
A preliminary version of this paper appears in CRYPTO 2024. This is the full version.

Succinctly-Committing Authenticated Encryption

Mihir Bellare1 Viet Tung Hoang2

June 2024

Abstract

Recent attacks and applications have led to the need for symmetric encryption schemes that,
in addition to providing the usual authenticity and privacy, are also committing. In response,
many committing authenticated encryption schemes have been proposed. However, all known
schemes, in order to provide s bits of committing security, suffer an expansion—this is the length
of the ciphertext minus the length of the plaintext—of 2s bits. This incurs a cost in bandwidth
or storage. (We typically want s = 128, leading to 256-bit expansion.) However, it has been
considered unavoidable due to birthday attacks. We show how to bypass this limitation. We give
authenticated encryption (AE) schemes that provide s bits of committing security, yet suffer
expansion only around s as long as messages are long enough, namely more than s bits. We
call such schemes succinct. We do this via a generic, ciphertext-shortening transform called SC:
given an AE scheme with 2s-bit expansion, SC returns an AE scheme with s-bit expansion while
preserving committing security. SC is very efficient; an AES-based instantiation has overhead
just two AES calls. As a tool, SC uses a collision-resistant invertible PRF called HtM, that
we design, and whose analysis is technically difficult. To add the committing security that SC
assumes to a base scheme, we also give a transform CTY that improves Chan and Rogaway’s
CTX. Our results hold in a general framework for authenticated encryption, called AE3, that
includes both AE1 (also called AEAD) and AE2 (also called nonce-hiding AE) as special cases,
so that we in particular obtain succinctly-committing AE schemes for both these settings.

1Department of Computer Science and Engineering, University of California San Diego. Supported in part by
NSF grant CNS-2154272 and KACST.

2Department of Computer Science, Florida State University. Supported in part by NSF grant CNS-2046540
(CAREER).

1

Contents

1 Introduction 3

2 Preliminaries 7

3 The AE3 Symmetric Encryption Framework 8

4 Committing Attacks 13

5 Collision-Resistant IPF 14
5.1 Collision-resistant IPF via SIV . 15
5.2 Collision-resistant IPF via Encode-then-Encipher . 17
5.3 Proof of Proposition 5.1 . 18

6 Succinctly-Committing AE 26

7 Acknowledgments 30

References 30

A Proof of Lemma 3.2 33

B Equivalence of Committing Definitions 34

C Proof of Theorem 3.4 34

D Proofs of the Lemmas in Proposition 5.1 38
D.1 Proof of Lemma 5.5 . 38
D.2 Proof of Lemma 5.7 . 38
D.3 Proof of Lemma 5.8 . 39
D.4 Proof of Lemma 5.9 . 41
D.5 Proof of Lemma 5.10 . 42
D.6 Proof of Lemma 5.11 . 43
D.7 Proof of Lemma 5.12 . 44

E Proof of Proposition 5.2 46

F Proof of Proposition 5.3 50

G Proof of Proposition 5.4 50

H Proof of Proposition 6.1 51

I Proof of Theorem 6.3 52

2

1 Introduction

Authenticated Encryption refers to symmetric encryption that provides both data privacy and
authenticity. It is widely used in practice. Recent attacks and applications, however, indicate that
AE schemes should also be committing. This paper asks how succinctly, meaning with how little
a growth in ciphertext size, one can provide committing security, and gives an essentially optimal
solution. We start with some background.

Authenticated encryption. Modern symmetric encryption is nonce-based. It comes in a few
forms. We’ll start by focusing on the form called AE1 or AEAD [39]. (AE1 is not without its
defects [7], but it is the currently most popular form of symmetric encryption. We’ll get to other
forms later.)

In an AE1 scheme SE, the encryption algorithm SE.Enc takes keyK, nonce N , associated data A
and message M to deterministically return a ciphertext C ← SE.Enc(K,N,A,M). Decryption re-
covers via M ← SE.Dec(K,N,A,C). AE1 security asks for privacy of the message and authenticity
of both the message and the associated data, under the condition that encryption never repeats
(reuses) a nonce. A central AE1 scheme is GCM [35]. It is a NIST standard [24]. AE1 (and GCM
in particular) is widely used, in particular for securing communicated data in TLS [42] and for
securing stored data in Amazon Web Services (AWS).

Committing security. Different names and formalizations of this, given over the years in the
literature [26, 1, 27, 25, 2, 5, 16, 36], have converged to one optimally strong and simple one from [5,
16], namely that the function SE.Enc is collision resistant. That is, it is hard to find distinct tuples
(K1, N1, A1,M1), (K2, N2, A2,M2) such that SE.Enc(K1, N1, A1,M1) = SE.Enc(K2, N2, A2,M2).
We will refer to this simply as committing, abbreviated CMT.

CMT-security is motivated by recent attacks and applications. One such is password-based
encryption (PBE), which Len, Grubbs, and Ristenpart [33] show how to break, in some settings,
if the underlying AE1 scheme is not CMT-secure. The presence of CMT-security in the scheme
is then shown by Bellare and Shea [11] to restore security for PBE. Albertini et al. [2] describe
security failures in key rotation, envelope encryption and subscribe-with-Google that arise from lack
of CMT-security of the AE1 scheme. Committing security is needed for unambiguous decryption in
anonymous encryption [1, 15]. Grubbs, Lu, and Ristenpart [27] show that CMT-security is needed
for an AE1 scheme to provide message franking, a capability in messaging systems that allows a
receiver to report the receipt of abusive content. Further examples are in [25, 32].

Towards obtaining CMT-secure schemes, it is natural to first ask if existing AE1 schemes happen
to already be committing. The answer is broadly no. Attacks from [33, 2, 27, 36, 16] show that
GCM, ChaCha20/Poly1305, OCB [40], CCM [43], EAX [10] and SIV [41] are all CMT-insecure. Chen
et al. [17] give attacks on Encode-then-Encipher (EtE) schemes [8] if the enciphering is done via
AEZ [30], Adiantum [18], or HCTR2 [19].

This has led to the design of new AE1 schemes that are proven CMT-secure. The most attractive
solutions are generic transforms. One such is CTX [16], which, with the aid of a hash function, adds
CMT-security to any tag-based AE1 scheme. Another is HtE ◦ UtC [5] that adds CMT-security
to any AE1 scheme. (As the notation indicates, this composes two individual transforms.) There
are also dedicated schemes: CAU-C4 [5] is a simple modification of GCM that is CMT-secure, and
SpongeWrap [13] has been shown to be CMT-secure [22].

CTY. Before getting to our core contributions we pause to discuss an auxiliary one, namely a
transform we call CTY. It is an improvement of CTX that offers the same security but with strictly
greater efficiency. Recall that CTX takes a (tag-based) AE1 scheme SE1 and hash function H to

3

return a CMT-secure AE1 scheme SE2 ← CTX[SE1,H] built as follows: SE2.Enc(K,N,A,M) lets
C ′∥R ← SE1.Enc(K,N,A,M) —here R is the tag— and returns C ′∥T where T = H(K,N,A,R).
For CTY, the change is simply that A is dropped (more precisely, replaced by the empty string ε)
as input to SE1.Enc in the first step. The speed increase is perceptible for long A. Theorem 3.3
implies that CTY, like CTX, provides s bits of CMT security if the hash function outputs 2s bits,
and Theorem 3.4 implies it also retains the AE1-security of SE1. We will use CTY as a tool but it
is also of independent interest.

Expansion.An AE1 scheme SE has expansion e if |SE.Enc(K,N,A,M)| = |M |+e for allK,N,A,M .
(That is, ciphertexts are e bits longer than plaintexts.) Now say we want SE to provide s bits of
CMT-security, meaning it takes 2s time to violate CMT. It turns out that all existing CMT-secure
schemes incur expansion e ≥ 2s to provide s bits of CMT security.

In this paper we ask whether 2s-bit expansion is necessary for s bits of CMT-security, and
whether it can instead be provided with expansion (about) s.

This question is of both theoretical and practical interest. To explain the latter, first note
that CMT-security, unlike AE1-security, is subject (like collision-resistance for hash functions) to
offline attack, so while 64-bits of AE1 security is considered adequate (and is what GCM provides),
one would like 128 bits of CMT security. With known schemes or transforms, this incurs 256 bits
of expansion. This is 128 bits more than current (non-committing) AE1 schemes like GCM. So
CMT-security is coming at a price in bandwidth. For IoT devices, this translates to increased
power consumption that they can ill afford. It also means increased storage cost for cloud storage
systems. Moreover, increasing the ciphertext length can create backward compatibility issues in
legacy systems.

The quest to minimize expansion is not new. Indeed, robust AE and AEZ [30] were motivated by
the need to provide best-possible AE security with a user-defined expansion. The area of lightweight
cryptography also aims (amongst other things) to minimize expansion. We are following in these
steps by addressing the same concerns for CMT security.

Due to these practical considerations, we not only want to reduce expansion but want to do so
with minimal performance penalty.

The birthday attack. Recall that current CMT-secure AE1 schemes incur expansion e ≥ 2s to
provide s bits of CMT security and our question is whether there exist AE1 schemes that reduce
this expansion to (around) s. Folklore says that the answer is “no.” Indeed, the 2s-bit expansion
is seen as necessary, due to the following birthday attack. Let SE be any AE1 scheme and let e
be its expansion. Pick distinct (K1, N1, A1), . . . , (Kq, Nq, Aq) and encrypt the empty message ε
under them to obtain ciphertexts Ci ← SE.Enc(Ki, Ni, Ai, ε) for i = 1, . . . , q. Since the message
has length 0, these ciphertexts all have length 0 + e = e. A collision, meaning distinct a, b with
Ca = Cb, is thus expected when q = 2e/2, and constitutes a violation of CMT-security. Requiring
q ≥ 2s (for s-bit security) now forces e ≥ 2s.

Eventual expansion. We suggest a way out. This is to allow variable expansion. The expansion
now is not a constant but rather a function SE.ce : N→ N of the message length, meaning |SE.Enc
(K,N,A,M)| = |M | + SE.ce(|M |). In particular let us say a scheme has eventual expansion e if
SE.ce(m) = e for all m ≥ c where c is a small value called the cutoff. We claim (with justification
below) that, while attacks mandate expansion 2s to provide s-bits of CMT security, there is nothing
precluding schemes with eventual expansion much smaller, even as small as s, as long as c ≥ s.

Let us refer to a scheme providing (about) s-bits of CMT security with eventual expansion s
as succinctly committing. A succinct scheme (if it exists!) would “morally” be providing s bits
of CMT-security with the optimal s bits of expansion. Concretely, for s = 128, it would reduce

4

expansion from 256 to (the optimal) 128 for all long enough (more than 128-bit if c = 128) messages.
This means it will (for messages above the cutoff length) provide 128-bit CMT-security with the
same expansion as the non-CMT-secure GCM scheme, so that no extra bandwidth costs are incurred
to add CMT-security in this case.

The challenge will be to actually give succinct schemes, but first let us revisit the attack picture
to justify the above claim. For a scheme with variable expansion SE.ce, the above birthday attack
says that SE.ce(0) ≥ 2s, which imposes no restriction on eventual expansion being as low as s.
The attack can be generalized to use an m-bit message, but in this case takes q = 2(m+SE.ce(m))/2

time, leading to the constraint m + SE.ce(m) ≥ 2s or SE.ce(m) ≥ 2s − m. Simple attacks show
that SE.ce(m) ≥ s is always needed, so that overall the constraint that emerges is that SE.ce(m) ≥
max(2s−m, s) for all m ≥ 0. This means that eventual expansion as low as s, with cutoff also s,
is not excluded by these attacks. This is the opening we want to exploit.

Our solution. Above we have opened the door to succinct CMT-secure AE1 schemes by showing
they would not contradict known attacks. But this is a far cry from showing such schemes actually
exist. We would like not only to show that they do exist but also to give schemes that, in light
of the above practical considerations, have minimal performance overhead compared to existing
schemes with 2s-bit expansion. To achieve both of these goals, we have a two-step solution.

▷ Step 1: SC. Suppose that we have a committing (tag-based) AE1 scheme SE1 of s-bit committing
security but with expansion of λ ≥ 2s bits. We aim to shorten the ciphertext of SE1 with very little
security degradation. For this, we give a transform SC that, with the aid of an auxiliary primitive F,
constructs an AE1 scheme SE2 ← SC[SE1,F] as shown in Figure 9. The auxiliary primitive F is
a collision-resistant invertible PRF (CR IPF) F : {0, 1}λ × {0, 1}≤s → {0, 1}2s that takes a λ-bit
key T and an input P of length at most s to return a 2s-bit output R← F(T, P). Scheme SE2 has
eventual expansion only s, with cutoff around s. With regard to security, we give a construction
HtM for F such that the AE1 scheme SE2 provides (about) s bits of CMT-security. Moreover, SC
is very efficient. Indeed, if we use HtM for F then the overhead of SC is just two AES calls.

Unfortunately, SC does not generically preserve AE1 security. Still, we can show that if SE1

is obtained by applying our above-mentioned CTY transform to a standard tag-based AE1 scheme
SE0, then SC does preserve AE1 security. Furthermore, CTY is currently the fastest way to build
a CMT-secure AE1 scheme. In other words, by composing SC and CTY, we have a fast transform
that turns a standard tag-based AE1 scheme SE0 (such as GCM) into a succinctly committing AE1
scheme SE2.

▷ Step 2: HtM. For SC to work as claimed above, we need a CR IPF F : {0, 1}λ×{0, 1}≤s → {0, 1}2s
that provides (nearly) s bits of CR-security and at least s/2-bits of PRF security. Furthermore we
want F to be as efficient as possible. We give a construction called HtM that we prove achieves
this. The construction itself is quite simple, but the analysis to show the tight bounds we need is
difficult.

HtM can be seen as a 2-round Feistel in which the right-half of the Feistel input is the (padded) F
input and the left half is the all-zero string. Alternatively, HtM can also be viewed as following the
SIV paradigm [41]. To minimize the cost of HtM, we build the round functions from the Davies-
Meyer function of a blockcipher E; this blockcipher can be instantiated from AES if s ≤ 128. See
Figure 7 for a full description.

It’s trivial to show that HtM provides s/2 bits of collision resistance using the well-known
collision resistance of Davies-Meyer. Furthermore, at first glance, given that HtM uses a CR
hash of s-bit output, one doesn’t expect anything beyond s/2 bits of collision-resistance security.
Surprisingly, by exploiting a circularity in the SIV paradigm, we can prove that HtM provides

5

(nearly) s bits of collision resistance in the ideal-cipher model.

Our CR proof for HtM however is technically involved. The main obstacle is that Feistel
decryption is non-atomic. For example, the adversary may just specify the left half of a ciphertext
(that can match several prior ciphertexts) and run a Feistel round on it, and then adaptively pick
the right half of the ciphertext to continue the decryption. Even worse, since we build the Feistel
rounds on top of a blockcipher E, the complexity blows up, because one has to consider both
forward and backward queries to E. (Had we instead built the Feistel rounds from a random
oracle then the analyses would be a lot more tractable.) To deal with this problem, we (1) use
concentration bounds via (non-standard) balls-into-bins analyses to show that the adaptivity can
at best amplify the adversary’s advantage by a factor of s, and (2) use a detailed case analysis on
the types of the four ideal-cipher queries that correspond to the adversary’s output.

Alternative IPFs. Invertible PRF (IPFs) arises naturally in the context of deterministic AE, a
solution for the key-wrapping problem [41]. An IPF is a special case of a pseudorandom injection
(one of the characterizations of deterministic AE) in which the header is just the empty string.
The new element for us is that we also want collision-resistance (CR). HtM is not the only possible
approach. A natural approach to use the encode-then-encipher paradigm (EtE) [8], building a
CR IPF F : {0, 1}λ × {0, 1}≤n−s → {0, 1}n via F(T, P) = E(T, P∥1∥0n−|P |−1) for a block cipher
E : {0, 1}λ×{0, 1}n → {0, 1}n. In Proposition 5.3 we verify its IPF security, and in Proposition 5.4
we show that it provides s bits of CR security if E is an ideal cipher and n ≥ 2s. However, one
can’t directly instantiate E from AES because we want s ≥ 128. Instantiating E using a Feistel
network via indifferentiability theory [34] leads to several obstacles. Namely, on the one hand, if
we want the Feistel network itself to be indifferentiable from an ideal cipher, then the state of the
art [21] demands 8 Feistel rounds, and the concrete bound is poor, so we do not in the end get s
bits of CR from F. On the other hand, if we want the EtE construction to be indifferentiable
from an ideal injective function, then we only need 3 Feistel rounds [3], but we only get s/2 bits
of CR from F. Compared to these approaches, HtM does not aim for indifferentiability but instead
directly achieves CR-security and PRF-security. It does this very efficiently (just 2 Feistel rounds,
and each round from a single AES call) and moreover the concrete bounds proven are very good.

Generalization and extensions. Above we have focused on the form of symmetric encryption
called AE1 or AEAD [39] but in fact our results are more general and apply to a broader class of
schemes, as we now explain.

AE1 claims to provide security for any (non-repeating) choice of nonce, but in fact fails to
actually do so [7]. This may sound surprising but in hindsight is obvious. Since AE1 decryption
needs the nonce as input, it must be sent in the clear. But there are valid and useful choices of
nonces, like hashes of the message, that if used with low-entropy messages, allow message recovery
given the ciphertext and nonce. A remedy is AE2 [7], which truly provides security for all nonce
choices. (We forbear to refer to it by the sometimes-used term “nonce-hiding” because the latter
misleads one into seeing hiding the nonce as the primary goal. In fact, hiding the nonce is primarily
a means to truly hide the message, and secondarily important because nonces too can be sensitive.)
Now all the reasons to desire committing-security for AE1 hold also for AE2 so it is natural to ask
if our results extend to AE2.

They do, but in fact more is true; our results hold, and are established in, a broader framework
from [11] that includes both AE1 and AE2 as special cases. We call it AE3. We develop the
AE3 framework in Section 3. Encryption, as before, takes K,N,A,M to return a ciphertext, but
decryption takes K,N,D,C where D = SE.df(N) is determined by a scheme-associated function
SE.df called the decryption-nonce function. Defining SE.df(N) = N recovers AE1 and defining
SE.df(N) = ε recovers AE2. But consider a nonce N consisting of a sensitive device-id, plus a

6

random number that can be sent in the clear. Neither AE1 nor AE2 capture this well, but AE3
does, by letting SE.df(N) return the non-sensitive part of the nonce N .

In Section 3 we define AE3 (syntax and AE security) following [11] but also, for the first time,
define its committing security (CMT). We then give our constructions and results in this general
framework. Specifically, both the CTY transform and the SC transform are given for general (tag-
based) AE3 schemes. Results for AE1 and AE2 are recovered as special cases via the particular
choices of SE.df given above.

Further related work and approaches. CAU-C4 [5] provides 64 bits of CMT-security with
128-bit expansion and is attractive due to being only a slight modification of GCM. However,
as argued above, due to offline attacks, one might prefer 128 bits of CMT security. For sponge-
based schemes like Ascon [23] or SpongeWrap [13], if we want 128-bit CMT security, we still need
256-bit expansion. Moreover, those schemes are much slower than AES-based ones in platforms
where AES-NI is available. (Even if the underlying permutation is designed based on the AES
round function, like Simpira [29], the sequential nature of the sponge construction will disrupt the
AES-NI pipelining.)

The Encode-then-encipher (EtE) construction of [8] is shown in [27] to provide a form of com-
mitment called receiver-binding (r-BIND) security. This is not the same as CMT but their result
does show s bits of r-BIND security with s bits of expansion if the underlying cipher is modeled as
ideal. However, it is unclear how to build this ideal enciphering from common primitives such as
a blockcipher. In fact, if we use off-the-shelf enciphering schemes like AEZ [30] or Adiantum [18]
then the committing security of EtE breaks down [17]. Moreover, EtE constructions are expensive
and need at least two passes over the data.

In concurrent work, Naito, Sasaki, and Sugawara [37] also explore how to achieve s-bit CMT
security with s-bit ciphertext expansion. Their work assume that the message format offers some
redundancy that is known to the encryption scheme. For example, in the HTTP protocol, a message
starts with “HTTP/1.1”, providing an eight-byte redundancy. They give a transform KIVR to add
committing security to a base AE scheme SE without increasing the ciphertext expansion. If SE
is GCM then KIVR requires 2s bits of redundancy for s-bit committing security. The use of KIVR
is rather limited because it requires that the message format provides enough redundancy. In the
example of the HTTP protocol, messages offer only 64-bit redundancy, meaning that KIVR provides
merely 32-bit committing security. Moreover, in practice it’s unrealistic to assume that message
redundancy is known to the encryption algorithm.

2 Preliminaries

Notation and Terminology. Let ε denote the empty string. For a string x ∈ {0, 1}∗ we let
|x| denote its length, and let x[i : j] denote the bits in positions i through j (inclusive), for
1 ≤ i ≤ j ≤ |x|. For an integer n ≥ 1, we let {0, 1}≤n = { x ∈ {0, 1}∗ : |x| ≤ n } be
the set of strings of length at most n. By Func(Dom,Rng) we denote the set of all functions
f : Dom → Rng. By Perm(Dom) we denote the set of all permutations π : Dom → Dom. We write
Perm(n) for Perm({0, 1}n). We use ⊥ as a special symbol to denote rejection, and it is assumed to
be outside {0, 1}∗.

If X is a finite set, we let x←$ X denote picking an element of X uniformly at random and
assigning it to x. If A is a randomized algorithm, we let y←$ A(x1, . . .) denote running A on inputs
x1, . . . and assigning the output to y. If A is deterministic, we may use ← in place of ←$. If S is
a finite set, then |S| denotes it size. We say that a set S is full if it is either {0, 1}∗ or {0, 1}≤n for
some n. (This will be a requirement for message, associated-data, and nonce spaces.)

7

Game Gprf
F (A)

b←$ {0, 1}; b′←$ANew,Eval

Return (b′ = b)

New()

v ← v + 1; Kv←$K
fv←$ Func(Dom,Rng)

Eval(i,M)

C1 ← F(Ki,M)

C0 ← fi(M)

Return Cb

Game G±prp
E (A)

b←$ {0, 1}; b′←$ANew,Enc,Dec

Return (b′ = b)

New()

v ← v + 1; Kv←$ {0, 1}k
Πv←$ Perm(n)

Enc(i,M)

C1 ← E(Ki,M); C0 ← Πi(M)

Return Cb

Dec(i, C)

M1 ← E−1(Ki, C); M0 ← Π−1
i (C)

Return Mb

Figure 1: Left: Game defining (multi-user) PRF security of F. Right: Game defining (multi-user)
strong PRP security of E.

For two adversaries that are given the same set of oracles, we say that they have the same query
statistics if they have the same number of queries, the same number of queries per user, and the
same total length of queries, for each oracle that they are given.

Games. We use the code-based game-playing framework of [9] with some modifications. A game
G(A) runs adversary A with oracles that the game specifies as procedures, and then returns an
output. By Pr[G(A) ⇒ y] we denote the probability that the execution of G(A) results in the
game output being y, and write just Pr[G(A)] for Pr[G(A) ⇒ true]. In game pseudocode, integer
variables, set variables, boolean variables and string variables are assumed initialized, respectively,
to 0, the empty set ∅, the boolean false and ⊥. Adversaries in games are always assumed to be
domain-respecting, meaning if a query they provide is expected to fall in some scheme-associated
set, then it does.

Collision resistance. Let H : Dom → Rng be a function. A collision for H is a pair (X1, X2)
of distinct points in Dom such that H(X1) = H(X2). For an adversary A, define its advantage in
breaking the collision resistance of H as Advcoll

H (A) = Pr[(X1, X2) is a collision for H], where the
probability is over (X1, X2)←$A.

PRFs and PRPs. For a function F : K×Dom→ Rng and an adversary A, we define the advantage
of A in breaking the (multi-user) PRF security of F as Advprf

F (A) = 2Pr[Gprf
F (A)]−1, where game

Gprf
F (A) is shown in Fig. 1.

For a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n and an adversary A, we define the advantage
of A in breaking the (multi-user) strong-PRP security of E as Adv±prp

E (A) = 2Pr[G±prp
E (A)]− 1,

where game G±prp
E (A) is shown in Fig. 1.

3 The AE3 Symmetric Encryption Framework

Our results are strengthened by using a general, unified definitional framework from [11]. We call it
AE3. It includes AE1 (also called AEAD) and AE2 (also called nonce-hiding AE) as special cases.
It starts with a general syntax that we give and then explain.

8

AE3 syntax. A symmetric encryption scheme SE in the AE3 framework specifies a deterministic
encryption algorithm SE.Enc : {0, 1}SE.kl × {0, 1}SE.nl × SE.AS × SE.MS → {0, 1}∗, a deterministic
decryption algorithm SE.Dec : {0, 1}SE.kl × {0, 1}SE.dl × SE.AS × {0, 1}∗ → (SE.MS × {0, 1}SE.nl) ∪
{⊥}, and a decryption-nonce derivation function SE.df : {0, 1}SE.nl → {0, 1}SE.dl. Here kl, nl, dl
are the key, nonce and decryption-nonce lengths, respectively. The associated-data space SE.AS
and message space SE.MS are required to be full sets as defined above. We require that there
is a ciphertext-length function SE.cl : N → N such that |SE.Enc(K,N,A,M)| = SE.cl(|M |) for
all (K,N,A,M) ∈ {0, 1}SE.kl × {0, 1}SE.nl × SE.AS × SE.MS. The ciphertext-expansion function
SE.ce : N → N is then defined by SE.ce(m) = SE.cl(m) − m for all m ∈ N. The correctness
requirement is that if C ← SE.Enc(K,N,A,M) then SE.Dec(K,SE.df(N), A,C) returns (M,N) for
all (K,N,A,M) ∈ {0, 1}SE.kl × {0, 1}SE.nl × SE.AS× SE.MS.

Now let us explain. The sender is as usual expected to communicate the ciphertext C ← SE.Enc
(K,N,A,M) to the receiver. However, what information the receiver gets about the nonce varies
across definitions in the literature. In AE1 (also called AEAD [39]), the nonce is sent in the clear
and is an explicit input to SE.Dec, captured in AE3 by setting SE.df to the identity function,
namely SE.df(N) = N for all N ∈ {0, 1}SE.nl, and correspondingly setting SE.dl = SE.nl. The AE1
definition however fails to provide security for some choices of nonces, for example when they are
hashes of the messages [7]. This leads [7] to introduce AE2 (also called nonce-hiding AE), where
the decryptor gets no information about the nonce, captured in AE3 by setting SE.df(N) = ε for
all N ∈ {0, 1}SE.nl and correspondingly SE.dl = 0.

The AE3 syntax of [11] not only unifies AE1 and AE2, but generalizes them to capture realistic
usage in between the two extremes. In applications, the nonce can consist of a sensitive part,
meaning one whose privacy we want to protect, like a device-id, and a non-sensitive part, meaning
one whose privacy is not a concern, like a random number. The sensitive part would be encrypted,
and the receiver is expected to recover it through the ciphertext. The non-sensitive part is sent in
the clear. This setting is captured in AE3 by letting SE.df(N) return the non-sensitive part of the
nonce.

The decryption-nonce derivation function, unlike the encryption and decryption algorithms, is
not necessarily implemented with the scheme. Its purpose is instead conceptual. It does show up
in the definitions of security.

Note we have required decryption to recover not only the message but also the nonce. In AE1
this is redundant but we maintain it for consistency. However it will be useful to write SE.Dec∗

(K,D,A,C) for just the message, meaning the first component of SE.Dec(K,D,A,C).

We define the decryption-nonce density SE.dnd ∈ N of SE to be the smallest integer d ≥ 0
such that: |{ N ∈ {0, 1}SE.nl : SE.df(N) = D }| ≤ 2d for all D ∈ {0, 1}SE.dl. For AE1 schemes,
SE.dnd = 0. For AE2 schemes, SE.dnd = SE.nl is the nonce length.

Tidiness. We extend the definition of AE1 tidiness [38] to AE3 as follows. We say that SE
is tidy if for all (K,D,A,C) ∈ {0, 1}SE.kl × {0, 1}SE.dl × SE.AS × {0, 1}∗ the following is true: If
(M,N)← SE.Dec(K,D,A,C) and (M,N) ̸= ⊥, then it must be that SE.df(N) = D and SE.Enc(K,
N,A,M) = C. The schemes we consider will be tidy.

Suppose (K,N,A) ∈ {0, 1}SE.kl × {0, 1}SE.nl × SE.AS and we let IK,N,A = { SE.Enc(K,N,
A,M) : M ∈ SE.MS }. Combining correctness and tidiness implies that the functions SE.Enc
(K,N,A, ·) : SE.MS → IK,N,A and SE.Dec∗(K,SE.df(N), A, ·) : IK,N,A → SE.MS are the inverse of
each other.

Tag-based schemes. We say that symmetric encryption scheme SE is tag-based if its ciphertext
consists of a SE.tl-bit tag and a ciphertext core C∗, and decryption verifies the tag. Proceeding for-
mally, SE is tag-based if it specifies an additional deterministic tagging algorithm SE.Tag : {0, 1}SE.kl

9

Game Greal
SE (A)

b′←$ANew,Enc,Vf

Return b′

New()

v ← v + 1; Kv←$K

Enc(i,N,A,M)

C ← SE.Enc(Ki, N,A,M)

S ← S ∪ {(i, SE.df(N), A,C)}
Return C

Vf(i,D,A,C)

If (i,D,A,C) ∈ S then return ⊥
(M,N)← SE.Dec(Ki, D,A,C)

Return ((M,N) ̸= ⊥)

Game Grand
SE (A)

b′←$ANew,Enc,Vf

Return b′

New()

v ← v + 1

Enc(i,N,A,M)

C←$ {0, 1}SE.cl(|M |)

S ← S ∪ {(i, SE.df(N), A,C)}
Return C

Vf(i,D,A,C)

If (i,D,A,C) ∈ S then return ⊥
Return false

Figure 2: Games defining the AE security of a symmetric encryption scheme SE.

× {0, 1}SE.dl × SE.AS× {0, 1}∗ → SE.MS× {0, 1}SE.nl × {0, 1}SE.tl in terms of which the decryption
algorithm is specified as follows:

SE.Dec(K,D,A,C)

If |C| < SE.tl then return ⊥
λ← SE.tl ; C∗ ← C[1 : |C| − λ] ; T ← C[λ+ 1 : |C|]
(M,N, T ∗)← SE.Tag(K,D,A,C∗)
If (T ∗ = T) then return (M,N) else return ⊥

We refer to SE.tl as the tag length. Not every scheme is tag-based, but those built via the Encrypt-
then-MAC paradigm [6, 38], including GCM and CCM, are tag-based. The following result shows
the relationship between the tag length, the expansion, and the decryption-nonce density.

Lemma 3.1 Let SE be a tag-based symmetric encryption scheme. Then SE.tl ≤ SE.ce(m)−SE.dnd
for every m.

Proof: Let D be a decryption nonce with the maximum number of preimages N under SE.df, and
let S be the set of those preimages. From the definition of decryption-nonce density, we must have
|S| > 2SE.dnd−1. Fix a message length m and a key K. Consider the function f : S × {0, 1}m →
{0, 1}SE.cl(m)−SE.tl defined via f(N,M) = SE.Enc(K,N, ε,M)[1 : SE.cl(m)−SE.tl]. That is, f(N,M)
returns the ciphertext core of the message M that is encrypted under key K, nonce N and the
empty AD. The function f is injective, because we can recover (N,M) from C∗ = f(N,M) via
SE.Tag. Hence log2(|S|) +m ≤ SE.cl(m) − SE.tl, because the former is the input length of f and
the latter is the output length of f . Hence

SE.tl ≤ SE.cl(m)−m− log2(|S|) = SE.ce(m)− log2(|S|) < SE.ce(m)− SE.dnd+ 1 .

Since both sides are integers, we have SE.tl ≤ SE.ce(m)− SE.dnd.

AE security. Let SE be a symmetric encryption scheme as per the AE3 syntax above. Following
the formalizations of [11], we define AE security of SE in the multi-user setting of [12]. Restricting

10

Game Gcmt
SE (A)(

(K1, N1, A1,M1), (K2, N2, A2,M2)
)
←$A

C1 ← SE.Enc(K1, N1, A1,M1); C2 ← SE.Enc(K2, N2, A2,M2)

If (C1 ̸= C2) then return false

Return ((K1, N1, A1,M1) ̸= (K2, N2, A2,M2))

Game Gcmt-d
SE (A)(

C, (K1, D1, A1), (K2, D2, A2)
)
←$A

(M1, N1)← SE.Dec(K1, D1, A1, C); (M2, N2)← SE.Dec(K2, D2, A2, C)

If ((M1, N1) = ⊥ or (M2, N2) = ⊥) then return false

Return ((K1, D1, A1) ̸= (K2, D2, A2))

Figure 3: Games defining committing security of a symmetric encryption scheme SE.

attention to AE1 schemes recovers the usual AEAD notion of [39] while restricting attention to
AE2 schemes recovers the nonce-hiding notion of [7], but the AE3 formulation here is more general,
and useful, beyond unifying prior notions, for the reasons explained above.

Consider gamesGreal
SE (A) andGrand

SE (A) in Fig. 2. We define the AE advantage of an adversary A
as Advae

SE(A) = Pr[Greal
SE (A)] − Pr[Grand

SE (A)]. We require that the adversary be unique-nonce,
meaning it never repeats an (i,N) pair across its Enc queries. (That is, a nonce is never reused
for a given user. Note this implies no entire query is repeated, which is needed for non-triviality.)
We stress that there is no such restriction on verification queries. We ask of course that queries are
restricted to their domains, for example that i ∈ {1, . . . , v} and (N,A,M) ∈ {0, 1}SE.nl × SE.AS×
SE.MS in an Enc(i,N,A,M) query.

In the definition above, an adversary can adaptively interleave encryption and verification
queries. An adversary is orderly if (i) its verification queries are made at the very end, after
all its encryption queries are over, and (ii) these queries are non-adaptive, meaning a verification
query does not depend on the answers to prior verification queries. (It may still depend on the
answers to prior encryption queries.) The following result shows that one can restrict to orderly
adversaries with just a small loss in the advantage; it generalizes an AE1 result of [5]. The proof is
in Appendix A.

Lemma 3.2 Let SE be a symmetric encryption scheme. Let τ ∈ N be such that SE.ce(m) ≥
τ + SE.dnd for all m ∈ N. (For example, if SE is tag-based then τ = SE.tl can be the tag length.)
For any adversary A that makes qv verification queries, we can construct an orderly adversary B,
of about the same running time and the same query statistics, such that

Advae
SE(A) ≤ Advae

SE(B) +
2qv
2τ

.

If SE.ce(m) = τ + SE.dnd for all m ∈ N then the term 2qv/2
τ above can be improved to qv/2

τ .

Committing security. Two types of committing security are defined in [5]: CMT-1, where the
committal is just to the key K, and CMT-4, where the committal is to the entire input (K,N,A,M)
to the encryption algorithm. Our paper focuses on the stronger CMT-4 notion, and we just write
CMT for it.

The definitions of [5] were for the AE1 setting. Here we extend them to AE3. Specifically,
for an adversary A, we define its advantage in breaking the committing security of a symmetric
encryption scheme SE as Advcmt

SE (A) = Pr[Gcmt
SE (A)], where game Gcmt

SE (A) is defined in Fig. 3.

11

SE.Enc(K,N,A,M)

C∥R← SE.Enc(K,N,A,M)

T ← H(K,N,A∥R)

Return C∥T

SE.Dec(K,D,A,C∥T)
(M,N,R)← SE.Tag(K,D,A,C)

T ∗ ← H(K,N,A∥R)

If (T ̸= T ∗) then return ⊥ else return (M,N)

Figure 4: The AE scheme SE = CTX[H,SE].

SE.Enc(K,N,A,M)

C∥R← SE.Enc(K,N, ε,M)

T ← H(K,N,A∥R)

Return C∥T

SE.Dec(K,D,A,C∥T)
(M,N,R)← SE.Tag(K,D, ε, C)

T ∗ ← H(K,N,A∥R)

If (T ̸= T ∗) then return ⊥ else return (M,N)

Figure 5: The AE scheme SE = CTY[H,SE].

Informally, committing security means that an adversary cannot produce a ciphertext collision.
We give an alternative, decryption based version, letting Advcmt-d

SE (A) = Pr[Gcmt-d
SE (A)], where

game Gcmt-d
SE (A) is defined in Fig. 3.

To achieve committing security, one only needs to commit to (K,SE.df(N), A); the pair (M,N)
will be committed via the decryption correctness requirement of SE.

We write Gcmt
SE (A,m) for a variant of game Gcmt

SE (A) in which the adversary is required to
output m-bit messages, and let Advcmt

SE (A,m) be the corresponding advantage.

In Appendix B, we show that CMTD implies CMT in general, and CMT implies CMTD for
tidy schemes.

The CTX and CTY transforms. Chan and Rogaway [16] give a transform CTX that adds com-
mitting security to a tag-based AE1 scheme. We generalize this to our general setting, continuing
to call it CTX. We then give an improvement, CTY, that is more efficient than CTX.

Let SE be a tag-based symmetric encryption scheme with key space {0, 1}k. Let H : {0, 1}k ×
{0, 1}SE.nl × {0, 1}∗ → {0, 1}λ be a hash function with output length λ. We assume that SE
does not use H, which is often the case in practice. The code of SE = CTX[H,SE] is shown in
Fig. 4. In the first line of SE.Enc, the output of SE.Enc(K,N,A,M) is parsed so that C is the
first SE.cl(|M |) − SE.tl bits and R is the last SE.tl bits. It has the same nonce space, AD space,
message space, and decryption-nonce derivation function as SE. It is also a tag-based scheme, with
tag length λ, the output length of H. The expansion is CTX.ce(m) = SE.ce(m) − SE.tl + λ. We
omit a statement and proof about the security of our general form of CTX because we are going to
improve it to CTY.

Note that in CTX, the AD is processed twice, once by SE and another by H. The hashing of
AD via H is necessary if one wants CMT security, because if the message is the empty string then
the ciphertext is a (constant-sized) commitment of the AD. However, the processing of AD via SE
is redundant. We therefore describe an improved transform CTY in Fig. 5. It’s the same as CTX
but we use the empty AD for SE. The overhead of CTY is the hashing cost of the AD, making CTY
optimal in overhead. Again, in the first line of SE.Enc, the output of SE.Enc(K,N,A,M) is parsed
so that C is the first SE.cl(|M |)− SE.tl bits and R is the last SE.tl bits.

Security of CTY. The following result shows that CTY has CMT security. Intuitively, we commit
(K,N,A) via H. Then the message is also committed due to decryption correctness.

12

Theorem 3.3 Let SE be a tag-based symmetric encryption scheme with key space {0, 1}k. Let
H : {0, 1}k × {0, 1}SE.nl × {0, 1}∗ → {0, 1}λ be a hash function. Then for an adversary A, we can
construct B such that

Advcmt
CTY[H,SE(A) ≤ Advcoll

H (B) .

Adversary B runs A and then uses SE to encrypt the output of A.

Proof: Adversary B runs A to get
(
(K1, N1, A1,M1), (K2, N2, A2,M2)

)
. It then computes Ci∥Ri

← SE(Ki, Ni, ε,Mi) for each i ∈ {1, 2}, and then outputs
(
(K1, N1, A1∥R1), (K2, N2, A2∥R2)

)
.

For analysis, without loss of generality, suppose that A outputs distinct tuples (K1, N1, A1,M1),
(K2, N2, A2,M2). Let Ti ← H(Ki, Ni, Ai∥Ri). Suppose further that A wins, meaning that C1 = C2

and T1 = T2. To show that B also wins, it suffices to show that the tuples (K1, N1, A1∥R1),
(K2, N2, A2∥R2) are distinct so that B’s output is valid. Assume to the contrary that (K1, N1, A1, R1)
= (K2, N2, A2, R2). Due to correctness, Mi ← SE.Dec(Ki, Ni, Ai, Ci∥Ri), meaning that M1 = M2.
But it means that (K1, N1, A1,M1) = (K2, N2, A2,M2), which is a contradiction.

Hence B also wins, leading the claimed bound.

For the AE security of CTY, at the first glance, it seems to be an easy exercise by modifying
the existing proof of CTX. However, Chan and Rogaway [16] only consider a restricted setting
where the adversary attacks just a single user, and it can only make a single verification query.
Translating this result to the general setting via a hybrid argument will lead to a very poor bound.
The following result shows that CTY has good AE security in the general setting; the proof is in
Appendix C.

Theorem 3.4 Let SE be a tag-based symmetric encryption scheme with key space {0, 1}k. Let
H : {0, 1}k × {0, 1}SE.nl × {0, 1}∗ → {0, 1}λ be a hash function that we will model as a random
oracle. Let SE = CTY[H,SE] as above. Then for an adversary A that attacks u users with at most
p random-oracle queries, q encryption queries, and qv verification queries, we can construct B of
about the same running time such that

Advae
SE
(A) ≤ Advae

SE(B) +
u(u+ 2p)

2k
+

3qv + q2

2λ
.

It has the same query statistics as A plus an encryption query (whose message is just k-bit) per
user.

4 Committing Attacks

In this section we give generic committing attacks on any symmetric encryption schemes, assuming
that the message length must be exactly m bits. These attacks show that for any symmetric
encryption scheme SE, if we want s bits committing security then we must have SE.ce(m) ≥
max(s, 2m− s). For tag-based schemes (that include CTX and CTY), we give a birthday attack to
show that the tag length alone needs to be at least 2s.

Generic attacks. Let SE be an AE scheme. Fix a number m ≥ 0 and let r = SE.ce(m) and
ℓ = m+ r.

Consider the following adversary A. It first picks arbitrary distinct tuples (K1, N1, A1,M1), . . . ,
(Kq, Nq, Aq,Mq) with each |Mi| = m. It then computes Ci ← SE.Enc(Ki, Ni, Ai,Mi) for each i ≤ q.
If there are s ̸= t such that Cs = Ct then the adversary outputs ((Ks, Ns, As,Ms), (Kt, Nt, At,Mt)).
Note that each |Ci| = m+ SE.ce(m) = ℓ. If we model the ciphertexts as uniformly random strings

13

then from the birthday paradox, Advcmt
SE (A,m) = Ω(q2)/2ℓ. That is, if we want s bits of committing

security then we must have ℓ = SE.ce(m) +m ≥ 2s, meaning that SE.ce(m) ≥ 2s−m.

Next, consider the following adversary B. It first picks arbitrary distinct triples (K1, N1, A1), . . . ,
(Kq, Nq, Aq). It then pick an arbitrary m-bit message M1 and runs C ← SE.Enc(K1, N1, A1,M1).
Then for every i = 2, . . . , q, it runs SE.Dec(Ki,SE.df(Ni), Ai, C). If there is some s such that
the decryption gives a valid message Ms then B outputs ((K1, N1, A1,M1), (Ks, Ns, As,Ms)). Let
fi : {0, 1}m → {0, 1}m+r be the function that

fi(M) = SE.Enc(Ki, Ni, Ai,M) .

If we model fi as a truly random injective function then each decryption independently succeeds
with probability 1/2r, and thus the chance that at least one of them succeeds is

1− (1− 1/2r)q−1 ,

which is Ω(q)/2r if q ≤ 2r. HenceAdvcmt
SE (B,m) = Ω(q)/2r. That is, if we want s bits of committing

security then we must have r = SE.ce(m) ≥ s.

Birthday attack on tag-based schemes. Let SE be a tag-based symmetric encryption scheme.
The adversary A first picks a ciphertext core C∗ of length SE.cl(m) − SE.tl. It then chooses
arbitrary distinct (K1, N1), . . . , (Kq, Nq). Then for every i ≤ q, it runs (Mi, Ti) ← SE.Tag(Ki,
SE.df(Ni), ε, C

∗). If there are s ̸= t such that Ts = Tt then the adversary outputs ((Ks, Ns, ε,Ms),
(Kt, Nt, ε,Mt)). If we model the tentative tags as uniformly randoms strings then due to the
birthday paradox, Advcmt

SE
(A,m) = Ω(q2)/2SE.tl. That is, if we want s bits of committing security

then the tag length alone must be at least 2s.

5 Collision-Resistant IPF

Recall that we want to build a transform to shorten the ciphertext expansion of a committing AE
scheme with little security degradation. As a stepping stone for our transform, in this section, we
build a collision-resistant invertible PRF. We begin by reviewing the definition of invertible PRF.

Invertible PRF. An invertible PRF (IPF) is an injective function F : K × Dom → Rng with an
inverse F−1 : K × Rng → Dom ∪ {⊥} such that (i) F−1(K,F(K,P)) = P for every P ∈ Dom and
K ∈ K, and (ii) F−1(K,C) = ⊥ if there is no P ∈ Dom such that F(K,P) = C. This primitive arises
in the context of deterministic AE (or equivalently, misuse-resistant AE), a solution for the key-
wrapping problem [41]. An IPF is a special case of a pseudorandom injection, the characterization
of deterministic AE, where the nonce and AD are empty.

For an adversary A and an IPF F, define the advantage of A breaking the (multi-user) IPF
security of F as

Advipf
F (A) = 2 · Pr[Gipf

F (A)]− 1 ,

where games Gipf
F (A) is defined in Fig. 6. To avoid trivial wins, we require that the adversary does

not repeat prior queries to Enc, and we forbid the adversary from receiving C ← Enc(i, P) and
then later querying Vf(i, C). Informally, the IPF security is the misuse-resistant security [41] of
an AE scheme with empty nonce and AD.

Collision-resistant IPF. For our transform, we need an IPF F on domain {0, 1}≤m (the set
of bit strings of at most m bits) and range {0, 1}m+s. Moreover, we want F to be a collision-
resistant hash with (nearly) s-bit security. This requirement is non-trivial. For example, recall that
a common approach to build IPF is via the SIV paradigm [41]: on a message M and key K, run
T ← H(K,M), where H is a PRF, and then run a privacy-only encryption (such as CTR) with IV

14

Game Gipf
F (A)

v ← 0; b← {0, 1}; b′←$ANew,Enc,Vf

Return (b′ = b)

Enc(i, P)

If i ̸∈ {1, . . . , v} then return ⊥
C1 ← F(Ki, P); C0←$ {0, 1}|C0|

Return Cb

New()

v ← v + 1; Kv←$K

Vf(i, C)

If i ̸∈ {1, . . . , v} return ⊥
P ← F−1(Ki, C)

If (b = 1) then return (P ̸= ⊥)
Else return false

Figure 6: Game defining the ipf security of an IPF F.

T to encrypt M . A natural approach to add collision resistance to this IPF is to require that H is
collision-resistant. Still, since the IPF accepts m-bit messages and has output length m + s bits,
the output length of H is at most s bis, meaning that we only get s/2 bits of collision resistance.

Rogaway and Shrimpton [41] suggest two ways to build IPF: (i) the SIV paradigm (which is
commonly used in practice), and (ii) the Encode-then-Encipher (EtE) method [8]. Below, we will
explore how to build a collision-resistant IPF via both directions.

5.1 Collision-resistant IPF via SIV

The HtM construction. Let n, τ, d ≥ 2 be integers such that 32 ≤ τ ≤ n − d, and let M =
{0, 1}≤n−d (that is, the set of binary strings of at most n−d bits). Let E : {0, 1}k×{0, 1}n → {0, 1}n
be a blockcipher. Let pad :M×{0, 1} → {0, 1}n be a padding mechanism such that: (1) pad(X, 1) =
X∥1n−|X| for every X ∈ M, (2) pad is a domain separation, meaning that pad(X, 0) ̸= pad(Y, 1)
for every X,Y ∈ M, and (3) there is an associated unpad such that unpad(·) and pad(·, 0) are the
inverse of each other.1

Our IPF Hash-then-Mask (HtM) with domain M and range {0, 1}n+τ is shown in Fig. 7.
Informally, given a key K and plaintext P , we pad M ← pad(P, 0), and then hash (K,M) to
derive a τ -bit tag T . Then, hash (K, pad(T, 1)) to obtain a one-time pad to mask M , resulting
in a string C∗. The output is C∗∥T . The hash function H in both cases is the Davies-Meyer
construction on E, meaning H(K,M) = EK(M)⊕M .

Our construction HtM follows the SIV paradigm of Rogaway and Shrimpton [41] in building
misuse-resistant AE schemes: first use a PRF on the message to derive a synthetic IV, and then
use a privacy-only encryption scheme on that IV to encrypt the message. Due to the committing
security requirement, here both the PRF and the privacy-only encryption scheme are built on top
of the Davies-Meyer construction. Alternatively, one can view HtM as a two-round (unbalanced)
Feistel network, where the left half is 0τ and the right half is the padded message, and the round
functions are implemented via Davies-Meyer.

Instantiation. We instantiate E via AES, meaning n = 128. For the ciphertext of HtM to be a
byte string, we pick d = 8. For an m-bit string M with m ≤ 120, let

pad(M, 0) = M∥0120−m∥[m]8 ,

where [m]8 denotes the 8-bit encoding of the number m. For X ∈ {0, 1}n, let unpad(X) be the

1For example, we can let pad(M, 0) = M∥10n−|M|−1. For unpad(Y), we first obtain a string X by removing the
trailing 0’s and the last 1 of Y . If Y ̸= 0n and |X| ≤ n− d then we return X; otherwise we return ⊥. Later we will
give a more efficient instantiation of pad and unpad where n = 128 and d = 8.

15

F(K,P)

M ← pad(P, 0)

T ←
(
EK(M)⊕M

)
[1 : τ]

Z ← pad(T, 1)

C∗ ←
(
EK(Z)⊕Z

)
⊕M

Return C∗∥T

F−1(K,C∗∥T)
Z ← pad(T, 1)

M ←
(
EK(Z)⊕Z

)
⊕C∗

V ← (EK(M)⊕M)[1 : τ]

If (T ̸= V) then return ⊥
Return unpad(M)

T

���
���
���
���

0

1

P

Figure 7: The IPF F = HtM[E, τ]. In the illustration, the function H denotes the Davies-Meyer
construction on E, meaning H(K,M) = EK(M)⊕M .

string obtained by (i) parsing the last byte of X as a number m, and (ii) returning X[1 : m] if
m ≤ 120 and X[m+ 1 : 120] = 0120−m, and returning ⊥ otherwise.

Collision resistance of HtM. At the first glance, since HtM produces a τ -bit tag via a collision-
resistant hash function, it seems that it only has τ/2 bits of collision resistance. Surprisingly, the
following Proposition 5.1 shows that HtM achieves around τ − ⌈log2(τ)⌉ bits of collision resistance
in the ideal-cipher model; the proof is deferred to Section 5.3. The root of the strong security of
HtM lies in the circularity of first deriving T from hashing P , and then hashing T to mask P .
Without this circularity, the collision resistance would drop to τ/2 bits.

To see that the bound in Proposition 5.1 is essentially tight, note that from the generic attacks
in Section 4, one can build an adversary B that makes q calls to HtM (namely 2q calls to E),
and Advcmt

HtM[E,τ](B,m) = Ω(q)/2τ+d. Moreover, recall that d is small; for example, d = 8 in our
instantiation, or d = 2 if one wants to maximize HtM security. Hence the bound in Proposition 5.1
nearly matches the generic attacks.

The proof of Proposition 5.1 also contains terms like q2/2n+τ that correspond to actual attacks.
Still, those are dominated by the term q/2τ , and thus we upper-bound them by this dominant term
so that the final bound is simple.

16

Proposition 5.1 Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that we will model as an
ideal cipher. Let HtM[E, τ] be as above. Consider an adversary A that makes at most q ideal-
cipher queries. Then

Advcoll
HtM[E,τ](A) ≤

4(n+ τ)q + 5

2τ
.

Remark. Here we need HtM to commit both the input and the key. But in applications, we
actually need to commit just the key. In that case, Proposition 5.1 doesn’t need pad(·, 0) to be
invertible, and thus for the parameter d in HtM, we only need d ≥ 1 (instead of d ≥ 2).

IPF security of HtM. The following Proposition 5.2 analyzes the IPF security of HtM[E, τ]. The
proof is in Appendix E.

Proposition 5.2 Let E : {0, 1}k×{0, 1}n → {0, 1}n be a blockcipher and let HtM[E, τ] be as above.
For an adversary A that makes at most qe encryption queries and qv verification queries, we can
construct an adversary B of about the same time and 2(qe + qv) queries such that

Advipf
HtM[E,τ](A) ≤ Advprf

E (B) + 1.5qv
2τ

+
qe(B − 1)

2τ
.

where B is the maximum number of encryption queries per user of A.

Discussion. At the first glance, the term qe(B− 1)/2τ looks inferior for small choices of τ , such as
τ = 88. However, for the SC transform in Section 6, we only have one encryption query per user,
meaning B = 1 and the term qe(B − 1)/2τ vanishes.

One the other hand, in the decryption of HtM, an invalid ciphertext can be rejected for bad
tag or improper padding, meaning there is a potential timing issue. However, note that an invalid
ciphertext is very likely rejected because of its bad tag. Thus as long as one checks the tag before
unpadding, as in the code of Fig. 7, then one can avoid the timing issue. The proof in Proposition 5.2
rigorously confirms this intuition, showing that HtM is a good IPF even in the presence of timing
leakage. In particular, in the games, verification queries only consider tag checking. That is, if
an adversary can launch a verification query that passes the tag checking but still ends up with a
bad-padding rejection, it will get a true answer (instead of false) and win the game, knowing that
it’s in the real world.

On higher security level. Our work targets (nearly) 128-bit committing security. If one in-
stead wants 256-bit security, one can instantiate the blockcipher in HtM via Rijndael-256 [20] but
this is not a standardized primitive. Alternatively, instead of using the Davies-Meyer construction
for HtM, one can use a cryptographic hash function like SHA-3 or (truncated) SHA-512, and model
it as a random oracle. The downside of this approach is that the cost will be a lot more expensive.

5.2 Collision-resistant IPF via Encode-then-Encipher

The SIV approach is not the only way to build collision-resistant IPF. We now consider another
direction via the Encode-then-Encipher paradigm [8].

The PtE construction. Let E : K × {0, 1}n → {0, 1}n be a blockcipher, and let s ≥ 1 be an
integer. Let M = {0, 1}≤n−s (meaning the set of bit strings at most n − s bits). Let pad :M→
{0, 1}n be a padding mechanism with an associated inverse unpad.2 Our construction Pad-then-
Encipher (PtE) is given in Fig. 8; it has key space {0, 1}k, domainM, and range {0, 1}n.

2For example, we can let pad(M) = M∥10n−1−|M|. Conversely, unpad(Y) returns ⊥ if Y = 0n or if Y doesn’t end
with 0s−1. Otherwise, return the string X obtained by removing the trailing 0’s and the last bit 1 of Y .

17

F(K,P)

M ← pad(P); C ← E(K,M)

Return C

F−1(K,C)

M ← E−1(K,C)

Return unpad(M)

Figure 8: The IPF F = PtE[E].

IPF security of PtE. The following result shows that PtE is a good IPF; the proof is in Ap-
pendix 5.3. This is expected, following standard results of the Encode-then-Encipher paradigm [30].

Proposition 5.3 Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher. Let F = PtE[E]. Then for
any adversary A making at most q queries (with at most B queries per user), we can construct an
adversary B of about the same running time and the same query statistics such that

Advipf
F (A) ≤ Adv±prp

E (B) + 4q

2s
+

qB

2n
.

Collision resistance of PtE. The following result shows that PtE has s bits of collision resis-
tance in the ideal-cipher model, assuming that n ≥ 2s. The proof is in Appendix G. The bound is
tight, matching the generic attacks in Section 4.

Here we need PtE to commit both the input and the key. But in applications, we actually need
to commit just the key. In that case, Proposition 5.4 doesn’t need pad to be invertible.

Proposition 5.4 Let E : {0, 1}k×{0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal
cipher. Let F = PtE[E]. Then for any adversary A making at most q ideal-cipher queries,

Advcoll
F (A) ≤ 4q

4s
+

2q2

2n
.

Discussion. Since we want s ≥ 128 bits of collision resistance, we need n ≥ 256. As such, one
can’t instantiate E directly from AES. One may consider instantiating E using a Feistel network via
indifferentiability theory [34] but this runs into several obstacles as mentioned in the Introduction.
Another approach is to instantiate E from Rijndael-256 [20] but this is not a standardized primitive.

5.3 Proof of Proposition 5.1

Setup. Without loss of generality, assume that the adversary does not make redundant queries.
That is, it does not repeat prior queries, and if it queries C ← EK(M) then later it will not query
E−1

K (C), and if it queries M ← E−1
K (C) then it will not later query EK(M). Without loss of

generality, assume that the right-hand side of the claimed bound is smaller than 1; otherwise the
bound is moot.

For a query C ← EK(pad(P, 0)), we store a log entry
(
+,K, pad(P, 0), (C⊕pad(P, 0))[1 : τ]

)
.

For a query C ← EK(pad(T, 1)) with |T | = τ , we store a log entry
(
+, pad(T, 1), C⊕pad(T, 1)).

Analogously, for a query M ← E−1
K (C), if M can be parsed as pad(P, 0) then we also store(

−,K,M, (C⊕M)[1 : τ]
)
. Otherwise, if M can be parsed as pad(T, 1) with |T | = τ then we

also store a log entry
(
−,K,M,C⊕M

)
.

If a query results in a log entry (·,K, pad(P, 0), T), and there is no prior entry (·,K, pad(T, 1), ·),
then we immediately grant it a free query EK(pad(T, 1)) and store the corresponding log entry.

18

These free queries can only help A. Note that for each log entry (·,K, pad(T, 1), X), conditioning
on the prior logs, the string X is uniformly distributed over a set of at least 2n − 2q ≥ (16 · 2n)/15
members. Likewise, for each log entry (·,K, pad(P, 0), T), the full Davies-Meyer output V of T
(meaning T = V [1 : τ]) is uniformly distributed over a set of at least (16 · 2n)/15 members.

Two entries (·,K, pad(P, 0), T) and (·,K, pad(T, 1), ·) are called amatch, where (·,K, pad(P, 0), T)
is the first entry and (·,K, pad(T, 1), ·) is the second entry. A match is even if it contains a granted
query; otherwise we call it odd. From the way we grant free queries, in an odd match, the second
query is made before its first query, but in an even match, its second query is made right after its
first query.

For a match Q, let sign1(Q) denote the sign of its first entry, and let sign2(Q) denote the sign of
the second entry. Note that if Q is even then sign2(Q) = +. Note that there are at most q matches,
as there are at most q log entries (·,K, pad(P, 0), T), and each such entry has at most one partner
(·,K, pad(T, 1), ·).

We say that a match Q is a prior match of another match Q∗ if the last query of Q∗ is
made after both queries in Q. Moreover, if both queries of Q∗ are made after the queries of Q
then we say that Q∗ succeeds Q. Two matches Q = {(·,K, pad(P, 0), T), (·,K, pad(T, 1), X)} and
Q∗ = {(·,K∗, pad(P ∗, 0), T ∗), (·,K∗, pad(T ∗, 1), X∗)} are compatible if K ̸= K∗, T = T ∗, and
X⊕X∗ = pad(P, 0)⊕pad(P ∗, 0). The adversary’s goal is to find two compatible matches among its
queries.

A balls-into-bins result. Our proof heavily relies on many non-standard balls-into-bins games
whose analyses are based on the following lemma. The proof in in Appendix D.1.

Lemma 5.5 Let q ≥ 1 and m ≥ 32 be integers. Consider a q-round game in which for each round,
we probabilistically pick some bins out of 2m ones and put a ball in each bin. Assume that for each
fixed bin, in each round, given the throws of prior rounds, the conditional probability that we place
a ball on this bin is at most c/2m. If 3qc ≤ 2m then with probability at least 1− 2−m, every bin has
at most m/2 balls.

A useful inequality. Our analyses rely on the following result from Bellare and Hoang [4]. It
resembles the Bernoulli’s inequality (1− a)p ≥ 1− ap but reverses the inequality sign.

Lemma 5.6 [4] Let p ≥ 1 be an integer and a ≥ 0 be a real number. Assume ap ≤ 1. Then
(1− a)p ≤ 1− ap/2.

Collision resistance of HtM. Suppose that A outputs (K1, P1,K2, P2). Let C
∗
1∥T1 and C∗

2∥T2

be the resulting ciphertexts. If T1 = T2 and C∗
1 = C∗

2 then we must have K1 ̸= K2, otherwise P1

and P2 are the same due to the perfect correctness of HtM, meaning that this output is invalid.
Hence without loss of generality, we can assume that K1 ̸= K2.

We first consider the case that there is no log entry (·,K1, pad(P1, 0), ·) or (·,K2, pad(P2, 0), ·).
Without loss of generality, assume that there is no log (·,K1, pad(P1, 0), ·). Then given T2, the
full Davies-Meyer output V of T1 is uniformly chosen within a set of at least 15 · 2n/16 elements.
Among them, there are 2n−τ strings R such that R[1 : τ] = T2. Since T1 ← V [1 : τ], the event
T1 = T2 happens if and only if the random variable V lands among the 2n−τ strings above, and
this happens with probability at most 2n−τ · 16/(15 · 2n) = 16/(15 · 2τ).

From now on, we will assume that the adversary’s queries create log entries (·,K1, pad(P1, 0), ·)
and (·,K2, pad(P2, 0), ·). From the way that we grant free queries, these logs will lead to the
corresponding matches Q1 and Q2. Moreover, if the adversary creates a collision then Q1 and Q2

19

must be compatible. Without loss of generality, assume that Q1 is a prior match of Q2. We consider
the following cases; summing the bounds over those cases lead to the claimed result.

Case 1: Q2 is even. From the way we grant queries, this means that Q2 succeeds Q1. Consider
two matches Q = {(·,K, pad(P, 0), T), (+,K, pad(T, 1), X)} and Q∗ = {(·,K∗, pad(P ∗, 0), T ∗), (+,
K∗, pad(T ∗, 1), X∗)} such that Q is even and Q succeeds Q∗. Then given T ∗, the full Davies-Meyer
output V of T is uniformly distributed over a set of at least 15 · 2n/16 elements, and thus the
probability that T ← V [1 : τ] hits T ∗ is at most 16/(15 · 2τ). Furthermore, given prior queries,
the conditional probability that X = X∗⊕pad(P, 0)⊕pad(P ∗, 0) is at most 16/(15 · 2n). Hence the
chance that Q and Q∗ are compatible is at most 256/(225 · 2τ+n) ≤ 2/2τ+n. Summing this over at
most

(
q
2

)
≤ q2/2 pairs of matches, the chance that this case happens is at most q2/2τ+n ≤ q/2n.

Case 2: Q2 is odd, and Q1 is even. We consider the following sub-cases.

Case 2.1: sign1(Q2) = +. Each query V ← E(K, pad(P, 0)) aims at a prior entry (·,K, pad(T, 1), X)
and a prior even match Q∗ = {(·,K∗, pad(P ∗, 0), T), (+,K∗, pad(T, 1), X∗)} such that

V [1 : τ] = T⊕pad(P, 0)[1 : τ] , and (1)

pad(P, 0) = pad(P ∗, 0)⊕X∗⊕X . (2)

The difficulty here is that A may adaptively choose (K, pad(P, 0)) to maximize the number of entry-
match pairs that satisfy Equation (2). Still, we claim that with probability at least 1− 4q/2n, any
query E(K, pad(P, 0)) will have at most 3n/2 pairs that satisfy Equation (2). Then, the chance
that the answer V of this query will satisfy Equation (1) with one of those 3n/2 pairs is at most

3n

2
· 16

15 · 2n
· 1

2n−τ
=

24n

15 · 2τ
.

Summing over all queries, the chance this case happens is at most

24qn

15 · 2τ
+

4q

2n
.

To justify the claim above, view each log entry (·,K, pad(T, 1), X) as a round in a ball-throwing
game. In each round, for any string ∆ ∈ {0, 1}n, we throw a ball to bin (K,∆) if there ex-
ists an even match Q∗ = {(·,K∗, pad(P ∗, 0), T), (+,K∗, pad(T, 1), X∗)} such that K ̸= K∗ and
X∗⊕X⊕pad(P ∗, 0) = ∆. (If there are multiple such matches then we still throw a single ball to
bin (K,∆).) Lemma 5.7 below bounds the number of balls in the heaviest bin; the proof is in
Appendix D.2.

Lemma 5.7 For the game of ball throwing above, with probability at least 1− 4q/2n, every bin has
at most 3n/2 balls.

Now, for each query E(K, pad(P, 0)), its number of entry-match pairs that satisfy Equation (2) is
exactly the number of balls in bin (K, pad(P, 0)). Thus the claim above directly follows Lemma 5.7.

Case 2.2: sign1(Q2) = −. Each query pad(P, 0)← E−1(K,V) aims at a prior entry (·,K, pad(T, 1),
X) and a prior even match Q∗ = {(·,K∗, pad(P ∗, 0), T), (+,K∗, pad(T, 1), X∗)} such that

pad(P, 0)[1 : τ] = T⊕V [1 : τ] , and (3)

pad(P, 0) = pad(P ∗, 0)⊕X∗⊕X . (4)

From Equation (3), we can replace Equation (4) with

V [1 : τ] = (pad(P ∗, 0)⊕X∗⊕X)[1 : τ]⊕T . (5)

We claim that with probability at least 1− 3q/2τ − q/2n, any query E−1(K,V) will have at most
(τ + n/2) entry-match pairs that satisfy Equation (5). Then, the chance that the answer pad(P, 0)

20

of this query will satisfy Equation (3) with one of those (τ + n/2) pairs is at most

(τ + n/2) · 16

15 · 2n
· 1

2n−τ
=

16τ + 8n

15 · 2τ
.

Summing over all queries, the chance this case happens is at most

(16τ + 8n)q

15 · 2τ
+

3q

2τ
+

q

2n
.

To justify the claim above, consider the following balls-into-bins game. For each log entry (·,K,
pad(T, 1), X) and an even match Q∗ = {(·,K∗, pad(P ∗, 0), T), (+,K∗, pad(T, 1), X∗)}, with K ̸=
K∗, throw a ball to bin

(K, (X⊕X∗⊕pad(P ∗, 0))[1 : τ]⊕T) .

Lemma 5.8 below bounds the number of balls in the heaviest bin; the proof is in Appendix D.3.

Lemma 5.8 For the game of ball throwing above, with probability at least 1− 3q/2τ − q/2n, every
bin has at most τ + n/2 balls.

Now, for each query E−1(K,V), its number of entry-match pairs that satisfy Equation (2) is
exactly the number of balls in bin (K,V [1 : τ]). Thus the claim above directly follows Lemma 5.8.

Case 3: Both Q1 and Q2 are odd, and Q2 succeeds Q1. For each log entry (·,K, pad(T, 1), X),
its target is a prior odd match Q∗ = {(·,K∗, pad(T, 1), X∗), (·,K∗, pad(P ∗, 0), T)}, with K∗ ̸= K.
While a log entry may have many targets, we claim that with probability at least 1 − q/2τ , each
log entry has at most τ/2 targets. Indeed, view each (·,K∗, pad(P ∗, 0), T) as throwing a ball into
bin T . For each throw, given the prior throws, the chance that it lands into any particular bin is
at most 16/(15 · 2τ). The claim then directly follows Lemma 5.5 with c = 16/15 and m = τ .

Suppose that each entry has at most τ/2 targets. We consider the following sub-cases.

Case 3.1: sign1(Q2) = + and sign2(Q2) = +. Each query V ← E(K, pad(P, 0)) aims at a prior
entry (+,K, pad(T, 1), X) with a target Q∗ = {(·,K∗, pad(T), X∗), (·,K∗, pad(P ∗, 0), T)} such that

V [1 : τ] = T⊕pad(P, 0)[1 : τ] , and (6)

pad(P, 0) = pad(P ∗, 0)⊕X∗⊕X . (7)

We claim that with probability at least 1− q/2n, any query E(K, pad(P, 0)) has at most n/2 entry-
target pairs that satisfy Equation (7). Then the chance that the answer V of this query satisfies
Equation (6) with one of those n/2 pairs is at most

n

2
· 16

15 · 2n
· 1

2n−τ
=

8n

15 · 2τ
.

Summing over all queries E(K, pad(P, 0)), the chance that this case happens is at most

8qn

15 · 2τ
+

q

2n
.

To justify the claim above, fix a keyK. View each log entry (+,K, pad(T, 1), X) as a round in a ball-
throwing game. In each round, for each ∆ ∈ {0, 1}n, we throw a ball to bin (K,X⊕∆) if this log en-
try has a target Q∗ = {(·,K∗, pad(T, 1), X∗), (·,K∗, pad(P ∗, 0), T)} such that X∗⊕pad(P ∗, 0) = ∆.
(If there are multiple such targets then we still throw a ball to bin (K,X⊕∆).) Since each log entry
has at most τ/2 targets, for each particular bin, the chance that this round puts a ball to this bin
is at most 8τ/(15 · 2n). From Lemma 5.5 with c = 8τ/15 and m = n, for any fixed key K, with
probability at least 1− 1/2n, each bin associated with key K has at most n/2 balls. Summing over
q possible keys, with probability at least 1− q/2n, every bin has at most n/2 balls.

21

Now, for any query E(K, pad(P, 0)), its number of entry-target pairs that satisfy Equation (7) is
exactly the number of balls in bin (K, pad(P, 0)). Thus our claim directly follows the balls-into-bins
analyses above.

Case 3.2: sign1(Q2) = − and sign2(Q2) = +. Each query pad(P, 0)← E−1(K,V) aims at a prior
entry (+,K, pad(T, 1), X) with a target Q∗ = {(·,K∗, pad(T), X∗), (·,K∗, pad(P ∗, 0), T)} such that

pad(P, 0)[1 : τ] = V [1 : τ]⊕T , and (8)

pad(P, 0)⊕X = pad(P ∗, 0)⊕X∗ . (9)

From Equation (8), we can replace Equation (9) with

V [1 : τ] = X[1 : τ]⊕T⊕(X∗⊕pad(P ∗, 0))[1 : τ] . (10)

We claim that with probability at least 1− q/2τ , for each fixed query E−1(K,V), there are at most
τ/2 entry-target pairs that satisfy Equation (10). Then the chance that the answer pad(P, 0) of
this query satisfies Equation (8) with one of those τ/2 pairs is at most 8τ/(15 · 2τ). Summing over
all queries E−1(K,V), the chance that this case happens is at most

8qτ

15 · 2τ
+

q

2τ
.

To justify the claim above, fix a key K. View each log entry (+,K, pad(T, 1), X) as a round of a
ball-throwing game. In this round, for each ∆ ∈ {0, 1}τ , we throw a ball to bin (K,X[1 : τ]⊕∆) if
this log entry has a target Q∗ = {(·,K∗, pad(T), X∗), (·,K∗, pad(P ∗, 0), T)} such that

(X∗⊕pad(P ∗, 0))[1 : τ]⊕T = ∆ .

Since each log entry has at most τ/2 targets, for each particular bin, the chance that this round
puts a ball to this bin is at most 8τ/(15 · 2τ). From Lemma 5.5 with c = 8τ/15 and m = τ , for
each fixed key K, with probability at least 1 − 1/2τ , each bin associated with key K has at most
τ/2 balls. Summing over q possible keys, with probability at least 1− q/2τ , every bin has at most
τ/2 balls.

Now, for any query E−1(K,V), its number of entry-target pairs that satisfy Equation (10) is
exactly the number of balls in bin (K,V [1 : τ]). Thus our claim directly follows the balls-into-bins
analyses above.

Case 3.3: sign1(Q2) = − and sign2(Q2) = −. We need the following technical lemma Lemma 5.9.
The proof is in Appendix D.4.

Lemma 5.9 With probability at least 1−(q+3)/2τ , for every ∆ ∈ {0, 1}τ , there are at most τ/2 odd
matches Q∗ = {(·,K∗, pad(T, 1), X∗), (·,K∗, pad(P ∗, 0), T)} such that (X∗⊕pad(P ∗, 0))[1 : τ] = ∆.

Below, we will assume that the event in Lemma 5.9 happens. Now, each query pad(P, 0)
← E−1(K,V) aims at a prior query pad(T, 1) ← E−1(K,U) with a target Q∗ = {(·,K∗, pad(T),
X∗), (·,K∗, pad(P ∗, 0), T)} such that

pad(P, 0)[1 : τ] = V [1 : τ]⊕T , and (11)

pad(P, 0)⊕(U⊕pad(T, 1)) = pad(P ∗, 0)⊕X∗ . (12)

From Equation (11) and the fact that T = pad(T, 1)[1 : τ], we can replace Equation (12) with

V [1 : τ] = (X∗⊕pad(P ∗, 0)⊕U)[1 : τ] . (13)

We claim that with probability at least 1− q/2τ , for each query E−1(K,V), there are at most τ/2
query-target pairs that satisfy Equation (13). Then the chance that the answer pad(P, 0) of this

22

query satisfies Equation (11) with one of those τ/2 pairs is at most 8τ/(15 · 2τ). Summing over all
queries E−1(K,V), the chance that this case happens is at most

8qτ

15 · 2τ
+

q

2τ
.

Still, we need to add another term (q + 3)/2τ to account for the assumption that the event of
Lemma 5.9 happens. Thus this case actually happens with probability at most

8qτ

15 · 2τ
+

2q + 3

2τ

To justify the claim above, fix a key K and view each query E−1(K,U) as a round of a ball-
throwing game. From Lemma 5.9, for any ∆ ∈ {0, 1}τ , there are at most τ/2 prior odd matches
Q∗ = {(·,K∗, pad(T, 1), X∗), (·,K∗, pad(P ∗, 0), T)} such that (X∗⊕pad(P ∗, 0))[1 : τ] = ∆⊕U [1 : τ].
In this round, we will put a ball to bin ∆ if the answer of this query hits the pad(T, 1) of one of those
matches, which happens with probability at most 8τ/(15 ·2n) ≤ 8τ/(15 ·2τ). From Lemma 5.5 with
c = 8τ/15 and m = τ , for each fixed key K, with probability at least 1− 2−τ , every bin associated
with K has at most τ/2 balls. Summing over all q possible keys, with probability at least 1− q/2τ ,
every bin has at most τ/2 balls.

Now, for any query E−1(K,V), its number of entry-target pairs that satisfy Equation (13) is
exactly the number of balls in bin (K,V [1 : τ]). Thus our claim directly follows the balls-into-bins
analyses above.

Case 3.4: sign1(Q2) = + and sign2(Q2) = −. We need the following technical lemma Lemma 5.10.
The proof is in Appendix D.5.

Lemma 5.10 With probability at least 1− 2−τ − 2−n, for every ∆ ∈ {0, 1}n, there are at most n/2
odd matches Q∗ = {(·,K∗, pad(T, 1), X∗), (·,K∗, pad(P ∗, 0), T)} such that X∗⊕pad(P ∗, 0)⊕pad(T, 1)
= ∆.

Below, we will assume that the event of Lemma 5.10 happens. Now, each query V ← E(K,
pad(P, 0)) aims at a prior query pad(T, 1) ← E−1(K,U) with a target Q∗ = {(·,K∗, pad(T), X∗),
(·,K∗, pad(P ∗, 0), T)} such that

V [1 : τ] = pad(P, 0)[1 : τ]⊕T , (14)

pad(P, 0)⊕(U⊕pad(T, 1)) = pad(P ∗, 0)⊕X∗ . (15)

We claim that with probability at least 1 − q/2n, each query E(K, pad(P, 0)) has at most n/2
query-target pairs that satisfy Equation (15). Then the chance that the answer V of this query
satisfies Equation (14) with one of those n/2 pairs is at most 8n/(15 ·2τ). Summing over all queries
E(K, pad(P, 0)), the chance that this case happens is at most

8qn

15 · 2τ
+

q

2n
.

Still, we need to add another term 2−n + 2−τ to account for the assumption that the event of
Lemma 5.10 happens. Thus the chance that this case happens is actually at most

8qn

15 · 2τ
+

1

2τ
+

q + 1

2n

To justify the claim above, fix a key K and view each query E−1(K,U) as a round of a ball-
throwing game. From Lemma 5.10, for any ∆ ∈ {0, 1}n, there are at most n/2 prior odd matches
Q∗ = {(·,K∗, pad(T, 1), X∗), (·,K∗, pad(P ∗, 0), T)} such that X∗⊕pad(P ∗, 0)⊕pad(T, 1) = ∆⊕U .
In this round, we will put a ball to bin ∆ if the answer of this query hits the pad(T, 1) of one
of those matches, which happens with probability at most 8n/(15 · 2n). From Lemma 5.5 with

23

c = 8τ/15 and m = n, for each fixed key K, with probability at least 1− 2−n, every bin associated
with K has at most n/2 balls. Summing over q possible keys, with probability at least 1 − q/2n,
every bin has at most n/2 balls.

Now, for any query E(K, pad(P, 0)), its number of entry-target pairs that satisfy Equation (15)
is exactly the number of balls in bin (K, pad(P, 0)). Thus our claim directly follows the balls-into-
bins analyses above.

Case 4: Both Q1 and Q2 are odd, and Q2 does not succeed Q1. We need the following techni-
cal lemmas Lemma 5.11 and Lemma 5.12. The proofs are in Appendix D.6 and Appendix D.7
respectively.

Lemma 5.11 With probability at least 1− 3q/2n − 2q/2τ , for every key K and every ∆ ∈ {0, 1}τ ,
there are at most n+τ entries (·,K, pad(T, 1), X) such that there is some entry (·,K∗, pad(T, 1), X∗)
with K∗ ̸= K and (X∗⊕X)[1 : τ] = ∆.

Lemma 5.12 With probability at least 1 − 5q/2τ , for every key K and every ∆ ∈ {0, 1}τ , there
are at most 2τ entries (·,K, pad(T, 1), X) such that there is some other entry (·,K∗, pad(T, 1), X∗)
with K∗ ̸= K and (X∗⊕X)[1 : τ]⊕T = ∆.

Assume that the events of Lemma 5.11 and Lemma 5.12 happen, meaning we need to add a
term 3q/2n + 7q/2τ into our bound to account for this. We consider the following sub-cases.

Case 4.1: sign1(Q1) = + and sign1(Q2) = +. In this case each query V ← E(K, pad(P, 0)) aims at
a prior query U ← E(K∗, pad(P ∗, 0)) that has prior entries (·,K, pad(T, 1), X) and (·,K∗, pad(T, 1),
X∗) such that

V [1 : τ] = pad(P, 0)[1 : τ]⊕T , (16)

pad(P, 0) = pad(P ∗, 0)⊕X∗⊕X (17)

T = (U⊕pad(P ∗, 0))[1 : τ] . (18)

We claim that with probability at least 1− q/2τ , for each query E(K, pad(P, 0)), there are at most
τ/2 triples that satisfy Equation (17) and Equation (18). Then the chance that the answer V of
this query satisfies Equation (16) with one of those τ/2 pairs is at most 8τ/(15 ·2τ). Summing over
all queries, the chance that this case happens is at most

8qτ

15 · 2τ
+

q

2τ
.

To justify the claim above, fix a key K and consider the following balls-into-bins game. For each
(adaptive) query U ← E(K∗, pad(P ∗, 0)) and each ∆ ∈ {0, 1}τ , from Lemma 5.11, there are at most
n + τ prior entries (·,K, pad(T, 1), X) and (·,K∗, pad(T, 1), X∗) such that (X⊕X∗pad(P ∗, 0))[1 :
τ]) = ∆. This query will put a ball to bin (K,∆) if its (U⊕pad(P ∗, 0))[1 : τ] hits the T of one of
those n+ τ entries, which happens with probability at most 16(n+ τ)/(15 · 2τ). Using Lemma 5.5
with c = 16(n + τ)/15 and m = τ , for each fixed key K, with probability at least 1 − 1/2τ , each
bin associated with K has at most τ/2 balls. Summing over all q possible keys, with probability
at least 1− q/2τ , each bin has at most τ/2 balls.

Now, for each query E(K, pad(P, 0)), the number of query-match pairs satisfying Equation (17)
is exactly the number of balls in bin (K, pad(P, 0)[1 : τ]). Thus our claim directly follows the
balls-into-bins analyses above.

Case 4.2: sign1(Q1) = − and sign1(Q2) = +. In this case each entry V ← E(K, pad(P, 0))
aims at a prior query pad(P ∗, 0) ← E−1(K∗, U) that has prior entries (·,K, pad(T, 1), X) and

24

(·,K∗, pad(T, 1), X∗) such that

V [1 : τ] = pad(P, 0)[1 : τ]⊕T , (19)

pad(P, 0) = pad(P ∗, 0)⊕X∗⊕X , (20)

U [1 : τ] = pad(P ∗, 0)[1 : τ]⊕T . (21)

From Equation (21), we can replace Equation (20) with

pad(P, 0)[1 : τ] = (X⊕X∗⊕U)[1 : τ]⊕T . (22)

We claim that with probability at least 1− q/2τ , for each query E(K, pad(P, 0)), there are at most
τ/2 triples that satisfy Equation (22) and Equation (21). Then the chance that the answer V of
this query satisfies Equation (16) with one of those τ/2 triples is at most 8τ/(15 · 2τ). Summing
over all queries, the chance that this case happens is at most

8qτ

15 · 2τ
+

q

2τ
.

To justify the claim above, consider the following balls-into-bins game. For each query E−1(K∗, U)
and each ∆ ∈ {0, 1}τ , from Lemma 5.12, there are at most 2τ prior entries (·,K, pad(T, 1), X) and
(·,K∗, pad(T, 1), X∗) such that

(X⊕X)[1 : τ]⊕T = ∆ .

This query will put a ball to bin (K,∆) if the τ -bit prefix of its answer hits T⊕U [1 : τ] of one of
the 2τ prior entries. In other words, for each query, we will put a ball to a particular bin with
probability at most 32τ/(15 · 2τ). Using Lemma 5.5 with c = 32τ/15 and m = τ , for each fixed key
K, with probability at least 1− 1/2n, each bin associated with K has at most τ/2 balls. Summing
over all q possible keys, with probability at least 1− q/2τ , each bin has at most τ/2 balls.

For each query E(K, pad(P, 0)), the number of triples satisfying Equation (22) is exactly the
number of balls in bin (K, pad(P, 0)[1 : τ]), and thus our claim directly follows the balls-into-bins
analyses above.

Case 4.3: sign1(Q1) = + and sign1(Q2) = −. In this case each query pad(P, 0) ← E−1(K,V)
aims at a prior query U ← E(K∗, pad(P ∗, 0)) that has prior entries (·,K, pad(T, 1), X) and (·,K∗,
pad(T, 1), X∗) such that

pad(P, 0)[1 : τ] = V [1 : τ]⊕T , and (23)

pad(P, 0) = pad(P ∗, 0)⊕X∗⊕X, (24)

T = (U⊕pad(P ∗, 0))[1 : τ] . (25)

From Equation (23), we can replace Equation (24) with

V [1 : τ] = (pad(P ∗, 0)⊕X∗⊕X)[1 : τ]⊕T . (26)

We claim that with probability at least 1 − q/2τ , each query E−1(K,V) has at most τ/2 triples
that satisfy Equation (25) and Equation (26). Then the answer pad(P, 0) of this query satisfies
Equation (23) with one of these triples is at most 8τ/(15 · 2τ). Summing over all queries, the
chance that this case happens is at most

8qτ

15 · 2τ
+

q

2τ
.

We now justify the claim above. Fix a key K and consider the following balls-into-bins game. For
each (adaptive) query U ← E(K∗, pad(P ∗, 0)) and each ∆ ∈ {0, 1}τ , from Lemma 5.12, there are
at most 2τ prior log entries (·,K, pad(T, 1), X) and (·,K∗, pad(T, 1), X∗) such that (X⊕X∗)[1 :
τ]⊕T = pad(P ∗, 0)[1 : τ]⊕∆. This query will put a ball to bin (K,∆) if its (U⊕pad(P ∗, 0))[1 : τ]

25

hits the T of one of those 2τ entries, which happens with probability at most 32τ/(15 · 2τ). Using
Lemma 5.5 with c = 32τ/(15 ·2τ) and m = τ , with probability at least 1−1/2τ , each bin associated
with key K has at most τ/2 balls. Summing over all possible keys, with probability at least 1−q/2τ ,
every bin has most τ/2 balls.

For each query E−1(K,V), the number of triples satisfying Equation (25) and Equation (26) is
exactly the number of balls in bin (K,V [1 : τ]), and thus our claim directly follows the balls-into-
bins analyses above.

Case 4.4: sign1(Q1) = − and sign1(Q2) = −. In this case each query pad(P, 0) ← E−1(K,V)
aims at a prior query pad(P ∗, 0) ← E−1(K∗, U) that has prior entries (·,K, pad(T, 1), X) and
(·,K∗, pad(T, 1), X∗) such that

pad(P, 0)[1 : τ] = V [1 : τ]⊕T , and (27)

pad(P, 0) = pad(P ∗, 0)⊕X∗⊕X, (28)

pad(P ∗, 0)[1 : τ] = T⊕U [1 : τ] . (29)

We then obtain

V [1 : τ] = (U⊕X∗⊕X)[1 : τ] . (30)

We claim that with probability at least 1 − q/2τ , each query E−1(K,V) has at most τ/2 triples
that satisfy Equation (29) and Equation (30). Then the answer pad(P, 0) of this query satisfies
Equation (27) with one of these triples is at most 8τ/(15 · 2τ). Summing over all queries, the
chance that this case happens is at most

8qτ

15 · 2τ
+

q

2τ
.

We now justify the claim above. Fix a key K and consider the following balls-into-bins game.
For each (adaptive) query pad(P ∗, 0) ← E−1(K∗, U) and each ∆ ∈ {0, 1}τ , from Lemma 5.11,
there are at most n + τ prior log entries (·,K, pad(T, 1), X) and (·,K∗, pad(T, 1), X∗) such that
(X⊕X∗)[1 : τ] = U⊕∆. This query will put a ball to bin (K,∆) if its (U⊕pad(P ∗, 0))[1 : τ] hits
the T of one of those n + τ entries, which happens with probability at most 16(n + τ)/(15 · 2τ).
Using Lemma 5.5 with c = 16(n+ τ)/(15 · 2τ) and m = τ , with probability at least 1− 1/2τ , each
bin associated with key K has at most τ/2 balls. Summing over all possible keys, with probability
at least 1− q/2τ , every bin has most τ/2 balls.

For each query E−1(K,V), the number of triples satisfying Equation (29) and Equation (30) is
exactly the number of balls in bin (K,V [1 : τ]), and thus our claim directly follows the balls-into-
bins analyses above.

6 Succinctly-Committing AE

Suppose that we have a tag-based symmetric encryption scheme SE of s-bit committing security
but the tag is long, say SE is CTY. Recall that our generic attack shows that the tag length SE.tl
alone must be at least 2s bis. For simplicity, assume that SE has constant expansion. Let ℓ be
the length of the ciphertext core of the empty message under SE. For a standard AE1 scheme,
ℓ is usually 0. For an AE2 (nonce-hiding) scheme, ℓ is often the nonce length. Note that for
a ciphertext core C∗ of a message M under SE, we have |C∗| = |M | + ℓ, meaning that SE has
expansion ℓ + SE.tl ≥ ℓ + 2s. We now give a Shorten Ciphertext (SC) transform that turns SE
into a succinctly-committing symmetric encryption scheme of (s+ ℓ)-bit (eventual) expansion and
(nearly) s bits of committing security.

26

SE.Enc(K,N,A,M)

S∥P ←M // |P | = min{|M |,m}
C∗∥T ← SE.Enc(K,N,A, S)

R← F(T, P)

Return C∗∥R

SE.Dec(K,D,A,C∗∥R)

(S,N, T ∗)← SE.Tag(K,D,A,C∗)

P ← F−1(T ∗, R)

If (P = ⊥) then return ⊥
If (|C∗| ≠ ℓ) ∧ (|P | ≠ m) then

Return ⊥
Return (S∥P,N)

������

PS

��������M

���

�

RT

Figure 9: The SC[SE,F] transform.

The SC Transform. Let SE be a tag-based committing symmetric encryption scheme of λ-bit
tag, and assume that it has constant expansion. Let F be an IPF of message space {0, 1}≤m, key
length λ, and ciphertext length m+ s. (Note that the key length of F is also the tag length of SE.)
Our scheme will have eventual pansion ℓ+ s after the cutoff m.

The scheme SE = SC[SE,F] is described in Fig. 9. It has the same message space, AD space,
nonce space, and decryption-nonce derivation function as SE. It is however not a tag-based scheme.

In particular, to encrypt a message M , we first parse it as S∥P , where |P | = min{m, |M |}.
(This means if |M | ≤ m then S is the empty string.) We then use SE to encrypt just S to derive
C∗∥T . Finally, we use F to encrypt P with key T to produce a tag R, and output C∗∥R. Note that
if |M | < m then |C| = m+ ℓ+ s; otherwise if M | ≥ m then

|C| = (|S|+ ℓ) +m+ s = |M |+ ℓ+ s .

That is, the eventual expansion of SC is ℓ+ s bits after the cutoff m.

For decryption, given (K,D,A,C∗∥R), we first use SE.Tag on (K,D,A,C∗) to recover the
suffix S, the nonce N , and the tentative tag T ∗. We then run F−1(T ∗, R) to get the prefix P .
However, there’s a subtlety here. If |C∗| ̸= ℓ then P must be exactly m bits, so we need to reject
the ciphertext even if P ̸= ⊥ but |P | ≠ m.

27

Discussion. If we instantiate F via the HtM[E, τ] construction in Section 5 (with d = 8) then
m = 120 and s = τ +8. That is, for messages at least 120 bits, SC has τ +8 bits of expansion, and
τ −⌈log2(τ)⌉ bits of committing security. If we also instantiate SE via CTY then λ = 256, meaning
that the key length of HtM must be 256-bit. Thus the cost of HtM is two sequential AES-256 calls.

Committing security of SC. Proposition 6.1 below confirms that SC tightly preserves commit-
ting security. Intuitively, thanks to the collision-resistance of F, the outer tag R is a commitment
of the plaintext P and the inner tag T , and thus C∗∥R is a commitment of (P,C∗∥T), reducing
the committing security of SC to that of SE. The proof is in Appendix H.

Proposition 6.1 Let SE be a tag-based symmetric encryption scheme and F be an IPF as above.
Let SE = SC[SE,F]. Then given an adversary A, we can construct B and D of about the same
resource such that

Advcmt
SE

(A) ≤ Advcmt
SE (B) +Advcoll

F (D) .

Adversary B has the same running time as A. The running time of D is that of A plus the time to
run SE on A’s output.

Corollary 6.2 bellow gives a concrete bound on the committing security of SE = SC[SE,F] if
we instantiate F by the HtM construction in Section 5. The bound is obtained by substituting the
term Advcoll

F (D) in Proposition 6.1 with the bound in Proposition 5.1.

Corollary 6.2 Let E be a blockcipher on {0, 1}n that we model as an ideal cipher. Let SE be
a tag-based symmetric encryption scheme, and let F = HtM[E, τ] be the IPF in Section 5. Let
SE = SC[SE,F]. Then given an adversary A of q ideal-cipher queries, we can construct B of about
the same running time such that

Advcmt
SE

(A) ≤ Advcmt
SE (B) + 4(n+ τ)q + 5

2τ
.

Our work focuses on the CMT-4 notion of Bellare and Hoang [5] that commits (K,N,A,M).
If one only needs CMT-1 security (that commits just the key K), we note that the SC transform
also preserves CMT-1 security.

AE security of SC. Unfortunately SC doesn’t generically preserve AE security. In particular,
using SC requires that SE.Tag generates pseudorandom tags on ciphertext cores chosen by the
adversary, because those tags will be used as the keys for F. The AE security of SE however only
guarantees that such tags are unpredictable. Still, SC does preserve AE security if the base AE
scheme is built on top of CTY, as confirmed via Theorem 6.3 below.

The term u2/2k in the bound of Theorem 6.3 is inherent in (multi-user) AE security of any
symmetric encryption scheme if there is no additional assumption on how nonces are implemented.
Indeed, it corresponds to a generic key-collision attack; see, for example, [14, Section 3.1] for
details. Likewise, if the adversary makes Ω(p) computations, the term up/2k is also inherent. This
corresponds to a generic key-recovery attack; see [31, Appendix B.2] for details. (We note that these
two attacks were actually given for AE1 schemes, but they can be easily translated to symmetric
encryption schemes.)

Theorem 6.3 Let F be an IPF with plaintext space {0, 1}≤m and ciphertext length m+ s. Let SE
be a symmetric encryption scheme of k-bit key. Let H be a hash function that we will model as a
random oracle. Let SE = SC[CTY[H,SE],F]. Then for an adversary A that attacks u users with at

28

most p random-oracle queries, q encryption queries, and qv verification queries, we can construct
adversaries B and D such that

Advae
SE
(A) ≤ Advipf

F (B) +Advae
SE(D) +

q2

2m+s
+

u(2u+ 3p)

2k
+

2qv
2s

.

Compared to the running time of A, the overhead of B is the time to use SE to encrypt/decrypt
A’s queries. It has the same number of verification queries as A, with a single encryption query
per user. The overhead of D is the time to use SE for p times on k-bit data. Its query statistics is
that of A plus an encryption query per user for k-bit data.

Corollary 6.4 below gives a concrete bound on the AE security of the composition of SC and
CTY, if we instantiate F via the HtM construction in Section 5. The proof is a straightforward
combination of Theorem 6.3 and Proposition 5.2.

Corollary 6.4 Let E be a blockcipher on {0, 1}n, and let F be HtM[E, τ]. Let SE be a symmetric
encryption scheme of k-bit key. Let H be a hash function that we will model as a random oracle.
Let SE = SC[CTY[H,SE],F]. Then for an adversary A that attacks u users with at most p random-
oracle queries, q encryption queries, and qv verification queries, we can construct B and D such
that

Advae
SE
(A) ≤ Advprf

E (B) +Advae
SE(D) +

q2

2n+τ
+

u(2u+ 3p)

2k
+

2qv
2τ

.

Compared to the running time of A, the overhead of B is the time to use SE to encrypt/decrypt
A’s queries. It has twice the number of queries as A. The overhead of D is the time to use SE for
p times on k-bit data. Its query statistics is that of A plus an encryption query (whose message is
just k-bit) per user.

Discussion. From Theorem 6.3 and Proposition 6.1, the composition of SC and CTY is a generic
transform that turns a standard tag-based symmetric encryption scheme like GCM to a succinctly
committing one. The overhead consists of (i) the hashing cost of the AD, which is necessary for
committing security, and (ii) the cost of an IPF, which is very cheap. (Recall that if we instantiate
the IPF via HtM then the cost is just two sequential AES-256 calls.)3 This hash function needs to
be modeled as a random oracle, and thus can be instantiated via SHA-3 or (truncated) SHA-512.
On small data, the hashing overhead is expensive for small data, but unfortunately unavoidable if
we want to commit the AD. Moreover, this transform allows one to have strong committing security
with smaller expansion, say 80-bit committing security for 96-bit expansion. In contrast, none of
the existing schemes can offer meaningful committing security when the expansion gets below 128
bits.

On the other hand, there is a potential timing leakage in SC because there are two checks
(P ̸= ⊥) and (|C∗| ̸= ℓ) ∧ (|P | ̸= m) in the decryption of SC. However, if one checks (P ̸= ⊥)
first, as written in the code in Fig. 9, then it’s unlikely that an invalid ciphertext can pass the test
(P ̸= ⊥), and thus one can avoid the timing issue. The proof in Theorem 6.3 rigorously confirms
this intuition, showing that the composition of SC and CTY has good AE security even in the
presence of timing leakage. In particular, in the games, verification queries only consider the test
(P ̸= ⊥). That is, if an adversary can launch a verification query that passes (P ̸= ⊥) but fails the
check (|C∗| ≠ ℓ) ∧ (|P | ≠ m), it will get a true answer (instead of false) and win the game.

3There is also an AES key-setup cost since we have to rekey HtM for every encryption, but a good implementation
can hide this latency. For example, AES-GCM-SIV [28] also derives new subkeys for every encryption, but manages
to hide the key-setup cost of AES.

29

7 Acknowledgments

Many thanks to Cong Wu who implemented our transforms and provided extensive benchmarks.
We thank the CRYPTO 2024 reviewers for their careful reading and valuable comments.

References

[1] M. Abdalla, M. Bellare, and G. Neven. Robust encryption. In D. Micciancio, editor, TCC 2010,
volume 5978 of LNCS, pages 480–497. Springer, Heidelberg, Feb. 2010.

[2] A. Albertini, T. Duong, S. Gueron, S. Kölbl, A. Luykx, and S. Schmieg. How to abuse and
fix authenticated encryption without key commitment. In K. R. B. Butler and K. Thomas,
editors, USENIX Security 2022, pages 3291–3308. USENIX Association, Aug. 2022.

[3] M. Barbosa and P. Farshim. Indifferentiable authenticated encryption. In H. Shacham and
A. Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 187–220. Springer,
Heidelberg, Aug. 2018.

[4] M. Bellare and V. T. Hoang. Identity-based format-preserving encryption. In B. M. Thurais-
ingham, D. Evans, T. Malkin, and D. Xu, editors, ACM CCS 2017, pages 1515–1532. ACM
Press, Oct. / Nov. 2017.

[5] M. Bellare and V. T. Hoang. Efficient schemes for committing authenticated encryption. In
O. Dunkelman and S. Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of
LNCS, pages 845–875. Springer, Heidelberg, May / June 2022.

[6] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. In T. Okamoto, editor, ASIACRYPT 2000,
volume 1976 of LNCS, pages 531–545. Springer, Heidelberg, Dec. 2000.

[7] M. Bellare, R. Ng, and B. Tackmann. Nonces are noticed: AEAD revisited. In A. Boldyreva
and D. Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 235–265.
Springer, Heidelberg, Aug. 2019.

[8] M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit nonces or
redundancy in plaintexts for efficient cryptography. In T. Okamoto, editor, ASIACRYPT 2000,
volume 1976 of LNCS, pages 317–330. Springer, Heidelberg, Dec. 2000.

[9] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 409–426. Springer, Heidelberg, May / June 2006.

[10] M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of operation. In B. K. Roy and
W. Meier, editors, FSE 2004, volume 3017 of LNCS, pages 389–407. Springer, Heidelberg,
Feb. 2004.

[11] M. Bellare and L. Shea. Flexible password-based encryption: Securing cloud storage and
provably resisting partitioning-oracle attacks. In M. Rosulek, editor, CT-RSA 2023, volume
13871 of LNCS, pages 594–621. Springer, Heidelberg, Apr. 2023.

30

[12] M. Bellare and B. Tackmann. The multi-user security of authenticated encryption: AES-GCM
in TLS 1.3. In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS,
pages 247–276. Springer, Heidelberg, Aug. 2016.

[13] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Duplexing the sponge: Single-pass
authenticated encryption and other applications. In A. Miri and S. Vaudenay, editors, SAC
2011, volume 7118 of LNCS, pages 320–337. Springer, Heidelberg, Aug. 2012.

[14] P. Bose, V. T. Hoang, and S. Tessaro. Revisiting AES-GCM-SIV: Multi-user security, faster key
derivation, and better bounds. In J. B. Nielsen and V. Rijmen, editors, EUROCRYPT 2018,
Part I, volume 10820 of LNCS, pages 468–499. Springer, Heidelberg, Apr. / May 2018.

[15] J. Chan and P. Rogaway. Anonymous AE. In S. D. Galbraith and S. Moriai, editors, ASI-
ACRYPT 2019, Part II, volume 11922 of LNCS, pages 183–208. Springer, Heidelberg, Dec.
2019.

[16] J. Chan and P. Rogaway. On committing authenticated-encryption. In V. Atluri, R. Di Pietro,
C. D. Jensen, and W. Meng, editors, ESORICS 2022, Part II, volume 13555 of LNCS, pages
275–294. Springer, Heidelberg, Sept. 2022.

[17] Y. L. Chen, A. Flórez-Gutiérrez, A. Inoue, R. Ito, T. Iwata, K. Minematsu, N. Mouha,
Y. Naito, F. Sibleyras, and Y. Todo. Key committing security of AEZ and more. IACR
Transactions on Symmetric Cryptology, 2023(4):452–488, Dec. 2023.

[18] P. Crowley and E. Biggers. Adiantum: length-preserving encryption for entry-level processors.
IACR Trans. Symm. Cryptol., 2018(4):39–61, 2018.

[19] P. Crowley, N. Huckleberry, and E. Biggers. Length-preserving encryption with HCTR2.
Technical report, Cryptology ePrint Archive, Report 2021/11441, 2021. http://eprint. iacr.
org, 2021.

[20] J. Daemen and V. Rijmen. AES proposal: Rijndael. NIST AES proposal, 1998.

[21] Y. Dai and J. P. Steinberger. Indifferentiability of 8-round Feistel networks. In M. Robshaw
and J. Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 95–120. Springer,
Heidelberg, Aug. 2016.

[22] J. P. Degabriele, M. Fischlin, and J. Govinden. The indifferentiability of the duplex and its
practical applications. In J. Guo and R. Steinfeld, editors, Advances in Cryptology - ASI-
ACRYPT 2023 - 29th International Conference on the Theory and Application of Cryptology
and Information Security, Guangzhou, China, December 4-8, 2023, Proceedings, Part VIII,
volume 14445 of Lecture Notes in Computer Science, pages 237–269. Springer, 2023.

[23] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer. Ascon v1.2: Lightweight authenti-
cated encryption and hashing. Journal of Cryptology, 34(3):33, July 2021.

[24] M. Dworkin. Recommendation for block cipher modes of operation: Galois/Counter Mode
(GCM) and GMAC. NIST Special Publication 800-38D, November 2007.

[25] P. Farshim, C. Orlandi, and R. Roşie. Security of symmetric primitives under incorrect usage
of keys. IACR Trans. Symm. Cryptol., 2017(1):449–473, 2017.

31

[26] Y. Gertner and A. Herzberg. Committing encryption and publicly-verifiable signcryption.
Cryptology ePrint Archive, Report 2003/254, 2003. https://eprint.iacr.org/2003/254.

[27] P. Grubbs, J. Lu, and T. Ristenpart. Message franking via committing authenticated encryp-
tion. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS,
pages 66–97. Springer, Heidelberg, Aug. 2017.

[28] S. Gueron. AES-GCM-SIV. https://github.com/Shay-Gueron/AES-GCM-SIV, Jan. 2018.

[29] S. Gueron and N. Mouha. Simpira v2: A family of efficient permutations using the AES round
function. In J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of
LNCS, pages 95–125. Springer, Heidelberg, Dec. 2016.

[30] V. T. Hoang, T. Krovetz, and P. Rogaway. Robust authenticated-encryption AEZ and the
problem that it solves. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 15–44. Springer, Heidelberg, Apr. 2015.

[31] V. T. Hoang and Y. Shen. Security of streaming encryption in google’s tink library. In
J. Ligatti, X. Ou, J. Katz, and G. Vigna, editors, ACM CCS 2020, pages 243–262. ACM
Press, Nov. 2020.

[32] M. Lambæk. Breaking and fixing private set intersection protocols. Cryptology ePrint Archive,
Report 2016/665, 2016. https://eprint.iacr.org/2016/665.

[33] J. Len, P. Grubbs, and T. Ristenpart. Partitioning oracle attacks. In M. Bailey and R. Green-
stadt, editors, USENIX Security 2021, pages 195–212. USENIX Association, Aug. 2021.

[34] U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In M. Naor, editor, TCC 2004,
volume 2951 of LNCS, pages 21–39. Springer, Heidelberg, Feb. 2004.

[35] D. A. McGrew and J. Viega. The security and performance of the Galois/counter mode (GCM)
of operation. In A. Canteaut and K. Viswanathan, editors, INDOCRYPT 2004, volume 3348
of LNCS, pages 343–355. Springer, Heidelberg, Dec. 2004.

[36] S. Menda, J. Len, P. Grubbs, and T. Ristenpart. Context discovery and commitment attacks
- how to break CCM, EAX, SIV, and more. In C. Hazay and M. Stam, editors, EURO-
CRYPT 2023, Part IV, volume 14007 of LNCS, pages 379–407. Springer, Heidelberg, Apr.
2023.

[37] Y. Naito, Y. Sasaki, and T. Sugawara. KIVR: Committing authenticated encryption using
redundancy and application to GCM, CCM, and more. In 22nd International Conference on
Applied Cryptography and Network Security (ACNS 2024), pages 318–347, 2024.

[38] C. Namprempre, P. Rogaway, and T. Shrimpton. Reconsidering generic composition. In P. Q.
Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 257–274.
Springer, Heidelberg, May 2014.

[39] P. Rogaway. Authenticated-encryption with associated-data. In V. Atluri, editor, ACM CCS
2002, pages 98–107. ACM Press, Nov. 2002.

[40] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of operation
for efficient authenticated encryption. In M. K. Reiter and P. Samarati, editors, ACM CCS
2001, pages 196–205. ACM Press, Nov. 2001.

32

https://eprint.iacr.org/2003/254
https://github.com/Shay-Gueron/AES-GCM-SIV
https://eprint.iacr.org/2016/665

[41] P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap problem. In
S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 373–390. Springer,
Heidelberg, May / June 2006.

[42] J. Salowey, A. Choudhury, and D. McGrew. AES Galois Counter Mode (GCM) Cipher Suites
for TLS. RFC 5288, Aug. 2008. https://datatracker.ietf.org/doc/html/rfc5288.

[43] D. Whiting, R. Housely, and N. Ferguson. Counter with CBC-MAC (CCM). IETF Network
Working Group, RFC 3610, September 2003.

A Proof of Lemma 3.2

Adversary B runs A, and lets A use its New and Enc oracles. For each verification query of A,
however, B stores that in a list L, and simply returns false to A. When A terminates with its
guess b′, for each query (i,D,A,C) in L, if there is no prior encryption query C ← Enc(i,N,A,M)
such that SE.df(N) = D then B will query Vf(i,D,A,C), otherwise it will terminate and return 1.
If one of those verification queries results in a true answer then B will return 1, otherwise it returns b′.

In the real world of B, if some verification query could result in a true answer then B will answer 1
anyway (even if it can’t make this query due to the definitional restriction). If all verification queries
are destined to give false answers then B correctly simulates Greal

SE (A), and it either gives the same
answer as A or returns 1. Hence

Pr[Greal
SE (B)] ≥ Pr[Greal

SE (A)] .

Let Bad be the event that in the ideal world of B, there is a verification query Vf(i,D,A,C) and
then later there is an encryption query C ← Enc(i,N,A,M) such that SE.df(N) = D. If Bad
doesn’t happen then B correctly simulates game Grand

SE (A) and has the same answer as A, and thus

Pr[Grand
SE (B)] ≤ Pr[Grand

SE (A)] + Pr[Bad] .

To bound Pr[Bad], consider a verification query Vf(i,D,A,C). There are at most 2SE.dnd choices
for the nonces N , and the message can be anything in the set {0, 1}≤|C|−τ−SE.dnd. Hence this
verification query can be targeted by at most

|C|−τ−SE.dnd∑
j=0

2j · 2SE.dnd < 2|C|−τ+1

encryption queries. However, the chance that one of those encryption queries can result in C is at
most

2|C|−τ+1 · 1

2|C| =
2

2τ
.

Summing this over qv verification queries,

Pr[Bad] ≤ 2qv
2τ

.

Hence

Pr[Grand
SE (B)] ≤ Pr[Grand

SE (A)] + 2qv
2τ

,

and thus

Advae
SE(B) ≥ Advae

SE(A)−
2qv
2τ

.

If SE.ce(m) = SE.dnd + τ for every m then for each verification query Vf(i,D,A,C), the set of
messages can be restricted to {0, 1}|C|−τ−SE.dnd (instead of {0, 1}≤|C|−τ−SE.dnd), and thus the term

33

https://datatracker.ietf.org/doc/html/rfc5288

2qv/2
τ can be improved to qv/2

τ .

B Equivalence of Committing Definitions

� CMTD −→ CMT: First we show that CMTD implies CMT. Let SE be a symmetric encryption
scheme. Consider an adversary Ae that attacks the CMT security of SE. We now construct
an adversary Ad attacking the CMTD security of SE. It runs Ae to get (K1, N1, A1,M1) and
(K2, N2, A2,M2). It then runs C ← SE.Enc(K1, N1, A1,M1), and outputs (C, (K1, SE.df(N1), A1),
(K2,SE.df(N2), A2)).

For analysis, without loss of generality, assume that Ae outputs distinct tuples (K1, N1, A1,M1)
and (K2, N2, A2,M2). Suppose that Ae wins its game, meaning that SE.Enc(K2, N2, A2,M2) is
also C. From the correctness of SE, we have SE.Dec(Ki,SE.df(Ni), Ai, C) = (Mi, Ni) ̸= ⊥ for
each i ∈ {1, 2}. If (K1,SE.df(N1), A1) = (K2, SE.df(N2), A2) then M1 = M2 and N1 = N2, which
is a contradiction. Hence (K1, SE.df(N1), A1) ̸= (K2, SE.df(N2), A2), thus Ad also wins its game.
Therefore,

Advcmt-d
SE (Ad) ≥ Advcmt

SE (Ae) .

� CMT 99K CMTD: Conversely, we show that for tidy schemes, CMT implies CMTD. Let SE be
a tidy symmetric encryption scheme. Consider an adversary Ad that attacks the CMTD security
of SE. We now construct an adversary Ae that attacks the CMT security of SE. It runs Ad to get
(C, (K1, D1, A1), (K2, D2, A2)), and gets (Mi, Ni) ← SE.Dec(Ki, Di, Ai, C) for each i ∈ {1, 2}. It
then outputs ((K1, N1, A1,M1), (K2, N2, A2,M2)).

For analysis, without loss of generality, assume that Ad outputs distinct tuples (K1, D1, A1),
(K2, D2, A2). Suppose that Ad wins its game, meaning that (Mi, Ni) ̸= ⊥. Since SE is tidy, we
have SE.Enc(Ki, Ni, Ai,Mi) = C for each i ∈ {1, 2} and SE.df(Ni) = Di, and thus (K1, N1, A1) ̸=
(K2, N2, A2). Hence Ae also wins its game, and therefore,

Advcmt
SE (Ae) ≥ Advcmt-d

SE (Ad) .

C Proof of Theorem 3.4

From Lemma 3.2, without loss of generality, assume that A is orderly. This assumption creates
a difference of at most 2qv/2

λ, which we will account later. Assume that the adversary doesn’t
make forbidden queries. Consider games G1–G7 in Fig. 10–Fig. 12. Game G1 coincides to game
Greal

SE
(A). For clarity, A is given an interface Ro to the random oracle, and SE.Enc and SE.Dec are

implemented using another interface Ro. Game G7 corresponds to game Grand
SE

(A). Hence
Advae

SE
(A) = Pr[G1(A)]− Pr[G7(A)] .

We now describe the game chain. In game G2, we maintain a set Dom that is initialized to ∅.
This set keeps track of the keys K1, . . . ,Kv so far, and also the components K in random-oracle
queries Ro(K,N, V) of A. Thus |Dom| ≤ p+ u. In game G2, each time when we initialize a user i
and sample its key, if the key falls within Dom then we set bad to true, and re-sample the key
uniformly at random from {0, 1}k\Dom. Games G1 and G2 are identical until bad, and thus from
the Fundamental Lemma of Game Playing [9],

Pr[G1(A)]− Pr[G2(A)] ≤ Pr[G2(A) sets bad] ≤
u(u+ p)

2k
.

Game G3 is a different way to implement G2. Instead of using the same underlying table Tbl for
both Ro and Ro, we use two tables Tbl and Tbl, where calls to Ro are implemented in Tbl. For

34

Games G1(A), G2(A)

v ← 0; Dom← ∅; b′←$ANew,Enc,Vf,Ro

Return (b′ = 1)

New()

v ← v + 1; Kv←$ {0, 1}k
If Kv ∈ Dom then

bad← true; Kv←$ {0, 1}k\Dom
Dom← Dom ∪ {Kv}

Enc(i,N,A,M)

C∗∥R← SE.Enc(Ki, N, ε,M)

T ← Ro(Ki, N,A∥R)

Return C∗∥T

Vf(i,D,A,C∗∥T)

(M,N,R)← SE.Tag(Ki, D, ε, C∗)

T ∗ ← Ro(Ki, N,A∥R)

Return (T = T ∗)

Ro(K,N, V)

If Tbl[K,N, V] = ⊥ then

Tbl[K,N, V]←$ {0, 1}λ
Dom← Dom ∪ {K}
Return Tbl[K,N, V]

Ro(K,N, V)

If Tbl[K,N, V] = ⊥ then

Tbl[K,N, V]←$ {0, 1}λ
Return Tbl[K,N, V]

Games G3(A) , G4(A)
v ← 0; win← false

Dom← ∅; b′←$ANew,Enc,Vf,Ro

win← bad; win← false

Return (b′ = 1) ∨ win

New()

v ← v + 1; Kv←$ {0, 1}k\Dom
Dom← Dom ∪ {Kv}

Enc(i,N,A,M)

C∗∥R← SE.Enc(Ki, N, ε,M)

T ← Ro(Ki, N,A∥R)

Return C∗∥T

Vf(i,D,A,C∗∥T)

(M,N,R)← SE.Tag(Ki, D, ε, C∗)

T ∗ ← Ro(Ki, N,A∥R)

Return (T ∗ = T)

Ro(K,N, V)

If K ∈ {K1, . . . ,Kv} then
bad← true; return Ro(K,N, V)

If Tbl[K,N, V] = ⊥ then

Tbl[K,N, V]←$ {0, 1}λ
Dom← Dom ∪ {K}
Return Tbl[K,N, V]

Ro(K,N, V)

If Tbl[K,N, V] = ⊥ then

Tbl[K,N, V]←$ {0, 1}λ
Return Tbl[K,N, V]

Figure 10: Games G1–G4 in the proof of Theorem 3.4. Games G2 and G3 contain the corresponding
boxed statements, but games G1 and G4 do not.

calls (K,N, V) to Ro, generally they are implemented via Tbl, but if K somehow falls within the
current set of keys {K1, . . . ,Kv} then we implement it by calling Ro(K,N, V). Hence

Pr[G2(A)] = Pr[G3(A)] .

In game G4, for each call Ro(K,N, V), if K ∈ {K1, . . . ,Kv} then we implement it via Tbl (meaning
Ro and Ro are now independent) and set bad to true. The game will return true if bad is set. For
i ∈ {3, 4} and b ∈ {true, false}, let Gi(A, b) denote the event that Gi(A) returns true and bad = b.
Note that G4 and G3 are identical until bad is set. Then

Pr[G3(A, false)] = Pr[G4(A, false)] .

35

Games G5(A) , G6(A)

v ← 0; win← false; Dom← ∅; b′←$ANew,Enc,Vf,Ro

Return (b′ = 1) ∨ win

New()

v ← v + 1; Kv←$ {0, 1}k; Kv←$ {0, 1}k\Dom ; Dom← Dom ∪ {Kv}

Enc(i,N,A,M)

C∗∥R← SE.Enc(Ki, N, ε,M); T ← Ro(Ki, N,A∥R)

Map[i,N,A∥R, T]← true; Return C∗∥T

Vf(i,D,A,C∗∥T)

For (N,R) with SE.df(N) = D do

If (Map[i,N,A∥R, T] ̸= ⊥) then
Return (SE.Dec(Ki, D, ε, C∗∥R) ̸= ⊥)

Return false

Ro(K,N, V)

If K ∈ {K1, . . . ,Kv} then win← true

If Tbl[K,N, V] = ⊥ then Tbl[K,N, V]←$ {0, 1}λ
Return Tbl[K,N, V]

Ro(K,N, V)

If Tbl[K,N, V] = ⊥ then Tbl[K,N, V]←$ {0, 1}λ
Return Tbl[K,N, V]

Figure 11: Games G5 and G6 in the proof of Theorem 3.4. Game G5 contains the corresponding
boxed statements, but game G6 does not.

Game G7(A)
v ← 0; b′←$ANew,Enc,Vf,Ro

Return (b′ = 1)

New()

v ← v + 1

Enc(i,N,A,M)

C∗←$ {0, 1}SE.cl(|M |)−SE.tl; T ←$ {0, 1}λ
Return C∗∥T

Vf(i,D,A,C∗∥T)

Return false

Ro(K,N, V)

If Tbl[K,N, V] = ⊥ then

Tbl[K,N, V]←$ {0, 1}λ
Return Tbl[K,N, V]

Figure 12: Game G7 in the proof of Theorem 3.4.

Moreover,

Pr[G3(A, true)] ≤ Pr[G3(A) sets bad]

= Pr[G4(A) sets bad] = Pr[G4(A, true)] .

Hence

Pr[G3(A)] = Pr[G3(A, false)] + Pr[G3(A, true)]

≤ Pr[G4(A, false)] + Pr[G4(A, true)] = Pr[G4(A)] .

36

In game G5, for each verification query Vf(i,D,A,C∗∥T), we check if there is a prior encryption
query Enc(i,N,A,M) that produces the same T , and D = SE.df(N). If yes, we recover the
inner tag R of this encryption query, and return whether SE.Dec(Ki, D, ε, C∗∥R) ̸= ⊥. Otherwise,
return false.

We now bound the gap between G4 and G5. Let Bad be the event that in game G5, there are
two encryption queries (i,N,A,M) and (i,N∗, A,M∗) that end with the same tag T . Since each
encryption query picks a fresh random tag, the chance that Bad happens is at most q2/2λ. Suppose
that Bad doesn’t happen. Without loss of generality, assume that A returns 1 if some verification
query returns true. Note that G4 and G5 have the same way of implementing encryption queries.
Consider a verification query Vf(i,D,A,C∗∥T). Since A is orderly, without loss of generality,
assume that this is the first verification query. Let (M,N,R)← SE.Tag(Ki, D, ε, C∗). If there is a
prior encryption query (i,N,A,M∗) whose internal tag is R and the external tag is T , then G5 is
simply a different implementation of G4, using SE.Dec instead of SE.Tag. Suppose that there is no
such encryption query. Without loss of generality, assume that in this case G5 merely returns false
for the verification query, this can only decrease Pr[G5(A)] and thus increase Pr[G4(A)]−Pr[G5(A)].
Game G4 instead checks whether T is the same as T ∗ ← Ro(Ki, N,A∥R). Note that in game G4,
either T ∗ ̸= T (because there is an encryption query (i,N,A,M∗) of the same internal tag R but its
external tag, which is also T ∗, is different from T), or the tag T ∗ is a fresh random string (because
there is no encryption query (i,N,A,M∗) of the same internal tag R). Hence the chance that
T = T ∗ is at most 2−λ. Summing this over qv verification queries and taking into account Pr[Bad],

Pr[G4(A)]− Pr[G5(A)] ≤
qv
2λ

+
q2

2λ
.

In game G6, we instead sample the keys Ki uniformly. Then

Pr[G5(A)]− Pr[G6(A)] ≤
u(u+ p)

2k
.

In game G7, for each encryption query, instead of using SE.Enc we simply pick a random ciphertext.
Likewise, for each verification query, instead of using SE.Dec, we simply return false.

To bound the gap between G6 and G7, we construct an adversary B attacking the AE security of SE
as follows. It first initializes Nonces,Keys← ∅. It then runs A and simulates game G6, but with the
following differences. For each encryption query (i,N,A,M), instead of using SE.Enc(Ki, N, ε,M),
it uses Enc(i,N, ε,M) and adds N to Nonces. For each verification query (i,D,A,C∗∥T), instead
of checking SE.Dec(Ki, D, ε, C∗∥R) ̸= ⊥, it runs Vf(i,D, ε, C∗∥R). For each random-oracle query
Ro(K,N, V), instead of checking if K ∈ {K1, . . . ,Kv}, it simply adds K to Keys. Finally, when A
terminates, adversary B picks N∗ ∈ N\Nonces, and computes C ′

i ← Enc(i,N∗, ε, 0k) for every
user i. Then, for each K ∈ Keys, it computes C ← SE.Enc(K,N∗, ε, 0k), and sets win ← true if
there is some C ′

i = C. Then

Pr[G6(A)] ≤ Pr[Greal
SE (B)] .

Here we have to use an inequality, because there might be false positives in checking C ′
i = C where

the string K is not the key Ki. On the other hand,

Pr[G7(A)] ≥ Pr[Grand
SE (D)]− up

2k+SE.tl
,

because each C ′
i is uniformly chosen from {0, 1}k+SE.tl, independent of whatA receives. Subtracting,

we obtain

Pr[G6(A)]− Pr[G7(A)] ≤ Advae
SE(B) +

up

2k+SE.tl
≤ Advae

SE(D) +
up

2k
.

37

Summing up,

Advae
SE
(A) = Pr[G1(A)]− Pr[G7(A)]

=

6∑
i=1

Pr[Gi(A)]− Pr[Gi+1(A)] ≤ Advae
SE(B) +

u(2u+ 3p)

2k
+

qv + q2

2λ
.

By accounting for the loss of 2qv/2
λ in the advantage by assuming that A is orderly,

Advae
SE
(A) ≤ Advae

SE(B) +
u(2u+ 3p)

2k
+

3qv + q2

2λ
.

D Proofs of the Lemmas in Proposition 5.1

D.1 Proof of Lemma 5.5

Let t = ⌈m/2⌉. For any particular bin, the chance that it has at least t balls is at most(
q

t

)
(c/2m)t ≤ qt

t!
· (c/2m)t ≤ (qc/2m)t

(t/e)t
≤ 1

tt
,

where the second inequality is due to Stirling’s formula, and the last inequality is due to the fact
that 3qc ≤ 2m. By the union bound, the chance that there is some bin among 2m possible ones
that has at least t balls is at most

2m

tt
≤ 2m

16t
≤ 2m

16m/2
= 2−m ,

where the first inequality is due to the fact that t ≥ m/2 ≥ 16 and the second inequality is due to
the fact that t ≥ m/2.

D.2 Proof of Lemma 5.7

We classify the balls into the following three groups.

• Group 1: The ball is created by log entry (·,K, pad(T, 1), ·) and a subsequent even match Q∗.

• Group 2: The ball is created by log entry (+,K, pad(T, 1), ·) and a prior even match Q∗.

• Group 3: The ball is created by log entry (−,K, pad(T, 1), ·) and a prior even match Q∗.

Note that a ball may belong to more than one group, meaning that we double count some balls,
but this does not matter, as we only need to find an upper bound on the number of balls. We will
show that for each fixed key K, for Group 1 or Group 2, with probability at least 1− 1/2n, no bin
contains more than n/2 balls from this group. For Group 3, with probability at least 1− 2/2n, no
bin contains more than n/2 balls from this group. Thus for each fixed key K, with probability at
least 1− 4/2n, each bin associated with key K contains at most 3n/2 balls. Summing this over all
keys, with probability at least 1− 4q/2n, every bin has at most 3n/2 balls.

Group 1. Consider the following view of throwing balls in Group 1. For each even match Q∗ =
{(·,K∗, pad(P ∗, 0), T), (+,K∗, pad(T, 1), X∗)}, we throw a ball to bin (K,X⊕X∗⊕pad(P ∗, 0)) if
there is a prior entry (·,K, pad(T, 1), X). This view is incorrect because it may double count some
balls, but since we want an upper bound on the number of balls, this does not matter. So we have
a game of at most q rounds of ball throwing, each corresponding to an even match Q∗. In each
round, we probabilistically pick some bins and put a ball in each bin.

38

For each round, given the prior throws and the associated (X, pad(P ∗, 0)), the corresponding X∗

is uniformly distributed over a set of at least 15·2n/16 members. Thus for each fixed bin, the chance
this round puts a ball to this bin is at most 16/(15 · 2n). Using Lemma 5.5 with c = 16/15 and
m = n, with probability at least 1− 1/2n, every bin associated with key K has at most n/2 balls.

Group 2. For each query E(K, pad(T, 1)), its hitting matches are the prior even matches Q∗ =
{(·,K∗, pad(P ∗, 0), T), (+,K∗, pad(T, 1), X∗)}. Note that two different queries E(K, pad(T, 1)) and
E(K, pad(T ′, 1)) have disjoint sets of hitting matches.

For each query E(K, pad(T, 1)), its ball throwing can be viewed as follows. Recall that the
answer of query E(K, pad(T, 1)) is uniformly chosen from a set S∗. Consider a bin (K,∆). Let S
be the set of n-bit strings U such that there is some hitting match Q∗ = {(·,K∗, pad(P ∗, 0), T),
(+,K∗, pad(T, 1), X∗)} of this query with

U = X∗⊕pad(P ∗, 0)⊕pad(T, 1)⊕∆ .

Then we put a ball to bin (K,∆) with (conditional) probability |S ∩ S∗|/|S∗|. In addition, note
that the number B of hitting matches of this query is at least |S|.

Now consider an (incorrect) view in which for each even match Q∗, we put a ball into bin
(K,∆) with probability 32/(15 · 2n), independently for every ∆. Thus in the latter view, for a
query E(K, pad(T, 1)), the probability that its B hitting matches put balls to bin (K,∆) is at least

1−
(
1− 1

(15 · 2n)/32

)B
≥ B

(15 · 2n)/16
≥ |S|

(15 · 2n)/16
≥ |S|
|S∗|

≥ |S ∩ S∗|
|S∗|

,

where the first inequality is due to Lemma 5.6. Since we consider an upper bound on the number
of balls, we can use the latter view. Using Lemma 5.5 with c = 32/15 and m = n, with probability
at least 1− 1/2n, every bin associated with key K has at most n/2 balls.

There is a technical subtlety here. Let p1 be the probability that in the correct view, some bin
associated with key K has at least n/2 balls, and define p2 similarly for the incorrect view. Let ϵ
be the probability that a fixed bin has at least n/2 balls under the incorrect view, and recall that
there are 2n bins associated with key K. Our argument only gives us p1 ≤ 2n · ϵ, but not p1 ≤ p2.
However, we can ignore the distinction between p2 and 2n · ϵ because the result in Lemma 5.5 is
actually an upper bound for 2n · ϵ ≥ p2.

Group 3. An even match Q∗ = {(·,K∗, pad(P ∗, 0), T), (+,K∗, pad(T, 1), X∗)} is called a ∆-match
if pad(P ∗, 0)⊕X∗⊕pad(T, 1) = ∆. We claim that with probability at least 1 − 1/2n, for every
∆ ∈ {0, 1}n, the number of ∆-matches is at most n/2. To justify this, view each even match Q∗

as throwing a ball to bin pad(P ∗, 0)⊕X∗⊕pad(T, 1). In this new game, for each particular bin, the
chance that each match throws a ball to it is at most 16/(15 · 2n). The claim then follows directly
from Lemma 5.5 with c = 16/15 and m = n .

Now, back to the original balls-into-bins game, and fix a bin (K,∆). When we consider balls in
Group 3, for each query E−1(K,V), we put a ball to this bin if the answer of this query hits one of
the pad(T, 1) of the (∆⊕V)-matches. Thus for query E−1(K,V), we put a ball to bin (K,∆) with
probability at most 8n/(15 · 2n). Using Lemma 5.5 with m = n and c = 8n/15, with probability at
least 1− 1/2n, every bin associated with key K has at most n/2 balls.

D.3 Proof of Lemma 5.8

We classify the balls into the following three groups.

• Group 1: The ball is created by log entry (·,K, pad(T, 1), ·) and a subsequent even match Q∗.

• Group 2: The ball is created by log entry (+,K, pad(T, 1), ·) and a prior even match Q∗.

39

• Group 3: The ball is created by log entry (−,K, pad(T, 1), ·) and a prior even match Q∗.

Note that a ball may belong to more than one group, meaning that we double count some balls,
but this does not matter, as we only need to find an upper bound on the number of balls. We will
show that for each fixed key K, for Group 1 or Group 2, with probability at least 1− 1/2τ , no bin
associated with key K contains more than τ/2 balls from this group. For Group 3, with probability
at least 1 − 1/2n − 1/2τ , no bin associated with key K contains more than n/2 balls from this
group. Thus with probability at least 1− 3/2τ − 1/2n, each bin associated with key K contains at
most τ + n/2 balls. Summing this over all keys, with probability at least 1 − 3q/2τ − q/2n, every
bin has at most τ + n/2 balls.

Group 1. Consider the following (incorrect) view of throwing balls in Group 1. For each even
match Q∗ = {(·,K∗, pad(P ∗, 0), T), (+,K∗, pad(T, 1), X∗)}, we throw a ball to bin

(K, (X⊕X∗⊕pad(P ∗, 0))[1 : τ]⊕T)
if there is a prior entry (·,K, pad(T, 1), X). This view may double count some balls, but since
we want an upper bound on the number of balls, this does not matter. So we have a game of
at most q rounds of ball throwing, each corresponding to an even match Q∗. In each round, we
probabilistically pick some bins and put a ball in each bin.

For each round, given the prior throws and the associated (X, pad(P ∗, 0), T), the correspond-
ing X∗ is uniformly distributed over a set of at least 16 · 2n/15 members. Thus for each fixed
bin, the chance this round puts a ball to this bin is at most 16/(15 · 2τ). Using Lemma 5.5 with
c = 16/15 and m = τ , with probability at least 1 − 1/2τ , every bin associated with key K has at
most τ/2 balls.

Group 2. For each query E(K, pad(T, 1)), its hitting matches are the prior even matches Q∗ =
{(·,K∗, pad(P ∗, 0), T), (+,K∗, pad(T, 1), X∗)}. Note that two different queries E(K, pad(T, 1)) and
E(K, pad(T ′, 1)) have disjoint sets of hitting matches.

For each query E(K, pad(T, 1)), its ball throwing can be viewed as follows. Recall that the
answer of query E(K, pad(T)) is uniformly chosen from a set S∗. For each bin (K,∆), let S
be the set of n-bit strings U such that there is some hitting match Q∗ = {(·,K∗, pad(P ∗, 0), T),
(+,K∗, pad(T, 1), X∗)} of this query with

U [1 : τ] = (X∗⊕pad(P ∗, 0))[1 : τ]⊕∆ .

Then we put a ball to bin (K,∆) with (conditional) probability |S ∩ S∗|/|S∗|. Note that if this
query has B hitting matches then B ≥ |S|/2n−τ .

Now consider another (incorrect) view. For each even match Q∗, we simply put a ball into bin
(K,∆) with probability 32/(15 · 2τ), independently for every ∆. In in the latter view, for a query
E(K, pad(T)), the probability that its B hitting matches put balls to bin (K,∆) is at least

1−
(
1− 1

(15 · 2τ)/32

)B
≥ B

(15 · 2τ)/16
≥ |S|

(15 · 2n)/16
≥ |S|
|S∗|

≥ |S ∩ S∗|
|S∗|

,

where the first inequality is due to Lemma 5.6. Since we consider an upper bound on the number
of balls, we can use the latter view. Using Lemma 5.5 with c = 32/15 and m = τ , with probability
at least 1− 1/2τ , every bin associated with key K has at most τ/2 balls.

Group 3. An even match Q∗ = {(·,K∗, pad(P ∗, 0), T), (+,K∗, pad(T, 1), X∗)} is called a ∆-match
if (pad(P ∗, 0)⊕X∗)[1 : τ] = ∆. We claim that with probability at least 1 − 1/2τ , for every ∆ ∈
{0, 1}τ , the number of ∆-matches is at most τ/2. To justify this, view each even match Q∗ as
throwing a ball to bin (pad(P ∗, 0)⊕X∗)[1 : τ]. In this new game, for each particular bin, the chance
that each match throws a ball to it is at most 16/(15 · 2τ). The claim then follows directly from

40

Lemma 5.5 with c = 16/15 and m = τ .

Now, back to the original balls-into-bins game, and fix a bin (K,∆). When we consider balls
in Group 3, for each query E−1(K,V), we put a ball to this bin if the answer of this query hits
one of the pad(T, 1) of the (∆⊕V [1 : τ])-matches. Thus for query E−1(K,V), we put a ball to bin
(K,∆) with probability at most 8τ/(15 · 2n). Using Lemma 5.5 with m = n and c = 8τ/15, with
probability at least 1− 1/2n, every bin associated with key K has at most n/2 balls.

D.4 Proof of Lemma 5.9

Consider the following balls-into-bins game. We view each odd match Q∗ = {(·,K∗, pad(T, 1), X∗),
(·,K∗, pad(P ∗, 0), T)} as throwing a ball to bin

(X∗⊕pad(P ∗, 0))[1 : τ] .

Our goal is to bound the number of balls in the heaviest bin. As a stepping stone, we define the
following events Ω0,Ω1, and Ω2.

• Event Ω0: For any R ∈ {0, 1}τ , there are at most τ/2 log entries (·,K∗, pad(T, 1), X∗) such
that X∗[1 : τ] = R. To bound Pr[Ω0], view each entry (·,K∗, pad(T, 1), X∗) as throwing a
ball to bin X∗[1 : τ]. (Recall that there may be 2q such entries, including the granted ones.)
By applying Lemma 5.5 with m = τ and c = 16/15 for 2q queries, we have Pr[Ω0] ≤ 1/2τ .

• Event Ω1: For every ∆ ∈ {0, 1}τ , there are at most τ/2 queries V ← E(K∗, pad(T, 1)) such
that V [1 : τ] = ∆. To bound Pr[Ω1], view each V ← E(K∗, pad(T, 1)) as throwing a ball
into bin V [1 : τ]. (Recall that there may be 2q such entries, including the granted ones.) By
applying Lemma 5.5 with m = τ and c = 16/15 for 2q queries, we have Pr[Ω1] ≤ 1/2τ .

• Event Ω2: For every key K∗ and every ∆ ∈ {0, 1}τ , there are at most τ queries pad(T, 1)←
E−1(K∗, V) with T ∈ {0, 1}τ such that V [1 : τ] = ∆. We claim that

Pr[Ω2] ≤
q

2τ
.

To justify this claim, it suffices to show that for each fixed K∗ and ∆ ∈ {0, 1}τ , the chance
that Ω2 happens is at most 4−τ . Let p = 2n−τ . On the one hand, there are at most p queries
E−1(K∗, V) with V [1 : τ] = ∆. On the other hand, for each such query, the chance that its
answer U ends with 1n−τ so that U can be parsed as pad(T, 1) is at most 16/(15 · p). Thus
the chance that there are τ such queries that end with 1n−τ is at most(

p

τ

)
·
(16

15 · p

)τ
≤ pτ

τ !
·
(16

15 · p

)τ
≤ pτ

(τ/e)τ
·
(16

15 · p

)τ
=

(16

15τ/e

)τ
≤ 4−τ ,

where the second inequality is due to the Stirling’s formula, and the last inequality is due to
the fact that τ ≥ 32.

Assume that Ω0,Ω1, and Ω2 happen; this has probability at least 1− (q+2)/2τ . We claim that for
any throw, given prior throws, the conditional probability that it lands in any particular bin ∆ is
at most 8τ/(5 ·2τ). Then, using Lemma 5.5 for m = τ and c = 8τ/5, with (conditional) probability
at least 1− 1/2τ , every bin has at most τ/2 balls. To justify the claim above, we consider whether
the first entry of the match Q∗ of the ball is created by a forward or backward query.

Forward query. Each query V ← E(K∗, pad(P ∗, 0)) targets prior entries (·,K∗, pad(T, 1), X∗)
such that

V [1 : τ] = pad(P ∗, 0)[1 : τ]⊕T , and (31)

X∗[1 : τ] = pad(P ∗, 0)[1 : τ]⊕∆ . (32)

Since Ω0 happens, there are at most τ/2 prior entries satisfying Equation (32). The chance that

41

one of those τ/2 entries also satisfies Equation (31) is at most

τ

2
· 16

15 · 2τ
≤ 8τ

5 · 2τ
.

Backward query. For each backward query pad(P ∗, 0) ← E−1(K∗, V), it targets prior entries
(·,K∗, pad(T, 1), X∗) such that

pad(P ∗, 0)[1 : τ] = V [1 : τ]⊕T , and (33)

(X∗⊕pad(P ∗, 0))[1 : τ] = ∆ . (34)

From Equation (33) and the fact that T = pad(T, 1)[1 : τ], we can replace Equation (34) with

(X∗⊕pad(T, 1))[1 : τ] = ∆⊕V [1 : τ] . (35)

Note that X∗⊕pad(T, 1) = E(K∗, pad(T, 1)). Since Ω1 happens, there are at most τ/2 prior entries
(+,K∗, pad(T, 1), X∗) satisfying Equation (35). Moreover, since Ω2 happens, there are at most τ
prior entries (−,K∗, pad(T, 1), X∗) satisfying Equation (35). The chance that one of those 3τ/2
entries also satisfies Equation (33) is at most

3τ

2
· 16

15 · 2τ
=

8τ

5 · 2τ
.

D.5 Proof of Lemma 5.10

Let Ω be the following event: For any R ∈ {0, 1}τ , there are at most τ/2 entries (·,K∗, pad(T, 1), X∗)
such that X∗[1 : τ] = R. To bound Pr[Ω], view each entry (·,K∗, pad(T, 1), X∗) as throwing a ball
into bin X∗[1 : τ]. (Recall that there may be 2q such entries, including the granted ones.) By
applying Lemma 5.5 with m = τ and c = 16/15 for 2q queries, we have Pr[Ω] ≤ 1/2τ . From now
on, assume that Ω happens.

Consider the following balls-into-bins game. View each odd match Q∗ = {(·,K∗, pad(T, 1), X∗),
(·,K∗, pad(P ∗, 0), T)} as throwing a ball to bin

X∗⊕pad(P ∗, 0)⊕pad(T, 1) .

Our goal is to bound the number of balls in the heaviest bin. We claim that for any throw, given
prior throws, the conditional probability that it lands in any particular bin ∆ is at most 8τ/(15·2τ).
Then, using Lemma 5.5 for m = n and c = 8τ(2n−τ)/15, with (conditional) probability at least
1− 1/2n, every bin has at most n/2 balls. To justify the claim above, we consider whether the first
entry of the match Q∗ of the ball is created by a forward or backward query.

Forward query. For each query V ← E(K∗, pad(P ∗, 0)), it aims at prior entries (·,K∗, pad(T, 1), X∗)
such that

V [1 : τ] = pad(P ∗, 0)[1 : τ]⊕T , and (36)

X∗⊕pad(T, 1) = pad(P ∗, 0)⊕∆ . (37)

Note that X∗⊕pad(T, 1) = E(K∗, pad(T, 1)). There is at most one prior entry (·,K∗, pad(T, 1), X∗)
satisfying Equation (37). The probability that this entry also satisfies Equation (36) is at most
16/(15 · 2τ).

Backward query. For each backward query pad(P ∗, 0) ← E−1(K∗, V), it targets prior entries
(·,K∗, pad(T, 1), X∗) such that

pad(P ∗, 0)[1 : τ] = V [1 : τ]⊕T , and (38)

X∗⊕pad(T, 1) = pad(P ∗, 0)⊕∆ . (39)

42

From Equation (38) and the fact that T = pad(T, 1)[1 : τ], we can replace Equation (39) with

X∗[1 : τ] = (∆⊕V)[1 : τ] . (40)

Since Ω happens, there are at most τ/2 prior entries satisfying Equation (40). The chance that one
of those τ/2 entries also satisfies Equation (38) is at most 8τ/(15 · 2τ).

D.6 Proof of Lemma 5.11

For each entry (·,K, pad(T, 1), X) and each ∆ ∈ {0, 1}τ , we throw a ball to bin (K,∆), if there is
another entry (·,K∗, pad(T, 1), X∗) with K∗ ̸= K and (X∗⊕X)[1 : τ] = ∆. Our goal is to bound
the number of balls in the heaviest bin. We classify the balls into the following groups.

• Group 1: The ball is created by a log entry (·,K, pad(T, 1), X) and a subsequent log entry
(+,K∗, pad(T, 1), X∗).

• Group 2: The ball is created by a log entry (·,K, pad(T, 1), X) and a subsequent log entry
(−,K∗, pad(T, 1), X∗).

• Group 3: The ball is created by an entry (+,K, pad(T, 1), X) and a prior (·,K∗, pad(T, 1), X∗).

• Group 4: The ball is created by an entry (−,K, pad(T, 1), X) and a prior (·,K∗, pad(T, 1), X∗).

Note that a ball may belong to more than one group, and as a result, we may double count some
balls. However, as we only consider an upper bound on the number of balls, it does not matter.
Fix a key K. Below, we will show that each of Group 1 and Group 3, with probability at least
1− 1/2τ , gives at most τ/2 balls to each bin associated with key K. Moreover, with probability at
least 1− 2/2n, Group 2 gives at most n/2 balls to each bin associated with key K. Likewise, with
probability at least 1− 1/2n, Group 4 gives at most n/2 balls to each bin associated with key K.
Summing up for all groups and all q keys, with probability at least 1− 3q/2n − 2q/2τ , there are at
most n+ τ balls per bin.

Group 1. Consider the following (incorrect) view of throwing balls in Group 1. For each log entry
(+,K∗, pad(T, 1), X∗), if there is a prior log entry (·,K, pad(T, 1), X) then we throw a ball to bin
(X∗⊕X)[1 : τ]. This view may double count some balls, but since we only consider an upper bound
on the number of balls, this does not matter. For each entry (+,K∗, pad(T, 1), X∗), given prior
entries, the string X∗ is uniformly distributed over a set of at least 15 · 2n/16 members. Thus for
each fixed bin, the chance that this entry puts a ball to this bin is at most 16/(15 · 2τ). Using
Lemma 5.5 with c = 16/15 and m = τ for 2q rounds, with probability at least 1− 1/2τ , every bin
has at most τ/2 balls.

Group 2. The ball throwing in Group 2 can be viewed as follows. For each query E−1(K∗, U), it
puts a ball to bin (K,∆) if there is a prior entry (·,K, pad(T, 1), X) such that

(X⊕pad(T, 1)⊕U)[1 : τ] = ∆ , (41)

and the answer of this query hits the pad(T, 1) of the prior entry. The difficulty here is that A
may adaptively picks (K∗, U) to maximize the number of entries satisfying Equation (41). Still,
we claim that with probability at least 1 − 1/2n, for any query E−1(K∗, U) there are at most
(2n−τ + τ/2) prior entries that satisfy Equation (41). Hence the chance that the answer of this
query hits the pad(T, 1) of one of those entries is at most 16(2n−τ +τ/2)/(15 ·2n). Using Lemma 5.5
with c = 16(2n−τ + τ/2)/15 and m = n, with probability at least 1 − 1/2n, each bin has at most
n/2 balls.

To justify the claim above, we consider whether entries are created by forward or backward
queries.

43

Case 1: Entries (·,K, pad(T, 1), X) are created from backward queries E−1(K,V). Then V =
X⊕pad(T, 1). For any adaptive query E−1(K,U) and any ∆ ∈ {0, 1}n, there are at most 2n−τ prior
query E−1(K,V) such that V = U⊕∆. That is, there are at most 2n−τ entries (−,K, pad(T, 1), X)
satisfying Equation (41).

Case 2: Entries (·,K, pad(T, 1), X) are created from forward queries V ← E(K, pad(T, 1)), and
note that V = X⊕pad(T). Consider another balls-into-bins game. View each query V ←
E(K, pad(T, 1)) as throwing a ball to bin V [1 : τ]. By applying Lemma 5.5 with c = 16/15 and
m = τ for 2q rounds, with probability at least 1−1/2τ , there are at most τ/2 balls in each bin. Then
for each adaptive query (K∗, U) and any ∆ ∈ {0, 1}n, its number of entries (+,K, pad(T, 1), X)
satisfying Equation (41) is exactly the number of balls in bin U⊕∆ in the new game.

Group 3. For each query E(K, pad(T, 1)), its hitting queries are prior entries (·,K∗, pad(T, 1), X∗)
with K∗ ̸= K. Note that two different queries E(K, pad(T, 1)) and E(K, pad(T ′, 1)) have disjoint
sets of hitting queries.

For each query E(K, pad(T, 1)), its ball throwing can be viewed as follows. Recall that the
answer of query E(K, pad(T)) is uniformly chosen from a set S∗. Consider a bin (K,∆). Let S be
the set of n-bit strings U such that there is a hitting query (·,K∗, pad(T, 1), X∗) such that

U [1 : τ] = (X∗⊕pad(T, 1))[1 : τ]⊕∆ .

Then we put a ball to bin (K,∆) with (conditional) probability |S ∩ S∗|/|S∗|. Note that the
number B of hitting queries of this query is at least |S|/2n−τ .

Now consider another (incorrect) view. For each entry (·,K∗, pad(T), X∗), we simply put a ball
into bin (K,∆) with probability 32/(15 · 2τ), independently for every ∆. In the latter view, for a
query E(K, pad(T, 1)), the chance that its B hitting queries put balls to bin ∆ is at least

1−
(
1− 1

(15 · 2τ)/32

)B
≥ B

(15 · 2τ)/16

≥ |S|
(15 · 2n)/16

≥ |S|
|S∗|

≥ |S ∩ S∗|
|S∗|

,

where the first inequality is due to Lemma 5.6. Since we consider an upper bound on the number
of balls, we can instead use the latter view. Using Lemma 5.5 with c = 32/15 and m = τ for 2q
rounds, with probability at least 1− 1/2τ , every bin associated with key K∗ has at most τ/2 balls.

Group 4. Fix a bin (K,∆). The ball throwing in Group 4 can be viewed (incorrectly) as follows.
For each entry (·,K∗, pad(T, 1), X∗), if there is a subsequent query pad(T, 1) ← E−1(K,V) with
V [1 : τ] = (X∗⊕pad(T, 1))[1 : τ]⊕∆ then we put a ball to bin (K,∆). While this view may double
count some balls, as we only consider an upper bound on the number of balls, this does not matter.
Now, for each entry (·,K∗, pad(T, 1), X∗), there are at most 2n−τ subsequent query E−1(K,V) with
V = (X∗⊕pad(T))[1 : τ]⊕∆, and the chance that the answer of this query hits pad(T, 1) is at most
16/(15 · 2n). Using Lemma 5.5 with c = 16 · 2n−τ/15 and m = n for 2q rounds, with probability at
least 1− 1/2n, there are at most n/2 balls in each bin.

D.7 Proof of Lemma 5.12

For each entry (·,K, pad(T, 1), X) and each ∆ ∈ {0, 1}τ , we throw a ball to bin (K,∆), if there
is another entry (·,K∗, pad(T, 1), X∗) with K∗ ̸= K and (X∗⊕X)[1 : τ]⊕T = ∆. Our goal is to
bound the number of balls in the heaviest bin. We classify the balls into the following groups.

• Group 1: The ball is created by a log entry (·,K, pad(T, 1), X) and a subsequent log entry
(+,K∗, pad(T, 1), X∗).

44

• Group 2: The ball is created by a log entry (·,K, pad(T, 1), X) and a subsequent log entry
(−,K∗, pad(T, 1), X∗).

• Group 3: The ball is created by an entry (+,K, pad(T, 1), X) and a prior (·,K∗, pad(T, 1), X∗).

• Group 4: The ball is created by an entry (−,K, pad(T, 1), X) and a prior (·,K∗, pad(T, 1), X∗).

Note that a ball may belong to more than one group, and as a result, we may double count some
balls. However, as we only consider an upper bound on the number of balls, it does not matter.
Below, we will show that for each fixed key K, for each of Group 1, Group 3, or Group 4, with
probability at least 1 − 1/2n, it gives at most n/2 balls for each bin associated with key K. For
Group 2, with probability at least 1− 2/2n, it gives at most n/2 balls for each bin associated with
key K. Summing up for all groups and all q keys, with probability at least 1− 5q/2n, there are at
most 2n balls per bin.

Group 1. Consider the following (incorrect) view of throwing balls in Group 1. For each log entry
(+,K∗, pad(T, 1), X∗), if there is a prior log entry (·,K, pad(T, 1), X) then we throw a ball to bin
(K, (X∗⊕X)[1 : τ]⊕T). This view may double count some balls, but since we only consider an
upper bound on the number of balls, this does not matter. For each entry (+,K∗, pad(T, 1), X∗),
given prior entries, the string X∗ is uniformly distributed over a set of at least 15 · 2n/16 members.
Thus for each fixed bin, the chance that this entry puts a ball to this bin is at most 16/(15 · 2τ).
Using Lemma 5.5 with c = 16/15 and m = τ for 2q rounds, with probability at least 1 − 1/2τ ,
every bin has at most τ/2 balls.

Group 2. The ball throwing in Group 2 can be viewed as follows. For each query E−1(K∗, U), it
puts a ball to bin (K,∆) if there is a prior entry (·,K, pad(T, 1), X) such that

X[1 : τ] = U [1 : τ]⊕∆ , (42)

and the answer of this query hits the pad(T, 1) of the prior entry. The difficulty here is that A
may adaptively chooses (K∗, U) to maximize the number of entries satisfying Equation (42). Still,
we claim that with probability at least 1− 1/2τ , for any query E−1(K∗, U) there are at most τ/2
prior entries that satisfy Equation (42). Hence the chance that the answer of this query hits the
pad(T, 1) of one of those entries is at most 8τ/(15 · 2n) ≤ 8τ/(15 · 2τ). Using Lemma 5.5 with
c = 8τ/15 and m = τ for 2q throws, with probability at least 1 − 1/2τ , each bin has at most τ/2
balls.

To justify the claim above, consider a balls-into-bins game. For each entry (·,K, pad(T, 1), X),
view it as throwing a ball to binX[1 : τ]. Using Lemma 5.5 with c = 16/15 andm = τ for 2q throws,
with probability at least 1 − 1/2τ , each bin has at most τ/2 balls. Then for each adaptive query
(K∗, U) and any ∆ ∈ {0, 1}τ , its number of entries satisfying Equation (42) is exactly the number
of balls in bin U [1 : τ]⊕∆ in the new game. Thus our claim directly follows the balls-into-bins
analyses above.

Group 3. For each query E(K, pad(T, 1)), its hitting queries are prior entries (·,K∗, pad(T, 1), X∗)
with K∗ ̸= K. Note that two different queries E(K, pad(T, 1)) and E(K, pad(T ′, 1)) have disjoint
sets of hitting queries.

For each query E(K, pad(T, 1)), its ball throwing can be viewed as follows. Recall that the
answer of query E(K, pad(T)) is uniformly chosen from a set S∗. Consider a bin (K,∆). Let S be
the set of n-bit strings U such that there is a hitting query (·,K∗, pad(T, 1), X∗) such that

U [1 : τ] = X∗[1 : τ]⊕∆ .

Then we put a ball to bin (K,∆) with (conditional) probability |S ∩S∗|/|S∗|. Moreover, note that
the number B of hitting queries of this query is at least |S|/2n−τ .

45

Now consider another (incorrect) view. For each entry (·,K∗, pad(T), X∗), we simply put a ball
into bin (K,∆) with probability 32/(15 · 2τ), independently for every ∆. In the latter view, for a
query E(K, pad(T, 1)), the chance that its B hitting queries put balls to bin ∆ is at least

1−
(
1− 1

(15 · 2τ)/32

)B
≥ B

(15 · 2τ)/16

≥ |S|
(15 · 2n)/16

≥ |S|
|S∗|

≥ |S ∩ S∗|
|S∗|

,

where the first inequality is due to Lemma 5.6. Since we consider an upper bound on the number
of balls, we can instead use the latter view. Using Lemma 5.5 with c = 32/15 and m = τ for 2q
rounds, with probability at least 1− 1/2τ , every bin associated with key K∗ has at most τ/2 balls.

Group 4. The ball throwing in Group 4 can be viewed (incorrectly) as follows. For each entry
(·,K∗, pad(T, 1), X∗), if there is a subsequent query pad(T, 1)← E−1(K,V) with V = X∗[1 : τ]⊕∆
then we put a ball to bin (K,∆). While this view may double count some balls, as we only
consider an upper bound on the number of balls, this does not matter. Now, for each entry
(·,K∗, pad(T, 1), X∗), there are at most 2n−τ subsequent queries E−1(K,V) with V = X∗[1 : m]⊕∆,
and the chance that the answer of one of these queries hits pad(T, 1) is at most 2n−τ ·16/(15 ·2n) =
16/(15 · 2τ). Using Lemma 5.5 with c = 16/15 and m = τ for 2q rounds, with probability at least
1− 1/2τ , there are at most τ/2 balls in each bin.

E Proof of Proposition 5.2

Orderly adversaries. We say that an adversary is orderly if (i) its verification queries are made
at the very end, and (ii) each verification query does not depend on the answers of prior verification
queries, but may still depend on the answers of prior encryption queries. We now show that for an
IPF F, one can restrict to orderly adversaries with a small loss in the IPF advantage.

Lemma E.1 Let F be an IPF in which a ciphertext is always at least λ-bit longer than its plaintext.
Let A be an adversary that makes at most qv verification queries. Then we can construct an orderly
adversary B of the same running time and query statistics such that

Advipf
F (A) ≤ Advipf

F (B) + 2qv
2λ

.

Proof: Adversary B runs A, and lets A use its New and Enc oracles. For each verification query
of A, however, B stores that in a list L, and simply returns false to A. When A terminates with
its guess b′, for each query (i, C) in L, if there is no prior encryption query C ← Enc(i,M) then B
will query Vf(i, C), otherwise it will terminate and return 1. If one of those verification queries
results in a true answer then B will return 1, otherwise it returns b′.

In the real world of B (meaning when its challenge bit is b) if some verification query could result in
a true answer then B will answer 1 anyway (even if it can’t make this query due to the definitional
restriction). If all verification queries are destined to give false answers then B correctly simulates
the real world of A, and it either gives the same answer as A or returns 1. Hence

Pr[Gipf
F (B) | b = 1] ≥ Pr[Gipf

F (A) | d = 1] ,

where b and d are the challenge bit of games Gipf
F (B) and Gipf

F (A) respectively. Let Bad be the
event that in the ideal world of B, there is a verification query Vf(i, C) and then later there is
an encryption query C ← Enc(i,M). If Bad doesn’t happen then B correctly simulates the ideal

46

world of A and has the same answer as A, and thus

Pr[Gipf
F (B) | b = 0] ≤ Pr[Gipf

F (A) | d = 0] + Pr[Bad] .

To bound Pr[Bad], note that for each verification query Vf(i, C), it can be targeted by at most

|C|−λ∑
j=0

2j < 2|C|−λ+1

encryption queries. However, the chance that one of those encryption queries can result in C is at
most

2|C|−λ+1 · 1

2|C| =
2

2λ
.

Summing this over qv verification queries,

Pr[Bad] ≤ 2qv
2λ

.

Hence

Pr[Gipf
F (B) | b = 0] ≤ Pr[Gipf

F (A) | d = 0] +
2qv
2λ

,

and thus

Advipf
F (B) ≥ Advipf

F (A)− 2qv
2λ

.

This concludes the proof.

IPF security of HtM for orderly attackers. As a ciphertext of HtM is at least (τ + d)-bit
longer than its plaintext, we can restrict to orderly adversaries with a loss of 2qv/2

τ+d ≤ 0.5qv/2
τ

in the advantage. Thus, without loss of generality, assume that A is orderly.

Consider games G1–G6 in Fig. 13, Fig. 14, and Fig. 15. Game G1 is essentially game Gipf
F (A)

with challenge bit 1, but for each verification query, we only check the tag. That is, if a verification
query can pass the tag checking but end up with a bad padding, we will return true instead of false
so that the adversary wins. This model the increase in the advantage due to a potential timing
leakage. Game G6 corresponds to game Gipf

F (A) with challenge bit 0. Hence

Advipf
F (A) ≤ Pr[G1(A)]− Pr[G6(A)] .

We now explain the games. In game G2, instead of using E(Ki, ·), we lazily maintain a truly
random function fi via procedure Map(i, ·). To bound the gap between G1 and G2, we construct
an adversary B attacking the (multi-user) PRF security of E as follows. Adversary B runs A and
simulates game G1. However, for each call to E(Ki, ·), it instead queries the oracle Eval(i, ·). Then

Pr[G1(A)] = Pr[Gprf
E (B)⇒ 1 | b = 1]

Pr[G2(A)] = Pr[Gprf
E (B)⇒ 0 | b = 0] ,

where b is the challenge bit of game Gprf
E (B). Subtracting, we obtain

Pr[G1(A)]− Pr[G2(A)] = 2 · Pr[Gprf
E (B)]− 1 = Advprf

E (B) .

Next, in game G3, we maintain a list Si of padded plaintexts M that are queried for user i under
encryption queries. Then for each verification query Vf(i, C), if the tentative padded plaintext is
in Si then we immediately return false. We now argue that the input/output behavior of G3 is the
same as G2. To see why, note that HtM is a tidy AE scheme, meaning that if we decrypt C to a
plaintext P , then encrypting P must yield back the same C. In other words, if Vf(i, C) produces
a tentative P ∈ Si and still returns true, this means C must be a prior ciphertext from Enc(i, P).

47

Game G1(A)
v ← 0; b′ ← ANew,Enc,Dec; Return b′

New()

v ← v + 1; Kv←$ {0, 1}k

Enc(i, P)

M ← pad(P, 0)

T ← (E(Ki,M)⊕M)[1 : τ]

Z ← pad(T, 1)

C∗ ← E(Ki, Z)⊕Z⊕M
Return C∗∥T

Vf(i, C∗∥T)
Z ← pad(T, 1)

M ← E(Ki, Z)⊕Z⊕C∗

V ← (E(Ki,M)⊕M)[1 : τ]

Return (V = T)

Games G2(A)
v ← 0; b′ ← ANew,Enc,Dec; Return b′

New()

v ← v + 1

Enc(i, P)

M ← pad(P, 0)

T ← (Map(i,M)⊕M)[1 : τ]

Z ← pad(T, 1)

C∗ ← Map(i, Z)⊕Z⊕M
Return C∗∥T

Vf(i, C∗∥T)
Z ← pad(T, 1)

M ← Map(i, Z)⊕Z⊕C∗

V ← (Map(i,M)⊕M)[1 : τ]

Return (V = T)

Map(i, R)

If Tbl[i, R] = ⊥ then

Tbl[i, R]←$ {0, 1}n
Return Tbl[i, R]

Figure 13: Games G1 and G2 in the proof of Proposition 5.2.

This however violates the definitional restriction. Hence

Pr[G2(A)] = Pr[G3(A)] .

In game G4, for every verification query, we simply return false. To bound the gap between G3 and
G4, we claim that each verification query in G3 can return true or ⊥ with probability at most 1/2τ .
Summing over at most qv queries yields

Pr[G3(A)]− Pr[G4(A)] ≤
qv
2τ

.

To justify the claim above, consider a verification query Vf(i, C) in game G3. Since the adversary
is orderly, without loss of generality, assume that this is the very first verification query. Assume
further that this query produces a tentative padded plaintextM ̸∈ Si. Due to the domain separation
in pad, this means that the game has never run U ← Map(i,M) before, and thus U is a uniformly
random string, independent of C. Hence the chance that (U⊕M)[1 : τ] is the same as the tag in C
is at most 1/2τ , as claimed.

In gameG5, in each encryption query, we are supposed to callMap(i, pad(P, 0)) andMap(i, pad(T, 1)).
ForMap(i, pad(P, 0)) we simply pick a fresh uniformly random answer but the answer ofMap(i, pad(T, 1))
is still consistent with prior calls to Map. Game G5 is identical to game G4, as the adversary must
not repeat encryption queries and pad is a domain separation. Hence

Pr[G4(A)] = Pr[G5(A)] .

In game G5, the answer of Map(i, pad(T, 1)) is consistent with prior calls to Map. However, in
game G6, we instead pick a fresh uniformly random answer for each call. The two games are
identical until the flag bad is set, and thus from the Fundamental Lemma of game playing [9],

Pr[G5(A)]− Pr[G6(A)] ≤ Pr[G6(A) set bad] .

48

Games G3(A)
v ← 0; b′ ← ANew,Enc,Dec; Return b′

New()

v ← v + 1; Sv ← ∅

Enc(i, P)

M ← pad(P, 0)

T ← (Map(i,M)⊕M)[1 : τ]

Si ← Si ∪ {M}; Z ← pad(T, 1)

C∗ ← Map(i, Z)⊕Z⊕M
Return C∗∥T

Vf(i, C∗∥T)
Z ← pad(T, 1)

M ← Map(i, Z)⊕Z⊕C∗

If M ∈ Si then return false

V ← (Map(i,M)⊕M)[1 : τ]

Return (V = T)

Map(i, R)

If Tbl[i, R] = ⊥ then

Tbl[i, R]←$ {0, 1}n
Return Tbl[i, R]

Game G4(A)
v ← 0; b′ ← ANew,Enc,Dec; Return b′

New()

v ← v + 1

Enc(i, P)

M ← pad(P, 0)

T ← (Map(i,M)⊕M)[1 : τ]

Z ← pad(T, 1)

C∗ ← Map(i, Z)⊕Z⊕M
Return C∗∥T

Vf(i, C∗∥T)
Return false

Map(i, R)

If Tbl[i, R] = ⊥ then

Tbl[i, R]←$ {0, 1}n
Return Tbl[i, R]

Figure 14: Games G3 and G4 in the proof of Proposition 5.2.

Games G5(A) , G6(A)

v ← 0; b′ ← ANew,Enc,Dec; Return b′

New()

v ← v + 1

Enc(i, P)

M ← pad(P, 0); U ←$ {0, 1}n
T ← (U⊕M)[1 : τ]

Z ← pad(T, 1)

C∗ ← Map(i, Z)⊕Z⊕M
Return C∗∥T

Vf(i, C∗∥T)
Return false

Map(i, R)

V ←$ {0, 1}n
If Tbl[i, R] ̸= ⊥ then

bad← true; V ← Tbl[i, R]

Tbl[i, R]← V ; Return V

Figure 15: Games G5 and G6 in the proof of Proposition 5.2. Game G5 contains the corresponding
boxed statement, but game G6 does not.

In game G6, basically we pick T ←$ {0, 1}τ for each encryption query Enc(i, ·) and set bad if this T
hits one of the tags generated by prior encryption query to the same user i. As there are at most
B − 1 prior queries per user, each encryption query sets bad with probability at most (B − 1)/2τ .
Summing this over at most qe queries,

Pr[G6(A) set bad] ≤
qe(B − 1)

2τ
.

We now argue that game G6 is identical to game Gipf
F (A) with challenge bit 0, In game G6, on

49

each encryption query (i, P), we first obtain M by padding P , and then samples U ←$ {0, 1}n and
computes T ← (U⊕M)[1 : τ]. This means that effectively we sample T ←$ {0, 1}τ . Next, since
Map now always returns a fresh random answer V ←$ {0, 1}n, the code C∗ ← Map(i, Z)⊕Z⊕M
effectively means that we sample C∗←$ {0, 1}n. Hence effectively, each encryption query returns
a fresh uniformly random answer from {0, 1}2n.

Summing up

Advipf
F (A) ≤

5∑
i=1

Pr[Gi(A)]− Pr[Gi+1(A)] ≤ Advprf
E (B) + qv + qe(B − 1)

2τ
.

IPF security of HtM for general attackers. If we account for the loss of 0.5q/2τ in the
advantage by assuming that A is orderly, then for a general adversary A,

Advipf
F (A) ≤ Advprf

E (B) + 1.5qv + qe(B − 1)

2τ
.

F Proof of Proposition 5.3

Consider the following sequence of games. Game G0 corresponds to game Gipf
F (A) with challenge

bit b = 1. Game G1 is similar to game G1, but instead of using E(Ki, ·), we use a truly random
permutation πi. To bound the gap between the two games, we construct an adversary B attacking E
as follows. It simulates game G0, but calls to E(Ki, ·) are replaced by corresponding calls to
Enc(i, ·), and calls to E−1(Ki, ·) are replaced by corresponding calls to Dec(i, ·). Then

Adv±prp
E (B) = Pr[G0(A)]− Pr[G1(A)] .

Game G2 is similar to game G1, except that verification queries will always return false. We now
bound the gap between G1 and G2 for a computationally unbounded adversary A. Without loss of
generality, assume that A is deterministic. Assume that A doesn’t make redundant queries: (i) it
doesn’t repeat prior queries, and (ii) if it queries Y ← E(L,X) then it won’t later query E−1(L, Y)
and vice versa. Assume that the claimed bound is smaller than 1. Consider a verification query
(i, C) in game G1. Let Dom = {pad(X) | X ∈ {0, 1}≤n−s}; note that |Dom| ≤ 2n−s+1. Then the
answer M ← π−1

i (C) is uniformly chosen from a set of at least 2n − q ≥ 2n−1 elements, and the
chance that M ∈ Dom is at most 2n−s+1/2n−1 = 4/2s. Hence the chance that this verification
query returns true is at most 4/2s. Summing this over q verification queries,

Pr[G1(A)]− Pr[G2(A)] ≤
4q

2s
.

In game G3, we pick the answer for the encryption queries uniformly at random. From the multi-
user PRP/PRF Switching Lemma [5],

Pr[G2(A)]− Pr[G3(A)] ≤
qB

2n
.

Note that game G3 corresponds to game Gipf
F (A) with challenge bit b = 1. Hence

Advipf
F (A) = Pr[G0(A)]− Pr[G3(A)] ≤ Adv±prp

E (B) + 4q

2s
+

qB

2n
.

This concludes the proof.

G Proof of Proposition 5.4

Since we consider computationally unbounded adversaries, without loss of generality, assume that A
is deterministic. Assume that the adversary doesn’t make redundant queries: (i) it doesn’t repeat

50

prior queries, and (ii) if it queries Y ← E(L,X) then it won’t later query E−1(L, Y) and vice versa.
Assume that the claimed bound is smaller than 1. Let Dom = {pad(X) | X ∈ {0, 1}≤n−s}. Note
that |Dom| ≤ 2n−s+1.

Let Bad be the event that there is a backward query M ← E−1(L,C) such that M ∈ Dom.
We now bound Pr[Bad]. Note that for each query M ← E−1(L,C), the variable M is uniformly
distributed over a set of at least 2n − q ≥ 2n−1 elements, and thus the chance that M ∈ Dom is at
most 2n−s+1/2n−1 = 4/2s. Summing this over q queries,

Pr[Bad] ≤ 4q

2s
.

Assume that Bad doesn’t happen. Suppose that A outputs (K1, P1,K2, P2). For each i ∈ {1, 2},
let Ci ← E(Ki, pad(Pi)). We first consider the case that there is some i ∈ {1, 2} such that there is
no query E(Ki, pad(Pi)). Without loss of generality, assume that we do not have such a query for
(K1, P1). Then given C2, the variable C1 is uniformly distributed over a set of at least 2n−q ≥ 2n−1

elements, and thus the chance that C1 = C2 is at most 2/2n.

Next consider the case that for every i ∈ {1, 2}, the adversary does query E(Ki, pad(Pi)).
For each query E(L,M), the chance that its output hits the answer of a prior query is at most
(q − 1)/(2n − q) ≤ 2(q − 1)/2n. Summing this over q queries, the chance that the adversary can
find a collision is at most 2q(q − 1)/2n.

Hence by the union bound, the chance that the adversary can break the collision resistance of
PtE is at most

4q

2s
+

2q(q − 1)

2n
+

2

2n
≤ 4q

2s
+

2q2

2n

as claimed.

H Proof of Proposition 6.1

We first construct adversary B. It runs
(
(K1, N1, A1,M1), (K2, N2, A2,M2)

)
←$A, and then parses

Si∥Pi ← Mi with |Pi| = min{m, |Mi|} for every i ∈ {1, 2}. Finally, it outputs
(
(K1, N1, A1, S1),

(K2, N2, A2, S2)
)
.

We now construct D. It runs
(
(K1, N1, A1,M1), (K2, N2, A2,M2)

)
←$A, then parses Si∥Pi ←

Mi with |Pi| = min{m, |Mi|} for every i ∈ {1, 2}, and then encrypts C∗
i ∥Ti ← SE.Enc(Ki, Ni, Ai, Si).

Finally, it outputs (T1, P1, T2, P2).

To analyze the advantage of the adversaries, suppose that adversaryA outputs
(
(K1, N1, A1,M1),

(K2, N2, A2,M2)
)
, and let Ci ← SE.Enc(Ki, Ni, Ai,Mi) and C∗

i ∥Ti ← SE.Enc(Ki, Ni, Ai, Si). Note
that Ci = C∗

i ∥Ri, where Ri ← F(Ti, Pi). Without loss of generality, suppose (K1, N1, A1) ̸=
(K2, N2, A2). Indeed if (K1, N1, A1) = (K2, N2, A2) and C1 = C2 then M1 = M2 due to the perfect
correctness of SE, violating the definitional restriction. Then the output of B is legitimate. Since
C1 = C2, we have R1 = R2 and C∗

1 = C∗
2 . If D breaks the collision resistance of F then we are done.

Assume to the contrary that D does not break the collision resistance of F. Since R1 ← F(T1, P1)
and R2 ← F(T2, P2) are the same, the only way D can’t be deemed to break the collision resistance
of F is when its output is invalid, meaning (T1, P1) = (T2, P2). But then C∗

1∥T1 = C∗
2∥T2, meaning B

breaks the committing security of SE.

51

I Proof of Theorem 6.3

Note that since SE and SE share the same decryption-nonce derivation function, they have the same
decryption-nonce density d. Since SE is tag-based, from Lemma 3.1, d ≤ SE.ce(m)− SE.tl = ℓ for
every m. Thus SE.ce(m) ≥ ℓ+ s ≥ d+ s for every m. From Lemma 3.2, without loss of generality,
assume that A is orderly. This assumption creates a difference of at most 2qv/2

s, which we will
account later. Assume that the adversary doesn’t make forbidden queries. Let λ be the output
length of H.

Consider games G1–G8 in Fig. 16–Fig. 18. Game G1 is essentially game Greal
SE

(A), but for
verification queries, we only check if the decrypted prefix P is ⊥, but drop the check (|C∗| ̸=
ℓ) ∧ (|P | ≠ m). This corresponds to an increase in the advantage due to timing leakage of the two
checks, and that should only help the adversary. For clarity, A is given an interface Ro to the
random oracle, and SE.Enc and SE.Dec are implemented using another interface Ro. Game G8

corresponds to game Grand
SE

(A). Hence
Advae

SE
(A) ≤ Pr[G1(A)]− Pr[G8(A)] .

We now describe the game chain. In game G2, we maintain a set Dom that is initialized to ∅.
This set keeps track of the keys K1, . . . ,Kv so far, and also the components K in random-oracle
queries Ro(K,N, V) of A. Thus |Dom| ≤ p+ u. In game G2, each time when we initialize a user i
and sample its key, if the key falls within Dom then we set bad to true, and re-sample the key
uniformly at random from {0, 1}k\Dom. Games G1 and G2 are identical until bad, and thus from
the Fundamental Lemma of Game Playing [9],

Pr[G1(A)]− Pr[G2(A)] ≤ Pr[G2(A) sets bad] ≤
u(u+ p)

2k
.

Game G3 is a different way to implement G2. Instead of using the same underlying table Tbl for
both Ro and Ro, we use two tables Tbl and Tbl, where calls to Ro are implemented in Tbl. For
calls (K,N, V) to Ro, generally they are implemented via Tbl, but if K somehow falls within the
current set of keys {K1, . . . ,Kv} then we implement it by calling Ro(K,N, V). Hence

Pr[G2(A)] = Pr[G3(A)] .

In game G4, for each call Ro(K,N, V), if K ∈ {K1, . . . ,Kv} then we implement it via Tbl (meaning
Ro and Ro are now independent) and set bad to true. The game will return true if bad is set. For
i ∈ {3, 4} and b ∈ {true, false}, let Gi(A, b) denote the event that Gi(A) returns true and bad = b.
Note that G4 and G3 are identical until bad is set. Then

Pr[G3(A, false)] = Pr[G4(A, false)] .

Moreover,

Pr[G3(A, true)] ≤ Pr[G3(A) sets bad]

= Pr[G4(A) sets bad] = Pr[G4(A, true)] .

Hence

Pr[G3(A)] = Pr[G3(A, false)] + Pr[G3(A, true)]

≤ Pr[G4(A, false)] + Pr[G4(A, true)] = Pr[G4(A)] .

In game G5, for each encryption query, instead of using F, we simply sample the ciphertext X at
random. Likewise, for each verification query Vf(i,N,A,C∗∥X), instead of calling Ro(Ki, N,A∥R)
and then using F.Dec, we check if there is a prior encryption query on (i,N,A) that also has the
same internal tag R and returns the same X. We return true if this encryption query exists.

52

Games G1(A), G2(A)

v ← 0; Dom← ∅; b′←$ANew,Enc,Vf,Ro

Return (b′ = 1)

New()

v ← v + 1; Kv←$ {0, 1}k
If Kv ∈ Dom then

bad← true; Kv←$ {0, 1}k\Dom
Dom← Dom ∪ {Kv}

Enc(i,N,A,M)

S∥P ←M

C∗∥R← SE.Enc(Ki, N, ε, S)

T ← Ro(Ki, N,A∥R)

X ← F(T, P)

Return C∗∥X

Vf(i,D,A,C∗∥X)

(S,N,R)← SE.Tag(Ki, D, ε, C∗)

T ← Ro(Ki, N,A∥R)

P ← F−1(T,X); Return (P ̸= ⊥)

Ro(K,N, V)

If Tbl[K,N, V] = ⊥ then

Tbl[K,N, V]←$ {0, 1}λ
Dom← Dom ∪ {K}
Return Tbl[K,N, V]

Ro(K,N, V)

If Tbl[K,N, V] = ⊥ then

Tbl[K,N, V]←$ {0, 1}λ
Return Tbl[K,N, V]

Games G3(A) , G4(A)
v ← 0; win← false

Dom← ∅; b′←$ANew,Enc,Vf,Ro

win← bad; win← false

Return (b′ = 1) ∨ win

New()

v ← v + 1; Kv←$ {0, 1}k\Dom
Dom← Dom ∪ {Kv}

Enc(i,N,A,M)

S∥P ←M

C∗∥R← SE.Enc(Ki, N, ε, S)

T ← Ro(Ki, N,A∥R)

X ← F(T, P)

Return C∗∥X

Vf(i,D,A,C∗∥X)

(S,N,R)← SE.Tag(Ki, D, ε, C∗)

T ← Ro(Ki, N,A∥R)

P ← F−1(T,X); Return (P ̸= ⊥)

Ro(K,N, V)

If K ∈ {K1, . . . ,Kv} then
bad← true; return Ro(K,N, V)

If Tbl[K,N, V] = ⊥ then

Tbl[K,N, V]←$ {0, 1}λ
Dom← Dom ∪ {K}
Return Tbl[K,N, V]

Ro(K,N, V)

If Tbl[K,N, V] = ⊥ then

Tbl[K,N, V]←$ {0, 1}λ
Return Tbl[K,N, V]

Figure 16: Games G1–G4 in the proof of Theorem 6.3. Games G2 and G3 contain the corresponding
boxed statements, but game G1 and G4 do not.

To bound the gap between G4 and G5, we construct an adversary B attacking the IPF security
of F as follows. Adversary B runs A and simulates game G4. However, for each encryption query
of A, instead of calling T ← Ro(Ki, N,A∥R) and computing X ← F(T, P), it makes an oracle
call Enc(u, P), where u = (i,N,A∥R).4 Note that B never repeats the same query (u, P) to Enc.
Likewise, for each verification query of A, instead of calling T ← Ro(Ki, N,A∥R) and checking if
F−1(T,X) ̸= ⊥, if there is a prior call X ← Enc(u, P), with u = (i,N,A∥R), then B simply returns
true. Otherwise it returns Vf(u,X). Finally, if win is set then B returns 1. Otherwise, it gives the

4Implicitly, B has to lazily maintain a map to turn a string tuple (i,N, V) into a number u.

53

Game G5(A)
v ← 0; win← false

Dom← ∅; b′←$ANew,Enc,Vf,Ro

Return (b′ = 1) ∨ win

New()

v ← v + 1; Kv←$ {0, 1}k\Dom
Dom← Dom ∪ {Kv}

Enc(i,N,A,M)

S∥P ←M

C∗∥R← SE.Enc(Ki, N, ε, S)

X ←$ {0, 1}m+s

Map[i,N,A∥R,X]← P

Return C∗∥X

Vf(i,D,A,C∗∥X)

(S,N,R)← SE.Tag(Ki, D, ε, C∗)

Return (Map[i,N,A∥R,X] ̸= ⊥)

Ro(K,N, V)

If K ∈ {K1, . . . ,Kv} then win← true

If Tbl[K,N, V] = ⊥ then

Tbl[K,N, V]←$ {0, 1}λ
Dom← Dom ∪ {K}
Return Tbl[K,N, V]

Game G6(A)
v ← 0; win← false

Dom← ∅; b′←$ANew,Enc,Vf,Ro

Return (b′ = 1) ∨ win

New()

v ← v + 1; Kv←$ {0, 1}k\Dom
Dom← Dom ∪ {Kv}

Enc(i,N,A,M)

S∥P ←M

C∗∥R← SE.Enc(Ki, N, ε, S)

X ←$ {0, 1}m+s

Map[i,N,A∥R,X]← P

Return C∗∥X

Vf(i,D,A,C∗∥X)

For any (N,R) with SE.df(N) = D do

If Map[i,N,A∥R,X] ̸= ⊥ then

Return (SE.Dec(Ki, D, ε, C∗∥R) ̸= ⊥)
Return false

Ro(K,N, V)

If K ∈ {K1, . . . ,Kv} then win← true

If Tbl[K,N, V] = ⊥ then

Tbl[K,N, V]←$ {0, 1}λ
Return Tbl[K,N, V]

Figure 17: Games G5 and G6 in the proof of Theorem 6.3.

same answer as A. Then
Pr[Gipf

F (B) | b = 1] = Pr[G4(A)] , and

1− Pr[Gipf
F (B) | b = 0] = Pr[G5(A)] .

Subtracting, we obtain

Advipf
F (B) = Pr[G4(A)]− Pr[G5(A)] .

In game G6, for each verification query (i,D,A,C∗∥X), we try to find a prior encryption query
(i,N,A,M) that returns the same X and SE.df(N) = D. If there is such an encryption query,
we return (SE.Dec(Ki, D, ε, C∗∥R) ̸= ⊥), where R is the internal tag of this encryption query.
Otherwise, return false.

We now bound the gap between game G5 and G6. Without loss of generality, assume that A
returns 1 if some verification query returns true. Let Bad be the event that in game G6, there are
two encryption queries (i,N,A,M) and (i,N∗, A,M∗) that returns the same X. Then Pr[Bad] ≤
q2/2m+s, because each encryption query returns a fresh random X ←$ {0, 1}m+s. Suppose that Bad
doesn’t happen. Note that the two games have the same implementation of the encryption queries.
Consider a verification query (i,D,A,C∗∥X). Suppose that (S,N,R) ← SE.Tag(Ki, D, ε, C∗). If
there is an encryption query (i,N,A,M∗) of the same internal tag R that returns the same X
then G6 is simply a different way to implement G5, using SE.Dec instead of SE.Tag. Suppose that

54

Game G7(A)
v ← 0; win← false

Dom← ∅; b′←$ANew,Enc,Vf,Ro

Return (b′ = 1) ∨ win

New()

v ← v + 1; Kv←$ {0, 1}k

Enc(i,N,A,M)

S∥P ←M

C∗∥R← SE.Enc(Ki, N, ε, S)

X ←$ {0, 1}m+s

Map[i,N,A∥R,X]← P

Return C∗∥X

Vf(i,D,A,C∗∥X)

For any (N,R) with SE.df(N) = D do

If Map[i,N,A∥R,X] ̸= ⊥ then

Return (SE.Dec(Ki, D, ε, C∗∥R) ̸= ⊥)
Return false

Ro(K,N, V)

If K ∈ {K1, . . . ,Kv} then win← true

If Tbl[K,N, V] = ⊥ then

Tbl[K,N, V]←$ {0, 1}λ
Return Tbl[K,N, V]

Game G8(A)
v ← 0; b′←$ANew,Enc,Vf,Ro

Return (b′ = 1)

New()

v ← v + 1

Enc(i,N,A,M)

S∥P ←M ;

C∗←$ {0, 1}SE.cl(|S|)−SE.tl

X ←$ {0, 1}m+s

Return C∗∥X

Vf(i,D,A,C∗∥X)

Return false

Ro(K,N, V)

If Tbl[K,N, V] = ⊥ then

Tbl[K,N, V]←$ {0, 1}λ
Return Tbl[K,N, V]

Figure 18: Games G7 and G8 in the proof of Theorem 6.3.

there is no such encryption query. Without loss of generality, assume that G6 returns false for this
verification query. This can only decrease Pr[G6(A)] and thus increase Pr[G5(A)]−Pr[G6(A)]. But
then G5 also returns false in this case. Hence

Pr[G5(A)]− Pr[G6(A)] ≤ Pr[Bad] ≤ q2

2m+s
.

In game G7, we sample the keys uniformly at random. Thus

Pr[G6(A)]− Pr[G7(A)] ≤
u(u+ p)

2k
.

In game G8, for each encryption query, instead of using SE.Enc we simply pick a random ciphertext.
Likewise, for each verification query, instead of using SE.Dec, we simply return false.

To bound the gap between G7 and G8, we construct an adversary D attacking the AE se-
curity of SE as follows. It first initializes Nonces,Keys ← ∅. It then runs A and simulates
game G6, but with the following differences. For each encryption query (i,N,A,M), instead of
using SE.Enc(Ki, N, ε, S), it uses Enc(i,N, ε, S) and adds N to Nonces. For each verification query
(i,D,A,C∗∥X), instead of checking SE.Dec(Ki, D, ε, C∗∥R) ̸= ⊥, it runs Vf(i,N, ε, C∗∥R). For
each random-oracle query Ro(K,N, V), instead of checking if K ∈ {K1, . . . ,Kv}, it simply adds
K to Keys. Finally, when A terminates, adversary D picks N∗ ∈ N\Nonces, and computes C ′

i ←
Enc(i,N∗, ε, 0k) for every user i. Then, for each K ∈ Keys, it computes C ← SE.Enc(K,N∗, ε, 0k),

55

and sets win← true if there is some C ′
i = C. Then

Pr[G7(A)] ≤ Pr[Greal
SE (D)] .

Here we have to use an inequality, because there might be false positives in checking C ′
i = C where

the string K is not the key Ki. On the other hand,

Pr[G8(A)] ≥ Pr[Grand
SE (D)]− up

2k+SE.tl
,

because each C ′
i is uniformly chosen from {0, 1}k+SE.tl, independent of whatA receives. Subtracting,

we obtain

Pr[G7(A)]− Pr[G8(A)] ≤ Advae
SE(D) +

up

2k+SE.tl
≤ Advae

SE(D) +
up

2k
.

Summing up,

Advae
SE
(A) = Pr[G1(A)]− Pr[G8(A)]

=

7∑
i=1

Pr[Gi(A)]− Pr[Gi+1(A)]

≤ Advipf
F (B) +Advae

SE(D) +
q2

2m+s
+

u(2u+ 3p)

2k
.

By accounting for the loss of 2qv/2
s in the advantage by assuming that A is orderly,

Advae
SE
(A) ≤ Advipf

F (B) +Advae
SE(D) +

q2

2m+s
+

u(2u+ 3p)

2k
+

2qv
2s

.

This concludes the proof.

56

	Introduction
	Preliminaries
	The AE3 Symmetric Encryption Framework
	 Committing Attacks
	Collision-Resistant IPF
	Collision-resistant IPF via SIV
	Collision-resistant IPF via Encode-then-Encipher
	Proof of Proposition 5.1

	Succinctly-Committing AE
	Acknowledgments
	References
	Proof of Lemma 3.2
	Equivalence of Committing Definitions
	Proof of Theorem 3.4
	Proofs of the Lemmas in Proposition 5.1
	Proof of Lemma 5.5
	Proof of Lemma 5.7
	Proof of Lemma 5.8
	Proof of Lemma 5.9
	Proof of Lemma 5.10
	Proof of Lemma 5.11
	Proof of Lemma 5.12

	Proof of Proposition 5.2
	Proof of Proposition 5.3
	Proof of Proposition 5.4
	Proof of Proposition 6.1
	Proof of Theorem 6.3

