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Abstract

Shaped prime moduli are often considered for use in elliptic curve
and isogeny-based cryptography to allow for faster modular reduction.
Here we focus on the most common choices for shaped primes that
have been suggested, that is pseudo-Mersenne, generalized Mersenne
and Montgomery-friendly primes. We consider how best to to exploit
these shapes for maximum efficiency, and provide an open source tool
to automatically generate, test and time working high-level language
finite-field code. Next we consider the advantage to be gained from im-
plementations that are written in assembly language and which exploit
special instructions, SIMD hardware if present, and the particularities
of the algorithm being implemented.

1 Introduction

In the early days of discrete log based cryptography over the finite field F,
an obvious idea was to use a prime p of a shape that allowed faster modular
reduction. However there was a concern that any useful special shape also
significantly weakened the discrete log problem, on which security depended.
The problem was that this discrete logarithm problem is subject to an “index
calculus” attack. And a useful shaped prime may allow a much faster index
calculus attack [22]. As bluntly stated in [20] “primes of a special form allow
easier computation of discrete logarithms”.

But this changed with the discovery of elliptic curve cryptography, as
in the case of an elliptic curve defined over a finite field there is no index
calculus attack (loosely speaking because while integers can be factored,
points on curves cannot). So a shaped modulus is perfectly acceptable, and
indeed widely used.

It is generally agreed that a Mersenne prime would be best for modular
reduction in this context — but with the exception of 21?7 — 1 and 2°2! — 1



they are rarely of an ideal size. So the next best idea would appear to be
a pseudo-Mersenne prime 2" — ¢ for some small odd ¢ > 1. And this is
how things would probably have progressed when it came to standardising
elliptic curve cryptography. Then a spanner was thrown into the works [3],
[6].

Richard Crandall was a prominent mathematician who, quickly realising
the potential of pseudo-Mersene primes, went ahead and patented them.
Which at the time generated a very negative reaction. The idea of patenting
numbers of a particular form seemed indefensible. In any case the patent
was never enforced, and is now completely irrelevant.

Nonetheless the patent application appeared at around the same time
as NIST was considering standardizing elliptic curves. And it had sufficient
chilling impact that NIST decided to look elsewhere for their primes. So they
settled instead on the definitely-not-patented generalised Mersenne primes
(sometimes referred to as Solinas primes, after NIST’s Jerome Solinas) of the
form 2™ — 2%+ 20 +2¢. . +1, ideally with a minimal number of intermediate
terms. For optimal performance a, b, c.. were chosen to be multiples of 32,
as in those days 32-bit architectures were dominant.

Once it was realised that Crandall’s patent was a dud, pseudo-Mersenne
primes were again preferred, famously in Bernstein’s curve25519 proposal
[7], itself subsequently standardized [30]. That might have been considered
the end of the matter, until Hamburg suggested the Goldilocks curve [26],
now also standardised in [30], and based on the generalised Mersenne prime
2448 _ 9224 _ 1 At around the same time an honourable effort was made to
introduce alternate improved standards [12] based on pseudo-Mersenne and
Montgomery-friendly primes, but these did not achieve much traction.

Which leaves the question still open — which shape is best? However
given that curve standards are by now well established, any further debate
is probably moot. We will have to work with the standards we have. But
having said that, if isogeny based cryptography ever becomes viable, there
will be a need in that context for some new standard curves, in which case it
might be appropriate to look again at the question of the ideal prime shape.

The latest version 1.3 of the well known TLS protocol supports the
use of the NIST256 (aka secp256rl, generalised Mersenne), NIST384 (aka
secp384rl, generalised Mersenne), NIST521 (aka secp521rl, Mersenne),
C25519 (pseudo-Mersenne) and C448 (generalised Mersenne) elliptic curve
fields for key exchange and signature (see sections 4.2.3 and 4.2.7 of [57]).

In this study we will consider high level language implementations simple
enough to be generated from a Python script. Then we will investigate
the speed-up that can be expected from an optimal asssembly language
implementation.



2 Comparing prime shapes

e Pseudo-Mersennes (PMs) of the form 2" — ¢ are plentiful, it is not hard
to find one of any size, and given the density of primes it is always pos-
sible to find one where ¢ fits comfortably in a single computer word.
There are so many in fact that other criteria can be applied which
may lead to slight improvements (for example p = 3 mod 4 may be
preferred as it allows faster modular square roots). Ideally ¢ should be
as small as possible. Pseudo-Mersennes are largely indifferent to word
size, and will work equally well on 32-bit and 64-bit architectures. For
the pseudo-Mersennes essentially the same optimal modular reduction
algorithm can be deployed in every case, as c is just a one-word param-
eter. It would be straightforward to write a general purpose library
to efficiently implement a variety of elliptic curves over a range of
pseudo-Mersenne primes.

e Generalised Mersennes (GMs) of the form 2™ — 2% +2° 4 2¢... 4+ 1 on
the other hand are much harder to find, and hence multiple terms
a, b, c.. may be required to find a prime, and this leads to inefficiency.
This is especially true if all of a, b, c.. are required to be multiples of
the radix. We would obviously prefer the minimal number of terms.
Generalised Mersennes are usually bound to the choice of radix which
depends on the word length. The standardised NIST curves are mostly
only a good fit for a 32-bit architecture, as while all of a, b, c.. may be
divisible by 32, some of them are not divisible by 64. A specialised
routine must be written for every individual generalised Mersenne in
order to ellicit the best performance.

e Montgomery-friendly primes (MFs) are of the form £.2™ — 1 [3] [12],
and as the name implies they are particularly efficient if using Mont-
gomery reduction [40]. Unfortunately their arrival on the scene was
rather too late for them to be considered for elliptic curve standardiza-
tion. But they have found a new relevance in the context of isogeny-
based cryptography [4], [5], [49]. Such primes are particularly fortu-
nate when k is small enough to fit in a single limb.

On the face of it pseudo-Mersennes appear to win over generalised
Mersennes on every count, and we don’t doubt that but for Crandall’s inter-
vention generalised Mersennes may never have been considered. Nonetheless
three of the five curves supported by TLS1.3 use generalised Mersennes (and
one NIST521, which is actually a true Mersenne, can be considered to be
member of either camp — leaving C25519 as the only true pseudo-Mersenne).



3 Implementation choices

First we will outline the limitations that apply to this study. We do not con-
sider an implementation where the prime moduli is specified at run time,
rather than at compile time, as is done in many popular general purpose
cryptographic libraries like RELIC [2]. This approach does not permit full
exploitation of the prime shape, and therefore will always be at a disadvan-
tage.

We also do not consider larger prime moduli which are unshaped (or
“dense”) as used in the well known RSA method. And although the moduli
that arise in the context of pairing-based cryptography on non-supersingular
curves do often have a shape [41], its a shape which apparently cannot be
exploited for faster performance. So we do not consider those primes.

We are primarily interested in modular arithmetic involving numbers in
the range 0 to p — 1, where the shaped prime modulus p will be of a fixed
size of m bits typically in the range 256-512. And we will focus on the more
time consuming primitive operations, modular multiplication and squaring.

Assume a computer of word length w bits, where w = 16,32 or w = 64.
Then these big numbers will be represented with n words, or limbs, using
a radix 20 < 2%, Clearly a radix that is a power of 2 will be optimal on a
binary computer.

Modular multiplication/squaring consists of two parts, integer multipli-
cation/squaring followed by modular reduction, modulo the prime p. Integer
multiplication for numbers of these sizes is essentially an O(n?) process in
terms of the number of limbs n. In fact using school-boy methods exactly
n? partial products must be accumulated, and if using one level of classic
Karatsuba this reduces to 3n?/4 partial products. By using a shaped prime,
the hope is that reduction will be O(n), and hence comparatively negligible.

The first decision is which radix to use. Two approaches are now possible,
the first being to use a saturated representation where the radix is equal to
the wordlength, or unsaturated where the radix is somewhat less than the
wordlength. This design decision is surprisingly impactful and has multiple
implications. Using a saturated representation holds out the promise of
a representation with the minimal number of limbs. This can be quite
important, particularly if the modulus size is an exact multiple of the word
length, as is commonly the case. Using a radix of 264 on a 64-bit computer
for a 256-bit modulus requires just 4 limbs. Using an unsaturated radix will
require 5 limbs, and 52 is of course significantly (36%) more than 42

However if using a saturated radix then the issue arises of handling
a carry bit, generated by the addition of limbs, as high level languages
have no direct access to a carry bit. A carry bit can be simulated, but in
our view this introduces a slow down which makes a high-level language
saturated-radix implementation unattractive. With an unsaturated radix
carry propagation becomes a simple matter of shifting and masking, easily



and cheaply implemented in a high level language. Moreover propagation
can be delayed, as carries can exceed a single bit.

Therefore our scripts will only use an unsaturated radix. At this point
it would appear that the prospects for this approach are not promising in
the context of some well established curves. Indeed in [17] the authors
say “unsaturated-arithmetic performance degrades rapidly when used with
moduli that it is not a good match for, so older curves such as P-256 need
to be implemented using saturated arithmetic”.

Note that in the interests of keeping our scripts as simple as possible, we
do not exploit the clever mixed-radix idea first suggested by Bernstein [7].
For example for the 2255 — 19 modulus on a 32-bit processor, it is beneficial
to use an alternating radix for each limb of 226,225 226 225 <which provides
a better fit.
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Figure 1: Unsaturated radix representation of m-bit Big number

Methods for integer multiplication and squaring involve the accumula-
tion of double-precision partial products. Therefore a high level language
(HLL) should ideally have a capability to handle the double precision prod-
uct of two word-sizes integers. Unfortunately while most 32-bit oriented
HLL compilers support a 64-bit double precision type, most 64-bit oriented
HLL compilers do not support a 128-bit type. There is no good reason for
this anomaly. However there are two important exceptions, Rust (as part
of its standard) and C/C++ (unofficially). Fortunately these are the most
likely languages to be used in a performant HLL implementation of ellip-
tic curve cryptography. So we will assume that a 128-bit integer type is
available for use on 64 bit processors.

For our script-derived implementations we will consider two methods for
integer multiplication and two methods for modular reduction. For multi-
plication we will either use the school-boy method using product scanning,
or the ADK Karatsuba algorithm [51]. We prefer this Karatsuba variant
method as its implementation is independent of the number of limbs in the
representation, and hence easily generated from a script. For modular re-



duction we consider one method based on Montgomery arithmetic [40] for
primes of any (or no) shape, and another based on what might be called the
folklore method as it applies to pseudo-Mersenne moduli. See [37] algorithm
14.47.

3.1 Choosing the unsaturated radix

Choosing the optimal radix can be quite challenging, particularly in the con-
text of a 64-bit processor where multiple choices all allow the same minimal
number of limbs. There may be other constraints. For example it may be
preferred that there is support for lazy reduction, so the value of e (figure 1)
may be desired to be non-zero. Other considerations specific to the prime
shape may also impact the choice of radix. In the context of a generalised
Mersenne it might be preferred that the radix exactly divide some or all of
the powers of 2 that constitute the prime. Clearly an implementation should
be flexible in terms of the radix choice.

For example consider the choice of radix for the NIST521 curve. If con-
sidered as a pseudo-Mersenne a nice choice would be 58 bits [23]. However if
considered as a generalised Mersenne and using the Montgomery reduction
method this radix only allows an excess of 1 bit. In the context of elliptic
curve cryptography, we would like an excess of at least 2 bits (see below).
Therefore a radix of 60 bits might be preferable here.

On a 16 or 32-bit processor there is much less flexibility, and not all of
our preferences may be realisable, consistent with keeping the number of
limbs to a minimum.

Of course in all cases extreme care must be taken to avoid the possibility
of overflow (see below). Note that random testing is not sufficient, as failure
cases can be extremely rare.

3.2 Hardware

This study makes use of a range of computing platforms, which we list and
nickname here

e An 8th generation i5-8250U Intel x86-64 processor (Skylake)

e A 13th generation i7-1360P Intel x86-64 processor (Raptorlake)

An Apple Mac Mini with an Apple M2 processor (Apple M2)

A Raspberry Pi 5, with a 64-bit Cortex-A76 processor (RP5)

A LicheePi 4A (RISC-V) 64-bit processor (LicheePi)

An STM32F407G-DISC development board, with a 32-bit ARM
Cortex-M4 processor (STM32F4)



e An Arduino Nano RP2040 with an ARM Cortex-M0 processor
(RP2040)

e A TinyPICO board powered by a 32-bit ESP32 processor, clocked at
240MHz (TinyPICO)

e A Teensy 3.2 board powered by a 32-bit ARM Cortex-M4 processor,
clocked at 48MHz (Teensy)

On some of these platforms performance is measured in clock cycles
(using Bernsteins libcpucycles library [8] if available), in other cases it is
measured in nanoseconds or microseconds.

Where head-to-head comparisons are made, they are conducted on the
same physical device whenever possible to ensure fairness

3.3 Compilers

For each architecture we had up to 3 compilers to choose from. On the Intel
processors we had access to gcc version 11.4, clang version 14.0, and Intel’s
own compiler icx version 2024.0.2. On the Raspberry PI we had the choice
of gce version 13.2 and clang version 16.06. On the LicheePi 4A RISC-V
we again used gcc version 13.2. For the Apple mac we use clang version 15
(disguised as gcc), and gee version 13.2.

Naturally we prefer the compiler which for each modulus produces the
fastest code. No individual compiler was best in all cases, each was optimal
for at least one modulus. In some cases different compilers were better for
modular multiplication and for modular squaring, and in theory outputs
from both could be linked together. But we did not pursue this possibility.

3.4 Moduli

Unfortunately there is no agreed convention for the naming of prime moduli.
Since there are a massive number of possibilities we restrict to a popular
subset, sufficient to draw some conclusions. Our naming scheme aims for
brevity rather than consistency.

e (25519 is the pseudo-Mersenne prime made famous by Daniel Bern-
stein, 22%° — 19

e NIST256 is the NIST 256-bit standard generalised Mersenne prime
also known as p256 and secp256r1

e NIST384 is the NIST 384-bit standard generalised Mersenne prime
also known as p384 and secp384rl

e (448 is the Goldilocks generalised Mersenne prime 2448 — 2224 _ 1



3.5

NIST521 is the NIST 521-bit standard Mersenne prime also known as
p521 and secp521rl, 2521 — 1

SIDH434 is the SIDH Montgomery-friendly prime 22163137 — 1
SIDH751 is the SIDH Montgomery-friendly prime 2372.323% — 1

MFP4 is the isogeny-useful Montgomery-friendly prime 3.67.2246 — 1
[49]

MFP4096 is the large 4096-bit isogeny-useful Montgomery-friendly
prime from [14]

PM266 is the pseudo-Mersenne prime 2266 — 3

PM336 is the pseudo-Mersenne prime 2336 — 3

PM383 is the pseudo-Mersenne prime 2384 — 183

C41417 is the pseudo-Mersenne prime 2414 — 17

GM270 is the generalised-Mersenne prime 2270 — 2162 _ 1

GM378 is the generalised-Mersenne prime 2378 — 2324 _ |

Online resources

Many researchers have gone to the effort to make their code publicly acces-
sible and easy to benchmark, and for this we are grateful. These are the
ones that we used most often, but needlesss to say the list is not exhaustive,
and we may well have missed some important contributions.

Nath and Sarkar have provided assembly language implementations
for many pseudo-Mersenne primes and also the generalised-Mersenne
modulus C448. They also provide code for an AVX2 SIMD supported
implementation of RFC7748. See [44], [43] and [42].

The Amazon Web Services saturated radix assembly language code for
x86-64 and ARM64 [28]

An early C implementation of C25519 from Adam Langley [29]

Code from Thomas Pornin’s implementation of TLS [45], his crrl rust
library [47], and also [46]

The fast assembly language implementations by Emil Lenngren, for
example [33], also [31] for a NEON SIMD supported implementation
of RFCT7748.



The C and assembly language code provided by Microsoft researchers
for implementation of the doomed SIKE isogeny-based protocol [39]

The example outputs of code generated from the Fiat-crypto project
[17] for a range of moduli

The RISC-V assembly language code from [15]

The CSIDH code associated with the paper [14]

4 Avoiding overflow

One issue that needs to be addressed is the avoidance of overflow, and this
in turn may impact on our choice of radix. There are two types of over-
flow that may occur. Limb overflow occurs where a computed limb value
exceeds 2%, or accumulated double precision partial products exceed 22%.
Modulus overflow occurs where a computed multiprecision number exceeds
the modulus p.

4.1 Limb overflow

Consider 0 < z,y < p and the product M = z.y, where x and y are repre-
sented by n limbs using a radix 2°. The digits of = are the positive values
Z0, T1..Tn_1 Where z; < 2, similarly y, and the digits of the product M are
My, My..Ms,_o, where each digit M; is a double precision value.

Since the M; may be the sum of up to n double precision partial products,
this constrains the value of b as we must avoid the possibility of overflowing
the double precision type, therefore n.(2b —1)2 < 22%, This constraint is
combined with the desire to make n as small as possible. And in case of a
tie-break, by default we choose the smallest value of b. This strategy usually
dictates a good choice for b. But keeping n as small as possible should be
the overriding concern.

Limb overflow can also arise as a result of failing to propagate carries
after a modular addition or subtraction. In fact deliberately omitting carry
propagation after these operations is quite a common optimization [17].
However we regard it as dangerous, as overflow may occur due to function
misuse, and the use of non-reduced limbs can have a secondary impact on
the above assumptions. Therefore the outputs of our functions will (almost)
always be strictly represented with carries fully propagated.

4.2 Modulus overflow

It is surprisingly difficult to guarantee that the output of a modular reduc-
tion is strictly less than p. But it is surprisingly easy to guarantee that it



is less than 2p. This applies to both Montgomery reduction and pseudo-
Mersenne reduction. To achieve full reduction would require a conditional
subtraction of the modulus after every operation. Therefore we will loosen
this constraint and allow the outputs of our functions to be only less than
2p. But this in turn means that these functions should tolerate inputs that
are not fully reduced. For pseudo-Mersennes this is not an issue, but when
using Montgomery reduction the guarantee that the output be less than 2p
depends on a constraint on the inputs. The solution (Bos and Montgomery
[11]) is to ensure an excess e of at least 2 bits. Now we can be assured
that a sequence of modular multiplications and squarings without a final
conditional subtraction cannot result in overflow.

However elliptic curve point addition and doubling formulae interleave
modular multiplications with modular additions and subtractions. There-
fore to avoid overflow, given inputs less than 2p, the outputs of these func-
tions must also be less than 2p. This would seem to require a conditional
subtraction. However depending on the context in which the finite field
arithmetic is used, this may be avoided using the technique of lazy reduc-
tion as described in [52]. Assuming that the higher level code implements a
“stable” calculation in the sense of [52], then modular addition can proceed
with carry propagation, but without modular reduction. Modular subtrac-
tion can be executed by adding a multiple of the modulus to the result, and
again proceeding with carry propagation without modular reduction. The
modulus multiple to use can be determined by a simple analysis as described
in [52]. In the case of RFCT7748 the appropriate multiple is 2.

At the end of a calculation a conditional subtraction of the modulus p
will be required to get the unique result modulo p in the required range,
prior to serialization and output.

5 Lucky primes

We only need to be lucky and find one good prime at each desired security
level. Consider for example the Mersenne prime 252! — 1. In [23] the fact
that 522 is an exact multiple of 29, and also of 58 make 22 and 2°® very
lucky choices for an unsaturated radix implementation on both 32-bit and
64-bit architectures respectively. For the famous prime 2255 — 19, observe
that 255 is a multiple of 51, which makes a 5-limb unsaturated radix a nice
choice for a 64-bit processor. In the context of a generalised Mersenne it will
be preferred that the radix exactly divide some or all of the powers of 2 that
constitute the prime. The trinomial Goldilocks prime [26] 2448 — 2224 — |
despite being a generalised Mersenne, is particularly fortuitous as 448 and
224 are both multiples of 28 and 56. Indeed this prime was chosen in part
for its ease of implementation using an unsaturated radix on both 32-bit and
64-bit processors. Another example of a “lucky” prime would be 2336 — 3

I
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[50] as ¢ = 3 is small and again 336 is divisible by 28 and 56.

With the benefit of hindsight there is little doubt that doubt that stan-
dardized curves should have used more suitable moduli. And so we could
not avoid the temptation of introducing the nice trinomial GM primes
2270 _ 9162 _ 1 and 2378 — 2324 _ 1 in this study, both of which work nicely
with unsaturated radixes of 227 and 2°* on 32-bit and 64-bit processors
respectively.

6 The scripts

Rather than tediously generate code on a case-by-case basis, Python scripts
were developed which automatically generate simple yet efficient high level
language code. These Python scripts are available for download . Since
Python natively supports multi-precision arithmetic, the generated code is
also tested internally with random inputs and its output checked for correct-
ness (although this by itself would not be sufficient. So further checks against
the possibility of overflow are also carried out). Where possible a program
is also created which when executed reports timings for modular multipli-
cation, squaring and inversion, both in clock cycles and nano-seconds.

Our scripts generate a complete set of finite field functions, suitable for
an implementation of cryptography based on elliptic curves. We are solely
interested in the field over which an elliptic curve group is defined and so
we are indifferent to the type of curve (Weierstrass, Edwards, Montgomery)
or its purpose (key exchange, signature, encryption).

We have developed two sets of scripts, one that generates code in C and
another in Rust. Here we consider only the C version.

Note that our script-derived code represents one extreme end of a spec-
trum where the code generation process is indifferent to the processor archi-
tecture, the elliptic curve and the protocol being implemented. At the other
end of the spectrum might be an arduous hand-written assembly language
implementation which is targeted at a specific architecture, and a specific
elliptic curve for use in the context of a specific protocol. The hoped for
advantage of the latter approach is that it should be a lot faster (but by
how much?).

For a complete arithmetic we will need to generate code for modular
addition, subtraction and multiplication/squaring. But also important is
code for modular inversion and square roots. Here we will use a method
based on Fermat’s little theorem [53] using a near-optimal addition chain
provided courtesy of Michael McLoughlin’s remarkable tool [35], which is
invoked automatically from inside of our Python scripts.

All of the functions generated are written to execute in constant time.
However we take no responsibility for any non-constant time behaviour in-

"https://github.com/mcarrickscott/modarith
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troduced by the compiler (although we make some effort to discourage this),
nor for non-constant time instruction execution by the processor hardware.

A useful benchmark is an implementation of the RFC7748 key exchange
algorithm [30]. Uniquely this algorithm can be built directly on top of a finite
field implementation, as it uses an z-only representation of elliptic curve
points on Montgomery curves. The algorithm requires a mix of modular
multiplications, squarings, additions and subtractions which is typical of
the mix of operations required for elliptic curve cryptography. So we also
provide a framework into which our finite field code can be dropped, which
then compiles to implement RFC7748.

7 Modular reduction — pseudo-Mersennes

The basic folklore algorithm for modular reduction modulo a pseudo-
Mersenne prime exploits the fact that 2™ = ¢ mod p. After multiplication
carries can be propagated, the top m bits of the product detached, mul-
tiplied by ¢ and added to the lower m bits and carries propagated again.
The first problem with this is that the split between the top and bottom m
bits probably falls mid-limb. (But not for a lucky prime like C25519 on a
64-bit processsor using a base of 25, where the split falls nicely between the
bottom and top 5 limbs). However there is a simple solution for this. Note
that the modular reduction is not complete at this stage, as the top m bits
multiplied by ¢ will be greater than m bits. Therefore perform the reduction
instead modulo 2™ ¢ — ¢.2¢, where e is the “excess” shown in figure 1. Now
the split does fall between limbs. Note that in [23] the same idea is used,
and the first reduction is actually performed modulo 25?2 — 2.

However as noted above the reduction is not complete. So next extract
the bits from the m-th bit position upwards, multiply this number by ¢, =
c.2¢ and add the result to the lower m bits, propagating the carries. Now
we have a result less than 2p assuming ¢, < 20 and n > 2 which will always
be true for cases of interest.

But there is a better way. The multiplication and the first part of the
reduction can be merged [9], [23], [44]. The basic idea is for each row of
the multiprecision multiplication to sum the relevant partial products, and
then continue to accumulate the partial products that will be multiplied by
¢p, and that apply to the same row. Only when the two contributions are
combined are the carries finally propagated. For example the 4th digit of the
partially reduced product of two 9-limbed numbers will then be calculated
as

M3 = zoy3 + x1y2 + 221 + 23Y0 + cp(Tays + T5Y7 + TeYo + T7Y5 + T8Y4)

This strategy works best with a smaller ¢ and a smaller e, as otherwise

12



it introduces a new threat of overflow. But if the multiplication of the
second set of partial products by ¢, could cause an overflow, then Nath
and Sarkar [44] suggest a simple “fix”. Reduce the second accumulation of
partial products into two b-bit digits, and add the upper part to the next
digit of M, combining it with the lower part that arises for that next digit.
Ideally if ¢ is small enough this extra step should not be necessary, but note
that this fix is much more likely to be required on a 16 or 32-bit processor.

In the final stage of the reduction we follow Nath and Sarkar and do not
propagate the carries beyond the second least significant limb, as except in
rare cases carry propagation quickly peters out. So we will allow the second
least significant limb to lie in the range 0..22° and take this into account
with our overflow analysis.

8 Modular reduction — generalised Mersennes

Here the literature is a little confusing. The “text-book” method is an
adaption of the folklore method to the generalised prime shape. See section
2.2.6 of [27]. However as pointed out by Guneysu and Paar [25] multiple
correction steps might be required to get the final result into the desired
range. In a software implementation this could be very expensive. So in
practise implementors have turned instead to using the Montgomery method
for modular reduction [40], in part because with a single pass the result is
guaranteed to fall into the range 0..2p. In particular see the influential paper
by Gueron and Krasnov [24], whose implementation was offered as a patch
for OpenSSL, and the fast code by Lenngren [33]. For an understanding of
Montgomery arithmetic, see [40], [3], [37]. See also [10].

At first glance it may appear that given the unsuitability of an unsatu-
rated representation for the NIST primes, that nothing better than a generic
Montgomery reduction is possible. But this is not the case. In fact a gener-
alised Mersenne maintains much exploitable shape even without using the
ideal saturated radix [24]. And notably the C448 modulus [26] was designed
specifically to keep its shape even in the unsaturated setting.

8.1 Non-shaped primes

We start with an algorithm for modular multiplication and reduction on a
64-bit processor, modulo the completely unshaped Brainpool 256-bit modu-
lus [34], p = 0xA9FB57DBA1EEA9BC3E660A909D838D7 26 E3BF623D52620282013481D1F6ES377. See
algorithm 1. Montgomery reduction [40] requires the precomputed constant
n’ = 1/(R — p) mod ¢, where q is the chosen unsaturated radix 252 and R is
2552 guch that R > p. Observe that to allow for an excess e (see figure 1),
R is a few bits longer than p. Also required is the constant ¢ = R? mod p.
Observe that here we are using a simple product-scanning method to
generate the accumulation of the double precision partial products that arise
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from multiplying = by y. Clearly in the case of modular squaring we will do
better, as the same partial products repeat. Alternatively Karatsuba-like
methods could also be deployed for both multiplication and reduction, see
for example [51]. However for the purposes of the current exposition we will
stick to simple product-scanning.

An element z € [F, can be converted to Montgomery form as x <
modmul(z,c). It can be converted back to normal form as x <
modmul(z,1). Recall that this conversion to/from the Montgomery do-
main is a once-off calculation applied to inputs, outputs and constants, and
the main computation in an elliptic curve context is carried out entirely in
the Montgomery domain.

To avoid overflow it is important that the double precision accumulation
in the variable t does not overflow 2'28. Clearly if overflow does not occur
on line 13 of algorithm 1, then it will not be a problem elsewhere, but this
must be checked making suitable worst-case assumptions.

Algorithm 1 Modular multiplication with Brainpool 256-bit modulus, 64-
bit processor

INPUT: Inputs z,y < 2p, radix is 2°2

OUTPUT: z = x.y mod 2p

1: function MODMUL(z, y)
2 po = 0x3481d1£6e5377
3 p1 = 0x23d5262028201
4: p2 = 0xd838d726e3bf6
5: p3 = 0xa9bc3e660a909
6: p4 = 0xa9fb57dbalee
7 q = 252
8  n/ = 0x75590cefd89b9
9: t <« zoyo vo + (tn')mod g t<t+wvopy t < [t/q]
10: tet4+ S ziyi—i +vopr v+ (tn') mod g t < t+wvipo t < [t/q]
11: t+—t+ Z?:o TiY2—i + vop2 +vip1 v2 + (tn') mod g t < t+wvapy t < [t/q]
12: t e t+ 3% aiys—i +vops Fvipe Fvapr vz < (tn')mod ¢t t+wvspo t < [t/q]
13: t «— t+Zf}:0 ZiYa—i+vopa+vip3+uvap2+v3pr va < (tn') mod g t < t+vapo t + [t/q]
14: t—t+ Zle TiYs—i + vipa + vap3 + v3p2 +vap1 2o + tmod g t <+ |t/q]
15: t+t+ Z?:z TiY6—i + vapa +v3p3 +vap2 21 < tmodq t <+ |[t/q]
16: t+t+ Z?:s TiY7—i + v3pa +vaps 22 < tmodgq t < [t/q]
17: t <+ t+ zays +vaps 23+ tmodgq t<+ [t/q]
18: 24—t
19: return z

20: end function

8.2 NIST256
Consider next the NIST prime

p = 9256 _ 9224 | 9192 4 996 _

Using a radix of 252 this can be represented in five limbs as
{OxfEEEFEELFEEEE, OxEEEFEEEEEEE, 0X00, 01000000000, 0x££££££££0000}, and we can al-
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ready see some scope for optimization. But importantly this prime
is “Montgomery-friendly” [3], because n’ = 1. Also po = 0.
By allowing negative digits, the representation can be considered as
{—0x1, 0x100000000000, 0x0, 0x1000000000, 0x££££££££0000}.  See [24], observation 3.
Observe also that some prime digits are now exact powers of 2, and therefore
some multiplications can be replaced by shifts. Applying all these optimiza-
tions, we arrive at algorithm 2, a tailored modular multiplication algorithm
for the NIST256 prime. See algorithm 2.

Algorithm 2 Modular multiplication with NIST 256-bit modulus, 64-bit
processor

INPUT: Inputs z,y < 2p, radix is 252
OUTPUT: z = z.y mod 2p
1: function MODMUL(z, y)
2: py = OxE££££££F0000
3 q = 252
4: t+ xoyo wvo<+ tmodqg t+ |t/q]
5: t<—t+zz1:0 Tiy1—i +v02% vy +tmodq t+ [t/q]
6
7
8

t e t+ 37 g wiyei + 0124 vy« tmodg t < [t/q]
t et 4+ 30 wiys_i + (vo +1228)236 vy« tmodg t < |t/q]
t < t+ 3 g @iya—i +vopa + (v1 +v328)2%0 vy « t mod g t < [t/q]

9: t—t+ E?:l Tiys—i +v1pa + (v2 +v428)236 2o« tmod g t <« [t/q]
10: t et 4+ 3o Tiye—i +vapa + 03230 21 <~ tmodg t ¢ |t/q]
11: t e t4+ 3 s aiyr +v3pa + 04230 zp < tmodg t ¢ |t/q]
12: t+ t+zays +vapd 23+ tmodq t< |[t/q]
13: z4 — t
14: return z

15: end function

Clearly by inspection this will be superior to the generic method as
applied to the Brainpool modulus.

8.3 C448

The approach described above works particularly well for the (€448
prime, designed as it was to be “unsaturated-friendly”, as well as being
Montgomery-friendly. The prime is

p— M8 _ 92244

And using a radix of 2°6, again allowing negative digits, it can obviously
be described as {—0x1,0x0, 0x0, 0x0, —0x1, 0x0, 0x0, 0x0,0x1}. One issue
that arises in this case is that if R is chosen as 286 this leaves us with a
big number representation with an excess e = 0. We resolve this problem
by introducing an extra “virtual limb” into our representation, and setting
R = 2956 See algorithm 3

Another issue that arises in this case is the possibility of negative digits

appearing in the output. To prevent this the full radix is added to the
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Algorithm 3 Modular multiplication with C448 448-bit modulus, 64-bit
processor

INPUT: Inputs z,y < 2p, radix is 2°¢

OUTPUT: z = z.y mod 2p
1: function MODMUL(z,y)
22 ¢=2%
3 t < zoyo wvo <+ tmodqg t <« [t/q]
4: tt+>_ xiyi—; v+ tmodg t+ [t/q]
5: tet+> . (wiya i v2tmodg t< [t/q]
6: te—t+> ), (wiys—: vz tmodg t< [t/q]
7 tet+>,  Tiyai tt+g—vo viétmodg t+ |t/q]
8: te—t+>) (miysi tt+(g—1—v1) vs<tmodg t<« [t/q]
9: t(—t—&—zvzoxiygﬂ- t+—t+
10: t(—t+2-:0xiy7_i t+—t+

g—1—wv2) wveg<+tmodqg t+ [t/q]
g—1—wv3) vr+tmodqg t+ |t/q]

11: t—t+>, Tiys—i t<t+(g—1+vo—vs) vg<tmodgqg t+ [t/q]
12: tt+>. omiYoi tt+(¢—14+vi—vs) 20« tmodg t< |[t/q]
13: t—t+>" cmiyioi tt+(g—14+v2—vs) z1<tmodg t <« [t/q]
14: t—t+>, ,xiyii—s tt+(g—1+v3—v7) 224 tmodg t<+ [t/q]
15: te—t+3>" cwiyizs tt+(g—1+vi—vs) z3+tmodg t+ [t/q]
16: t—t+>7 smiyiz—i tt+(g—1+4+wvs) za+tmodg t<« [t/q]
17: t—t+aryr tt+(g—1+vs) 25 tmodg t<+ [t/q]

18: t<t+(g—1+v7) 2z tmodg t+ [t/q]

19: tt+(vs—1) 27+t

20: return z

I~ NN N

21: end function

calculation of each affected digit, and compensated for by subtracting 1
from the next higher digit. Hence the appearance of the term ¢ — 1 in the
algorithm. Observe that very little computation is required over and above
that which would be required for multiplication without reduction.

9 Other Moduli

The Montgomery method can be used for any shape of prime, although we
found that the dedicated pseudo-Mersenne method was superior in all cases
where it applied, but often not by much. A problem for pseudo-Mersennes
is that they are intrinsically not Montgomery-friendly.

The NIST384 prime is particularly awkward, as it is not Montgomery-
friendly on a 64-bit processor, although it is in a 16 or 32-bit setting.

Another application might be in the context of optimizing arithmetic
modulo the elliptic curve group order, especially when this order is close to
a power of 2. For example for the curve associated with C25519, the prime
order group consists of 2252 4 27742317777372353535851937790883648493
points [7], a number which exhibits multiple 0 digits when represented in a
radix of 2°.

At one time Montgomery-friendly primes of the form 2¢.37 — 1 were
considered of interest for isogeny based cryptography [18], [13], and they
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may be again in the future [4].

More recently new prime moduli with very particular properties have
been suggested as part of putative standards for isogeny based signature, see
[19]. In a recent paper [49] alternate primes are proposed which the authors
contend may lead to implementations with improved characteristics. These
primes are all Montgomery-friendly. For example the MFP4 prime has been
suggested where p = 3.67.2246 — 1 [49]. See also [5].

10 Function inlining

One advantage of a high level language implementation is that the function
calling overhead can be removed by in-lining the code. This obviously leads
to code size bloating, but can also improve performance, and hence closes
the performance gap against a pure assembly language implementation. As
such it is a perfectly valid optimization. However, frustratingly, it can be
hard to control inlining, as a compiler has its own idea of when and when
not to inline a function. The compiler may, for example, be concerned to
keep program code small enough to fit inside of the processor instruction
cache. We could inflate our results by forcing inlining, which might appear
to improve performance in the artifical context of a tight timing loop, but
would actually lead to a slow down in a real-world setting. On balance we
think that the fair thing to do is to merely provide a hint to the compiler,
and to let it make the decision on whether or not to inline time-critical
functions. The downside is that an opaque compiler decision to inline may
cause some minor timing anomalies.

11 Comparison with pure high-level language im-
plementations

Many existing high level language implementations of finite field arithmetic
are unoptimized, and provided primarily to be correct rather than fast.
Some are so-called “reference” implementations, provided only as a proof-of-
concept and to demonstrate that the method works, but were never intended
for production use. They may for example deliberately not exploit 128-bit
integers in order to remain strictly compliant with the C standard.

But rather surprisingly many high-level implementations do exist that
are deployed in the wild in real-world settings. We would speculate that
this may be due to (a) an indifference to bleeding-edge performance and/or
(b) a prioritisation of correctness over speed. There is some evidence for
this. For example BoringSSL deploys C code generated by the Fiat Crypto
project, which replaced an earlier assembly language implementation [17].
The elliptic curve cryptography used by Microsoft in the WSL2 Linux kernel
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[38] also uses finite field C code generated by the Fiat project, plus some
derived from the verified code generated by the HACL project [58].

The Fiat and HACL projects generate high level code which provide
machine checked proofs of functional correctness, an undoubted advantage.
However we would suggest that the major cause of failure in finite field
arithmetic would be due to limb overflow (see above), and neither of these
projects prove that such failure cannot occur. As it states in [17] “we are
intentionally avoiding details of the underlying machine arithmetic”.

In the world of TLS, high level C implementations seem to be relatively
common. A recent blog (2023) [36] describes a tailored C implementation of
finite field arithmetic for the awkward NIST384 prime, which has recently
been upstreamed to OpenSSL, and which claims a greater than 5 times speed
up for the previous code used for digital signature. (Which suggests that for
many years users were content with an implementation 5 times slower than
necessary).

Skylake Raptorlake
Compiler | OpenSSL [36] | Our script | OpenSSL [36] | Our script
gce 255-219 181-176 229-196 165-151
icx 211-174 193-160 178-143 169-151
clang 225-184 190-159 199-167 169-147

Table 1: NIST384 Skylake x86-64 Clock cycles mul-sqr

In table 1 we present the number of clock cycles required for both mod-
ular multiplication and squaring. It can be seen that this OpenSSL imple-
mentation seems to be quite sensitive to the choice of compiler. But also it
can be seen that our script derived code does quite well in comparision.

So how does our script generated code measure up for other moduli?
For the pseudo-Mersenne case the performance of the generated code is
quite comparable with the earlier efforts of many others. For non-pseudo-
Mersennes there is more variation.

In table 2 we compare with the Fiat-Crypto code from [17], and the C
code from the PQCrypto-SIDH project [39], for a selection of moduli on our
Skylake processor.

In table 3 are the results on an ARM64 powered Raspberry PI. In this
case using the ADK Karatsuba method for multiplication was the faster
option for our scripts.

There is enough evidence here to allow us to express confidence that our
code performance is on a par with the best high-level language implementa-
tions out there. No one compiler beats the others in all cases, and so there
is a case for choosing the compiler based on the quality of the code it gen-
erates for each individual modulus. The relatively poor performance of the
Fiat-Crypto implementations for the NIST256 and NIST384 moduli can be
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Fiat Crypto [17] | PQCrypto-SIDH [39] Our scripts
Modulus | clang gce clang gce clang gcc
(25519 | 82-58 69-64 67-55 62-57
NIST256 | 136-129 | 242-217 90-69 90-83
NIST384 | 307-292 | 583-598 195-166 | 187-182
C448 | 247-120 | 200-117 178-126 | 166-127
NIST521 | 274-162 | 211-111 178-110 | 192-105
SIDH434 558 927 1638 1855 248 209
SIDH751 4643 5041 590 502
Table 2: Skylake x86-64 Clock cycles mul-sqr
Fiat Crypto [17] | PQCrypto-SIDH [39] Our scripts
Modulus | clang gce clang gce clang gcc
(25519 | 79-53 73-44 65-53 45-44
NIST256 | 82-63 88-72 56-56 58-58
NIST384 | 170-123 | 197-166 137-140 | 154-143
C448 | 192-107 | 193-105 116-110 | 113-105
NIST521 | 250-137 | 238-132 138-132 | 137-132
SIDH434 256 277 2540 2784 213 229
SIDH751 7316 7892 532 540

Table 3: RP5 ARM64 nanoseconds mul-sqr

explained by their use of a saturated radix, which we suggest is a suboptimal
strategy in this context. On the other hand for the pseudo-Mersennes our
timings and those of the Fiat-crypto code are quite close.

Curiously we found that when de-obfuscated, the Fiat-crypto code for
multiplication modulo the C25519 prime was (after some variable renaming
and harmless instruction re-ordering) identical to the original venerable code
from curve25519-donna-c64 [29]. Our code was also very similar, which is
not really surprising given that the algorithm used is the same, and is the
best one known (although see [47] for an alternate method that applies to
C25519 and avoids double length register shifts).

12 Comparison with high-level language plus in-
trinsics

There is an approach to implementation which takes a middle route between
full blown assembly and a high level language. The idea is to use “intrin-
sics” which allow direct access to assembly language instructions via inlined
function calls. Often an intrinsic will result in the generation of just a single
machine code instruction. These intrinsic functions are particular to each
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architecture, and the range and functionality available varies from one pro-
cessor to another. So using intrinsics does come at the cost of portabilility.
But it does permit much of the efficiency of assembly language program-
ming without some of its overheads. For example the tricky issue of optimal
register allocation is still left to the compiler.

A good example of the use of intrinsics to implement finite field arith-
metic would be Pornin’s crrl rust library [47]. Here saturated radix arith-
metic can be used, as an intrinsic can have access to the internal carry
flag. For the x86-64 architecture the rust addcarry_u64() intrinsic is par-
ticularly useful in the context of finite field arithmetic. However for other
architectures like ARM64 and RISCV it does not exist, and must instead
be implemented using less efficient non-intrinsic methods.

In tables 26 and 27 we compare our script generated code against the
intrinsic-powered crrl code for x86-64 and ARMG64.

crrl [47] Our scripts

Modulus | rustc clang gee
C25519 55-45 67-55 61-56
C448 188-113 | 175-126 | 160-125

Table 4: Skylake x86-64 Clock cycles mul-sqr

crrl [47] Our scripts
Modulus | rustc clang gce
C25519 71-44 65-53 45-44
C448 157-97 | 116-110 | 113-105

Table 5: RP5 ARM64 ns mul-sqr

13 Comparison with Assembly language

Here the aim is to answer this question: What kind of speed up can be
expected from a good assembly language implementation when compared
to our simple script generated C code, considering a variety of architec-
tures and compilers? This is a particularly relevant question for the field of
isogeny based cryptography, where it might be hoped that despite the large
field sizes sometimes required, implementations may become viable as they
might benefit because “further optimisations of the finite field arithmetic
could offer substantial speed ups, as seen in the optimised assembly im-
plementations for large characteristic implementations of SIDH” [16]. This
hope may have been motivated by the somewhat misleading timings ob-
tained from the PQCrypto-SIDH benchmarks [39], where a very slow C
implementation is used for comparison.
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In these tables we record the time for a modular multiplication my, the
time for a modular multiplication using the ADK method ms, and the time
for a squaring s in the form m;j(mg) — s. In some cases mg and/or s may be
missing or not relevant. Some benchmarks provide output in clock cycles,
while others provide actual timings in nanoseconds. We provide both where
necessary to faciliate comparisions.

13.1 x86-64

Our first comparison is of the script generated C code against x86-64 assem-
bly language implementations taken from Nath and Sarkar [44], and AWS

128].
Source C25519 PM266 PM336 PM383 C41417 NIST521
N&S-sat cyc [44] 57-47 70-57 90-76 104-90 140-119
N&S-uns cyc [44] 74-53 75-52 119-98 138-118 163-126
Ours-gec cyc 61(82)-56 | 64(86)-60 | 81(98)-61 | 118(125)-91 | 131(136)-101 | 192(201)-105
Ours-clang cyc 67(78)-55 | 69(80)-59 | 90(105)-64 | 121(144)-86 | 135(155)-98 | 178(198)-110
Ours-icx cyc 69(75)-52 | 65(78)-52 | 91(106)-59 | 125(151)-93 | 145(159)-100 | 190(216)-113
AWS-sat ns [28] 28-21 78-55
Ours-gcc ns 34(45)-32 | 36(48)-33 | 45(54)-34 66(69)-50 72(75)-56 106(111)-58
Ours-clang ns 37(43)-31 | 38(44)-32 | 50(58)-35 67(80)-47 75(86)-54 99(110)-61
Ours-icx ns 38(41)-29 | 36(43)-29 | 50(59)-33 69(84)-51 80(88)-55 105(120)-63

Table 6: Skylake x86-64, pseudo-Mersenne primes
Source NIST256 GM270 GM378 NIST384 X448
N&S-sat cyc [44] [43] 112-96
N&S-uns cyc 158-116
Ours-gcc cyc 90(101)-83 | 76(82)-66 | 130(138)-101 | 181(251)-176 | 160(165)-125
Ours-clang cyc 90(98)-69 | 72(83)-62 | 140(144)-93 | 190(206)-160 | 175(182)-126
Ours-icx cyc 94(96)-79 | 72(84)-62 | 141(150)-97 | 193(214)-159 | 173(186)-122
AWS-sat ns [28] 29-25 74-61
Ours-gcc ns 50(56)-46 | 42(46)-37 72(77)-56 104(139)-101 89(91)-69
Ours-clang ns 50(54)-38 | 40(46)-34 77(80)-51 108(114)-92 99(101)-70
Ours-icx ns 52(53)-44 | 40(47)-34 78(83)-54 109(119)-93 96(103)-68
Table 7: Skylake x86-64, generalized-Mersenne primes

Source MFP4 SIDH434 SIDH751 MFP4096

PQCrypt cyc [39] 139 403

CSIDH cyc [14] 14758-14208

Ours-gcc cyc 70(78)-58 | 209(221)-171 | 515(502)-390 | 15684(13729)-10712

Ours-clang cyc 75(77)-60 | 250(248)-183 | 639(590)-404 25113(18472)-12194

Ours-icx cyc 78(81)-55 | 246(253)-180 | 642(584)-400 25825(19132)-12602

Table 8: Skylake x86-64, Montgomery-friendly primes

Note that for the prime MFP4096, if using the gcc compiler our code
using ADK for multiplication appears to improve on that reported in [14].
Observe that the Nath and Sarker binary for C25519 is identical for both
Skylake and Raptorlake. On the Skylake the saturated code is faster than
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Source C25519 PM266 PM336 PM383 C41417 NIST521
N&S-sat cyc [44] 60-46 75-54 94-73 116-83 159-102
N&S-uns cyc [44] 57-36 57-38 103-68 123-84 148-115
Ours-gcc cyc 70(91)-62 | 70(93)-63 | 90(99)-74 | 126(126)-91 139(135)-98 | 198(177)-123
Ours-clang cyc 60(72)-58 | 68(74)-60 | 85(82)-67 | 114(122)-83 150(136)-88 | 175(154)-112
Ours-icx cyc 66(70)-58 | 68(70)-55 | 86(81)-69 | 130(125)-101 | 152(128)-122 | 195(166)-105
AWS-sat ns [28] 15-13 15-12 58-38
Ours-gcc ns 26(34)-23 | 27(35)-24 | 34(37)-28 48(48)-35 50(51)-37 75(68)-47
Ours-clang ns 23(27)-22 | 26(28)-23 | 32(31)-25 43(46)-32 57(52)-34 67(59)-43
Ours-icx ns 25(27)-22 | 26(26)-21 | 33(31)-26 50(48)-38 58(49)-46 75(63)-40
Table 9: Raptorlake x86-64, pseudo-Mersenne primes
Source NIST256 GM270 GM378 NIST384 X448
N&S-sat cyc [44] [43] 125-98
N&S-uns cyc [44] [43] 157-96
Ours-gcc cyc 74(98)-68 | 76(87)-67 | 113(124)-89 | 165(260)-151 | 154(163)-110
Ours-clang cyc 85(78)-78 | 78(68)-61 | 125(115)-84 | 169(191)-147 | 165(153)-126
Ours-icx cyc 85(81)-73 | 75(79)-63 | 129(126)-94 | 169(191)-151 | 156(156)-120
AWS-sat ns [28] 18-16 48-40
Ours-gcc ns 28(37)-26 | 29(33)-25 43(47)-34 65(99)-61 59(62)-42
Ours-clang ns 33(29)-29 | 30(26)-23 47(44)-32 67(73)-59 63(58)-48
Ours-icx ns 32(31)-28 | 28(30)-24 49(48)-36 64(73)-58 59(60)-46
Table 10: Raptorlake x86-64, generalized-Mersenne primes

Source MFP4 SIDH434 SIDH751 MFP4096

PQCrypt cyc [39] 147 390

Ours-gcc cyc 58(85)-53 | 206(212)-153 | 505(496)-373 | 15975(14349)-10135

Ours-clang cyc 82(67)-71 | 223(187)-167 | 538(437)-378 | 24206(18751)-12681

Ours-icx cyc 86(70)-62 | 210(186)-166 | 539(447)-384 | 24644(19472)-13039

Table 11: Raptorlake x86-64, Montgomery-friendly primes
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the unsaturated, but on the Raptorlake this is reversed. It would appear
that architectural advances have favoured the unsaturated implementation.

It would also appear that the clang and icx compilers produce better
code for the ADK method than the gcc compiler.

13.2 ARMG64

Here we compare the script generated code against ARMG64 assembly lan-
guage implementations, on an Apple MAC M2 and a Rasperry Pi 5.

Source C25519 PM266 PM336 PM383 C41417 NIST521
AWS-sat ns [28] 7-5 28-16
Ours-gcc ns 12(14)-11 | 12(15)-11 | 14(16)-11 | 19(20)-15 | 19(20)-16 | 27(30)-20
Ours-clang ns 10(12)-10 | 12(12)-10 | 15(16)-10 | 19(20)-17 | 25(21)-18 | 33(26)-18
Table 12: Apple M2, pseudo-Mersenne primes
Source NIST256 GM270 GM378 NIST384 X448
AWS-sat ns [28] 8-7 21-17
Ours-gcc ns 11(15)-10 | 11(13)-10 | 17(18)-13 | 26(37)-24 | 23(25)-16
Ours-clang ns 18(19)-18 | 12(11)-10 | 19(21)-14 | 31(29)-26 | 24(23)-21

Table 13: Apple M2, generalized-Mersenne primes

Source MFP4 | SIDH434 | SIDH751 MFP4096
PQCrypt cyc [39] 37 84

Ours-gec ns 10(11)-8 | 33(33)-26 | 90(72)-60 | 8684(2965)-1993
Ours-clang ns 10(9)-9 | 34(32)-26 | 90(71)-63 | 8475(6205)-1838

Table 14: Apple M2, Montgomery-friendly primes

Observe how the AWS assembly language advantage diminishes for larger
moduli. Observe also that the script generated C code on the Apple M2
is actually faster than the PQCrypto assembly language for SIDH434 and
SIDHT751.

Source C25519 PM266 PM336 PM383 C41417 NIST521
AWS-sat ns [28] 36-17 140-113
Ours-gee ns 73(45)-44 | 73(49)-44 | 105(62)-61 | 172(111)-111 | 161(100)-100 | 238(137)-132
Ours-clang ns | 81(65)-53 | 75(58)-46 | 107(72)-65 | 171(114)-114 | 158(101)-99 | 240(138)-132

Table 15: Raspberry pi ARM64, pseudo-Mersenne primes

For the Raspberry Pi it is striking that the ADK Karatsuba method
is particularly effective, often cutting the cost of a modular multiplication
right down to that of a modular squaring.

13.3 RISCV

Unfortunately for the 64-bit RISCV architecture we did not find any assem-
bly language implementations to compare against. But it is still of interest

23



Source NIST256 GM270 GM378 NIST384 X448
AWS-sat ns [28] 36-26 75-61

Ours-gece ns 87(58)-58 | 73(44)-44 | 143(85)-82 | 205(154)-143 | 188(113)-105
Oursclang ns | 82(55)-56 | 73(45)-47 | 146(92)-85 | 191(137)-140 | 188(116)-110

Table 16: Raspberry pi ARM64, generalized-Mersenne primes

Source MFP4 SIDH434 SIDH751 MFP4096
PQCrypt ns [39] 214 516

Ours-gcc ns 87(58)-58 | 304(229)-222 | 760(540)-533 | 22476(15751)-15512
Ours-clang ns 87(59)-61 | 295(213)-218 | 760(532)-541 | 23037(16316)-15363

Table 17: Raspberry pi ARM64, Montgomery-friendly primes

to observe the difference between compilers, and implementation with and
without Karatsuba.

Source

25519

PM266

PM336 PM383

C41417

NIST521

Ours-gce cyc
Ours-clang cyc

125(131)-96
126(147)-97

124(139)-93
132(142)-94

161(172)-117
174(200)-124

240(225)-185
270(297)-199

288(264)-235
315(308)-204

371(396)-214
419(428)-235

Table 18:

LicheePi RISCV, pseudo-Mersenne primes

Source

NIST256

GM270

GM378 NIST384

X448

Ours-gcc cyc
Ours-clang cyc

193(180)-166
185(187)-155

147(144)-123
155(154)-139

253(234)-201
317(309)-223

431(395)-331
445(438)-376

339(346)-255
397(382)-325

Table 19: LicheePi RISCV, generalized-Mersenne primes

Source

MFP4

SIDH434

SIDH751

MFP4096

Ours-gcc cyc
Ours-clang cyc

146(140)-116
156(158)-131

528(501)-411
559(527)-444

1200(1136)-937
1310(1191)-915

229179(201813)-156179
84799(108006)-49635

Table 20: LicheePi RISCV, Montgomery-friendly primes

13.4 ARM M4

The 32-bit ARM M4 processor is very popular with cryptographers, due in
large part to its very flexible range of integer multiplication instructions,
which are fast and constant time. As observed in [54] Karatsuba will not be
effective for the ARM M4 processor “due to the high efficiency of UMAAL
instructions”. As 32-bit processors are often not suitable for isogeny-based
cryptography, we consider a reduced range of moduli.

Source

C25519

PM266

PM336

PM383 C41417

NIST521

Ours-gcce cyc

557-385

694-417

802-501

1248-796 | 1410-850

1790-955

Table 21: STM32F4 ARM M4, pseudo-Mersenne primes
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Source

NIST256

GM270

GM378

NIST384

X448

MFP4

Ours-gcc cyc

755-572

739-554

1274-870

1625-1132 | 1

639-1099

540-369

Table 22: STM32F4 ARM M4, GMS and MFs

In table 23 we can compare with the record setting saturated radix as-
sembly language implementation of Fujii and Aranha [21]

Source C25519 | PM266 PM336 PM383 C41417 NIST521
Ours-gcc cyc | 471-343 | 569-375 | 667-420 | 1042-649 | 1157-724 | 1504-776
Fujii [21] cyc | 276-252

Table 23: Teensy ARM M4, pseudo-Mersenne primes
Source NIST256 | GM270 GM378 NIST384 X448 MFP4
Ours-gce cyc 639-505 625-477 | 1050-770 | 1309-963 | 1373-954 | 450-319

Table 24: Teensy ARM M4, GMS and MFs

13.5 ARM MO

The ARM Cortex MO processor is a popular low-powered 32-bit processor,
used in the tiny Raspberry Pi Pico board. Due to its slow multiply instruc-

tion, Karatsuba works well for this processor.

Source C25519 PM266 PM336 PM383 C41417 NIST521
Ours-gcc pus | 53(36)-33 | 61(41)-37 | 81(55)-46 | 118(76)-69 | 135(86)-78 | 179(107)-98
Table 25: RP2040 ARM MO, pseudo-Mersenne primes
Source NIST256 GM270 GM378 NIST384 X448 MFP4
Ours-gee ps | 55(37)-36 | 59(37)-33 | 114(69)-62 | 124(77)-71 | 148(88)-81 | 52(35)-32
Table 26: RP2040 ARM M0, GMs and MFs
13.6 ESP32

The cheap ESP32 processor is very widely used in IOT applications, and
is based on a RISC design. We are unaware of any cryptographic software
written for it in assembly language.

NIST521
19(17)-10

CA1417
T4(13)-8

PM383
13(12)-8

PM336
9(8)5

PM266
6(6)-4

C25519
6(6)-4

Source
Ours-gcc s

Table 27: TinyPICO ESP32, pseudo-Mersenne primes

25



Source NIST256 | GM270 | GM378 NIST384 X448 MFP4
Ours-gec s 7(7)-5 6(6)-3 | 12(11)-7 | 16(14)-11 | 17(14)-10 | 6(6)-4

Table 28: TinyPICO ESP32, GMS and MFs

14 RFC7748

Here we compare the performance of our script generated high-level code
compared to some state-of-the-art assembly language code, in the context
of the implementation of RFC7748, specifically the shared-secret calculation,
where no precomputation optimizations are available. We consider both the
64-bit x86-64, ARM64 and RISCV-64, and the 32-bit ARM MO0 and M4
architectures.

The two curves supported by RFC7748 are C25519 and C448. In our
case we use the pseudo-Mersenne script to generate the code for C25519 and
the Montgomery script to generate the code for C448.

SIMD extensions allow parallel execution of modular arithmetic. Typ-
ically, where a regular 64-bit processor can execute a single modular mul-
tiplication, using SIMD up to four modular multiplications can be carried
out in parallel, albeit commonly using four 32-bit processors. But if four
independent modular multiplications can be found in a particular algorithm,
then the four parallel calculations on the four 32-bit processors should com-
plete faster than four serial calculations on a single 64-bit processor. Clearly
this is dependent on the algorithm being implemented, but in the case of
RFC7748 such parallellism can be found [42].

For the x86-64 Nath and Sarkar [42] have provided optimized assembly
language code which makes use of the Intel AVX2 extensions to implement
RFC7748. For the ARM64 the AWS team [28] has improved Lenngren’s
original code [31], using ideas from [1] to also provide very highly optimized
RFC7748 code. The crrl rust library [47] also provides implementations of
RFCT7748.

To determine the improvement over our script generated code, for the
x86-64 we run the code provided on our Skylake and Raptor lake processors.
For the ARM64 we run the code on the RP5 and an Apple M2.

Skylake Raptorlake
Modulus C25519 C448 C25519 €448
Nath/Sarkar AVX2 [42] 108881 398133 112661 394268
Pornin crrl [47] 146424 714924 121911 551947
AWS [28] (57) (37)
Our script 171787(95) | 809668 | 163510(63) | 657093

Table 29: RFC7748 x86-64 clock cycles (microseconds)

The speed-up that can be achieved by the assembly language program-
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mer on the x86-64 architecture appears to rarely top times-two. And on the
more modern Raptorlake architecture this advantage diminishes.

Apple M2 RP5
Modulus C25519 | C448 | C25519 | C448
Pornin crrl [47] 29 123 137 560
AWS [28] 17/20 127/46
Our script (ADK) | 30 | 110 | 124 | 528

Table 30: RFC7748 ARM64 microseconds/NEON

It is interesting to observe that for the ARM64 architecture, using NEON
is clearly very benefical for the RP5, nearly 3 times faster than our C code.
However for the Apple M2 the non-NEON assembly language code is faster
than the NEON code. So it would appear that whereas using the NEON
extensions makes a big difference for the RP5, it is suboptimal for the Apple
M2. Again we can conclude that architectural developments can sometimes
invalidate the assumptions on which an assembly language implementation
is based.

Assembly language RFC7748 code for the RISCV-5 processor can be
found here [15] and is benchmarked in table 31 . In this case there are
no available SIMD extensions, and the assembly language code does not
improve on the C code, which is perhaps not surprising on a reduced in-
struction set processor where the assembly language programmer has much
less flexibility (and a compiler is less likely to run out of registers).

C25519 C448
Cheng et al [15] | 334741
crrl [47] 254261 | 1626209
Our script 314621 | 1475442

Table 31: RFC7748 RISCV clock cycles, gce and rustc compilers

However on 16 and 32-bit processors the situation is reversed and sub-
stantial 3-4 times speed-ups can often be achieved, albeit with considerable
effort by very talented programmers. See tables 32 and 33.

(25519 C448
Pornin [46] 24285
Our script (ADK) | 95054 | 437695

Table 32: RFC7748 RP2040 ARM MO microseconds.
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(25519 C448
Lenngren [32] | 617372
Our script 1637582 | 7438431

Table 33: RFC7748 STM32F4 ARM M4 clock cycles

15 Discussion

By adopting an unsaturated radix, multiple advantages flow. Perhaps it
represents an opportunity to free ourselves from the tyranny of moduli that
are exact multiples of the word length. For example using an unsaturated
radix a 256-bit curve will require 5 limb field elements on a 64-bit computer.
If this is the case, why not use a 270-bit modulus, which is clearly more
secure, but since it also requires 5 limbs we get the extra security at little
extra cost. Also we allow much more flexibility in our search for suitable
primes. In [3], new prime moduli are sought for elliptic curve cryptography,
constrained by the assumption of a saturated radix representation and to use
primes constructed as generalized Mersenne Montgomery-friendly primes
constructed from powers of 264, Not many are found. However using an
unsaturated radix, a pseudo-Mersenne 2"* — ¢ can be chosen which has the
lowest ¢, and allowing a wide range of m. Similarly a generalised Mersenne
can be picked as 2™ — 28 — 1 for a range of m and k which are not so
constrained, but where ideally one or both of m and k are divisible by a
suitable radix.

15.1 Pseudo, Generalised or Friendly?

But which shape is best? An interesting head-to-head is on a 64-bit processor
between the PM266 pseudo-Mersenne 2266 — 3 and the GM270 generalised
Mersenne 2270 — 2162 _ 1 using a radix of 2°4 bits. In both cases 5 limbs are
required. For the pseudo-Mersenne the radix 2°4 is chosen to avoid requiring
the Nath and Sarkar “fix”. For the generalised Mersenne 2°* is also preferred
as b4 is an exact divisor of both 162 and 270. On a 64-bit processor there
are a range of viable radixes that do not require an increase in the number
of limbs above the bare minimum.

On a 32-bit processor we are more constrained but a radix of 227 for the
pseudo-Mersenne again avoids the requirement for the “fix” and is also an
ideal choice for the generalised Mersenne. In both cases the number of limbs
required is 10.

As can be seen from the tables above the results are mixed. Neither has
a clear advantage over the other.

In passing we note that the MFP4 Montgomery-friendly prime is very
competitive, even against C25519.
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15.2 Saturated or unsaturated?

It would seem that an unsaturated implementation of modular multipli-
cation for NIST256 would start at a massive disadvantage. Consider an
implementation on a 64-bit processor. The saturated implementation would
require the calculation and accumulation of just 16 double precision multi-
plications. An unsaturated implementation would require 25 such multipli-
cation plus 15 more for the terms in the representation of the prime modulo
the radix that do not simplify to 0, 1 or -1. So maybe twice as slow? In fact
if we compare against a good HLL implementation using a saturated radix
[45], we find that our automatically generated code is about 50% faster.

But a saturated implementation really needs to be implemented in as-
sembly language to demonstrate its full potential. In practise it may come
down to a decision as to whether or not any speed-up that arises from using
an assembly language saturated radix implementation is worth the substan-
tial extra effort in the context of portability, maintainability, and confidence
in the correctness of the implementation.

15.3 Assembly or High level language?

The answer to this question appears to be heavily dependent on the com-
puter architecture. In all cases it would appear that for modular multipli-
cation the choice comes down to (a) an assembly language implementation
using a saturated radix, (b) an assembly language implementation using an
unsaturated radix, (c¢) a HLL implementation using an unsaturated radix.

Consider the saturated and unsaturated implementations provided by
Nath and Sarkar [44] for the x86-64 architecture. Here we can make an
observation. In tables 4 and 5 in [44] there is an entry for NIST521, which
shows a modest improvement over the previous record. However that pre-
vious record was written entirely in C [23]. Which begs the question: Just
how much of a speed up can be achieved by making the non-trivial decision
to implement in assembly? It is this question that this paper has attempted
to answer.

We have made comparisons with our automatically generated code which
uses essentially the same algorithm for pseudo-Mersennes, as described
above. Any comparison between saturated and unsaturated is heavily de-
pendent on whether or not an extra limb is required for the unsaturated
implementation. For example the prime 2°12 — 569 would require an extra
9th limb for an unsaturated implementation, whereas the prime 2°2! — 1
does not.

We are content to allow the reader draw their own conclusions from the
tables above. Suffice it to say that the appreciable extra effort required for
an assembly language implementation often appears to provide at best a
50% speed up. And actually getting that reward can be difficult.
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However it would be a mistake to try and extrapolate the x86-64 ex-
perience to other architectures. The 32-bit ARM M4 instruction set has
particularities that reward the determined assembly language programmer,
with twice as many registers and a flexible range of fast integer multipli-
cation instructions. Furthermore compiler register allocation is often very
poor [55]. When compared against Lenngren’s implementation of NIST256
for the 32-bit ARM M4 [33] we find that our Montgomery code is almost
3 times slower. See also [21] for a fast saturated radix implementation of
(C25519 modular multiplication in M4 assembly language.

The RISC-V architecture is quite different again, as noted by Pornin
[48]. Due to the lack of a carry flag in its architecture, an unsaturated
implementation will most likely always be preferred [56].

One tentative general conclusion might be that, if using an unsaturated
radix, then there is probably little to be gained from re-writing the code in
assembly language. Another conclusion might be that assembly language
implementation works best for smaller moduli, particularly on 16 and 32-bit
processors.

An issue with an assembly language implementation is the phenomenon
known as “software rot”. Over time architectures change, and compilers
can take advantage of that. An assembly language implementation cannot
adapt so easily — it is very much of its time.
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