
FIDO UAF Registry of Predefined Values
FIDO Alliance Proposed Standard 02 February 2017
This version:

https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-reg-v1.1-ps-20170202.html
Previous version:

https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-reg-v1.1-id-20170202.html
Editor:

Dr. Rolf Lindemann, Nok Nok Labs, Inc.
Contributors:

Davit Baghdasaryan, Nok Nok Labs, Inc.
Brad Hill, PayPal

The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2017 FIDO Alliance All Rights Reserved.

Abstract
This document defines all the strings and constants reserved by UAF protocols. The values defined in this document are
referenced by various UAF specifications.

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may supersede this
document. A list of current FIDO Alliance publications and the latest revision of this technical report can be found in the
FIDO Alliance specifications index at https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding
this document, please Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights,
including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the
Specification are not, and shall not be held, responsible in any manner for identifying or failing to identify any or all such
third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable
document and may be used as reference material or cited from another document. FIDO Alliance's role in making the
Recommendation is to draw attention to the specification and to promote its widespread deployment.

Table of Contents
1. Notation

1.1 Key Words
2. Overview
3. Authenticator Characteristics

3.1 Assertion Schemes
4. Predefined Tags

4.1 Tags used in the protocol

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-reg-v1.1-ps-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-reg-v1.1-id-20170202.html
mailto:rolf@noknok.com
https://www.noknok.com/
https://www.noknok.com/
https://www.paypal.com/
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

5. Predefined (untagged) Extensions
5.1 Android SafetyNet Extension
5.2 Android Key Attestation

6. Other Identifiers specific to FIDO UAF
6.1 FIDO UAF Application Identifier (AID)

A. References
A.1 Normative references
A.2 Informative references

1. Notation
Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and
“optional” in this document are to be interpreted as described in [RFC2119].

2. Overview
This section is non-normative.

This document defines the registry of UAF-specific constants that are used and referenced in various UAF specifications.
It is expected that, over time, new constants will be added to this registry. For example new authentication algorithms
and new types of authenticator characteristics will require new constants to be defined for use within the specifications.

FIDO-specific constants that are common to multiple protocol families are defined in [FIDORegistry].

3. Authenticator Characteristics
This section is normative.

3.1 Assertion Schemes

Names of assertion schemes are strings with a length of 8 characters.

UAF TLV based assertion scheme “UAFV1TLV”
This assertion scheme allows the authenticator and the FIDO Server to exchange an asymmetric authentication
key generated by the authenticator. The authenticator must generate a key pair (UAuth.pub/UAuth.priv) to be used
with algorithm suites listed in [FIDORegistry] section "Authentication Algorithms" (with prefix ALG_). This assertion
scheme is using a compact Tag Length Value (TLV) encoding for the KRD and SignData messages generated by
the authenticators. This is the default assertion scheme for the UAF protocol.

4. Predefined Tags
This section is normative.

The internal structure of UAF authenticator commands is a “Tag-Length-Value” (TLV) sequence. The tag is a 2-byte
unique unsigned value describing the type of field the data represents, the length is a 2-byte unsigned value indicating
the size of the value in bytes, and the value is the variable-sized series of bytes which contain data for this item in the
sequence.

Although 2 bytes are allotted for the tag, only the first 14 bits (values up to 0x3FFF) should be used to accommodate the
limitations of some hardware platforms.

A tag that has the 14th bit (0x2000) set indicates that it is critical and a receiver must abort processing the entire
message if it cannot process that tag.

A tag that has the 13th bit (0x1000) set indicates a composite tag that can be parsed by recursive descent.

4.1 Tags used in the protocol

The following tags have been allocated for data types in UAF protocol messages:

TAG_UAFV1_REG_ASSERTION 0x3E01
The content of this tag is the authenticator response to a Register command.

TAG_UAFV1_AUTH_ASSERTION 0x3E02

The content of this tag is the authenticator response to a Sign command.
TAG_UAFV1_KRD 0x3E03

Indicates Key Registration Data.
TAG_UAFV1_SIGNED_DATA 0x3E04

Indicates data signed by the authenticator using UAuth.priv key.
TAG_ATTESTATION_CERT 0x2E05

Indicates DER encoded attestation certificate.
TAG_SIGNATURE 0x2E06

Indicates a cryptographic signature.
TAG_ATTESTATION_BASIC_FULL 0x3E07

Indicates full basic attestation as defined in [UAFProtocol].
TAG_ATTESTATION_BASIC_SURROGATE 0x3E08

Indicates surrogate basic attestation as defined in [UAFProtocol].
TAG_ATTESTATION_ECDAA 0x3E09

Indicates use of elliptic curve based direct anonymous attestation as defined in [FIDOEcdaaAlgorithm]. Support for
this attestation type is optional at this time. It might be required by FIDO Certification.

TAG_KEYID 0x2E09
Represents a generated KeyID.

TAG_FINAL_CHALLENGE_HASH 0x2E0A
Represents a generated final challenge hash as defined in [UAFProtocol].

TAG_AAID 0x2E0B
Represents an Authenticator Attestation ID as defined in [UAFProtocol].

TAG_PUB_KEY 0x2E0C
Represents a generated public key.

TAG_COUNTERS 0x2E0D
Represents the use counters for an authenticator.

TAG_ASSERTION_INFO 0x2E0E
Represents authenticator information necessary for message processing.

TAG_AUTHENTICATOR_NONCE 0x2E0F
Represents a nonce value generated by the authenticator.

TAG_TRANSACTION_CONTENT_HASH 0x2E10
Represents a hash of the transaction content sent to the authenticator.

TAG_EXTENSION 0x3E11, 0x3E12
This is a composite tag indicating that the content is an extension.

TAG_EXTENSION_ID 0x2E13
Represents extension ID. Content of this tag is a UINT8[] encoding of a UTF-8 string.

TAG_EXTENSION_DATA 0x2E14
Represents extension data. Content of this tag is a UINT8[] byte array.

TAG_RAW_USER_VERIFICATION_INDEX 0x0103
This is the raw UVI as it might be used internally by authenticators. This TAG shall not appear in assertions leaving
the authenticator boundary as it could be used as global correlation handle.

TAG_USER_VERIFICATION_INDEX 0x0104
The user verification index (UVI) is a value uniquely identifying a user verification data record.

Each UVI value must be specific to the related key (in order to provide unlinkability). It also must contain sufficient
entropy that makes guessing impractical. UVI values must not be reused by the Authenticator (for other biometric
data or users).

The UVI data can be used by FIDO Servers to understand whether an authentication was authorized by the exact
same biometric data as the initial key generation. This allows the detection and prevention of "friendly fraud".

As an example, the UVI could be computed as SHA256(KeyID | SHA256(rawUVI)), where the rawUVI reflects (a)
the biometric reference data, (b) the related OS level user ID and (c) an identifier which changes whenever a
factory reset is performed for the device, e.g. rawUVI = biometricReferenceData | OSLevelUserID |
FactoryResetCounter.

FIDO Servers supporting UVI extensions must support a length of up to 32 bytes for the UVI value.

Example of the TLV encoded UVI extension (contained in an assertion, i.e. TAG_UAFV1_REG_ASSERTION or
TAG_UAFV1_AUTH_ASSERTION)

 ...
 04 01 -- TAG_USER_VERIFICATION_INDEX (0x0104)
 20 -- length of UVI
 00 43 B8 E3 BE 27 95 8C -- the UVI value itself
 28 D5 74 BF 46 8A 85 CF
 46 9A 14 F0 E5 16 69 31
 DA 4B CF FF C1 BB 11 32
 82
 ...

TAG_RAW_USER_VERIFICATION_STATE 0x0105
This is the raw UVS as it might be used internally by authenticators. This TAG shall not appear in assertions leaving
the authenticator boundary as it could be used as global correlation handle.

TAG_USER_VERIFICATION_STATE 0x0106
The user verification state (UVS) is a value uniquely identifying the set of active user verification data records.

Each UVS value must be specific to the related key (in order to provide unlinkability). It also must contain sufficient
entropy that makes guessing impractical. UVS values must not be reused by the Authenticator (for other biometric
data sets or users).

The UVS data can be used by FIDO Servers to understand whether an authentication was authorized by one of the
biometric data records already known at the initial key generation.

As an example, the UVS could be computed as SHA256(KeyID | SHA256(rawUVS)), where the rawUVS reflects
(a) the biometric reference data sets, (b) the related OS level user ID and (c) an identifier which changes whenever
a factory reset is performed for the device, e.g. rawUVS = biometricReferenceDataSet | OSLevelUserID |
FactoryResetCounter.

FIDO Servers supporting UVS extensions must support a length of up to 32 bytes for the UVS value.

Example of the TLV encoded UVS extension (contained in an assertion, i.e. TAG_UAFV1_REG_ASSERTION or
TAG_UAFV1_AUTH_ASSERTION)

 ...
 06 01 -- TAG_USER_VERIFICATION_STATE (0x0106)
 20 -- length of UVS
 00 18 C3 47 81 73 2B 65 -- the UVS value itself
 83 E7 43 31 46 8A 85 CF
 93 6C 36 F0 AF 16 69 14
 DA 4B 1D 43 FE C7 43 24
 45
 ...

TAG_RESERVED_5 0x0201
Reserved for future use. Name of the tag will change, value is fixed.

5. Predefined (untagged) Extensions
This section is normative.

5.1 Android SafetyNet Extension

This extension can be added

by FIDO Servers to the UAF Request object (request extension) in the OperationHeader in order to trigger
generation of the related response extension.
by FIDO Clients to the ASM Request object (request extension) in order to trigger generation of the related
response extension.
by the ASM to the respective exts array in the ASMResponse object (response extension).
by the FIDO Client to the respective exts array in either the OperationHeader, or the
AuthenticatorRegistrationAssertion, or the AuthenticatorSignAssertion of the UAF Response object (response
extension).

Extension identifier
fido.uaf.safetynet

Extension fail-if-unknown flag
false, i.e. this (request and response) extension can safely be ignored by all entities.

Extension data value

When present in a request (request extension)
empty string, i.e. the FIDO Server might add this extension to the UAF Request with an empty data value in
order to trigger the generation of this extension for the UAF Response.

When present in a response (response extension)

If the request extension was successfully processed, the data value is set to the JSON Web Signature
attestation result as returned by the call to
com.google.android.gms.safetynet.SafetyNetApi.AttestationResult.
If the FIDO Client or the ASM support this extension, but the underlying Android platform does not
support it (e.g. Google Play Services is not installed), the data value is set to the string "p" (i.e. platform
issue).

If the FIDO Client or the ASM support this extension and the underlying Android platform supports it, but
the functionality is temporarily unavailable (e.g. Google servers are unreachable), the data value is set
to the string "a" (i.e. availability issue).

EXAMPLE 1: SafetyNet Request Extension
"exts": [{"id": "fido.uaf.safetynet", "data": "", "fail_if_unknown": false}]

EXAMPLE 2: SafetyNet Response Extension - not supported by platform
"exts": [{"id": "fido.uaf.safetynet", "data": "p", "fail_if_unknown": false}]

EXAMPLE 3: SafetyNet Response Extension - temporarily unavailable
"exts": [{"id": "fido.uaf.safetynet", "data": "a", "fail_if_unknown": false}]

https://developers.google.com/android/reference/com/google/android/gms/safetynet/SafetyNetApi.AttestationResult

FIDO Client processing

FIDO Clients running on Android should support processing of this extension.

If the FIDO Client finds this (request) extension with empty data value in the UAF Request and it supports
processing this extension, then the FIDO Client

1. must call the Android API SafetyNet.SafetyNetApi.attest(mGoogleApiClient, nonce) (see SafetyNet online
documentation) and add the response (or an error code as described above) as extension to the response
object.

2. must not copy the (request) extension to the ASM Request object (deviating from the general rule in
[UAFProtocol], section 3.4.6.2 and 3.5.7.2).

If the FIDO Client does not support this extension it must copy this extension from the UAF Request to the ASM
Request object (according to the general rule in [UAFProtocol], section 3.4.6.2 and 3.5.7.2).

If the ASM supports this extension it must call the SafetyNet API (see above) and add the response as extension to
the ASM Response object. The FIDO Client must copy the extension in the ASM Response to the UAF Response
object (according to sections 3.4.6.4. and 3.5.7.4 step 4 in [UAFProtocol]).

When calling the Android API, the nonce parameter must be set to the serialized JSON object with the following
structure:

{
 "hashAlg": "S256", // the hash algorithm
 "fcHash": "..." // the finalChallengeHash
}

Where

hashAlg identifies the hash algorithm according to [FIDOSignatureFormat], section IANA Considerations.
fcHash is the base64url encoded hash value of FinalChallenge (see section 3.6.3 and 3.7.4 in [UAFASM] for
details on how to compute finalChallengeHash).
We use this method to bind this SafetyNet extension to the respective FIDO UAF message.

Only hash algorithms belonging to the Authentication Algorithms mentioned in [FIDORegistry] shall be used
(e.g. SHA256 because it belongs to ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW).

Authenticator argument
N/A

Authenticator processing
N/A. This extension is related to the Android platform in general and not to the authenticator in particular. As a
consequence there is no need for an authenticator to receive the (request) extension nor to process it.

Authenticator data
N/A

Server processing
If the FIDO Server requested the SafetyNet extension,

1. it should verify that a proper response is provided (if client side support can be assumed), and
2. it should verify the SafetyNet AttestationResult (see SafetyNet online documentation).

5.2 Android Key Attestation

This extension can be added

by FIDO Servers to the UAF Request object (request extension) in the OperationHeader in order to trigger

NOTE

If neither the FIDO Client nor the ASM support this extension, it won't be present in the response
object.

NOTE

The package name in AttestationResult might relate to either the FIDO Client or the ASM.

NOTE

The response extension is not part of the signed assertion generated by the authenticator. If an MITM or
MITB attacker would remove the response extension, the FIDO server might not be able to distinguish this
from the "SafetyNet extension not supported by FIDO Client/ASM" case.

https://developer.android.com/training/safetynet/index.html#compat-check-response
https://developer.android.com/training/safetynet/index.html#compat-check-response

generation of the related response extension.
by FIDO Clients to the ASM Request object (request extension) in order to trigger generation of the related
response extension.
by the ASM to the respective exts array in the ASMResponse object (response extension).
by the FIDO Client to the respective exts array in either the OperationHeader, or the
AuthenticatorRegistrationAssertion, or the AuthenticatorSignAssertion of the UAF Response object (response
extension).

Extension identifier
fido.uaf.android.key_attestation

Extension fail-if-unknown flag
false, i.e. this (request and response) extension can safely be ignored by all entities.

Extension data value

When present in a request (request extension)
empty string, i.e. the FIDO Server might add this extension to the UAF Request with an empty data value in
order to trigger the generation of this extension for the UAF Response.

When present in a response (response extension)

If the request extension was successfully processed, the data value is set to a JSON array containing
the base64 encoded entries of the array returned by the call to the KeyStore API function
getCertificateChain.

If the FIDO Client or the ASM support this extension, but the underlying Android platform does not
support it (e.g. Android version doesn't yet support it), the data value is set to the string "p" (i.e. platform
issue).

If the FIDO Client or the ASM support this extension and the underlying Android platform supports it, but
the functionality is temporarily unavailable (e.g. Google servers are unreachable), the data value is set
to the string "a".

EXAMPLE 4: Android KeyAttestation Request Extension
"exts": [{"id": "fido.uaf.android.key_attestation", "data": "", "fail_if_unknown": false}]

EXAMPLE 5: Retrieve KeyAttestation and add it as extension
KeyPairGenerator kpGenerator = KeyPairGenerator.getInstance(
 KeyProperties.KEY_ALGORITHM_EC, "AndroidKeyStore");
kpGenerator.initialize(
 new KeyGenParameterSpec.Builder(keyUUID, KeyProperties.PURPOSE_SIGN)
 .setDigests(KeyProperties.DIGEST_SHA256)
 .setAlgorithmParameterSpec(new ECGenParameterSpec("prime256v1"))
 .setCertificateSubject(
 new X500Principal(String.format("CN=%s, OU=%s",
 keyUUID, aContext.getPackageName())))
 .setCertificateSerialNumber(BigInteger.ONE)
 .setCertificateNotBefore(notBefore.getTime())
 .setCertificateNotAfter(notAfter.getTime())
 .setUserAuthenticationRequired(true)
 .setAttestationChallenge(fcHash) -- bind to Final Challenge
 .build());

kpGenerator.generateKeyPair(); // generate Uauth key pair

Certificate[] certarray=myKeyStore.getCertificateChain(keyUUID);
String certArray[]=new String[certarray.length];
int i=0;
for (Certificate cert : certarray) {
 byte[] buf = cert.getEncoded();
 certArray[i] = new String(Base64.encode(buf, Base64.DEFAULT));
 i++;
}

JSONArray jarray=new JSONArray(certArray);
String key_attestation_data=jarray.toString();

EXAMPLE 6: KeyAttestation Response Extension - not supported by platform
"exts": [{"id": "fido.uaf.android.key_attestation", "data": "p", "fail_if_unknown": false}]

EXAMPLE 7: KeyAttestation Response Extension - temporarily unavailable
"exts": [{"id": "fido.uaf.android.key_attestation", "data": "a", "fail_if_unknown": false}]

NOTE

FIDO Client processing

FIDO Clients running on Android must pass this (request) extension with empty data value to the ASM.

If the ASM supports this extension it must call the KeyStore API (see above) and add the response as extension to
the ASM Response object. The FIDO Client must copy the extension in the ASM Response to the UAF Response
object (according to sections 3.4.6.4. and 3.5.7.4 step 4 in [UAFProtocol]).

More details on Android key attestation can be found at:

https://developer.android.com/preview/api-overview.html#key_attestation
https://source.android.com/security/keystore/
https://source.android.com/security/keystore/implementer-ref.html

Authenticator argument
N/A

Authenticator processing
The authenticator generates the attestation response. The call keyStore.getCertificateChain is finally processed by
the authenticator.

Authenticator data
N/A

Server processing
If the FIDO Server requested the key attestation extension,

1. it must follow the registration response processing rules (see FIDO UAF Protocol, section 3.4.6.5) before
processing this extension

2. it must verify the syntax of the key attestation extension and it must perform RFC5280 compliant chain
validation of the entries in the array to one attestationRootCertificate specified in the Metadata Statement.

3. it must determine the leaf certificate from that chain, and it must perform the following checks on this leaf
certificate

1. Verify that KeyDescripion.attestationChallenge == FCHash (see FIDO UAF Protocol, section 3.4.6.5
Step 6.)

2. Verify that the public key included in the leaf certificate is identical to the public key included in the FIDO
UAF Surrogate attestation block

3. If the related Metadata Statement claims keyProtection KEY_PROTECTION_TEE, then refer to
KeyDescription.teeEnforced using "authzList". If the related Metadata Statement claims keyProtection
KEY_PROTECTION_SOFTWARE, then refer to KeyDescription.softwareEnforced using "authzList".

4. Verify that
1. authzList.origin == KM_TAG_GENERATED
2. authzList.purpose == KM_PURPOSE_SIGN
3. authzList.keySize is acceptable, i.e. =2048 (bit) RSA or =256 (bit) ECDSA.
4. authzList.digest == KM_DIGEST_SHA_2_256.
5. authzList.authType only contains acceptable user verification methods.
6. authzList.authTimeout == 0 (or not present).
7. authzList.noAuthRequired is not present (unless the Metadata Statement marks this authenticator

as silent authenticator, i.e. userVerificaton set to USER_VERIFY_NONE).
8. authzList.allApplications is not present, since FIDO Uauth keys must be bound to the generating

app (AppID).

ExtensionDescriptor data value (for Metadata Statement)
In the case of extension id="fido.uaf.android.key_attestation", the data field of the ExtensionDescriptor as included
in the Metadata Statement will contain a dictionary containing the following data fields

DOMString attestationRootCertificates[]
Each element of this array represents a PKIX [RFC5280] X.509 certificate that is valid for this authenticator
model. Multiple certificates might be used for different batches of the same model. The array does not
represent a certificate chain, but only the trust anchor of that chain.

Each array element is a base64-encoded (section 4 of [RFC4648]), DER-encoded [ITU-X690-2008] PKIX
certificate value.

If neither the FIDO Client nor the ASM support this extension, it won't be present in the response
object.

NOTE

The response extension is not part of the signed assertion generated by the authenticator. If an MITM or
MITB attacker would remove the response extension, the FIDO server might not be able to distinguish this
from the "KeyAttestation extension not supported by ASM/Authenticator" case.

https://developer.android.com/preview/api-overview.html#key_attestation
https://source.android.com/security/keystore/
https://source.android.com/security/keystore/implementer-ref.html

An example for the supportedExtensions field in the Metadata Statement could look as follows (with line breaks to
improve readability):

6. Other Identifiers specific to FIDO UAF
6.1 FIDO UAF Application Identifier (AID)

This AID [ISOIEC-7816-5] is used to identify FIDO UAF authenticator applications in a Secure Element.

The FIDO UAF AID consists of the following fields:

Table 1: FIDO UAF Applet AID

Field RID AC AX
Value 0xA000000647 0xAF 0x0001

A. References
A.1 Normative references

[FIDOEcdaaAlgorithm]
R. Lindemann, J. Camenisch, M. Drijvers, A. Edgington, A. Lehmann, R. Urian, FIDO ECDAA Algorithm. FIDO
Alliance Implementation Draft. URLs:
HTML: fido-ecdaa-v1.1-id-20170202.html
PDF: fido-ecdaa-v1.1-id-20170202.pdf.

[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Hodges, FIDO Technical Glossary. FIDO Alliance Implementation Draft.
URLs:
HTML: fido-glossary-v1.1-id-20170202.pdf

[FIDORegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO Registry of Predefined Values. FIDO Alliance Implementation Draft.
URLs:
HTML: fido-registry-v1.1-id-20170202.pdf

[ISOIEC-7816-5]
ISO 7816-5: Identification cards - Integrated circuit cards - Part 5: Registration of application providers

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

A.2 Informative references

[FIDOMetadataStatement]
B. Hill, D. Baghdasaryan, J. Kemp, FIDO Metadata Statements v1.0. FIDO Alliance Implementation Draft. URLs:
HTML: fido-metadata-statements.pdf

[FIDOSignatureFormat]
FIDO 2.0: Signature format. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-

NOTE

A certificate listed here is either a root certificate or an intermediate CA certificate.

NOTE

The field data is specified with type DOMString in [FIDOMetadataStatement] and hence will contain the
serialized object as described above.

EXAMPLE 8: Example of a supportedExtensions field in Metadata Statement
"supportedExtensions": [{
 "id": "fido.uaf.android.key_attestation",
 "data": "{ \"attestationRootCertificates\": [
\"MIICPTCCAeOgAwIBAgIJAOuexvU3Oy2wMAoGCCqGSM49BAMCMHsxIDAeBgNVBAMM
F1NhbXBsZSBBdHRlc3RhdGlvbiBSb290MRYwFAYDVQQKDA1GSURPIEFsbGlhbmNl
MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswCQYDVQQI
DAJDQTELMAkGA1UEBhMCVVMwHhcNMTQwNjE4MTMzMzMyWhcNNDExMTAzMTMzMzMy
WjB7MSAwHgYDVQQDDBdTYW1wbGUgQXR0ZXN0YXRpb24gUm9vdDEWMBQGA1UECgwN
RklETyBBbGxpYW5jZTERMA8GA1UECwwIVUFGIFRXRywxEjAQBgNVBAcMCVBhbG8g
QWx0bzELMAkGA1UECAwCQ0ExCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIKoZI
zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUpOZ3ajnuQ94PR7
aMzH33nUSBr8fHYDrqOBb58pxGqHJRyX/6NQME4wHQYDVR0OBBYEFPoHA3CLhxFb
C0It7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbC0It7zE4w8hk5EJ/MAwG
A1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSAAwRQIhAJ06QSXt9ihIbEKYKIjsPkri
VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63rruAxBZ9ps9z2XN
lQ==\"] }",
 "fail_if_unknown": false
 }]

https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-ecdaa-v1.1-id-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-ecdaa-v1.1-id-20170202.pdf
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-glossary-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-registry-v1.1-ps-20170202.html
PDF: <a href=
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-metadata-statement-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-ps-20150904.html

ps-20150904.html
[ITU-X690-2008]

X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-200811). International
Telecommunications Union, November 2008 URL: http://www.itu.int/rec/T-REC-X.690-200811-I/en

[RFC4648]
S. Josefsson, The Base16, Base32, and Base64 Data Encodings (RFC 4648), IETF, October 2006, URL:
http://www.ietf.org/rfc/rfc4648.txt

[RFC5280]
D. Cooper, S. Santesson, s. Farrell, S.Boeyen, R. Housley, W. Polk; Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile, IETF, May 2008, URL: http://www.ietf.org/rfc/rfc5280.txt

[UAFASM]
D. Baghdasaryan, J. Kemp, R. Lindemann, B. Hill, R. Sasson, FIDO UAF Authenticator-Specific Module API. FIDO
Alliance Implementation Draft. URLs:
HTML: fido-uaf-asm-api-v1.1-id-20170202.pdf

[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany, D. Balfanz, B. Hill, J. Hodges, FIDO UAF Protocol Specification v1.0.
FIDO Alliance Proposed Standard. URLs:
HTML: fido-uaf-protocol-v1.1-id-20170202.pdf

http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-asm-api-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-protocol-v1.1-ps-20170202.html
PDF: <a href=

	FIDO UAF Registry of Predefined Values
	FIDO Alliance Proposed Standard 02 February 2017
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	3. Authenticator Characteristics
	3.1 Assertion Schemes

	4. Predefined Tags
	4.1 Tags used in the protocol

	5. Predefined (untagged) Extensions
	5.1 Android SafetyNet Extension
	5.2 Android Key Attestation

	6. Other Identifiers specific to FIDO UAF
	6.1 FIDO UAF Application Identifier (AID)

	A. References
	A.1 Normative references
	A.2 Informative references

