ≤ B3 and ∥I∥∞ ≤ BI;

2. there exist B4 and PG ∈ R[x] such that ctout = Encsk(P
⊙
G ((φ + ε + ε3)/3 +

I) + ε4) for some ε4 ∈ RN/2 with ∥ε4∥∞ ≤ B4;
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3. there exists Bappr such that for all x with min(|x|, |x−1/3|, |x−2/3|) ≤ (2B+
B3)/3 and all integer I with |I| ≤ BI, we have |PG(x+I)−fG(x+I)| ≤ Bappr.

Then we have ctout = Encsk(G
⊙(φ1,φ2) + εout) with

∥εout∥∞ ≤ 2
√
3π

9
(2∥ε∥∞ +B3) +

2π2

27
(2∥ε∥∞ +B3)

2
+B4 +Bappr.

Proof. By using the assumptions, we obtain that:

ctout = Encsk

(
f⊙
G

(
φ+ ε+ ε3

3
+ I

)
+ ε4 + εappr

)
,

for some ε3, ε4, εappr and I satisfying ∥ε3∥∞ ≤ B2, ∥ε4∥∞ ≤ B3, ∥εappr∥∞ ≤ Bappr

and ∥I∥∞ ≤ BI. Now, Lemma 2 gives that∥∥∥∥f⊙
G

(
φ+ ε+ ε2

3
+ I

)
−G⊙(φ1,φ2)

∥∥∥∥
∞

≤ 2
√
3π

9
∥ε+ ε3∥∞ +

2π2

27
∥ε+ ε3∥2∞ .

To complete the proof, it suffices to define:

εout =

(
f⊙
G

(
φ+ ε+ ε3

3
+ I

)
−G⊙(φ1,φ2)

)
+ ε4 + εappr . ⊓⊔

As in Theorem 1, the bootstrapping error bounds B3, B4 and Bappr can all
be made small compared to the maximum allowed value B of ∥ε∥∞.

4.3 Comparing GateBoot and BinBoot

Since they rely on similar period-1 trigonometric functions, GateBoot and BinBoot
consume approximately the same amount of modulus during bootstrapping. On
the one hand, GateBoot evaluates a gate at the same time as it bootstraps,
whereas BinBoot does not and would require one extra level to evaluate the gate.
On the other hand, BinBoot has an inherent cleaning functionality which is worth
two multiplicative depths: for the same cleaning functionality, the GateBoot ap-
proach would proceed by evaluating h1, which consumes two levels. Since at
least one cleaning is typically required between any two bootstraps, the BinBoot
approach may be considered to outperform the GateBoot approach by a mul-
tiplicative depth of 2 − 1 = 1. In the full version of this work, we introduce a
variant of GateBoot with cleaning functionality, and provide a detailed compar-
ison between this variant, GateBoot and BinBoot.

Oppositely, when the homomorphic parameters are set small to lower la-
tency, then BinBoot may be over-cleaning compared to the number of gates
performed between two consecutive bootstraps. In the GateBoot approach, one
would perform cleaning only for a fraction of the bootstrapping cycles. Another
context favorable to GateBoot is if we start from LWE-format ciphertexts at the
lowest level, as in [BCK+23]. The latter reference contains several motivating
applications for storing data in such encryption format. Since GateBoot starts
by adding two ciphertexts, it requires only one bootstrap, while the BinBoot
approach would require two.
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5 Experiments

We now present experimental results that showcase the efficiency of the boot-
strapping methods proposed in Sections 3 and 4.

When constructing parameters for BGV, BFV and CKKS, a possibility is to
choose the smallest ring degree possible to minimize the latency, and another
one is to choose a proper ring degree to maximize the throughput. As a certain
amount of modulus is necessary for bootstrapping regardless of the ring degree
and this amount does not grow very fast with the ring degree, the ring degree
for optimizing latency is typically quite suboptimal for throughput. Section 5.1
focuses on low degree to achieve low latency, whereas Section 5.2 uses a larger
degree to increase throughput.

Note that even in the case of low latency, we still consider full-slot (real-
valued) bootstrapping. One may use a sparsely packed approach [CHK+18a]
for minimizing latency and ring degree even more, but we stick to full SIMD
computations in order to retain the main advantage of the RLWE-format fully
homomorphic encryption schemes. As far as we are aware of, our parameters from
Section 5.1 are the first to allow full-slot bootstrapping with ring degree N = 214.

Our implementations are built upon the C++ HEaaN library [Cry22]. The
experiments have been conducted single-threaded on an Intel Xeon Gold 6242
at 2.8GHz with 503GiB of RAM running Linux. All the parameters achieve
around 128 bits of security according to the lattice estimator [APS15]. We stress
that our code is not optimized: its purpose is to highlight the performance of
BinBoot and GateBoot.

The precision is defined as − log2 ∥e∥∞ where e ∈ CN/2 is a bootstrapping
error vector. More concretely, if ct ∈ R2

Q,N is the ciphertext after bootstrapping,
sk is the secret key and b is the corresponding plaintext vector of bits, then
e = Dcd(ct · sk) − b. When it is computed for a given experiment, we consider
the maximum over 100 samples.

5.1 Low latency

Thanks to the reduced modulus consumption, our low latency parameters are
for ring degree N = 214. Table 5 outlines the proposed parameter set and its
performance. It takes 1.36s and 1.39s for BinBoot and GateBoot, respectively, for
a real full-slot ciphertext (i.e., with 213 slots). Bootstrapping precision is 9.6 bits
and 7.7 bits for BinBoot and GateBoot, respectively. We note that the parameter
set provides 2 multiplicative depths after bootstrapping.

We compare our results with the state-of-the-art CGGI gate bootstrapping
[LMSS23, CGGI16b] to see at which number of LWE ciphertexts our method
starts to perform better than CGGI. We borrowed the bootstrapping time re-
sults from [LMSS23, Tab. 5] which used Intel(R) i5-12400 at 2.5GHz CPU and
8GB of RAM to measure time. Note that [LMSS23] is based on a novel security
assumption, namely LWE with a block binary secret, whereas [CGGI16b] relies
on LWE with binary secrets. As shown in Table 6, the fastest CGGI-like imple-
mentation takes 6.49ms for a single gate bootstrapping which is 214 times faster
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Table 5. Description and performance of the small parameter set Param14, designed
to lower latency. Here h and h̃ respectively denote the dense and sparse Hamming
weights [BTPH22], and TBinBoot and PBinBoot (resp. TGateBoot and PGateBoot) denote the
run-time and output precision for BinBoot (resp. GateBoot). The other columns are as
in Table 3.

N (h, h̃) log2(QP ) dnum depth TBinBoot TGateBoot PBinBoot PGateBoot

Param14 214 (256, 32) 424 13 2 1.36s 1.39s 9.6 7.7

log2(q) log2(p)Base StC Mult EvalMod CtS

32 28 26× 2 32× 7 28× 2 32

than our full slot bootstrapping. In other words, when evaluating at least 214
gates in parallel, our method becomes preferable.

Table 6. Comparison with state-of-the-art CGGI gate bootstrapping. The column Tboot

contains the bootstrapping times. The timings from the last two rows are borrowed
from [LMSS23].

Tboot TGateBoot/Tboot

GateBoot-Param14 1.39s 1

[LMSS23] 6.49ms 214

[CGGI16b] 10.5ms 132

Recall that the full number of real slots in our parameter is 213 = 8192 and
we can evaluate two additional gates after bootstrapping using the remaining
modulus budget. In addition, we may accelerate the bootstrapping algorithm
when we use only a small number of slots by evaluating sparser matrices in StC
and CtS. To maintain some generality, we focused on full slots in the comparison
although there is some room for optimization.

We may also compare our results with those of [DMPS24]. This work relied
on the FGb parameter set of the HEaaN library [Cry22], which takes 9.1s for
single bootstrap of a real full-slot ciphertext (with our computing environment).
When we directly compare the latency with ours, BinBoot is 6.55 times faster.

5.2 High throughput

To optimize throughput, we consider ring degree N = 216. Since bootstrapping
can be set to consume the same amount of modulus as for N = 214, the through-
put improves as we increase the ring degree. However, larger ring degree leads to
larger switching key size and we often want key size to remain sufficiently small.
In addition, the throughput increase is no longer significant when we reach cer-
tain ring degrees. Our choice of ring degree N = 216 is determined after taking
these aspects into account. The parameter set is given in Table 7. BinBoot and
GateBoot show slightly worse precision (8.53 bits and 6.61 bits, respectively)
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than for Param14. As opposed to Section 5.1, we considered complex full-slot
ciphertexts (i.e., with 216 slots), to achieve higher throughput.

Table 7. Description and performance of the large parameter set Param16, designed
to increase throughput. The table columns are as in Tables 3 and 5.

N (h, h̃) log2(QP ) dnum depth TBinBoot TGateBoot PBinBoot PGateBoot

Param16 216 (256, 32) 1598 3 28 23.1s 23.3s 8.53 6.61

log2(q) log2(p)Base StC Mult EvalMod CtS

32 32 30× 28 32× 7 32× 2 58× 7

We now consider the amortized time it takes to evaluate a single gate, by
dividing the bootstrapping time with the available depth and the number of slots.
Note that we need some cleaning between consecutive bootstrapping cycles in
order to maintain precision. Concretely, we expect 1 cleaning step after every 4
(resp. 3) gate evaluations for BinBoot (resp. GateBoot), so we count the number
of available levels as 28− 4 · 2 = 20 (resp. 28 + 1− 6 · 2 = 17). Overall, BinBoot
(resp. GateBoot) evaluates a single gate in 17.6µs (resp. 20.9µs), in an amortized
sense. Compared to [LMSS23] and [CGGI16b], BinBoot is 369x and 597x faster
respectively, as shown in Table 1.7

We now compare the performance with [DMPS24]. In the latter work, a
cleaning step is performed after every gate, leading to only 3 gate evaluations
per bootstrapping cycle. However, since the precision loss is small after each
gate, one can reduce the number of cleaning steps greatly, down to only one
per bootstrapping cycle. Further, one can use complex bootstrapping instead of
real bootstrapping to increase throughput. We compare our results with both
the naive and the improved versions of [DMPS24]. The naive (resp. the im-
proved) version evaluates a single gate in 92.6µs (resp. 27.7µs), which is 5.26x
(resp. 1.57x) slower than our BinBoot. Note that the runtimes for [DMPS24] are
measured using our computing environment, using the HEaaN library [Cry22].

5.3 Improving performance further

In principle, if we perform unit operations like Number Theoretic Transform
(NTT) on different moduli chains with roughly the same overal bit-size (defined
as the bit-size of the product of moduli in the moduli chain), then the run-time
should be almost the same. Our new bootstrapping algorithms specific for bi-
nary data together with modulus engineering brings significant gain in terms of
modulus consumption, which should be converted to performance improvement.
For instance in the comparison with [DMPS24] in Section 5.2, the expected per-
formance improvement is roughly by a factor 3 because we have approximately

7 For the sake of comparison, BinBoot for Param14 and real bootstrapping (optimized
for latency), takes 84.8µs per gate which is 4.82x slower than Param16 with complex
bootstrapping (optimized for throughput).
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three times more multiplicative depths with moduli chains of similar overall bit-
sizes. However, our improvement is by a factor 1.57. This is mainly because the
modulus gain was not completely converted to a performance improvement. In
current RNS implementations, all moduli in a modulus chain are viewed as a 64-
bit word, as long as they have fewer than 64 bits. Our moduli are much smaller,
but this gain is lost.

We suggest a strategy to overcome this issue, which combines several con-
secutive rescaling units into a single element in the moduli chain. Observe that
NTT only requires the existence of primitive 2N -th root of unity and each el-
ement in the moduli chain needs not be a prime. Therefore, we may combine
several consecutive rescaling units (usually primes) into a single modulus which
acts as a running modulus for NTT and other modular operations. For exam-
ple, since most of the primes in the parameter sets of Sections 5.1 and 5.2 have
under 32 bits, we may optimize them so that they can be batched by pairs to
fit in 64-bit machine words and hence reduce the cost of modular operations by
almost a factor 2.8 The only major difficulty comes from defining a compatible
rescaling operation. For this purpose, we may use a conversion from modulo qq′

to modulo q (from modulo
∏

0≤i≤k qi to modulo
∏

0≤i<k qi, in general) to solve
the problem. We leave it as a future work.

6 Bootstrapping DM/CGGI Ciphertexts with CKKS

DM/CGGI is more convenient when performing independent operations on bits,
and CKKS becomes interesting when there is sufficient parallelism thanks to
its support of SIMD computations. For evaluating circuits with heterogeneous
amounts of parallelism at different circuit locations, it can be interesting to
efficiently switch from one format to the other.

6.1 Conversions

Ring packing enables to transform many LWE-format ciphertexts (e.g., DM/
CGGI ciphertexts) into a RLWE-format ciphertext. Our work is fully compat-
ible with HERMES [BCK+23], the state-of-the-art ring packing method. First,
HERMES performs ring packing at the very bottom of the moduli chain. Second,
BinBoot and GateBoot have analogues of the HalfBTS procedure from [CHK+21]
used in [BCK+23]. One may replace HalfBTS by HalfBinBoot (Algorithm 2 with-
out CtS and starting at the bottom level) or HalfGateBoot (defined similarly).
Third, HalfBinBoot and HalfGateBoot take as inputs ciphertexts that contain the
plaintext binary data in their most significant bits. This compatibility provides
an alternative bootstrapping approach for DM/CGGI ciphertexts, consisting in
running HERMES and then either HalfBinBoot or HalfGateBoot.

8 One may need ≤ 30 bits primes for lazy modular reductions (see [Har14]). To be
compatible with this technique, we may use slightly smaller primes for Param14 and
Param16 for Tables 5 and 7.
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Going from RLWE-format to LWE-format is relatively simple. We may ex-
tract LWE ciphertexts from the bottom-level coefficients-encoded RLWE cipher-
texts by selecting and reordering the coefficients, converting a degree-N RLWE
ciphertext into N LWE ciphertexts. One may also use key switching and modu-
lus switching to make the dimension and modulus compatible with the desired
DM/CGGI format, respectively. If there is a noise bound requirement, then the
noise-cleaning functionality in BinBoot or cleaning functions can be used to lower
the noise sufficiently before conversion.

6.2 Experiments

To experimentally demonstrate this compatibility of formats, we gate-boot-
strapped FHEW (i.e., DM) ciphertexts of the OpenFHE library [BBB+22] with
GateBoot, implemented with the HEaaN library [Cry22]. Since the FHEW ci-
phertexts have q0 = ∆0/4 (as opposed to our default choice of q0 = ∆0/3),
we used a slightly modified version of GateBoot whose underlying trigonomet-
ric function sends 0, 1/4 and 1/2 to 1, 1 and 0, respectively (we considered the
NAND gate). Here 0, 1/4 and 1/2 refer to the data points of interest after adding
pairs of FHEW ciphertexts. We then run HERMES and HalfGateBoot to complete
the bootstrapping. For HERMES, we used the simplest version from [BCK+23],
relying on the column method [HS14] and ring switching [GHPS13].

In the experiment, we used the Param14 parameter set from Table 6, with
full-slot complex bootstrapping to evaluate 214 gates at once, and the STD128 pa-
rameter set for the OpenFHE side. Since we have (q0, ∆0) = (210, 28) in STD128
and (q0, ∆0) ≈ (232, 231) in Param14, we modulus-switched by multiplying (resp.
dividing and rounding) by a properly chosen integer to convert LWE ciphertexts
from one side to the other. HERMES and HalfGateBoot respectively consume
157ms and 1.54s.

We compared this timing with state-of-the-art CGGI gate-bootstrapping ap-
proaches [LMSS23, CGGI16b], in Table 2. Our method becomes favorable com-
pared to [LMSS23] (resp. [CGGI16b]) once the number of gates to be evaluated
exceeds 262 (resp. 162).
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A Additional bootstrapping algorithms

In this appendix, we describe GateBoot′, a variant of GateBoot with cleaning
functionality. We then provide a comparison between GateBoot′, GateBoot and
BinBoot. Finally, we give extensions to more complex setups, and alternative
GateBoot functions for XOR and XNOR.

A.1 GateBoot′: combined bootstrap, gate and clean

As can be observed from the graphs of Figure 3, the chosen functions do not
enjoy a cleaning functionality similar to fBinBoot: the derivatives at the points of
interest 0, 1/3 and 2/3 are not always vanishing. We now consider more complex
functions that correctly implement the six nontrivial binary gates and enjoy van-
ishing derivatives at the points of interest. The functions are given in Table 8 and
plotted in Figure 4. We call GateBoot′ the adaptation of GateBoot (Algorithm 3)
to those functions. Lemma 2 and Theorem 2 can be adapted to GateBoot′, with a
quadratic error decrease for the function evaluation inherited from the vanishing
derivative (as in Lemma 1 and Theorem 1).

Table 8. Trigonometric functions used for GateBoot′.

Gate G gG(x)

AND 1
3
+ 4

9
cos(2πx+ 2π

3
) + 2

9
cos(4πx− 2π

3
)

OR 2
3
− 4

9
cos(2πx)− 2

9
cos(4πx)

XOR 1
3
+ 4

9
cos(2πx− 2π

3
) + 2

9
cos(4πx+ 2π

3
)

NAND 2
3
− 4

9
cos(2πx+ 2π

3
)− 2

9
cos(4πx− 2π

3
)

NOR 1
3
+ 4

9
cos(2πx) + 2

9
cos(4πx)

XNOR 2
3
− 4

9
cos(2πx− 2π

3
)− 2

9
cos(4πx+ 2π

3
)

Lemma 3. Let G be any nontrivial symmetric binary gate and gG : R → R as
in Table 8. Let ε be a real number satisfying |ε| ≤ 1, φ1, φ2 ∈ {0, 1} and I ∈ Z.
Then, we have: ∣∣∣∣gG (

φ1 + φ2 + ε

3
+ I

)
−G(φ1, φ2)

∣∣∣∣ ≤ π2

3
|ε|2.

Proof. The proof technique follows the same format as that of Lemma 2.

By symmetry of the gG’s, it suffices to prove the result for a single nontrivial
symmetric binary gate. We choose G = NAND. Let φ = φ1+φ2. Since the φ = 0
and φ = 1 cases are symmetric, we only consider the φ = 0 and φ = 2 cases.

◦ Assume that φ = 0. We must have φ1 = φ2 = 0 and NAND(φ1, φ2) = 1.
Hence, we have, using the triangle inequality and the facts that the inequality
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Fig. 4. Graphs of gAND, gOR, gXOR, gNAND, gNOR and gXNOR used in GateBoot′.

| sin(x)| ≤ |x| holds for all x ∈ R:

∣∣∣∣ gNAND

(
φ1 + φ2 + ε

3
+ I

)
− NAND(φ1, φ2)

∣∣∣∣
=

1

3

∣∣∣∣−4

3
cos

(2πε+ 2π

3

)
− 2

3
cos

(4πε− 2π

3

)
− 1

∣∣∣∣
=

1

3

∣∣∣∣− 4

3

(
cos

(2πε
3

)
cos

(2π
3

)
− sin

(2πε
3

)
sin

(2π
3

))
−2

3

(
cos

(4πε
3

)
cos

(2π
3

)
+ sin

(4πε
3

)
sin

(2π
3

))
− 1

∣∣∣∣
=

1

3

∣∣∣∣13
(
2

(
cos

(2πε
3

)
− 1

)
+

(
cos

(4πε
3

)
− 1

))
−
√
3

3

(
sin

(4πε
3

)
− 2 sin

(2πε
3

))∣∣∣∣
≤ 4

9

∣∣∣∣sin2 (πε3 )∣∣∣∣+ 2

9

∣∣∣∣sin2 (2πε3 )∣∣∣∣+ 2
√
3

9

∣∣∣∣sin(2πε3 )
·
(
1− cos

(2πε
3

))∣∣∣∣
≤ 4

9

∣∣∣∣sin2 (πε3 )∣∣∣∣+ 2

9

∣∣∣∣sin2 (2πε3 )∣∣∣∣+ 4
√
3

9

∣∣∣∣sin(2πε3 )∣∣∣∣ · ∣∣∣∣sin2 (πε3 )∣∣∣∣
≤ π2

3
|ε|2.

In the last inequality, we used the assumption that |ε| ≤ 1.
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◦ Assume that φ = 2. We must have φ1 = φ2 = 1 and NAND(φ1, φ2) = 0.
Hence, we have ∣∣∣∣gNAND (

φ1 + φ2 + ε

3
+ I

)
− NAND(φ1, φ2)

∣∣∣∣
=

1

9

∣∣∣∣−4 cos
(2πε

3

)
− 2 cos

(4πε
3

)
+ 6

∣∣∣∣
≤ 8

9

∣∣∣sin2 (πε
3

)∣∣∣+ 4

9

∣∣∣∣sin2 (2πε3 )∣∣∣∣
≤ π2

3
|ε|2.

This completes the proof. ⊓⊔

The following is an adaptation of Theorem 2 to GateBoot′. A proof can be
obtained by using Lemma 3 rather than Lemma 2 in the proof of Theorem 2.

Theorem 3 (Gate bootstrapping with cleaning). Consider an execution
of GateBoot′ for a nontrivial symmetric binary gate G (i.e., Algorithm 3 but
with fG replaced by gG). Take two input ciphertexts cti = Encsk(φi + εi) with
φi ∈ {0, 1}N/2 and εi ∈ RN/2 such that ∥εi∥∞ ≤ B for i ∈ {1, 2} and some B.
Let φ = φ1 +φ2 ∈ {0, 1, 2}N/2 and ε = ε1 + ε2 ∈ RN/2. Assume that:

1. there exist B3 and BI such that ct′′ = Encsk((φ+ε+ε3)/3+I) for some ε3 ∈
RN/2 and I ∈ ZN/2 with ∥ε3∥∞ ≤ B3 and ∥I∥∞ ≤ BI;

2. there exist B4 and PG ∈ R[x] such that ctout = Encsk(P
⊙
G ((φ + ε + ε3)/3 +

I) + ε4) for some ε4 ∈ RN/2 with ∥ε4∥∞ ≤ B4;
3. there exists Bappr such that for all x with min(|x|, |x−1/3|, |x−2/3|) ≤ (2B+

B3)/3 and all integer I with |I| ≤ BI, we have |PG(x+I)−fG(x+I)| ≤ Bappr.

Then we have ctout = Encsk(G
⊙(φ1,φ2) + εout) with

∥εout∥∞ ≤ π2

3
(2∥ε∥∞ +B3)

2
+B4 +Bappr.

A.2 Efficiency aspects

As a preliminary remark, we observe that the modulus engineering techniques
described in Section 3.3 for BinBoot are also applicable in the context of GateBoot
and GateBoot′. Below, we focus on comparing GateBoot, GateBoot′ and BinBoot.

We saw in Section 4.3 that BinBoot can be considered to outperform GateBoot
by 1 multiplicative depth. Still from the perspective of modulus consumption,
GateBoot′ is as efficient as BinBoot. As the gG’s functions involve trigonometric
functions of period half of those of the fG’s, the polynomials approximating them
are expected to be of degrees that are twice higher, leading to an additional
depth consumption compared to GateBoot. However, the gG’s enjoy a cleaning
functionality, which saves an application of the h1 map, which is worth two
levels. Overall, this is equivalent to the BinBoot approach.
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Given the above, one option may be better than the other ones depending on
the context. Let us assume we want to homomorphically evaluate many SIMD
gates. In that case, GateBoot′ is superior to GateBoot. We now consider BinBoot.
At first sight, it may seem that the BinBoot approach is more costly than the
GateBoot and GateBoot′ approaches: BinBoot seems to require to bootstrap both
inputs before applying a gate on them, whereas the other approaches perform an
addition at a low level (which has a negligible cost) followed by a single combined
bootstrap and gate evaluation. As bootstrapping is costly compared to other
operations, this seems to suggest that GateBoot and GateBoot′ are preferable
to BinBoot. However, we can consider that the BinBoot approach consumes one
more level than GateBoot, to perform a gate before running BinBoot rather
than after. With this perspective, we see that BinBoot has the same cost and
same depth consumption as GateBoot′. Note that BinBoot is more flexible than
GateBoot′, as it allows easier reuse of ciphertexts.

As seen in Section 4.3, GateBoot can outperform BinBoot when the homomor-
phic parameters are set small to lower latency, as BinBoot may be over-cleaning.
In that regime, GateBoot′ may also be over-cleaning and hence be less interesting
than GateBoot.

If we start from LWE-format ciphertexts at the lowest level (as in [BCK+23]),
GateBoot′ shares the advantage of GateBoot over BinBoot, as it requires only one
bootstrap instead of two. Further, the above solution consisting in applying the
gate before bootstrapping does not work here: there is not enough modulus to
convert to slot-encoded RLWE-format ciphertexts, perform the gate and apply
StC before bootstrapping. Still in the same scenario, GateBoot′ can outperform
GateBoot when the LWE-format ciphertexts have large errors, as it cleans right
away.

We now consider the scenario of evaluating several gates on the same inputs,
similarly to [CIM19] in the case of DM/CGGI. In the case of BinBoot, one can
bootstrap two input ciphertexts to place them at a higher multiplication level,
and then evaluate whichever gates. For GateBoot (and GateBoot′), Steps 1, 2
and 3 of Algorithm 3 are independent of the gate to be evaluated. We now
consider Step 4, i.e., the homomorphic evaluation of an approximation to fG.
This step depends on the gate G that one wants to evaluate. However, observe
that all the functions listed in Tables 4 and 8 are respectively of the form

x 7→ a+ b · cos(2πx+ c) and 7→ a+ b · cos(2πx+ c) + d · cos(4πx+ e) ,

for some a, b, c, d, e ∈ R. Since cos(2πx + c) can be written as a linear combi-
nation of sin(2πx) and cos(2πx), one can first evaluate these quantities (which
are common to all gates) and then evaluate any fG from Table 4 by performing
homomorphic multiplications by constants and homomorphic additions. This
extends to GateBoot′. Depending on the bootstrapping algorithm, the multi-
plications by constants may consume additional modulus compared to running
GateBoot and GateBoot′ for a single gate, showing an advantage of BinBoot.
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A.3 Extensions

We now investigate how to extend gate bootstrapping as described in Algo-
rithm 3 to more complex setups.

Assume that we want to evaluate (in a SIMD manner) a multivariate function

C : X1 × . . .×Xk → Y

where the Xi’s and Y are contained in R and finite with possibly different sizes.
We rewrite C as C = fC ◦ fadd, such that:

• the function fadd has domain X1× . . .×Xk and range some finite X ⊂ [0, 1),
and fC has domain X and range Y ;

• the function fadd is of the form fadd(x1, . . . , xk) =
∑

i(∆i/q)xi mod 1 for
some scaling factors ∆i;

• the function fC is 1-periodic;
• it may optionally be required to have a derivative that vanishes over X to

provide a cleaning functionality.

For the six nontrivial symmetric binary gates, we took fadd(x1, x2) = (x1+x2)/3,
and set fG as in Table 4. In Appendix A.4, we show that a different choice can
be made for XOR and XNOR. More generally, the function fC can be obtained
by trigonometric interpolation: we may look for a function of the form

x 7→ a0 +

ℓ∑
j=1

aj · cos(2jπx) +
ℓ∑

j=1

bj · sin(2jπx) ,

for some aj ’s and bj ’s in R and some integer ℓ. A solution exists if 2ℓ+1 ≥ |X|. To
homomorphically evaluate the gate, we proceed as follows: use multiplications by
constants and additions at a low level to implement fadd; run StC, ModRaise, CtS
and real part extraction; homomorphically evaluate a polynomial that closely
approximates fC for inputs of the form x + ε + I for x ∈ X, ε ≪ 1 and a
small-magnitude integer I.

As a first extension of symmetric binary gates, consider the asymmetric
binary gates G : {0, 1} × {0, 1} → {0, 1} with G(0, 1) ̸= G(1, 0). We may
set fadd(x1, x2) = x1/2 + x2/4, which is a bijection. The function fG can be ob-
tained by trigonometric interpolation. For example, if we consider the gate “x1 ≤
x2”, then we may set fG(x) =

3
4 + 1

2 cos(2πx)− 1
4 cos(4πx).

Taking a bijection and then using a trigonometric interpolation, is always
possible. However, it may be costly, as it results in a set X of size |X| = ∏

i |Xi|,
a complex trigonometric interpolation (i.e., with a large ℓ), a polynomial ap-
proximation of high degree and a deep homomorphic evaluation. One may then
aim at minimizing |X|. For example, consider the gate that takes three binary
inputs and outputs their majority. The default approach results in |X| = 8. How-
ever, one may observe that the majority is a function of the sum of the three
inputs in X = {0, 1, 2, 3}. Trigonometric interpolation then gives us fMAJ(x) =
1
2 (1−

√
2 cos(2πx− π

4 )), which passes through (0, 0), (1/4, 0), (1/2, 1) and (3/4, 1).
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A.4 Alternative GateBoot functions for XOR and XNOR

Below, we describe simpler bootstrap-gate-and-clean functions for XOR and XNOR.
For those two gates G, the value of G(x0, x1) is a function of x0+x1 mod 2 rather
than x0 + x1 over the integers (this is not the case for the remaining four sym-
metric nontrivial binary gates). We can then set ∆0 = q0/2, i.e., set the points
of interest as Z and 1/2 + Z, and define:

∀x ∈ R : hXOR(x) =
1

2
(1− cos(2πx)) and hXNOR(x) =

1

2
(1 + cos(2πx)) .

The graphs of these functions can be found in Figure 5, where it can be seen that
the derivatives vanish at the points of interest. However, in a large computation,
it may be cumbersome to have a choice of points of interest for XOR and XNOR,
and another one for the remaining four symmetric nontrivial binary gates.
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Fig. 5. Graphs of alternative choices hXOR and hXNOR for GateBoot with ∆0 = q0/2.


