
Generalized Indifferentiable Sponge and its
Application to Polygon Miden VM

Tomer Ashur1,3 and Amit Singh Bhati2

1 3MI Labs, Leuven, Belgium
2 COSIC, KU Leuven, Belgium

3 Polygon Research

Abstract. Cryptographic hash functions are said to be the work-horses of modern
cryptography. One of the strongest approaches to assess a cryptographic hash
function’s security is indifferentiability. Informally, indifferentiability measures to
what degree the function resembles a random oracle when instantiated with an
ideal underlying primitive. However, proving the indifferentiability security of hash
functions has been challenging due to complex simulator designs and proof arguments.
The Sponge construction is one of the prevalent hashing method used in various
systems. The Sponge has been shown to be indifferentiable from a random oracle
when initialized with a random permutation.
In this work, we first introduce GSponge, a generalized form of the Sponge construction
offering enhanced flexibility in input chaining, field sizes, and padding types. GSponge
not only captures all existing sponge variants but also unveils new, efficient ones. The
generic structure of GSponge facilitates the discovery of two micro-optimizations for
already deployed sponges. Firstly, it allows a new padding rule based on zero-padding
and domain-separated inputs, saving one full permutation call in certain cases without
increasing the generation time of zero-knowledge proofs. Secondly, it allows to absorb
up to c/2 more elements (that can save another permutation call for certain message
lengths) without compromising the indifferentiability security. These optimizations
enhance hashing time for practical use cases such as Merkle-tree hashing and short
message processing.
We then propose a new efficient instantiation of GSponge called Sponge2 capturing
these micro-optimizations and provide a formal indifferentiability proof to establish
both Sponge2 and GSponge’s security. This proof, simpler than the original for
Sponges, offers clarity and ease of understanding for real-world practitioners. Addi-
tionally, it is demonstrated that GSponge can be safely instantiated with permutations
defined over large prime fields, a result not previously formally proven.
Keywords: Sponge · GSponge · Sponge2 · Hashing Mode · Algebraic · Miden
VM · Indifferentiability · Random Oracle · Generic Attacks

1 Introduction
Cryptographic hash functions play a fundamental role in modern cryptography. Hash
functions are used for converting input data of varying lengths into fixed-size outputs,
ensuring data integrity, authenticating transactions, and facilitating digital signatures.
These cryptographic primitives are integral to a wide range of applications, including but
not limited to data storage, authentication protocols, and secure communication channels.
In recent decades, hash functions have also found specialized applications in algebraic
hashing, a field essential for Blockchain scaling via L2 rollups (e.g., Polygon Miden).

E-mail: tomer@3milabs.tech (Tomer Ashur), amitsingh.bhati@esat.kuleuven.be (Amit Singh
Bhati)

https://orcid.org/0000-0001-6091-4857
https://orcid.org/0000-0003-0843-4885
mailto:tomer@3milabs.tech
mailto:amitsingh.bhati@esat.kuleuven.be

2 Generalized Indifferentiable Sponge and its Application to Polygon Miden VM

Ideal primitives commonly used in hash function construction are random functions,
random permutations, or ideal ciphers. In practice, such primitives are expected to generate
pseudorandom outputs for given inputs, ensuring unpredictability and resistance against
cryptographic attacks. By combining these ideal primitives within specific modes, hash
functions can achieve desired security properties such as collision resistance, preimage
resistance, and second preimage resistance. The selection of appropriate primitives is
crucial in designing hash functions that meet the stringent security requirements of modern
cryptographic applications.
Hashing Mode Strategies. The choice of hashing mode is as critical as the selection of
primitives, impacting both the security and efficiency of the resulting hash function. In
cryptographic literature, the two mainly used hashing strategies are tree hashing (a.k.a.
parallel hashing) and cascade hashing (a.k.a. sequential hashing).

Tree hashing techniques, exemplified by Merkle trees [Bec08] and ABR trees [ABR21],
involve the parallel computation of hash values across multiple branches or levels of a
hash tree. These methods offer efficient verification and authentication of large datasets,
making them suitable for applications requiring scalable and parallel processing; however,
at a cost of larger (length dependent) state to be maintained.

In contrast, cascade hashing strategies, such as Merkle-Damgård [Mer89, Dam89]
(MD) style hashes and sponge [BDPVA07] based hashes, process input data sequentially,
iteratively updating a relatively small internal state to produce the final hash value. MD-
style hashes such as Wide Pipe [Luc05], Fast Wide Pipe [NP10], Chop-MD [CDMP05]
and pf-MD[CDMP05] by design rely of random functions as primitives, whereas sponge-
based hashes such as Sponge [BDPVA07], Overwrite Sponge [GLP08] and JH [Wu11]
can incorporate both random functions and permutations. Due to their versatility and
wide applicability, the sponge-based approach has garnered huge attention in recent
years. This approach, notably employed in SHA-3 and algebraic hashing systems such as
Polygon Miden [Mid23], offers inherent flexibility, particularly in accommodating algebraic
primitives as most of them are permutations.
Sponge Hashing. At a fundamental level, Sponge-based constructions are characterized
by a state of b bits, comprising a c-bit inner state, known as the capacity, and an r-bit
outer state, referred to as the rate, where the total state size b equals the sum of c and
r. Traditionally, in Sponge-like modes, data absorbing operations occur via the rate part,
processing r bits at a time.

A notable sponge variant documented in the literature is the overwrite sponge
mode [GLP08]. This variant improves the efficiency of regular sponge by dropping
the top r bits of each permutation output instead of cascading them, resulting in r-bit
smaller state among the permutation calls and removal of all XOR operations during
absorption. Originally, (overwrite) sponge was proposed for primitives operating on bits,
i.e., binary fields. However, recent works such as Rescue [SAD20], Poseidon [GKR+21] and
XHash [ABKM23] highlights that the applicability of sponge construction can be extended
to prime field setting when algebraic primitives are preferred or required. The rate and
capacity of sponge under algebraic primitive is measured in field elements.
Handling Arbitrary Lengths. By design, sponge variants can only handle messages
that has lengths multiple of the rate size. Hence, to handle messages of arbitrary lengths,
a sponge-compliant padding rule is used to preprocess the message into a rate-aligned
message, i.e., a message whose length is a multiple of the rate size. One of the simple and
popular padding rules is the pad10∗ padding [BDPVA07]. This padding simply appends
the input with a 1 followed by the minimum number of 0s such that the length of the
result is a multiple of the rate. We note that despite the simple definition, this padding
adds another r-bit pad to even already rate-aligned messages, and hence imposes an extra
primitive call to process them. Such drawback of a padding can affect the performance

Tomer Ashur, Amit Singh Bhati 3

significantly in applications where reducing even one permutation call is highly beneficial
such as applications that process small size messages.
Security Analysis. Security analysis of hash functions involves a two-step approach:
Firstly, demonstrating the generic security of the hashing mode, initialized with an
ideal primitive, by proving desired security properties such as collision resistance or
indifferentiability. Subsequently, instantiating the ideal primitive with a concrete function
that goes through multiple cryptanalysis for validation.
Generic Attacks. In a generic attack, adversaries exploit vulnerabilities in a crypto-
algorithm by assuming perfect behavior of its underlying primitives. For instance, consider
a hash function H : F∗

p → Fn
p utilizing a random permutation P : Fm

p → Fm
p for some

positive integers m and n. This creates an opportunity for generic attacks, which exploit
weaknesses in H with fewer resources compared to a larger random oracle RO : F∗

p → Fn
p .

Generic attacks on hash functions are widely documented in cryptographic literature.
Examples include Joux’s multi-collision attack [Jou04], the Kelsey–Schneier expandable-
message second pre-image attack [KS05], and the Kelsey–Kohno herding attack [KK06],
all targeting the prevalent Merkle–Damgård construction. Additionally, various generic
attacks like pre-image, second pre-image, collision, multi-collision, and herding attacks have
been identified for numerous other hash functions [ABF+08, GK08, Jou04, BMN10, HS06,
HK06], expanding beyond the basic Merkle–Damgård structure. These attacks typically
assume the hash function’s fundamental primitive behaves optimally, fulfilling the criteria
of generic attacks. Consequently, the prevalence of such attacks significantly influenced the
security assessment of cryptographic hash functions, emphasizing the necessity to develop
hash modes capable of withstanding such threats.
Security by Indifferentiability. The concept of indifferentiability, introduced by Maurer
et al. [MRH04] in 2004, and later employed by Coron et al. [CDMP05] in 2005, offers a
means to assess the resilience of hash modes against generic attacks. This framework
measures how closely a hash function resembles a random oracle when instantiated with
an underlying primitive behaving in an ideal manner. Many cryptographic protocols
employ random oracles and therefore depend on the indifferntiability security of the
underlying hash function for engineering purposes. In fact, by contemporary best practices,
indifferentiability has become a common prerequisite for hash mode adoption, given its
effectiveness in safeguarding against generic attacks.

Despite being a crucial requirement, proving and validating the indifferntiability security
of hash functions has not been an easy task. All indifferentiability proofs rely on the
concept of a simulator, which is used to simulate the idealized primitive when the hash
function is replaced with a true random oracle. Simulators are defined carefully to be
both indistinguishable from the ideal primitive on the one hand, and consistent with the
outputs of the random oracle on the other. Due to these correlated requirements, the
description of simulators in indifferentiability proofs sometime becomes very contrived
which makes both the simulator design and the proof arguments less intuitive and hard to
follow. See [BDPVA08, AMP12, MPST16, CN08] for examples of simulator descriptions,
indifferentiability proof approaches and proof sizes.

Further, it is also sometimes hard to directly adapt a given indifferentiability proof of a
hashing mode to even minor variations due to the specifically defined simulator definition
or dedicated bad case analysis.

1.1 Our Contribution
Our contribution in this work is twofold: (1) We generalize sponge mode into GSponge
over input chaining type (capturing regular sponge and overwrite), field type (capturing
binary and algebraic setting) and padding type (capturing all injective paddings). In

4 Generalized Indifferentiable Sponge and its Application to Polygon Miden VM

comparison with the regular sponge, GSponge provides extra rate of r0 < c elements for
the first permutation call where c denotes its capacity. These elements can also be used
for domain separation to directly achieve multi-rate and multi-protocol security.

We show that GSponge provides same security as any efficient instantiation of it. We
then propose Sponge2, as an efficient instantiation of GSponge.

(2) We provide an intuitive yet formal proof of indifferentiability for Sponge2. To reduce
the design complexity of the simulator and to improve the proof intuition, we introduce
a new ideal object for sponges called capacity-collision-free random functions. Idealizing
primitives as capacity-collision-free random functions naturally makes the indifferentiability
proof simple and easily verifiable.

We note that by design, Sponge2 saves one full permutation call in cases where the
unpadded message’s length is already an integral multiple of the rate (e.g., in 2-to-1
Merkle-tree hashing) without increasing the proof generation time in zkVMs like Polygon
Miden. Further, it also allows to absorb up to c/2 more elements in the first permutation
call, again resulting in saving a permutation call for some message lengths, without any
loss in the security size, i.e., still ≈ c log2 p/2 bits.

2 Related Work
The Parazoa family, proposed by Andreeva et al. [AMP12], can also be seen as a general-
ization of the sponge construction. However, it is limited to injective padding functions
and provides the same rate for all primitive calls. Consequently, it cannot accommodate
interesting sponge instantiations like Sponge2, which works with zero padding (can be seen
as non-injective) to save one full permutation call and provides an extra rate for the first
primitive call.

Furthermore, the provable security results of Parazoa says nothing about its multi-rate
and multi-protocol security. As mentioned earlier, the simulator descriptions and proof
approaches of existing indifferentiability proofs are lengthy and difficult to follow, and
this complexity is exacerbated by the generalization of Parazoa. For GSponge, we achieve
multi-rate and multi-protocol security with a simple and intuitive proof.

Naito et al. improved the indifferentiability result of PHOTON’s hashing mode
in [NO14]. As a side result, they also claimed that the rate of the first permutation
call in PHOTON’s sponge-like hashing mode could be improved by half of the capacity
size, although they omitted the proof, relying on their main indifferentiability result
of PHOTON’s hashing mode. While one may indeed be able to derive this proof for
PHOTON’s hashing mode in the binary setting, we have considered it for a generalized
sponge that captures various sponge-like modes in both binary and algebraic settings.

Khovratovich et al. [KBM23] presented a hash indifferentiability result involving large
prime fields, focusing on a dedicated sponge variant known as SAFECore. However, their
proof is limited to the SAFECore design and includes specific restrictions. One such
restriction is the necessity for an additional hash function, modeled as a random oracle, to
process the capacity input of the first permutation call. These constraints make the proof
non-generic and inapplicable to other popular sponge variants, such as the overwrite mode
or the sponge mode with c/2 extra rate, which injects c/2 message elements ‘directly’ into
the capacity part of the first permutation.

The security result in [KBM23] can be seen as a generalization of the security result
in [NO14], with large prime field support but under the restriction that the extra rate
of the first permutation is limited to outputs of a random oracle. Consequently, the
indifferentiability of the regular sponge and other variants, including our proposed Sponge2
mode with zero padding, remained an open problem under large prime fields.

Tomer Ashur, Amit Singh Bhati 5

3 Paper Organization
We provide the preliminaries in Section 4. We then propose the sponge generalization
GSponge and argue its security in Section 5. In Section 6, we provide Sponge2 as an
efficient instantiation of GSponge and formally prove its security in Section 8. In Section 7,
we discuss some concrete applications of Sponge2 in Miden VM. Finally, we conclude the
paper in Section 9.

4 Preliminaries
4.1 Notation

Vectors. We let Fp to a denote a finite field of order p = ab with a a prime and b a
positive integer. A vector S of size n is denoted by S = (S[0], . . . , S[n− 1]). We use ⊕ is
used to denote addition over the finite field Fp. For simplicity, we refer to a vector of n > 0
many Fp elements as an (n, p)-vector. Note that in particular (n, 2)-vectors are analogous
to n-bit binary strings. We denote the set of all (n, p)-vectors by Fn

p . The set of vectors of
any possible length i.e., arbitrary n is denoted by F∗

p. The set of all permutations of Fn
p is

denoted by Permp(n) and the set of all functions/maps from Fm
p (respectively, F∗

p) to Fn
p

is denoted by Funcp(m, n) (respectively, Funcp(∗, n)). For any (n, p)-vector A, |A| is the
length of A in elements i.e., |A| = n. For any two sets A and B, their Cartesian product is
defined as A×B = {(i, j) | i ∈ A, j ∈ B} and the term A\B denotes the largest subset of
A that shares no element with B.
Partitions. Given a vector A and an integer n > 0 such that |A| = an + d, where a is
a positive integer and 0 < d ≤ n, the notation A1, A2, . . . , Aa+1

n←− A is used to indicate
the partitioning of A into a maximum number of (n, p)-vectors a.k.a. block vectors. Each
block vector Ai has a length of n for 1 ≤ i ≤ a, and the last block vector Aa+1 has a
length of d. If d = n, we say A is n-aligned. Similarly, we also use [A1, A2, . . . , Aa+1] to
denote the ordered union a.k.a. concatenation of these vectors i.e., A.
Miscellaneous. We use ⟨i⟩ to denote a bijective encoding of 0 ≤ i < p in Fp. The
notation x

$←− X indicates the random sampling of an element x from a finite set X with a
uniform distribution. The symbol ⊥ is used to represent an undefined value or an error.

4.2 Statistical Distance
The statistical distance between two random variables (or distributions) is defined as
follows

Definition 1 (Statistical Distance). Let X and Y be two random variables taking values
from a finite set X . The statistical distance between X and Y is defined as

SD(X, Y) = 1
2

∑
x∈X
|Pr[X = x]− Pr[Y = x]| .

4.3 Indifferentiability
We now recall the main indifferentiability theorem, due to Maurer et al. [MRH04] for
hash functions under the random permutation model. If a hash function H, based on a
public permutation P (with inverse P−1) is indifferentiable from a random oracle RO,
then a cryptosystem C based on RO (in the random oracle model) is at least as secure
as C based on H (in the random permutation model). This highlights the importance

6 Generalized Indifferentiable Sponge and its Application to Polygon Miden VM

Figure 1: The indifferentiability notion

of indifferentiability in ensuring the security of cryptographic protocols that use hash
functions to instantiate random oracles.

We now generalize and formally define the indifferentiability notion as of [CDMP05] for
hash functions that use random public permutations (or any other ideal public primitives
with both forward and backward oracles) and are defined over Fp with arbitrary prime
power p.

Definition 2 (Indifferentiability from an RO). Let H : F∗
p → Fn

p for some integer
n > 0 and prime power p be a hash function that internally uses a random permutation
P : Fm

p → Fm
p for some integer m > 0 and let RO : F∗

p → Fn
p be a random oracle. Let

A be a computationally unbounded adversary A with triple oracle access - the hash
function, its underlying primitive and primitive’s inverse. The advantage of A against the
indifferentiability of H from RO is defined as

Advro-indiff
H[P] (A) = min

S
|Pr[AH,P,P−1

⇒ 1]− Pr[ARO,S,S−1
⇒ 1]|

where S : Fm
p → Fm

P is a simulator algorithm simulating P for RO.

The simulator S has oracle access to RO, but it cannot directly observe past queries
made to RO by A (refer to Fig. 1 for a visual representation of the indifferentiability
concept).

5 GSponge: A Generalized Sponge Mode
In this section, we provide a generalization of the popular sponge [BDPVA07] mode to
capture all existing sponge variants such as overwrite sponge, prepadded sponge, domain-
separated sponge, etc. We then argue its security by its indifferentiability from a random
oracle (RO).

GSpongeu,r0 [π] : F∗
p → Fr

p is based on a permutation π : Fb
p → Fb

p with size b = r + c for
some positive integers r and c called the rate and capacity of π, respectively and an injective
padding function padr,r0 : F∗

p → F∗
p that for a given r0 < c maps any arbitrary length vector

M to a unique ar+r0 +1-length vector [x, M, y] for some a ≥ 1 and non-empty x (a pre-pad)
and y (a post-pad). An input M ∈ F∗

p to GSponge is first padded to P = padr,r0(M) and
then processed using π as shown in Fig. 2. Here u ∈ {0, 1} that decides if the rate output
of a permutation is chained to the next rate input or not.
Deriving Popular Sponge Variants. Recall that GSponge is parameterized with u
and r0. When u = 1, r0 = 0, p = 2n for some positive integer n and padr,0(M) =

Tomer Ashur, Amit Singh Bhati 7

Figure 2: GSponge (block diagram). Here ⊙ represents field multiplication with u ∈ {0, 1}
which returns zero or the input itself, depending on the value of u. The upper input
(or output) part of π corresponds to its rate whereas the lower input (or output) part
corresponds to its capacity.

[⟨0⟩, M, ⟨1⟩, ⟨0⟩r−1−(|M | mod r)], we get the original sponge mode [BDPVA07]. Further,
when under the same setting u is replaced to 0, we get the original overwrite mode [GLP08].
Finally, when p is not fixed to 2n, we get sponge mode and overwrite mode under prime
a.k.a. algebraic setting as used in [SAD20, GKR+21].

We highlight that the formal security by indifferentiability of the original sponge mode
is proven in [BDPVA08], however, to the best of our knowledge, the other popular variants
as derived above do not have formal proofs in literature. We also note that a formal
proof for GSponge will cover the formal security of these variants as well as other possible
instantiations of GSponge.

5.1 Security of GSponge
We target the security of GSponge as its indifferentiability from an RO. We highlight that
indifferentiability under sufficiently large digest size implicitly provides basic cryptographic
hash security properties such as (second) pre-image resistance and collision resistance.

We note that the input space of GSponge is invariant of u as every unique input under
u = 0 matches with some unique input under u = 1. This implies that the outputs of
GSponge are differently ordered a.k.a. permuted for different values of u, however, with
the same output multiset and thus same output distribution.

Thus, the indifferentiability of GSponge is independent of u and therefore, it is sufficient
to argue its indifferentiability with u = 0 , i.e., as overwrite GSponge mode.

Further, we also note that the indifferentiability of GSponge0,r0 remains same over
all choices of the injective paddings. This holds because injective paddings are bijective
to each other and when modeled as an RO, the statistical distance between the output
distributions of GSponge0,r0 under two different injective paddings is zero. Therefore,
the indifferentiability of GSponge0,r0 can be argued by proving the same for any efficient
instantiation of it. In the next section, we provide such an efficient instantiation of GSponge
and formally prove its security. We emphasize that this identical output distribution
argument only works when GSponge0,r0 (for any injective padding) is shown indifferentiable
from an RO.

8 Generalized Indifferentiable Sponge and its Application to Polygon Miden VM

6 Sponge2: An Efficient GSponge Instantiation
In this section, we provide a new sponge variant called Sponge2 as an efficient instantiation
of GSponge. Sponge2 : F∗

p → Fr
p is based on a permutation π : Fb

p → Fb
p with size b = r + c

for some positive integers r and c called the rate and capacity of π, respectively. An input
M ∈ F∗

p to Sponge2 is processed using π as shown in Fig. 3 (b).
Domain Separation in Sponge2. For a message M of length 0 < |M | ≤ r0, the domain
separator is defined as i = r + r0 − |M | and otherwise, it is defined as i = (r − ((|M | − r0)
mod r)) mod r. It is easy to see that i is a unique value that varies from 0 to r + r0 − 1
for messages with different last block lengths and is same as the number of zero elements
padded after the message to make it rate-aligned i.e., the number of zeros used in ⟨0⟩∗
defines i for every message.

Sponge2 differs from the popular overwrite-style sponge hash in the padding rule and
the underlying first primitive’s input as shown in Fig. 3. This difference allows Sponge2 to
1) process r0 < c many more Fp elements and to 2) additionally reduce the overall cost
by one π call than the regular overwrite sponge mode. More specifically, unlike Sponge,
no extra π call is required at the end to finalize rate-aligned messages. This gain could
be reasonably large for applications that work with stringent resource constraints and/or
typically hash small size messages. The targeted application of Miden VM in this work
fits to both of these categories which makes Sponge2 a viable choice for it.

6.1 Security of Sponge2
We state the formal claim about the indifferentiability (from an RO) of Sponge2 in
Theorem 1.

Theorem 1. Let Sponge2[π] be the hash function as defined above in Fig. 3 with π
$←−

Permp(b) and let r0 < c be some fixed integer. Then for any adversary A who makes at
most qP π queries, we have

Advro-indiff
Sponge2[π](A) ≤ qP (qP − 1)

2pb + qP

pc−r0

(
1 + 1

p− 1

)
+ q2

P

pc

(
1 + p−c+r0+1

p− 1− p−c+r0+1

)
.

We defer the proof of Theorem 1 to Section 8. We now define a corollary of Theorem 1
that provides the indifferentiability bound for Sponge2 with fields of odd characteristic
i.e., when p > 2 and when r0 is fixed to c/2. In simple words, Corollary 1’s bound states
that in the AO context, Sponge2 provides at least (c · log2 p− 4)/2 bits of security. This
results in a concrete security of at least ≈ 126 bits when p ≈ 264 and c = 4 i.e., π has 4 Fp

elements as the capacity.

Corollary 1. Let Sponge2[π] be the hash function as defined above in Fig. 3 with π
$←−

Permp(b) and let r0 = c/2, and p > 2. Then for any adversary A who makes at most qP

π queries, we have

Advro-indiff
Sponge2[π](A) ≤ 3qP

pc/2 .

Proof of Corollary 1. The proof of Corollary 1 follows from the result of Theorem 1. More

Tomer Ashur, Amit Singh Bhati 9

Figure 3: Overwrite Sponge vs Sponge2 (block diagrams). Here ⟨0⟩∗ represents a zero
vector with sufficient number of ⟨0⟩s to fill the corresponding input of π. In Sponge2, the
domain separator i is defined by the number of zeros used in the corresponding ⟨0⟩∗.

specifically, with r0 = c/2, b ≥ c, p > 2, qP ≤ pc/2/3 and Theorem 1, we get

Advro-indiff
Sponge2[π](A) ≤ q2

P

2pc + qP

pc/2

(
1 + 1

p− 1

)
+ q2

P

pc

(
1 + 1

p− 2

)
≤ qP

pc/2

(1
6

)
+ qP

pc/2

(3
2

)
+ qP

pc/2

(2
3

)
≤ 3qP

pc/2 .

Finally, we drop the assumption qP ≤ pc/2/3 as for qP > pc/2/3, this bound becomes void
anyways. This completes the proof of Corollary 1.

6.2 Sponge2 under Multi-rate and Multi-protocol Setting
In real-world applications, the same hash function is sometimes used under the same
input space but with different rate sizes or different protocols. In such situations, we need
domain separations to ensure the security of the hash function across these use cases.

10 Generalized Indifferentiable Sponge and its Application to Polygon Miden VM

Sponge2 provides security for multi-rate and multi-protocol applications by simply
adding a domain separator in the r0 elements of the first call. This domain separator
can be seen as an identifier of the used rate size or protocol. The security of Sponge2 (in
bits) under multi-rate and multi-protocol applications is upper bounded by the security of
Sponge2 (in bits) under the maximum allowed rate r as captured in Theorem 1.

7 Applications of Sponge2 in Polygon Miden VM
In this section, we present some direct applications of Sponge2 in Polygon Miden VM and
discuss the specific improvements. It is worth noting that similar applications of Sponge2
can also be shown for other STARK-based zkVMs.

Miden VM currently uses Rescue-Prime Optimized (RPO) as the underlying hash
function. RPO is a sponge function instantiated with a permutation over Fb

p, where p is
a 64-bit prime and b = r + c, with r = 2c = 8. In Miden VM, RPO is used in various
contexts and with different types of inputs. We categorize these hash calls into three main
types based on their input:

1. 2-to-1 hashing with metadata

2. Hashing for leaf computation

3. Variable-input-length (VIL) hashing.

2-to-1 Hashing with Metadata. Miden VM currently performs 2-to-1 compression
calls in many places with input sizes as small as 8 Fp elements. However, these inputs
are accompanied by additional metadata, such as left-or-right hashing type information,
increasing the total input size to 9 elements. RPO (a vanilla sponge with a rate of 8
elements per call) requires two permutation calls to hash these 9 elements, whereas Sponge2
(which processes up to 10 elements in the first call) requires only one permutation call.
This results in a 50% improvement in the hashing cost.
Hashing for Leaf Computation. Currently, in Miden VM, each leaf of the Merkle-tree
is derived from hashing a sequence of 72 field elements. Miden plans to shift to 64 columns
in the Merkle tree, reducing this cost to a sequential hash of 64 elements. Using the sponge,
we will need 9 permutation calls to process these elements, whereas Sponge2 can achieve
this in 8 permutation calls, resulting in a 12.5% improvement in the rate.
VIL Hashing. Apart from the aforementioned hash applications, Miden also uses the
same RPO instantiation to hash different length inputs. We know that for any message
M , its length can be expressed as rαM + iM for some non-negative integer αM and
0 ≤ iM ≤ r− 1. For all messages M ′ with 0 ≤ iM ′ ≤ r0 − r and αM ′ > 0, Sponge2 requires
one less permutation call than the sponge (due to our two micro optimizations), resulting
in a 100/αM ′% improvement in the rate.

Notably, for a uniformly sampled message (from the space of all messages with size at
least 8 elements) there is a 100(r0 − r + 1)/r% chance of encountering a message M ′ with
0 ≤ iM ′ ≤ r0 − r. For Miden VM with r0 = r + c/2 = 10, it is 37.5%.

8 Security Analysis
In this section, we provide the deferred proof of Theorem 1.

Proof of Theorem 1. Replacing π. We treat duplicate queries and cross-oracle known
response queries (i.e., querying the π−1 oracle with an output of previously queried π

Tomer Ashur, Amit Singh Bhati 11

or vice versa) as trivial queries and the rest as non-trivial queries. We note that trivial
queries cannot help A in increasing its advantage as their output is already known and
thus independent of the queried oracle. Hence, we can assume w.l.o.g., that A only makes
non-trivial queries.

We now recall that as per the standard RP-RF switching lemma [BR06], a randomly
sampled (π, π−1) with π

$←− Permp(b) is indistinguishable up to the birthday bound (in the
output size) from a randomly sampled function pair (f1, f2) for non-trivial oracle queries
where (f1, f2) $←− Funcp(b, b)× Funcp(b, b).

More formally, for any adversary A that makes at most qP many non-trivial π queries
(to both forward and inverse oracles in total), we have that

∣∣ Pr[Aπ,π−1
⇒ 1]− Pr[Af1,f2 ⇒ 1]

∣∣ ≤ qP (qP − 1)
2pb .

Let us denote Sponge2[π] by Sponge2′[π, π−1]. Then, with the above inequality we get

Advro-indiff
Sponge2[π](A) = Advro-indiff

Sponge2′[π,π−1](A)

≤ Advro-indiff
Sponge2′[f1,f2](A) + qP (qP − 1)

2pb . (1)

Blacklisting Outputs for f1 and f2. For a smooth indifferentiability proof, we will later
need to restrict the primitive to not return a particular form of outputs, hence we hereby
update the primitive to easily achieve this restriction later. Let L be a set of restricted
outputs in Fb

p with size |L| = ∆ and let g1 and g2 be uniform random functions from Fb
p to

Fb
p\L. Observing that the statistical distance between f1 and g1 (similarly, between f2 and

g2) is ∆/pb and since we evaluate the primitives f1 and f2 in total qP many times, we get

Advro-indiff
Sponge2′[f1,f2](A) ≤ Advro-indiff

Sponge2′[g1,g2](A) + qP ∆
pb . (2)

Making g1 and g2 Capacity-collision-free. Now, since g1 and g2 are uniform random
functions over Fb

p\L, they can still have random collisions in the last c elements a.k.a. the
capacity or the inner part. Such collisions are undesirable as they can be used to construct
hash outputs for not-yet-queried inputs and thus make the hash differentiable from an RO.
We therefore now replace the primitive with a capacity-collision-free variant.

We also note that for every input of the form [x1, . . . , xr, xr+1, . . . , xr+c] with xi ∈ Fp,
the outputs of g1 and g2 functions are sampled uniformly at random from (Fr

p × Fc
p)\L

with form [y1, . . . , yr, yr+1, . . . , yr+c] where yi ∈ Fp.
We now define a new class of functions called capacity-collision-free or CCF. CCF

functions are defined in pairs.

Definition 3. A CCF pair (f ccf
1 , f ccf

2) is a pair of Fr
p × Fc

p → (Fr
p × Fc

p)\L functions. Each
of these functions takes r + c elements in Fp as input and maps them to r + c elements
in Fp with the added restriction that the capacity i.e., the last c elements of any output
never collides/matches with the capacity of any previously queried input or output of both
of the CCF functions.

One can notice that a CCF pair (i.e., both functions in total) cannot be exhausted in fewer
than pc/2 queries and is necessarily exhausted after at most pc − 1 queries as by then all
Fc

p many capacity values are exhausted. Further, a CCF pair can be constructed plainly
by keeping a mapping table that requires a memory of at least pc/2 (when all queried

12 Generalized Indifferentiable Sponge and its Application to Polygon Miden VM

inputs and outputs have different capacities) to at most pc − 1 (when only the queried
outputs have different capacities) input-output pairs.

A randomly sampled CCF pair is defined as a CCF pair where for every input query (to
either of the two functions) the output is sampled uniformly at random from the remaining
space of possible outputs. We replace (g1, g2) with a random CCF pair (f ccf

1 , f ccf
2) and get

Advro-indiff
Sponge2′[g1,g2](A) ≤ Advro-indiff

Sponge2′[f ccf
1 ,f ccf

2](A)

+
∣∣ Pr[Af ccf

1 ,f ccf
2 ⇒ 1]− Pr[Ag1,g2 ⇒ 1]

∣∣ . (3)

Note that the above probability difference is specific to the adversary A and its strategy.
We know that this difference can never be higher than the actual statistical distance
between the input-output distributions of the qP queries to (f ccf

1 , f ccf
2) and (g1, g2).

Let A be a query bounded adversary making q1 many queries to the first oracle
and q2 many queries to the second such that q1 + q2 = qP . Let Θf = (ΘX , ΘY,f) =
({Xi}qP

i=1, {Y f
i }

qP

i=1}) and Θg = (ΘX , ΘY,g) = ({Xi}qP

i=1, {Y g
i }

qP

i=1}) be the random variables
for the input-output distributions of the qP queries with any adversarial choice of oracle
order to (f ccf

1 , f ccf
2) and (g1, g2), respectively. Here Xi and Yi represent the input and output

of the ith query to the corresponding oracle, respectively. ΘX takes values from SX = (Fb
p)qP

whereas ΘY,f and ΘY,g take values from SY = (Fb
p\L)qP . Let S = SX×SY and Sccf ⊆ S be

the set of all possible qP input-output tuples for oracles (f ccf
1 , f ccf

2) i.e., the set of all possible
capacity-collision-free query-response tuples. We get

∣∣ Pr[Af ccf
1 ,f ccf

2 ⇒ 1]− Pr[Ag1,g2 ⇒ 1]
∣∣

≤ SD(Θf , Θg) = 1
2

∑
θ∈S

|Pr[Θf = θ]− Pr[Θg = θ]|

= 1
2

∑
θ∈Sccf

|Pr[Θf = θ]− Pr[Θg = θ]|

+ 1
2

∑
θ∈S\Sccf

|0− Pr[Θg = θ]| .

Here the last equality holds as by definition, Θf only returns outputs from Sccf . Now,
since by design A does not make trivial queries we know that the qP outputs of g1 and
g2 are each sampled uniformly and independently at random from Fb

p\L and hence for
θ = (θX , θY), we get Pr[Θg = θ] = Pr[ΘX = θX ∧ ΘY,g = θY] = Pr[ΘX = θX]/|SY |.
Similarly, for a given query-tuple θX , we also know that the corresponding qP response-
tuple θY w.r.t. f ccf

1 and f ccf
2 is sampled uniformly at random from the set of all possible

capacity-collision-free response tuples that correspond to the query tuple θX , i.e., from the
set SθX

ccf,Y ⊆ SY defined as {j | (i, j) ∈ Sccf and i = θX} which implies that Pr[Θf = θ] =
Pr[ΘX = θX] · Pr[ΘY,f = θY | ΘX = θX] = Pr[ΘX = θX]/|SθX

ccf,Y |. This gives us

Tomer Ashur, Amit Singh Bhati 13

1
2

∑
θ∈Sccf

|Pr[Θf = θ]− Pr[Θg = θ]|+ 1
2

∑
θ∈S\Sccf

|0− Pr[Θg = θ]|

= 1
2

(∑
θ∈Sccf

Pr[ΘX = θX] ·
(1
|SθX

ccf,Y |
− 1
|SY |

)
+

∑
θ∈S\Sccf

Pr[ΘX = θX]
|SY |

)
= 1

2
∑

θX ∈SX

Pr[ΘX = θX] ·
(∑

θY ∈SθX
ccf,Y

(1
|SθX

ccf,Y |
− 1
|SY |

)

+
∑

θY ∈SY \SθX
ccf,Y

1
|SY |

)

= 1
2

∑
θX ∈SX

Pr[ΘX = θX] ·
(
|SθX

ccf,Y |
(1
|SθX

ccf,Y |
− 1
|SY |

)
+

(
|SY | − |SθX

ccf,Y |
) 1
|SY |

)
=

∑
θX ∈SX

Pr[ΘX = θX] ·
(

1−
|SθX

ccf,Y |
|SY |

)

≤ max
θX ∈SX

(
1−
|SθX

ccf,Y |
|SY |

) ∑
θX ∈SX

Pr[ΘX = θX]

= max
θX ∈SX

(
1−
|SθX

ccf,Y |
|SY |

)
. (4)

Let Q = |Fb
p\L| = pb − ∆ and therefore, |SY | = QqP . Further, since SθX

ccf,Y is a set of
capacity-collision-free response tuples with each tuple containing qP many elements from
Fb

p\L, we have minθX ∈SX
{|SθX

ccf,Y |} = (Q−1 ·pr)(Q−3 ·pr)(Q−5 ·pr) · · · (Q− (2qP −1) ·pr).
This bound comes from the case when the capacity part of every input and output of qP

queries is unique which reduces SθX

ccf,Y to its minimum size. Combining these results with
Exp. 4, we get

SD(Θf , Θg) ≤ 1−
∏qP

i=1(Q− (2i− 1) · pr)
QqP

= 1−
qP∏
i=1

(
1− 2i− 1

Qp−r

)
≤ 1−

(
1−

qP∑
i=1

2i− 1
Qp−r

)
= q2

P

Qp−r . (5)

Here the last inequality holds from the following observation: For two positive numbers a1
and a2,

2∏
i=1

(1− ai) = (1− a1)(1− a2) = 1− a1 − a2 + a1a2 ≥ 1−
2∑

i=1
ai .

Now, combining Exp. 1, 2, 3 and 5 together gives us for qP ≤ pc/2

14 Generalized Indifferentiable Sponge and its Application to Polygon Miden VM

Advro-indiff
Sponge2[π](A) ≤ Advro-indiff

Sponge2′[f ccf
1 ,f ccf

2](A) + qP (qP − 1)
2pb

+ qP ∆
pb + q2

P pr

pb −∆ . (6)

We are now left with bounding the term Advro-indiff
Sponge2′[f ccf

1 ,f ccf
2](A). We note that the above

inequality holds for any value of ∆; however, we are only interested in the smallest value
of ∆ for which the above upper bound minimizes.
Reordering Input Space. We recall that in Sponge2′, the inputs are post-padded with
minimum number of zeros to make the input rate aligned as shown in Fig. 3 (b). We
define a new variant of Sponge2′ named Sponge2† where the padded zeros are pulled to
the start of the message (see Fig. 4). For example, a message M = [x1, x2, . . . , xr+r0+2] of
size r + r0 + 2 elements is padded as [x1, x2, . . . , xr0 , xr0+1 . . . , xr+r0+2, ⟨0⟩, ⟨0⟩, . . . , ⟨0⟩] with
r − 2 postpadded zeros when processed under Sponge2′ whereas the same message would
become [⟨0⟩, ⟨0⟩, . . . , ⟨0⟩, x1, x2, . . . , xr0 , xr0+1 . . . , xr+r0+2] with r− 2 prepadded zeros when
processed under Sponge2†.

Figure 4: Sponge2† (block diagram) with prepadding.

We stress that the hash functions Sponge2′ and Sponge2† only differ in the padding
rules and there is a bijective mapping between both of these padding rules. This implies
that the output distributions of these two hash functions are identical and hence they
provide the same security (by indifferentiability from an RO). More concretely, we have

Advro-indiff
Sponge2′[f ccf

1 ,f ccf
2](A) = Advro-indiff

Sponge2†[f ccf
1 ,f ccf

2](A)

≤ |Pr[ASponge2†[f ccf
1 ,f ccf

2],f ccf
1 ,f ccf

2 ⇒ 1]
− Pr[ARO,S1,S2 ⇒ 1]| (7)

where S1 and S2 are two oracles defined to simulate adversarial-query response for f ccf
1 , f ccf

2
in the ideal world. Note that the above expression is an inequality instead of an equality
as S1 and S2 may not necessarily be the best simulators to define the advantage tightly.

Tomer Ashur, Amit Singh Bhati 15

Defining Simulators. In order to show that Sponge2† is indifferentiable from an RO,
we need to construct two simulators S1 and S2 to model f ccf

1 and f ccf
2 in the ideal world,

respectively.
Let for any b-element vector X with b = r + c, X r and Xc represent the first r and

the last c elements (as a vector) of X. In other words, X = [X r, Xc]. We define S2 = f ccf
2

and S1 as shown in Fig. 5. In the algorithmic description of S1, U is a set of pairs of the
form (α, β) where α is a c-element vector and β is an arbitrary size vector. We set U = {}
before A makes its first query.

For a fresh primitive query S1(X) = Y of A, an entry (α, β) is added to U where α
represents the last c elements of the output Y whereas β represents the longest message
whose hash output can be constructed using the already made S1 queries (including the
current query) with a condition that the final S1 call of this hash is S1(X).16 Tomer Ashur and Amit Singh Bhati

1: function S1(X)

2: Y ← f ccf
1 (X)

3: β ← []
4: for i← 0 to r + r0 − 1 do
5: if [X[r + r0 − i], . . . , X[b− 1]] = [⟨0⟩i, ⟨i⟩, ⟨0⟩c−r0−1] then ▷ case when X is
6: β ← [X[0], . . . , X[r + r0− i−1]] the first primitive
7: Y r ← RO(β) input in a hash call
8: end if
9: end for
10: if ∃ (α′, β′) ∈ U with α′ = Xc then ▷ case when X is
11: β ← [β′, Xr] some primitive
12: Y r ← RO(β) input in a hash call
13: end if
14: α← Y c

15: U ← U ∪ {(α, β)}
16: Y ← [Y r, Y c]
17: return Y
18: end function

Fig. 5: The Simulator Algorithm S1.

Note that S1 and f ccf
1 differs in the generation of top r elements of the output,

however, in both cases these r elements are sampled uniformly at random from
Fp for each value of X. This implies (S1, S2) is indistinguishable from (f ccf

1 , f ccf
2).

Indifferentiability from an RO. We first define the set L consisting re-
stricted outputs for both primitives (introduced above for Exp. 2) to sim-
plify the remaining analysis as the set of all possible first primitive call in-
puts of Sponge2†. More concretely, L = {X ∈ Fb

p | for some i ∈ [0, r + r0 −
1], [X[r + r0 − i], . . . , X[b − 1]] = [⟨0⟩i, ⟨i⟩, ⟨0⟩c−r0−1]}. With L defined, we get

∆ = |L| = ∑r+r0−1
i=0 pr+r0−i = (1 + (p− 1)−1)(pr+r0 − 1).

Let us refer the first oracle in both worlds (i.e., Sponge2† in the real and
RO in the ideal world) as the hash oracle and the second and third oracles in
both worlds as the forward and backward primitive oracles, respectively. It is
easy to notice that when the forward and backward primitives are restricted to
return outputs only from Fb

p\L and are capacity-collision-free, A can compute a
hash oracle output only by either constructing the same using the old forward
primitive query-response pairs or by making a fresh hash oracle query. We call
the former type of queries, constructed queries and the latter type of queries,
direct queries.

We emphasize here that the backward primitive calls become useless for A
as they can’t be used to replace the forward primitive calls in any hash query.
This holds as backward primitive queries never return outputs that belong to
L or have capacity collisions with forward primitive query outputs (as they are
capacity-collision-free).

Note that in the real world, all constructed and direct hash queries are con-
sistent as per the definition of Sponge2† i.e., on same message they both return
same outputs. Similarly, in the ideal world, with the defined simulator S1, all
constructed and direct hash queries are consistent as per the definition of S1. See

Figure 5: The Simulator Algorithm S1.

Note that S1 and f ccf
1 differs in the generation of top r elements of the output, however, in

both cases these r elements are sampled uniformly at random from Fp for each value of X.
This implies (S1, S2) is indistinguishable from (f ccf

1 , f ccf
2).

Indifferentiability from an RO. We first define the set L consisting restricted outputs
for both primitives (introduced above for Exp. 2) to simplify the remaining analysis as
the set of all possible first primitive call inputs of Sponge2†. More concretely, L = {X ∈
Fb

p | for some i ∈ [0, r + r0 − 1], [X[r + r0 − i], . . . , X[b− 1]] = [⟨0⟩i, ⟨i⟩, ⟨0⟩c−r0−1]}. With
L defined, we get ∆ = |L| =

∑r+r0−1
i=0 pr+r0−i = p(pr+r0 − 1)/(p− 1).

Let us refer the first oracle in both worlds (i.e., Sponge2† in the real and RO in the
ideal world) as the hash oracle and the second and third oracles in both worlds as the
forward and backward primitive oracles, respectively. It is easy to notice that when the
forward and backward primitives are restricted to return outputs only from Fb

p\L and are
capacity-collision-free, A can compute a hash oracle output only by either constructing
the same using the old forward primitive query-response pairs or by making a fresh hash
oracle query. We call the former type of queries —constructed queries and the latter type
of queries —direct queries.

We emphasize here that the backward primitive calls become useless for A as they can’t
be used to replace the forward primitive calls in any hash query. This holds as backward
primitive queries never return outputs that belong to L (i.e., the set of restricted outputs
for primitives) or have capacity collisions with forward primitive query outputs (as they
are capacity-collision-free).

16 Generalized Indifferentiable Sponge and its Application to Polygon Miden VM

Note that in the real world, all constructed and direct hash queries are consistent as per
the definition of Sponge2† i.e., on same message they both return same outputs. Similarly,
in the ideal world, with the defined simulator S1, all constructed and direct hash queries are
consistent as per the definition of S1. See Fig. 6 for an example showing how a constructed
query in the ideal world is consistent with its corresponding direct query. The example shows
that for some input M , the constructed query returns RO(unpadi([P0, . . . , Pℓ])) whereas
the direct query returns RO(M) and since by definition, M = unpadi([P0, . . . , Pℓ]), we
have RO(unpadi([P0, . . . , Pℓ])) = RO(M). Here, for any vector X, unpadi([⟨0⟩i, X]) = X
and ⊥, otherwise.

Figure 6: Simulator S1 returning consistent outputs with RO queries. Here for any vector
X, unpadi([⟨0⟩i, X]) = X and ⊥, otherwise.

This means the only way left for A to differentiate (Sponge†, f ccf
1 , f ccf

2) from (RO, S1, S2)
is by distinguishing the direct query outputs of Sponge† (i.e., hash outputs in the real
world) from the direct query outputs of RO (i.e., hash outputs in the ideal world). Now,
since f ccf

1 is a capacity-collision-free function, we have that for distinct direct queries to
Sponge†[f ccf

1 , f ccf
2], the last f ccf

1 calls will always have a unique input and thus the rate
part of its output (which is the final hash output) will be sampled uniformly at random
from Fr

p. Similarly, since the outputs of RO are also sampled uniformly at random from
Fr

p for distinct direct queries, we have that

Advro-indiff
Sponge2†[f ccf

1 ,f ccf
2](A) = 0 (8)

We finalize the indifferentiability bound by combining Exp. 6, 7 and 8 with ∆ = (1 + (p−
1)−1)(pr+r0 − 1) and get

Advro-indiff
Sponge2[π](A) ≤ qP (qP − 1)

2pb + qP

pc−r0

(
1 + 1

p− 1

)
+ q2

P

pc

(
1 + p−c+r0+1

p− 1− p−c+r0+1

)
(9)

and thus the result of Theorem 1.

9 Discussion and Conclusion
Arithmetization oriented hash functions are a crucial building block in ZKP systems
deployed in the real world (e.g., blockchain L2 rollups). In many cases, the efficiency of

Tomer Ashur, Amit Singh Bhati 17

the hash function is one of the major cost drivers for the entire system. Consequently,
optimizing certain aspects of the hash function results in a net improvement to the
entire system. Work in this field employed the permutation based cryptography paradigm
to construct Sponge-based hash functions. When employing this paradigm, a designer
comes up with a suitable permutation; i.e., a carefully crafted permutation admitting no
distinguishable properties that is efficient to evaluate on the target architecture. Then,
the permutation is used to instantiate a Sponge-function, resulting in a versatile algorithm
that can be used as a hash function.

Indeed, most work in this domain focused on designing more efficient permutations
(for some definition of efficiency). In this work we take a different approach and focus
instead on the Sponge construction itself. As a first contribution, which is of independent
interest, we generalize the sponge construction to GSponge. We then argue the security of
the generalized construction with a formal indifferentiability proof. While the proof alone
does not yet provide any efficiency gain to the concrete system, it is much simpler than the
original proof for Sponges [BDPVA08] and, in our opinion, simpler to grasp by real-world
practitioners. As an additional benefit, we show that the Generalized Sponge can be safely
instantiated with permutations defined over large prime fields. This latter result has been
known as folklore for the original Sponge and overwrite construction; however, we are not
aware of any paper formally proving it.

Thanks to GSponge’s generic structure, we found two micro-optimizations for deployed
sponges. First, we introduce a new type of padding rule based on zero-padding and
domain-separated inputs. This padding rule never extends the message length by a full
rate size block, and consequently, saves one full permutation call in cases where the
unpadded message’s length is already an integral multiple of the rate (e.g., in 2-to-1
Merkle-tree hashing) without increasing the proof generation time in zkVMs like Polygon
Miden. Secondly, we show that in the first permutation call it is possible to absorb up to
c/2 more elements, again resulting in saving a permutation call for some message lengths,
without any loss in the security size, i.e., still ≈ c log2 p/2 bits.

While not asymptotic, these micro-optimizations can be used to improve the hashing
time of practical use-cases (e.g., Merkle-tree hashing, short messages, etc.). As a vision
for future work, we hope that this paper will inspire further work on modes of operation
tailored for permutations defined over large prime fields.

Acknowledgements
Amit Singh Bhati was supported by CyberSecurity Research Flanders with reference
number VR20192203, in part by the Research Council KU Leuven C1 on Security and
Privacy for Cyber-Physical Systems and the Internet of Things with contract number
C16/15/058 and by the Flemish Government through FWO Project G.0835.16 A security
Architecture for IoT.

References
[ABF+08] Elena Andreeva, Charles Bouillaguet, Pierre-Alain Fouque, Jonathan J Hoch,

John Kelsey, Adi Shamir, and Sébastien Zimmer. Second preimage attacks
on dithered hash functions. In Advances in Cryptology–EUROCRYPT 2008:
27th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings
27, pages 270–288. Springer, 2008.

18 Generalized Indifferentiable Sponge and its Application to Polygon Miden VM

[ABKM23] Tomer Ashur, Amit Singh Bhati, Al Kindi, and Mohammad Mahzoun. XHash8
and XHash12: Efficient STARK-friendly Hash Functions. Cryptology ePrint
Archive, 2023.

[ABR21] Elena Andreeva, Rishiraj Bhattacharyya, and Arnab Roy. Compactness of
hashing modes and efficiency beyond Merkle tree. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques -
EUROCRYPT, pages 92–123. Springer, 2021.

[AMP12] Elena Andreeva, Bart Mennink, and Bart Preneel. The parazoa family:
generalizing the sponge hash functions. International Journal of Information
Security, 11:149–165, 2012.

[BDPVA07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. In ECRYPT hash workshop, volume 2007, 2007.

[BDPVA08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On
the indifferentiability of the sponge construction. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques -
EUROCRYPT, pages 181–197. Springer, 2008.

[Bec08] Georg Becker. Merkle signature schemes, merkle trees and their cryptanalysis.
Ruhr-University Bochum, Tech. Rep, 12:19, 2008.

[BMN10] Rishiraj Bhattacharyya, Avradip Mandal, and Mridul Nandi. Security analysis
of the mode of JH hash function. In Fast Software Encryption: 17th Inter-
national Workshop, FSE 2010, Seoul, Korea, February 7-10, 2010, Revised
Selected Papers 17, pages 168–191. Springer, 2010.

[BR06] Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs and the
security of triple encryption. EUROCRYPT 2006, 2006.

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
Merkle-Damgård revisited: How to construct a hash function. In Advances in
Cryptology–CRYPTO 2005: 25th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 14-18, 2005. Proceedings 25, pages
430–448. Springer, 2005.

[CN08] Donghoon Chang and Mridul Nandi. Improved indifferentiability security
analysis of chopMD hash function. In Fast Software Encryption - FSE, pages
429–443. Springer, 2008.

[Dam89] Ivan Bjerre Damgård. A design principle for hash functions. In Conference
on the Theory and Application of Cryptology, pages 416–427. Springer, 1989.

[GK08] Praveen Gauravaram and John Kelsey. Linear-XOR and additive checksums
don’t protect Damgård-Merkle hashes from generic attacks. In Cryptographers’
Track at the RSA Conference, pages 36–51. Springer, 2008.

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. Poseidon: A new hash function for {Zero-Knowledge}
proof systems. In 30th USENIX Security Symposium, pages 519–535, 2021.

[GLP08] Michael Gorski, Stefan Lucks, and Thomas Peyrin. Slide attacks on a class
of hash functions. In Advances in Cryptology-ASIACRYPT, pages 143–160.
Springer, 2008.

Tomer Ashur, Amit Singh Bhati 19

[HK06] Shai Halevi and Hugo Krawczyk. Strengthening digital signatures via random-
ized hashing. In Annual International Cryptology Conference, pages 41–59.
Springer, 2006.

[HS06] Jonathan J Hoch and Adi Shamir. Breaking the ICE–finding multicollisions in
iterated concatenated and expanded (ICE) hash functions. In Fast Software
Encryption: 13th International Workshop, FSE 2006, Graz, Austria, March
15-17, 2006, Revised Selected Papers 13, pages 179–194. Springer, 2006.

[Jou04] Antoine Joux. Multicollisions in iterated hash functions. Application to
cascaded constructions. In Annual International Cryptology Conference,
pages 306–316. Springer, 2004.

[KBM23] Dmitry Khovratovich, Mario Marhuenda Beltrán, and Bart Mennink. Generic
Security of the SAFE API and Its Applications. In International Conference
on the Theory and Application of Cryptology and Information Security -
ASIACRYPT, pages 301–327. Springer, 2023.

[KK06] John Kelsey and Tadayoshi Kohno. Herding hash functions and the Nos-
tradamus attack. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 183–200. Springer, 2006.

[KS05] John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions
for much less than 2 n work. In Advances in Cryptology–EUROCRYPT 2005:
24th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005. Proceedings
24, pages 474–490. Springer, 2005.

[Luc05] Stefan Lucks. A failure-friendly design principle for hash functions. In
Advances in Cryptology-ASIACRYPT, pages 474–494. Springer, 2005.

[Mer89] Ralph C Merkle. One way hash functions and DES. In Conference on the
Theory and Application of Cryptology, pages 428–446. Springer, 1989.

[Mid23] Polygon Miden. https://github.com/0xPolygonMiden/crypto/blob/ne
xt/benches/README.md, 2023.

[MPST16] Dustin Moody, Souradyuti Paul, and Daniel Smith-Tone. Indifferentiability
security of the fast wide pipe hash: Breaking the birthday barrier. Journal of
Mathematical Cryptology, 10(2):101–133, 2016.

[MRH04] Ueli Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability,
impossibility results on reductions, and applications to the random oracle
methodology. In Theory of Cryptography: First Theory of Cryptography Con-
ference, TCC 2004, Cambridge, MA, USA, February 19-21, 2004. Proceedings
1, pages 21–39. Springer, 2004.

[NO14] Yusuke Naito and Kazuo Ohta. Improved indifferentiable security analysis
of PHOTON. In International Conference on Security and Cryptography for
Networks, pages 340–357. Springer, 2014.

[NP10] Mridul Nandi and Souradyuti Paul. Speeding up the wide-pipe: Secure and
fast hashing. In International Conference on Cryptology in India, pages
144–162. Springer, 2010.

[SAD20] Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe. Rescue-prime: a
standard specification (SoK). Cryptology ePrint Archive, 2020.

[Wu11] Hongjun Wu. The hash function JH. Submission to NIST (round 3), 6, 2011.

https://github.com/0xPolygonMiden/crypto/blob/next/benches/README.md
https://github.com/0xPolygonMiden/crypto/blob/next/benches/README.md

	Introduction
	Our Contribution

	Related Work
	Paper Organization
	Preliminaries
	Notation
	Statistical Distance
	Indifferentiability

	GSponge: A Generalized Sponge Mode
	Security of GSponge

	Sponge2: An Efficient GSponge Instantiation
	Security of Sponge2
	Sponge2 under Multi-rate and Multi-protocol Setting

	Applications of Sponge2 in Polygon Miden VM
	Security Analysis
	Discussion and Conclusion
	References

