
Computer Science

18COC251

B627091

Alembicue:
A projectional editor & IDE for

container application architecture

George Garside

Supervisor: Dr. Daniel Reidenbach

Loughborough University

Summer 2019

Abstract
The lack of a competent integrated development environment for Docker is a detriment to
the field of containerisation and cloud computing. This project documents the development
of Alembicue, a projectional and productive Docker IDE, implementing a more formally
specified language definition, representative of what is necessary to create images for
use with a containerisation platform. Alembicue guarantees syntactic correctness with a
projectional editor mutating an abstract syntax tree, incorporating contextual intentions
and quick fixes to suggest and automatically apply standards and best practices.
Alembicue’s launch has been a success, being received well by the community with
tens of thousands of interested visitors to the project page, and elated testimonials
from those having used the application and the innovative concepts portrayed within.

Acknowledgements
I would like to thank my supervisor, Dr. Daniel Reidenbach, for his
consistent support and valuable feedback on my work. I would also
like to thank my family and friends for their support in my studies.

ii

alembicate, v. 1627. transitive. Chiefly figurative:
to produce, refine, or transform (an idea, emotion, etc.)
as if in an alembic. Cf. alembicated adj.

cue, n.2 1553. 1c. A stimulus or signal to perception,
articulation, or other physiological response.

Oxford English Dictionary (1989).

alembicue, n. 2019. Chiefly emblematic: the juncture of
the production of imagery and the container articulation
process founded on the aforesaid.

With apologies to linguists.

iii

Contents

I Foundation 1

1 Introduction 2
1.1 Overview . 2
1.2 Motivation . 2
1.3 Benefits . 3
1.4 Objectives . 4

1.4.1 Deliverables . 5
1.4.2 Deliverable constraints . 6

1.5 Methodology . 6
1.5.1 Formal methodologies . 6
1.5.2 Work plan . 7

2 Literature Review 8
2.1 Plain text editing . 8
2.2 Structure editing . 9
2.3 Projectional editing . 10

3 Background 11
3.1 Containerisation . 11

3.1.1 Images & containers . 11
3.1.2 Image build process . 11

3.2 Language workbenches . 12
3.2.1 Eclipse Xtext . 13
3.2.2 Whole Platform . 14
3.2.3 JetBrains MPS . 15

4 Gap Analysis 17
4.1 dockerfile-editor.com . 17
4.2 Visual Studio Code . 19
4.3 docker build . 21

5 Tools 22
5.1 Languages . 22
5.2 Environment . 23
5.3 Version control . 23
5.4 LATEX . 23

5.4.1 Document class . 24
5.4.2 Syntax diagram notation . 25

iv

II Projectional Editor 26

6 Design 27
6.1 Aspects . 27

6.1.1 Concepts . 28
6.1.2 Editor . 30

6.2 Syntax highlighting . 30
6.3 Code completion . 31
6.4 Intentions . 32

6.4.1 Declaration . 32
6.4.2 Editor invocation . 32
6.4.3 More options . 33

6.5 Type system warnings, errors & info . 33
6.5.1 Resolving . 34
6.5.2 Suppressing . 34

6.6 Context assistant . 35

7 Type system 36
7.1 Instruction . 36

7.1.1 Keyword . 36
7.1.2 Editor components . 36
7.1.3 Behaviour . 37

7.2 Key-value . 38
7.2.1 KeyValue . 38
7.2.2 Key-value instruction . 39

7.3 File . 39
7.3.1 Element factory . 39
7.3.2 Behaviour . 40
7.3.3 Text generation . 40

7.4 BlankLine . 41
7.4.1 Instruction completion . 41
7.4.2 Instruction deletion . 43

7.5 Comment . 44
7.5.1 Line comments . 44
7.5.2 Inline comments . 45

8 Environment configuration 46
8.1 FROM . 46

8.1.1 Parameters to a build stage . 46
8.1.2 Image version either/or implementation . 46
8.1.3 Postfix version property code completion . 47

v

8.1.4 Placement of instruction . 48
8.1.5 Multi-stage builds . 48

8.2 LABEL, ENV & ARG . 50
8.2.1 Comparison . 50
8.2.2 ARG before FROM . 51
8.2.3 List folding . 51

9 Execution preparation 52
9.1 Command . 52

9.1.1 Changing command form . 52
9.1.2 Shell text generation . 53

9.2 Command instruction . 53
9.2.1 SHELL . 54
9.2.2 Node factory . 54
9.2.3 Change SHELL . 54

9.3 RUN, CMD & ENTRYPOINT . 55
9.3.1 Using CMD with ENTRYPOINT . 55
9.3.2 Overridden CMD instructions . 56

10 Container configuration 57
10.1 USER . 57

10.1.1 User and group . 57
10.1.2 Creation of user . 58

10.2 STOPSIGNAL . 58
10.2.1 Completion . 58

10.3 ONBUILD . 59
10.3.1 Trigger instruction . 59
10.3.2 Deletion action on child and parent . 59
10.3.3 Constraints for parent . 60

11 Filesystem modification 61
11.1 WORKDIR . 61
11.2 VOLUME . 61
11.3 Path . 62

11.3.1 Local relative path . 62
11.3.2 Remote path . 64

11.4 ADD & COPY . 64
11.4.1 Sources list . 65
11.4.2 Change file owner . 66
11.4.3 COPY from build stage . 67

vi

12 Metadata management 69
12.1 MAINTAINER . 69

12.1.1 Parameter . 69
12.1.2 Placement in file . 69
12.1.3 Deprecation of instruction . 70

12.2 EXPOSE . 71
12.2.1 Port & Protocol . 71
12.2.2 Sorting . 72

III Integrated Development Environment 73

13 Editor integration 74
13.1 Document editor . 74

13.1.1 Current line . 74
13.1.2 Node explorer . 75

13.2 Navigation . 75
13.2.1 Arrow keys . 76
13.2.2 Mouse clicks . 76
13.2.3 Selection . 77
13.2.4 Moving nodes . 78
13.2.5 Duplicating nodes . 78

14 Project integration 79
14.1 Out of box experience . 79
14.2 Welcome experience . 80

14.2.1 Options . 80
14.2.2 Additional options . 81

14.3 New project wizard . 81
14.3.1 Project parameters . 82
14.3.2 Creation steps . 83

14.4 Version control system . 84
14.4.1 Import from repository . 84
14.4.2 Code change hints . 84
14.4.3 Model comparison . 85

IV Review 87

15 Testing 88
15.1 Unit testing . 88

15.1.1 Running tests . 88
15.1.2 Test summary . 88

vii

15.2 Integration testing . 90

16 Release 92
16.1 Name . 92
16.2 Compilation . 92

16.2.1 Model checker . 93
16.2.2 Build for development . 93
16.2.3 Build for distribution . 94
16.2.4 Code signing . 95

16.3 Webpage . 96
16.3.1 Header . 96
16.3.2 Animation . 96
16.3.3 Download . 97
16.3.4 Testimonials . 97

16.4 Versions . 99

17 Evaluation 102
17.1 Success criteria . 102
17.2 Release . 106

17.2.1 Organic search . 106
17.2.2 Direct or referral . 107
17.2.3 Conversions . 108

17.3 Reception . 109
17.3.1 New project issues . 109
17.3.2 Setup concerns . 110
17.3.3 Commendations . 111
17.3.4 Concept feedback . 112
17.3.5 Released versions . 113
17.3.6 Suggested improvements . 113

17.4 Future work . 113
17.4.1 Language functionality . 114
17.4.2 Contextual assistance improvements . 114
17.4.3 Orchestration languages . 114

18 Conclusion 116

Bibliography 117

viii

Figures

1.1 Project Gantt chart . 7

3.1 Example ‘binary run’ instructions . 12
3.2 Xtext example in Eclipse IDE screenshot (Efftinge, 2015) . 13
3.3 Whole Platform example projectional editor for construction of Java (Solmi, 2017) 14
3.4 JetBrains MPS example projectional editor for voice menu (JetBrains s.r.o., 2018b) 15

4.1 Dockerfile with instruction missing required parameter . 18
4.2 Dockerfile with instruction incorrectly outside of build context 18
4.3 Docker Hub request failed access control checks . 18
4.4 Incorrect code completion suggestion for instruction keyword within instruction 19
4.5 Visual Studio Code Dockerfile error lacking intention to resolve issue 20
4.6 Visual Studio Code lacking check of reference . 21
4.7 docker build linting occurring in Docker engine after instructions are built 21

5.1 Transformation of MPS language to Java . 22
5.2 Transformation of Base Language to Java . 22
5.3 Transformation of build script language through to Ant . 23

6.1 Example mapping from concept construction to aspect systems 27
6.2 Example composition of a concept . 28
6.3 Language structure diagram . 29
6.4 Code completion for instruction names, showing an abridged list based on context 31
6.5 Intention help text on light bulb hover . 33
6.6 More intention options . 33
6.7 Warnings and errors shown by scrollbar in editor area . 34
6.8 Intention to suppress type system messages . 35
6.9 Example context assistant as implemented in Alembicue . 35

7.1 Example instruction diagram . 36
7.2 Instruction implementation hierarchy . 36
7.3 Instruction keymap for statement completion editor shortcut 37
7.4 Key-value pair example . 38
7.5 Value type highlighting . 38
7.6 KeyValue_Actions backspace to move from empty value to key 39
7.7 File implementation hierarchy . 40
7.8 File’s addFROM behaviour . 40
7.9 File text generation for each instruction . 41
7.10 New instruction keyword automatic completion example . 42
7.11 Implementation of aggressive side transformation for instruction completion 42
7.12 Deletion approval of ambiguous deletion command for node 43
7.13 Replacing instruction instances with blank line on deletion . 44

ix

7.14 Example line and inline comment . 44
7.15 Example inline comment and uncomment actions . 45

8.1 FROM instruction diagram . 46
8.2 FROM editor examples . 46
8.3 FROM implementation hierarchy . 47
8.4 FROM instruction editor, ‘latest’ tag code completion . 47
8.5 Menu part providing property values for tag in FROM instruction 48
8.6 Checking rule pseudocode for ordering requirement on FROM instructions 48
8.7 FROM editor projection of as separator . 49
8.8 Instruction behaviour indexOfType . 49
8.9 LABEL, ENV and ARG instruction diagrams . 50
8.10 Example of undefined build-time variable caused by ARG scoping 51
8.11 Code folding of list of key-value pairs . 51

9.1 Command editor projection of forms . 53
9.2 Command shell form text generation . 53
9.3 CommandInstruction implementation hierarchy . 53
9.4 SHELL instruction diagram . 54
9.5 RUN, ENTRYPOINT and CMD instruction diagrams . 55

10.1 USER instruction diagram . 57
10.2 USER implementation hierarchy . 57
10.3 Automation of prerequisite instructions for USER on Windows 58
10.4 STOPSIGNAL instruction diagram . 58
10.5 ONBUILD instruction diagram . 59
10.6 ONBUILD implementation hierarchy . 59
10.7 ONBUILD backspace action to handle deletion of contained trigger instruction versus the

container ONBUILD instruction . 60

11.1 WORKDIR instruction diagram . 61
11.2 VOLUME instruction diagram . 62
11.3 Path diagram . 62
11.4 Node explorer displaying example PathRelative instance . 63
11.5 Path implementation hierarchy . 64
11.6 ADD and COPY implementation hierarchies . 65
11.7 ADD sources list to be copied with path validation and completion for folder name 66
11.8 Performing ‘chown’ by passing USER to ADD . 66
11.9 Model accessor for COPY’s reference to build stage . 67

12.1 MAINTAINER instruction diagram . 69
12.2 Warning: ‘MAINTAINER’ is an instance of deprecated concept . 70
12.3 MAINTAINER ReplaceMaintainerWithLabel error intention . 70
12.4 EXPOSE instruction diagram . 71

x

12.5 EXPOSE implementation hierarchy including Port & PortProtocol 71
12.6 Presenting code completion list with transformation menu for PortProtocol 72
12.7 EXPOSE behaviour aspect . 72

13.1 Mockup of editor interface . 74
13.2 Highlight on line with insertion point . 74
13.3 Node explorer example displaying contents of node for RUN instruction 75
13.4 Steps of repeated invocations of selection expansion keyboard shortcut 77

14.1 ‘Out of box experience’ modal to import existing or exported settings 79
14.2 Alembicue IDE welcome dialog . 80
14.3 Alembicue IDE open project folder browsing dialog . 80
14.4 Alembicue IDE new project wizard . 81
14.5 Version control system clone repository dialog . 84
14.6 Version control system change hint examples shown in editor gutter 85
14.7 Version control change popover showing snippet of previous revision 85
14.8 Alembicue model viewer displaying changes between working copy and last commit 86

15.1 Example unit test FROM_Latest . 88
15.2 Phabricator Differential revision code review test plan . 91

16.1 Distribution build step 1: Ant built . 94
16.2 Distribution build step 2: Phabricator artefact upload . 94
16.3 Distribution build step 3: Get PHID of artefact from ID . 94
16.4 Distribution build step 4: Associate artefact with continuous integration build 95
16.5 Apple Developer ID certificate for code signing . 95
16.6 Webpage header . 96
16.7 Webpage video 1 . 97
16.8 Webpage video 2 . 97
16.9 Webpage software download links . 97
16.10Webpage review stars and testimonials . 97
16.11Screenshot of webpage for Alembicue . 98

17.1 Alembicue webpage statistics . 106
17.2 Downloads by desktop operating systems . 108
17.3 Summary of stars received in testimonials . 109

xi

Tables

7.1 KeyValue editor . 39
7.2 Comment editor . 44

8.1 FROM editor . 47

9.1 Command editor . 52

10.1 USER editor . 57

11.1 PathRelative editor . 63
11.2 ADD editor . 67
11.3 COPY --from . 67

15.1 Unit tests . 89

16.1 Changelog for pre-release versions . 100
16.2 Changelog for release versions . 101

xii

Part I:

Foundation

This first part provides an overview to the project, beginning with its
motivation, objectives and deliverables (chapter 1), followed by a review of the
existing literature on this topic (chapter 2). Background information (chapter 3)
is provided on the topics of containerisation, on which the language will be
developed, and a comparison of language workbenches, which will be used for
development of the language. The gap analysis (chapter 4) identifies issues with
existing tooling with the same containerisation objectives, and discusses areas
for innovation above these tools. Finally, a summary of tooling and languages
chosen for use in the project provides an overview of the development
environment (chapter 5).

1

1 Introduction
1.1 Overview

The aim of the project was to design, develop and release Alembicue, an
integrated development environment for composing Docker images, centred
around a projectional editor for Dockerfiles.

Gap Analysis (chapter 4)
The lack of a comprehensive and integrated development environment for
Docker causes issues for both developer adoption of the containerisation
platform Literature Review

(chapter 2)
and the implementation of advanced platform functionality for

professionals, as identified in gap analysis. Appropriate in-depth research of new
and old editor types and functionality Background (chapter 3)

Design (chapter 6)

was necessary to establish a foundation
for design with an understanding of the context of the solution.

Development was led by the choice of applicable tooling and languages including
that of a language workbench forming the centre of defining and implementing a
language specification Tools (chapter 5). This language was derived to represent the image build
language used by Docker’s image build process, while benefiting from the
advantages of projectional and structural editing identified in the lessons learned
from literature review Background: Language

workbenches (section 3.2)
. Incorporating this editor alongside orchestration

mechanics to run containers based on the built images integrates an end-to-end
workflow for containerisation of services Integrated development

environment (Part III)
, streamlining the process for novices

and experts alike.

This report documents the processes involved in reaching this aim, through the
completion of various objectives Objectives (section 1.4).

1.2 Motivation
Docker is used by more than 7 million developers worldwide (Evans Data Corp.,
2018; Stack Overflow, 2019), in use by over half of all developers (Stack Overflow,
2019) and 92% of organisations (JetBrains s.r.o., 2018a). Despite this, the field is
lacking a competent integrated development environment for Docker. It is left to
the combined power of various These existing tools and

their issues identified are
covered in detail in the gap
analysis (chapter 4).

tools augmenting developer knowledge to create
and maintain Docker images and containers (section 3.1). These tools can be
difficult to set up and use requiring a full containerisation platform installation,
and may still only provide varying levels of accuracy in linting (code checking) of
syntax, style and references.

A primary source of difficulty in building images for containerisation is the
Dockerfile language. A Dockerfile is written by a containerisation developer and
contains instructions used for the production of a Docker image, each of which
creates a new build layer for the image. Docker does not provide a formal
specification for the language, only officially providing a Dockerfile reference
(Docker, 2018c) containing a brief description of layout, keywords and

2

Chapter 1. Introduction

instruction parameters. To be able to write a Dockerfile, it is necessary to
understand this document, which can be difficult due to the informal nature of
the specification. This leads to inaccuracies and misinterpretations both in
developers using the specification to write their Dockerfiles and in
implementations of linting in existing tools aiming to assist developers.

This difficulty presents issues for novices and experts alike. According to the Stack
Overflow Developer Survey 2019, Docker is the platform with the most interest
by far from developers who are not currently developing using it (Stack Overflow,
2019). For developers looking to begin using Docker, the Dockerfile language
reference can be difficult to interpret due to its informal nature. Lacking a rigid
and consistent structure to the parameters and syntax used to distinguish types,
it can be very easy to make a syntax error, The build process

mentioned here used by
Docker for the creation of
an image from a Dockerfile
is discussed further in the
background chapter of this
report.

which is only presented when the
lengthy build process takes place. Furthermore, Docker is not just for development
novices, with Docker ranking second in most loved platforms for development in
the aforementioned survey (Stack Overflow, 2019). For experts, the advanced
functionality of the Dockerfile is under-represented by tooling, yet this is the area
that needs the most assistance due to its complexity. For example, multi-stage
builds require careful referencing in instructions crossing stages, yet issues in
tooling support and ambiguity in usage contribute to 22% of developers dreading
the Docker platform (Stack Overflow, 2019).

Defining an understandable and consistent specification for the Dockerfile
language, alongside an innovative editor for the language ensuring syntax
compliance and providing contextual assistance in development, as part of an
integrated development environment capable of supporting an entire
containerisation workflow, would help novices and experts alike make the best
use of the capabilities of Docker for their containerisation needs.

1.3 Benefits
The projectional editor, the core of Alembicue, edits an abstract syntax tree
(AST) which directly represents the structure of the document and its content,
instead of the usual text document editing, but with an interface similar to that
of a standard IDE for text-based programming languages. By defining a structure
of the language and behaviours for editing instances of the language, the editor
enforces a requirements for properties, references and children, assisting with code
completion and providing instant compliance checking for type system rules.

Since the projection in the editor is a precise and faithful reflection of the AST
enforcing constraints defined in the language, it is not possible to enter invalid
syntax prior to ‘parsing’ as with regular text files/editors, as there is no parsing
step. For example, in a projectional editor, typing with an insertion point at a
location which cannot possibly produce a valid tree with the entered characters

3

Chapter 1. Introduction

will have no effect, as the characters are prevented from being entered by having
no suitable destination.

In addition to enforcing structure and constraints based on the language, since this
editor is not limited to text, the AST can be projected in alternative ways which
may make understanding relationships easier. Multiple projections of nodes can
be used to represent references, making parts of the file available in other locations
and editable from either. Presenting the referenced node to the user ensures
correct use of references, confirming that correct destinations of references are
selected in the editor and by extension in the tree, and encouraging quick fixes to
be performed on the secondary projection of the node, improving editing efficiency.

Containerisation is an area of active research and development, with
implementations being iterated upon and new versions of the containerisation
platform being released occasionally. Keywords and parameters which may have
been valid for a previous version can be deprecated, and limited assistance
provided in migrating to newer file versions. By clearly marking deprecated keys
as such in Alembicue, the developer can see the problem immediately and fix
the issue before further issues occur later on. Issues can be resolved easily by
providing intentions for automatically migrating the deprecated code away from
old concepts to their replacement with equivalent functionality.

1.4 Objectives
For the successful completion of this project to its aim, a number of objectives
were delineated.

1. Establish prerequisites to the project, including its motivation, methodology and
work plan to ensure the project stays on track.

2. Research and review existing literature in the field for a greater understanding of
the work which has taken place prior, providing lessons learned to be built upon.

3. Research, discuss and present conclusions, for an overview of containerisation
necessary for the development of the containerisation language, and language
workbenches for the implementation of the language.

4. Establish weaknesses in existing tooling for containerisation, and areas for
innovation in Alembicue, through a detailed gap analysis.

5. Choose and set up tooling to begin development, including version control and
continuous integration.

6. Design and implement a base level of the language, with core concepts such as
the abstract syntax tree, and extensibility for continued development.

4

Chapter 1. Introduction

7. Each of these terms are
introduced in Design
(chapter 6).

Design, develop and implement instructions for the language, including
projectional editor components for each instruction, type system constraints and
behaviours.

8. Develop and implement an integrated development environment, incorporating
the projectional editor environment and Docker orchestration to run the language.

9. Perform suitable testing of each component of Alembicue and the overall
application using established practices and methods.

10. Release Alembicue for download and use by developers to write their own
containerisation files.

11. Evaluate the outcome of the project against each objective and the project’s
overall aim, including feedback received from Alembicue’s release and possible
future work to be carried out.

1.4.1 Deliverables

Following that which is established in project prerequisite analysis, a number of
deliverables are decided upon.

1. A simple projectional editor is the first deliverable of the project, as this is the
core of Alembicue. The ability to add instructions, representing lines of code
which each perform a particular task (section 7.1), is made possible with the
implementation of a type system, and various supporting concepts including key-
value pairs, and ports and protocols.

2. The Alembicue language is defined and implemented, containing all instructions
each with parameters, children and references applicable for the task the
instruction needs to perform.

3. Intentions, type system messages and refactoring is delivered for instructions
where appropriate to make the editing experience reflect expectations of familiar
text editors, as well as providing advanced functionality only possible with a
projectional editor.

4. Testing ensures functionality of Alembicue is correct, meeting the specification of
the language and ensuring the usability of the software’s interface.

5. The standalone Alembicue application is compiled for various platforms, including
the Alembicue language.

6. A project webpage is delivered to provide a location for users to download
Alembicue.

5

Chapter 1. Introduction

1.4.2 Deliverable constraints

Constraints apply to the project, its objectives and deliverables, providing
additional boundaries and guidance to the project’s development.

2. Scope: The language is comprised of instructions, each of which needs to be
incorporated into Alembicue’s editor. These instructions are FROM, RUN, CMD,
LABEL, MAINTAINER, EXPOSE, ENV, ADD, COPY, ENTRYPOINT, VOLUME, USER, WORKDIR, ARG,
ONBUILD, STOPSIGNAL, and SHELL.

4. Scope: Testing requires manual testing through test plans created during
development of functionality, automated unit testing for individual components
and integration testing for the composition of modules.

5. Scope: Alembicue as a standalone application must support macOS, Windows
and Linux to provide the greatest coverage to the developer user base.

6. Schedule: The project, including its release, must be completed prior to the
deadline for the project as a whole, to be able to discuss and evaluate the release
as part of the project’s report.

1.5 Methodology
Methodologies for development were decided upon early in the project which
ensured all development and work product adhered to such standards.

1.5.1 Formal methodologies
• Throw-away prototyping was used for the early stages of the user interface and

basic functionality to quickly experiment and test different ideas and
possibilities. This includes prototyping the structure of the underlying language
components and of the user interface components used to display the language.
While the learning that took place from the prototyping efforts was retained for
main development, the work product was not.

• Incremental building was used for the main development of the project,
including the language definitions and implementation of the editor. The
language was broken down into sets of functionality which could be implemented
in any order, providing each prerequisite is met for each subsequent definition.
From a high level, these sets were rigidly defined with a strict set of capabilities
which needed to be implemented to meet the step. Such implementation was
refined and components moved between stages as development progressed due to
gaining a better understanding of the structure of the development and of the
prerequisites needed for implementing various language and editor components.

6

Chapter 1. Introduction

1.5.2 Work plan

A work plan was developed at the start of the project and improved over the
course of the design and development stages, as well as the writing of the
project report. This work plan was presented in a Gantt chart (Figure 1.1) to
provide an easy to understand overview of timescales for various components of
the project. Annotated in the chart are the three milestones of the project:
project brief, January deliverable and final deliverable. These helped define
deadlines for individual comments necessary to make up those deliverables,
which were included in the Gantt chart and shown by the ‘Finish to Start’
dependency relationship connection lines.

2018 2019

October November December January February March April

Preliminaries

Project brief deliverable

Report: Overview

Report: Introduction

Report: Research

Report: Design

Development
Development: Stage 0

Projectional editor

January deliverable

Development: Stage 1
Types, Environment, Container

Development: Stage 2
Execution, Filesystem

Development: Stage 3
Intentions, Behaviours

Development: Stage 4
IDE

Report: Content

Report: Implementation

Report: Review

Final deliverable

Figure 1.1
Project Gantt chart

7

2 Literature Review
There exists extensive literature on the topic of cloud computing, but this
project only relates to containerisation in terms of the language used for image
construction. Therefore, material relating to cloud computing, containerisation,
orchestration, or related areas are not covered as part of the literature review.
Instead, focus is placed on source code editing paradigms and representations.

2.1 Plain text editing
In 1975, ed and vi was the beginning of text editors which provided simple
functionality suitable for editing innumerable file types (Performance
Computing, 1984). As discussed in the introduction to O’Reilly’s ‘Learning the
vi Editor’, such editors needed to be broadly applicable ‘whether those files
contain data, source code, or sentences’ (Lamb and Robbins, 1998). These
original editors are thought to be ‘unintuitive and cumbersome’ for beginners, in
part due to distinct modes of operation: insert and command (Lamb and
Robbins, 1998).

Discussion has also included other plain text editing paradigms which were
developed in a similar era. This includes Sed, a non-interactive text editor based
on the line-based editing of the interactive ed. Amongst the criticisms shown of
Sed by McMahon (1978) is the lack of ‘immediate verification’ compared to an
interactive editor. Conversely, ‘complicated editing scripts […] saves considerable
typing [and] attendant errors’. In this project, combining both characteristics
provides the optimal experience for the user.

Returning to interactive text editing, studies have shown that interactive line
editors can also be difficult to use. The nature of line editors means that text
manipulation is regularly performed on text not displayed on the computer screen.
Gomez (1988) found that users must rely on spacial memory to understand the
context to their commands in such an environment. Such studies performing tests
by providing a copy of the text printed beside the user does somewhat diminish
the ability to assess how difficult using a line editor is when needing to keep the
output in mind. However, having to look down to the piece of paper also has its
own negative effect on editing speed. A follow-up study by Gomez et al. (1983)
showed that a screen editor can halve the time taken for the same tasks to be
completed. In this project, the ability to immediately see the effect of operations
on the document is essential in reducing cognitive load on the user.

Hunt and Thomas (1999, p.73) have discussed how plain text files can contain
structure, with the structure being identified by characters in the file visible to
the user. Plain text editors require that ‘you must type in codes that are used
by [another] program’ (Lamb and Robbins, 1998) such as a compiler. Advances
in plain text editors can incorporate aspects of structure parsing for functionality

8

Chapter 2. Literature Review

aiming to assist the user with text editing. In 1998, Vim added syntax highlighting
to its 1996 graphical user interface (Moolenaar, 1998) which helps distinguish
‘different mnemonics [and] program structures’ to the user (Yuen et al., 1997).
This was discussed to be assistive in debugging and visualisation of program flow.

The core developments in plain text editing are widely implemented in editors
and OSs alike, such as keyboard shortcut standards (Apple, 2018), and ‘friendly
editors’ incorporating colour syntax highlighting into 2000’s nano in 2008
(GNU, 2008). It is therefore wise for this project to follow such standards, while
circumventing problems with rudimentary editors.

2.2 Structure editing
The term ‘structure editor’ refers to text or component editing software with
syntax understanding, compositing the source code in the form of a syntax tree.
In the presentation of Collberg (2009), the focus of structure editing is its benefit
to the compiler, ‘relieving [it] of lexing & parsing’. The benefit to the compiler
requires a connection between compiler and editor, not expected between a text
editor able to edit any text file and the compiler for the specific language being
edited. Sufrin (1982) has explored the concept of formalising a text editor’s design,
but even admit that their ‘choice of document model’ caused ‘an enormous number
of special cases’. This project specifically aims to avoid such issues from the
outset by ensuring the underlying structure remains expandable as the language
develops, while also providing compilable files in their standard format to be
parsed as normal by the existing compiler.

As well as internal storage considerations, structure editors need to provide an
editing interface. Instantiating a tree from source code as part of the editing
workflow, separate from the compiler, was discussed in a paper by Koorn (1992)
regarding the development of ‘GSE: a generic text and structure editor’. Where a
compiler may create a tree from the source code with text parts, a structure editor
must associate additional information with nodes on the tree for the tree to be
useful in an opposite direction: from tree to source code. It is therefore necessary
to ‘store position information as an annotation in nodes on the tree’ (Koorn, 1992,
p.4). This is a crucial step in development towards projectional editing, but as
noted by Koorn (1992) something which is not ideal for the long-term development
of editors, as this is extraneous information if the original representation does not
need to be referred to again.

Sufrin (1982) concluded the ‘further work’ section of their paper noting that an
extension to the existing ‘structure-oriented editors’ would be for ‘operations [to
be] tree-oriented’ as ‘the “document” is now a tree’. Other work in this area
includes a study by Ko, Aung and Myers (2005) in which it was found that most
edits made by Java programmers preserved structure in the document. By

9

Chapter 2. Literature Review

considering the document as a tree and doing away with unstructured text,
‘more sophisticated support’ can be provided alongside the lack of ‘omissions of
delimiters’. Following design strategies identified in the study such as a
‘top-down interaction technique for every edit’, traditional structure editors
increase the number of steps required to perform tasks. This project aims to
retain the ‘interaction techniques that preserve structure’, while exploring new
techniques to provide flexibility not traditionally available.

It is widely known that structure edits to unstructured source code ‘fail in the
presence of syntax ambiguities’ (Ko, Aung and Myers, 2005). Research into the
benefits of structure editors notes that by completely removing the need for
parsing, syntax errors are prevented. Such editing environments include the
Cornell Program Synthesizer (Teitelbaum and Reps, 1981).

2.3 Projectional editing
Besides the mentioned benefits of structure editors, new visualisations of source
code are possible based on the structure of the document. The term
‘projectional editor’ was coined by Fowler (2005), and popularised later also by
Fowler (2008), defining it as an editor which ‘manipulates the abstract
representation and projects multiple editable representations for the
programmer to change the definition of the system’. This briefly describes the
characteristics of the first deliverable in this project, namely describing the
behaviour of the software which will form the core of the editor.

abstract representation The depiction of components of the language defined and
developed by its concepts and aspects rather than characters used in a plain
text document. The text regions, tables and grids provide a visualisation of
the document’s data.

multiple representations The projection of references from the abstract syntax
tree into the editor using editor components for the destination of the
reference to be edited.

editable system definition The ability to define the behaviour of the image
through steps contained in the document.

The earliest reference to an editor which edits a tree directly is a patent
‘Hierarchical structure editor for web sites’ granted to Rae Technology Inc. (Rae
Technology Inc., 1996), a spin-off of Apple Computer in 1992 (Knibbe, 1994).
This patent appears to be with regard to a very different editing interface,
featuring graphical interactions with a tree similar in appearance to a flowchart.
This flowchart interface for high level editing can provide a useful user
experience, and may be useful for a container orchestration interface, but does
not provide the granularity needed for Alembicue’s modification of the steps
within an image definition.

10

3 Background
As mentioned in the context of literature covered in the literature review,
neither cloud computing nor containerisation are foci of this project. The focus
of this project is the language used by Docker, a popular implementation of a
containerisation platform. Therefore this report heavily covers the Dockerfile
language as necessary for its implementation in Alembicue. Some background
on Docker’s containerisation process can provide context to the language defined
in this report and incorporated into Alembicue, therefore content relevant to
Alembicue on the topic of containerisation is covered in this section.

3.1 Containerisation
The notion of containerisation is to package an application with all its
dependencies, to be run standalone on a machine like a virtual machine
instance, but in user space sharing the host kernel. Containers have ‘their own
network and storage stacks, as well as resource management capabilities’
(Turnbull, 2014), which makes them powerful for running isolated or controlled
environments for development, testing, and production code alike.

3.1.1 Images & containers

An image is an immutable record of filesystem contents and execution parameters
surrounded by a collection of metadata. The filesystem contents is recorded as a
list of changes to the filesystem from instructions given as part of the image build
process (subsection 3.1.2). Images are created from the build process which uses
a file of instructions to save an image to disk, along with the context in which
the build took place which containing files and resources used in the build.

A container can be thought of as an instance of image. Created from running
an image, it is a standalone package containing a runtime, filesystem with system
libraries and tools, and executable code (Docker, 2018b).

Alembicue focuses on the development of images with its editor for creating files
used by the image build process. Alembicue also integrates with Docker to be
able to create containers from such images, providing end-to-end support for a
container-based development workflow.

3.1.2 Image build process

Docker images are created by parsing a Dockerfile containing instructions on
how to build an image from a context, with instructions defining each layer of
the build process. These layers can configure the environment, run commands,
execute binaries, and modify the filesystem, creating an immutable history of the
changes made to the image, which then becomes the start point of the subsequent
creation of a container (subsection 3.1.1). The parsing is performed by Moby’s

11

Chapter 3. Background

Dockerfile builder, which combines reading and parsing of the Dockerfile, as well
as construction of an image, into one process (Nephin et al., 2019).

The essence of the domain-specific language is that each non-empty line is an
instruction, Each instruction begins a

new layer in the underlying
image.

beginning with a keyword (including comments where the keyword is
#) to define the operation for that step of the build and continuing with required
or optional parameters to modify behaviour.

In the example shown (Figure 3.1), the first line begins A full description of the
FROM instruction is given in
Environment configuration
(section 8.1).

with a keyword FROM,
which per the informal specification for the language, is to be followed with a
sans-whitespace string identifying the image with name (scratch) and optional
namespace. This is followed with an optional parameter, denoted by the
keyword AS and continuing with a string (orig) to refer to the container later in
the file, a reference to the container used for running commands between this
and a subsequent FROM instruction.

FROM scratch AS orig
COPY hello /
CMD ["/hello"]

Figure 3.1
Example ‘binary run’
instructions

3.2 Language workbenches
A language workbench is software assisting with language engineering by
providing the ability to develop new languages in a standardised manner with
tooling support. A wide array of language workbench tools exist, focusing on
and providing enhancement to various stages of the language creation process.
Wildly different methodologies and implementations of both language
development and consumption can enhance or limit flexibility in crucial ways.

There were a number of early language workbench implementations in the late
1980s and early 1990s. These were rudimentary for creating languages powerful
enough for the time.

• SEM (Teichroew et al., 1980)

• Metaview (Sorenson, et al., 1988)

• MetaPlex (Chen and Nunamaker, 1989)

• MetaEdit (Smolander et al., 1991)

By the late 1990s, graphical workbenches were developed, but the languages
themselves were still focused on the necessities of the time — the workbenches
focused on this, providing key functionality in support of simple customisation.

• MetaEdit+ (Kelly, Lyytinen and Rossi, 1996) • GME (Ledeczi et al., 2001)

For general-purpose programming languages, support of textual notations needed
to be included in such language workbench software.

12

Chapter 3. Background

• Centaur (Borras et al., 1988)

• Asf+Sdf Meta-Environment (Klint, 1993)

• LRC (Kuiper and Saraiva, 1998)

• GemMex (Anlauff, Kutter and Pierantonio, 1999)

• LISA (Mernik et al., 2002)

While general-purpose languages required development as much as
domain-specific languages, the domain-specific nature of the latter necessitated
user-friendly tools for their creation, such that they could be created with less
experience of language engineering and at a faster pace than their
general-purpose counterparts. This lead to an introduction of domain-specific
language workbenches in the late 2000s and early 2010s.

• Rascal (Klint, Van Der Storm and Vinju, 2009)

• Spoofax (Kats and Visser, 2010)

• Eclipse Xtext (Eysholdt and Behrens, 2010)

• JastAdd (Söderberg and Hedin, 2011)

While general-purpose programming languages advance with increasingly user-
friendly features, it becomes less necessary for domain-specific languages to be so
different from the norm. Projectional language workbenches provide the different
experience of a projectional editing environment (section 2.3) to domain-specific
language creation and their subsequent use in production.

• JetBrains MPS (Voelter and Pech, 2012) • Whole Platform (Solmi, 2017)

For this project, I focused on Eclipse Xtext (subsection 3.2.1), Whole Platform
(subsection 3.2.2) and JetBrains MPS (subsection 3.2.3). The following sections
cover these language workbenches, comparing their benefits and weaknesses
relevant for this project. In comparing these software, the symbols , −, and 
are used to represent positives, concerns and considerations, and negatives
respectively.

3.2.1 Eclipse Xtext

Based on the popular Eclipse IDE (White, 2014), Eclipse Xtext is a framework for
developing a text-based language by providing a grammar to use for the language,
and the workbench provides a parser with type checking (Efftinge and Koehnlein,
1972).

Figure 3.2
Xtext example in Eclipse
IDE screenshot (Efftinge,
2015)

13

Chapter 3. Background

Advantages & Disadvantages

 Xtext is intended to be easy to learn and use, being a text-based language both to
create the language and for the language to be created. One can use a grammar
to directly create language and parser for that language, which can parse text
files containing that language, all within the Eclipse environment.

 Languages created with Xtext are generally human readable, with the use of text
files and writing keywords directly to file. This improves the ability for files to
be accessible outside of the ecosystem of the Eclipse platform used to create the
language.

− Eclipse is no longer the most favoured development environment; according to
Stack Overflow, other editors take preference far above Eclipse (Stack Overflow,
2018; 2019). Basing future development on an editor which is losing popularity
may mean that such development is not favoured by the majority, where the
benefits of using such a tool based on the platform must outweigh the negativities
of using such a platform.

 While performance is one of the key desires for Xtext, the necessity for a parser to
read the files slows down the workflow. This is extenuated by writing out human
readable files potentially containing lengthy keywords for the purpose of making
the file presentable in the editor.

3.2.2 Whole Platform

Another language workbench based on the Eclipse IDE framework is Whole
Platform. While based on Eclipse, this language workbench is projectional
(section 2.3), with the ability to for ‘multiple kinds of notations […] including
grammar layouts [and] tree and graph layouts for diagram oriented languages’
(Solmi, 2017).

Figure 3.3
Whole Platform example
projectional editor for
construction of Java (Solmi,
2017)

Advantages & Disadvantages

 The projectional nature of Whole Platform provides the ability for ‘multiple
kinds of notations […] including grammar layouts [and] tree and graph layouts
for diagram oriented languages’ (Solmi, 2017). These provide new visualisations
to existing grammars, or the ability for more creative grammars which can
utilise such representations of the underlying structure.

14

Chapter 3. Background

− Whole Platform provides a vast array of additional behaviour and functionality
on top of the defined language, including ‘stream based persistence and
Java/XML serialisers (Solmi, 2011). This functionality, while useful for many
languages which could be developed with this platform, shows that the platform
has a focus which perhaps does not coincide with the aims of the Dockerfile
language implemented in Alembicue. The Dockerfile language is intended to be
rudimentary, with very simple syntax and basic instructions — such advanced
functionality would perhaps complicate both development and use of the
language beyond what would be necessary to provide an easy to use and modify
grammar.

 Whole Platform focuses on executable code and languages which are designed
for the purpose of generating executables. Defining a model in terms of its
‘translation to another language which [have] executable semantics’ (Solmi,
2011) is insufficient for a language such as which is implemented in Alembicue.
This is due to the nature of the underlying Dockerfile language, which does not
have roots in that of executable definitions.

3.2.3 JetBrains MPS

Also providing a projectional editor is JetBrains MPS, the Meta Programming
System language workbench based on the IntelliJ platform. MPS focuses on
converting ’domain processes and knowledge [to] a language that directly uses
[those] concepts and logic’ (JetBrains s.r.o., 2017).

Figure 3.4
JetBrains MPS example
projectional editor for voice
menu (JetBrains s.r.o.,
2018b)

Advantages & Disadvantages

 MPS idealises language-oriented programming, with an ability to provide direct
relationships between the language created and domain-specific processes. MPS
provides the greatest flexibility between desired concepts and output language,
with options to extend BaseLanguage or start from scratch.

15

Chapter 3. Background

− Flexibility can bring complexity — perusal of the documentation given by
JetBrains and third parties over the MPS tool demonstrates the complexity of
development. As MPS is a tool for developing languages, it is without surprise
that numerous languages are used with MPS to create more languages. One
requires a good understanding of various languages: as well as Java and the
projectional version of Java1 used in MPS, one needs to learn This additional learning

would need to be factored
into the time of
development with MPS.

BaseLanguage and
the SModel language, and various languages for the editor and other concepts.
These can be thought of as two entirely new languages, alongside a projectional
editor and tooling, and abstractions to existing languages, a good understanding
of which is required for the success of this project and the development of
Alembicue.

Choice Based on this investigation into these three language workbench tools,
MPS was chosen as the tool to use for the creation of Alembicue. While
concerns over the complexity of learning the tool should be mitigated by an
appropriate project plan with sufficient time to learn such languages, the
benefits of the flexibility of the language to be created provided by the tool
produces a powerful projectional editor for the language atop a familiar and
liked IDE2.

1For example, Java would use new ArrayList<String> whereas MPS would use
new arraylist<string>. This is because some Java classes are built in to the SModel language
as domain-specific abstractions to be transformed to Java code.

2Unlike Eclipse, the IntelliJ platform is regarded as one of the most popular development
environments with increasing market share (Stack Overflow, 2018).

16

4 Gap Analysis
A detailed gap analysis helps identify a gap in the market for future
development. In this case, the development of Alembicue focuses on assisting
with the development of Dockerfiles. Therefore identifying issues with existing
tooling which also aims to provide Dockerfile assistance is useful in directing the
development of Alembicue to ensuring such issues are not repeated, alongside
identifying areas for innovation that are not captured by the existing tooling
and which Alembicue could potentially support. This chapter details such
findings to shape the design of Alembicue.

There exists various tools attempting to provide some partial assistance in
certain aspects of writing Dockerfiles, such as linting (identifying errors) and
syntax highlighting. The three most popular tools according to Google are
dockerfile-editor.com (section 4.1), Visual Studio Code (section 4.2) and
Docker’s build tool (section 4.3). Alongside identifying what these tools achieve
well, identifying issues with these tools helps suggest areas for improvement in
future tools such as in the development of Alembicue.

4.1 dockerfile-editor.com
One of the highest results for ‘docker editor’ on Google at the time of writing
is dockerfile-editor.com. This attempts to provide an accessible way to create
Dockerfiles, and aims to perform syntax checking on the Dockerfile.

While the source code of the software does not appear to be available, reversing
the packed JavaScript allows the functionality of the editor to be analysed in more
detail. Built on top of react-mono-editor which provides an API for registering
language features (contributing to most of the application’s source code), the
editor itself defines the following functionality using 200 lines of code:

1. A set of Dockerfile commands as possible instructions for completion anywhere.

2. Functions to retrieve Docker image names and versions from the public Docker
Hub repository.

However, this functionality is woefully lacking for consumption by developers
looking to use the software for composing a Dockerfile. Firstly, there are a number
of language definition issues.

 The extent of syntax checking is to check each line begins with one of the 18 valid
keywords beginning an instruction. Beyond this point, the validity of each line
is not checked. This means a line consisting solely of an instruction without any
parameters is always marked as valid by the application, despite not being a valid
file when the build is attempted (Figure 4.1).

17

Chapter 4. Gap Analysis

 File requirements are incorrectly defined. An empty file is regarded as a
syntactically correct file, but attempting to use the file with docker build

throws an error that the Dockerfile ‘cannot be empty’.

 A lack of context for each instruction within the file permits instructions otherwise
unavailable due to existence or position of other instructions in the file. For
example, instructions which cannot be outside of a build stage are permitted in
the syntax checker, yet immediately rejected by the Docker daemon (Figure 4.2).

(a) Application reporting syntactically
correct file

$ docker build .
Sending build context to Docker
daemon 2.048kB

:::::
Error

::::::::
response

:::::
from

::::::::
daemon:

::::::::::
Dockerfile

:::::
parse

::::::
error

:::::
line

:::
1:

::::
FROM

::::::::
requires

::::::
either

::::
one

:::
or

::::::
three

:::::::::
arguments

(b) Docker daemon reporting syntax error

Figure 4.1
Dockerfile with instruction
missing required parameter

(a) Application reporting syntactically
correct file

$ docker build .
Sending build context to Docker
daemon 2.048kB

:::::
Error

::::::::
response

:::::
from

::::::::
daemon:

:::
No

:::::
build

:::::
stage

:::
in

:::::::
current

::::::::
context

(b) Docker daemon reporting syntax error

Figure 4.2
Dockerfile with instruction
incorrectly outside of build
context

There are also a number of problems with the user interface of the editor and user
experience of the application.

 Functionality to retrieve Docker image names and versions is dysfunctional. The
application makes invalid requests to hub.docker.com which are blocked by
Docker’s access control checks, reporting an invalid image name. Even if this
behaviour correctly queried Docker Hub, it would be incorrect to say that an
image which does not appear publicly on Docker Hub is invalid, since images
can be located anywhere, including locally or on a custom repository. Showing a
syntax error for an invalid image name for such a scenario could lead to
incorrect conclusions made about files, whether manually or autonomously by
continuous integration systems.

Figure 4.3
Docker Hub request failed
access control checks

 70,000 lines of JavaScript is an extremely large quantity for such an application,
and the interface is extremely slow with regular UI thread freezing. This appears
to be (in part) an implementation issue of the editor in this case and not with
the use of the editor itself, with console warnings present regarding the incorrect
setup of a web worker to avoid using the UI thread for background tasks. The
usability of such a tool is considerably impacted, demonstrating that a future tool
needs to be performant such as in its parsing.

18

Chapter 4. Gap Analysis

− The language promotes the insertion of keywords anywhere in a file, encouraging
code completion for instructions in all insertion point positions, not just the
start of a line. This means code completion attempts to complete keywords
where keywords are not expected, such as for the parameters of all instructions
(Figure 4.4). This does not appear to be due to a lack of language structure
defining where instruction keywords can exist in a file (as this is defined by the
editor base that this application is built upon), but rather that all words in the
file are used as code completion for any string in the file. Overriding the enter

key to provide these completions unfortunately can provide an unexpected
completion action where one would not normally expect a completion, slowing
down users proficient with other software.

− Syntax highlighting in the editor is inconsistent in its identification of components
of the language. For example, in cases where the instruction of the previous line
is solely the keyword without whitespace after it, the instruction keyword on
the subsequent line is not highlighted as a keyword. This kind of inconsistency
can reduce comprehension of the file, as one may expect the subsequent line is
a continuation of the previous line, such as with the use of a line continuation
marker (\), which in this editor also makes the keyword lose its blue highlighting,
but this time correctly so.

− Complementing the previous remarks of syntax highlighting and the lack of
appropriate syntax checking for instruction contents, there are also cases where
syntax highlighting demonstrates an issue with the file, but which is not
reflected in the syntax checking conclusion of the file. For example, mismatched
quotes and brackets do not display an error, but syntax highlighting displays
incorrect highlighting following the characters entered. This lack of continuity
between syntax highlighting and syntax checking provides many opportunities
for misinterpretation of the file’s contents and the syntax of instruction
parameters and options.

Figure 4.4
Incorrect code completion
suggestion for instruction
keyword within instruction

4.2 Visual Studio Code
Microsoft’s Visual Studio Code (VSC) provides built-in support for the
Dockerfile language with the Docker Language Basics extension. In addition,
further Docker support is provided through a marketplace extension now
maintained by Microsoft. This extension is extremely popular, with over 10
million installations, providing highlighting, code completion and warnings for
Dockerfile syntax (Dias and Weatherford, 2018).

19

Chapter 4. Gap Analysis

− Warnings and errors are presented in the ‘Problems’ list at the bottom of the
editor, and a red underline is displayed at the point of the error, which can be
helpful in identifying issues with the file. However, it is often the case that there
is no fix available for the error, leaving the user to work out how to resolve the
problem. For example, an empty file demonstrates the problem of not having a
FROM instruction, however no The term code action is

Visual Studio Code
terminology for an
intention, a semi-automatic
or fully autonomous
technique to resolve issues
in code introduced in this
report’s editor design
chapter (section 6.4).

code action is available to automatically resolve the
issue, requiring that the user manually insert the correct instruction to fix the
issue.

Figure 4.5
Visual Studio Code
Dockerfile error lacking
intention to resolve issue

 The instructions for installation mention the ‘need to install Docker on your
machine and set up on the system path’ to be able to use the plugin’s features
(Dias and Weatherford, 2018). By necessitating the Docker daemon installation
and access to a Docker machine, plugin functionality is heavily constrained by
the environment on which it is run. Many development environments are not
configured for running Docker themselves — Docker is a platform enabling
applications running within cloud computing environments, so it should not be
necessary to install Docker locally just to build containerisation into a ‘cloud’
application. This provides an inhibition to its adoption, especially in enterprise
environments where adding such software to local machines is difficult
logistically.

 Instructions with references do not have their references checked. For example,
COPY’s from parameter requires a reference to a FROM instruction in the file, but the
value set for the parameter is not checked. This means a reference can be made
to a nonexistent FROM without raising any warnings until the image is attempted
to be built.

− Some errors raised by VSC are not errors which the Docker daemon or engine
have issue with. For example, LABEL "" "" raises an error in VSC that ‘LABEL
names cannot be blank’, but building an image from the Dockerfile with docker

build does not have any difficulty, successfully creating an image. This is only a
minor annoyance in comparison to other issues in this list, especially given that
the errors raised are likely something which needs to be looked at anyway, but
this inaccuracy can lead to wrong conclusions being drawn about the presence of
an error in a file, such as rejecting continuous integration builds.

20

Chapter 4. Gap Analysis

(a) Visual Studio Code not
reporting error with flag
value

$ docker build .
Sending build context to Docker
daemon 9.216kB
Step 1/2 : FROM scratch as a
--->

Step 2/2 : COPY --from=b foo .
invalid from flag value b

(b) Docker engine reporting error with flag
value

Figure 4.6
Visual Studio Code lacking
check of reference

4.3 docker build

Docker can attempt to build an image from a Dockerfile with the build verb to
the Docker daemon, providing error messages if necessary as it does so. This
technique for identifying errors can work well for low-stakes local development
image production, where images are built locally and quickly with few instructions
and limited external requirements. With the build step a necessity in using a
Dockerfile to create a container, it is natural that this is the most common place
where issues are identified in small scale development environments.

However, such a technique has a major downside which prevents its use in real-
world development for identifying issues with Dockerfiles: in many cases the image
build process is being performed for real problems to be raised. As demonstrated
in subfigure b (Figure 4.7), all instructions prior to the syntax error are executed
for real until the syntax error in the file is reached. This requires all the necessary
resources for the image itself just to identify issues with the file that would be used
to create the image. It may not be feasible to locally recreate the environment in
which the Dockerfile is to be run just to perform syntax checking on the file —
such an endeavour would not only require any necessary hardware resources for
the engine to perform its build steps, but also any local files provided in the build
context for filesystem modification instructions to copy local files into the image
(chapter 11), both of which may be costly in time and money.

$ nl Dockerfile
1 FROM scratch
2 LABEL " ⏎

$ docker build .
Sending build context to Docker
daemon 2.048kB

:::::
Error

::::::::
response

:::::
from

::::::::
daemon:

:::::
LABEL

::::
must

:::::
have

:::
two

::::::::::
arguments

(a) Docker daemon reporting syntax error
immediately on file

$ nl Dockerfile
1 FROM scratch
2 LABEL " " ⏎

$ docker build .
Sending build context to Docker
daemon 2.048kB
Step 1/2 : FROM scratch
--->

Step 2/2 : LABEL " "

::::::
failed

:::
to

:::::::
process

::::::
"\"":

::::::::::
unexpected

:::
end

:::
of

:::::::::
statement

::::::
while

::::::::
looking

:::
for

::::::::
matching

::::::::::::
double-quote

(b) Docker engine reporting syntax error
after reaching instruction with error
during execution

Figure 4.7
docker build linting
occurring in Docker engine
after instructions are built

21

5 Tools
Various tooling assisted with the production of this report and the development
of Alembicue. Appropriate selection and use of tooling to support development
efforts are essential for producing timely and accurate deliverables. This includes
correct choice and use of languages for various purposes (section 5.1), configuring a
development environment (section 5.2) and setting up version control (section 5.3)
for the project.

5.1 Languages
Various languages were used in the development of Alembicue, with the most
appropriate language chosen for each specific use case. All languages were
published by JetBrains, the developers of MPS, the language workbench chosen
for this project (subsection 3.2.3). The languages used were as follows:

MPS (jetbrains.mps.lang.*) The MPS language is a modelling language used
to describe and implement core components of a language, including its
structure. This language also provides extensibility, which Alembicue uses
for its declaration of primitive types including booleans, integers and strings.
The framework for the aspects model (section 6.1) is provided with this
language, used for the core of the editor, and for other functionality of the
language to be built on top.

Figure 5.1
Transformation of MPS
language to Java

MPS projectional generation workflow

MPS MPS generator template

Generator
aspect

.java (text)

TextGen
aspect

Base Language (jetbrains.mps.baseLanguage) For programming of behaviour,
BaseLanguage is a projectional counterpart to Java (Konopko, Shatalin and
Pech, 2011). This language is used in Alembicue for the programming of
actions, behaviours, constraints, intentions, text generation and type system
checks.

Figure 5.2
Transformation of Base
Language to Java

MPS projectional generation workflow

Base Language
Base Language

generator template

Generator
aspect

.java (text)

TextGen
aspect

22

Chapter 5. Tools

Build Language (jetbrains.mps.build) In creating a workflow for compilation
of a standalone application, the build language describes the steps taken in
compiling and packaging the various components of the Alembicue language.
The use of the build language is discussed in the compilation section of this
report (section 16.2) as part of preparing Alembicue for release.

Figure 5.3
Transformation of build
script language through to
Ant

MPS projectional generation workflow

Build script XML (MPS)

Generator
aspect

.xml (text)

TextGen
aspect

Ant

5.2 Environment
My development environment is macOS as this is my primary OS. Since
production use of Docker is primarily with Linux due to its integration with
Linux kernel features, my use of a UNIX® operating system for development
and testing is advantageous for compatibility with a Unix-like Linux OS.
Compilation of Alembicue will also be performed for Windows and Linux on
macOS, tested with virtual machines running Windows and Ubuntu
respectively.

5.3 Version control
For development of Alembicue, a version control system (VCS) was used to keep
track of changes during the software development process and the writing of
this report. The chosen VCS was Git — the exact choice of VCS is generally
inconsequential as it is only for personal development processes. Git was chosen
due to its familiarity and popularity (Stack Overflow, 2018). The Git The project’s Phabricator

can be found at
https://phabricator.
georgegarside.com.

repositories
for software development and this report were self-hosted with Phabricator, which
also served as the project management site. Tracking changes in the project with
Phabricator is useful for the release (chapter 16), assisting with the compilation
of release notes, as well as providing a log of process in terms of this project.

5.4 LATEX
In writing this report, I used LATEX to produce my report, with a customised
document class based on Memoir. Various customisations aim to make the
document more suitable in the context of a final year project.

23

https://phabricator.georgegarside.com
https://phabricator.georgegarside.com

Chapter 5. Tools

5.4.1 Document class

 Setting margins to be smaller, with a wide 4 cm
margin note width on the right. Margin notes
are used throughout the document to provide
supplementary content and context to the main
narrative, including links and references to other
parts of the document, and providing space for
figure captions.

 Harvard style bibliography and inline
citations powered by biblatex and defined
by biblatex-bath with custom lbx for
formatting. Harvard referencing provides
sufficient information in an inline citation to
be able to recognise familiar citations without
needing to refer to the main bibliography, without
being too verbose.

 Additional font families: Palatino for front
cover title, Menlo monospace font for code, and
fontawesome for icons.

 Formatting adjustments for preventing window
and orphan lines, disabling hyphenation except
where breaks are allowed in code, the removal of
paragraph indent and an increase to paragraph
skip to make paragraphs more consistent while
easier on the eyes to follow a line of text.

 Table of contents numerical depth expanded
to include subsections for easier referencing of
content in the document, and dots changed to
grey to be less distracting.

 Captions and sub-captions set up with
positioning in the right margin note area beside
each floating figure to avoid detracting from the
narrative, as current location is the preferred
placement, and which is ensured to be within the
defined section when relocation is necessary.

 Page header enforced capitalisation is removed for
natural casing which is easier to read, and rule

lines removed to reduce clutter on the page.
 Title formatting to part, chapter, section,

subsection and paragraph to adjust size to make
the difference more prominent while fitting with
the size of other content on the page. Positioning
of titles was also modified with placement on
the page alongside accompanying text and with
numerical reference to the title positioned in the
left margin for easy skim-reading to find the
number, and to pronounce the start of a new
heading.

 List label for enumerated and itemised lists
moved into the left margin, and a supplementary
description added which automatically calculates
the label width based on the longest label
declared as a new environment.

 Code environments declared for code formatting
as a figure, and inline code commands to set
colour and weight for various syntax.

 Menu paths and keyboard keys formatting with
menukeys package and custom styles and colour
themes for each, to highlight such content in a
paragraph while not distracting from its context.

 Additional diagramming environments featuring
Tikz, for use with language diagrams and
hierarchy diagrams, including colour declarations
for various editor components and syntax
highlighting, as well as inline Tikz commands for
including parts of diagrams in the text.

 Table formatting, both for those holding data and
for those demonstrating a tabular cell layout in
the projectional editor for a figure.

 Highlighting of text with various highlighter
colours behind the text, and for highlighting
type system messages (section 6.5) with wavy
underlines of various colours.

24

Chapter 5. Tools

5.4.2 Syntax diagram notation

In this report, diagrams of the language syntax use the following notation:

non-terminating foo

State which cannot be terminated at

terminating bar

State which can terminate the instruction

start

Signifies the start point of the diagram

transition a

Transition from one state to another using the character
labelled

keyword keyword

Exact text for an instruction’s keyword

number number

Integer or decimal number \d+(?:\.\d+)?

string string

Text \w+|"[\pL]+"

separator \

Separates elements within lists

operator +

Exact text for a symbol for a unary or binary operation
performed adjacent state(s)

method ABC

Exact text representing an enum item

parameter abc

Exact text for a parameter name, for the following state(s)
to provide the value(s)

25

Part II:

Projectional Editor

This part discusses the design and implementation of the language in Alembicue
for its projectional editor. Beginning with coverage of the design and
functionality of the editor component (chapter 6), all language concepts are then
introduced in chapters grouped by the functionality they provide to the
language, such as the type system (chapter 7), configuration of environment
(chapter 8), container (chapter 10) and execution (chapter 9), as well as
filesystem operations (chapter 11). For each instruction, both a description and
explanation of the syntax of the language is provided, followed by a discussion
of how the instruction and any associated functionality is implemented in
Alembicue.

26

6 Design
The projectional editor is the core of Alembicue, providing the functionality for
the modification of the abstract syntax tree representing each file. This chapter
discusses the design of the editor, including core functionality like syntax
highlighting (section 6.2), code completion (section 6.3), intentions (section 6.4),
and warnings and errors (section 6.5).

6.1 Aspects
An aspect is a component in the design of Alembicue’s projectional language.
Each aspect has its own system which is responsible for solely for components
of that aspect — even though each instruction (section 7.1) in the language is
comprised of various parts, such as an editor, behaviours and constraints, the
aspect’s system is responsible for all parts of one type regardless of associated
instruction.

Concepts
Concept1

Concept1_Editor

Concept1_Behaviour

Concept2

Concept2_Editor

Concept2_Behaviour

(a) Example concepts hierarchy

Aspects
Concept aspect

Concept1

Concept2

Editor aspect
Concept1_Editor

Concept2_Editor

Behaviour aspect
Concept1_Behaviour

Concept2_Behaviour

(b) Example aspects hierarchy

Figure 6.1
Example mapping from
concept construction to
aspect systems

27

Chapter 6. Design

6.1.1 Concepts

A
Concept

concept can be thought of as a type in conventional programming, and a class
in object oriented programming. A concept defines the type for one or more nodes
in the tree, including the structure of descendants.

Metadata Information about the concept such
as name, alias, and short description, as
well as references to any inherited concepts,
whether extended or implemented in the
case of another concept or interface concept
respectively. A concept is rootable if it can
be the root of the tree — see File (section 7.3)
for more information on rootable nodes.

Properties Values for parameters stored in
the concept. Properties have restricted
types, namely primitives, enumerations, or
strings matching a regular expression, termed
constrained data types (JetBrains s.r.o.,
2018c).

Children Concepts stored beneath the current
concept on the tree, as child nodes, declared
as optional or mandatory and with maximum
of one or many of each.

References Similar to children, but links to
existing nodes across the tree or to other
trees, with range of possible nodes to link to
dependent on concept-defined scope.

Figure 6.2
Example composition of a
concept

name

alias
description

rootable

properties

foo

bar

children

lorem
ipsum

references

foo

28

Chapter 6. Design

com.georgegarside.alembicue.structure

File

KeyValue

Command

Path

PathRelative

PathRemote

Instruction

KeyValueInstruction

LABEL

KeyValueOptionalInstruction

ARG

ENV

CommandInstruction

CMD

ENTRYPOINT

RUN

SHELL

ADD

COPY

EXPOSE

FROM

MAINTAINER

ONBUILD

STOPSIGNAL

USER

VOLUME

WORKDIR

Uses

← Rootable concept

← Abstract concept

← Deprecated concept

Figure 6.3
Language structure diagram

29

Chapter 6. Design

6.1.2 Editor

An Editoreditor is the visual interface for a concept or part of a concept’s projection for
the user. Such projections are cell-based, with various layouts (including indent,
vertical and horizontal) to present the information contained within the concept in
an appropriate manner. Editors can be split into editor components, which allow
the editor to be constructed from multiple sections and be partially or wholly
overridden by subconcepts.

6.2 Syntax highlighting
Alembicue utilises syntax highlighting in font weight and colour to distinguish
different types of text projected in the editor, such as if the text can be edited.
Unlike a regular text editor, which must parse text to determine syntactic elements
and apply syntax highlighting, a projectional editor applies syntax highlighting by
rules on cells. This allows the syntax highlighting to operate faster and simpler,
since the entire text does not need to be parsed. Rules can be complicated without
impeding the speed of syntax highlighting, since highlighting is performed in
parallel on all cells, as cell boundaries are predefined by the editor rather than its
context.

The following styles are defaults used in the editor:

default Generic text without special meaning, such as to provide an
argument key or value.

instruction A keyword beginning (shown in uppercase) or within (shown in
lowercase) an instruction. This text cannot be edited nor selected
once it has been fixed in the editor.

string Free-form text provided by the user which is output as-is usually
within quote marks, such as for a parameter to an external
command call. For example, /bin/bash -c.

number A numeric string consisting of [0-9]̇+ unless otherwise specified.

comment Comments in a projectional
editor require special
consideration as they are
not usually stored in the
resultant tree in a regular
text document containing
code. For more information
about the implementation
of comments, see
Comments (section 7.5).

Text which does not affect the compilation process, provided for
humans to read.

tag Text usually within a comment but which is parsed for special
functionality, such as to indicate a version.

30

Chapter 6. Design

6.3 Code completion

Alembicue implements code completion Problems with existing
code completion solutions
are discussed in the Gap
Analysis.

for widespread use in the editor. Many
of the fields in the editor support code completion, which aims to increase code
velocity and accuracy by suggesting the completion of a word or phrase being
entered in the editor, or even additional values to come after the entered text.
Implementations of this throughout the language are discussed in this report
alongside the instruction which introduces it.

Code completion is activated with the shortcut ctrl + space . This shortcut was
chosen as it is the apparent standard across editors, having tested the most
popular editors which include code completion per the Stack Overflow (2018)
developer survey.

The popup (Figure 6.4) is shown beside the cell with the insertion point currently
located. Each option in the code completion popup has three components: an
icon to distinguish the type of action which will be performed, Future work in this area

involves using the icon to
further categorise the
action performed, since
many cells have only one
type of code completion,
that of a node operation.

a name for the
action, and a short description to be shown on the right of the action.

From that resulting popup, selecting an option will perform the relevant action,
such as the insertion of a new initialised node of that type into the tree, or entering
a value into a property in the tree for that node. Options can be selected with
the mouse, or highlighted with and and selected with enter .

Figure 6.4
Code completion for
instruction names, showing
an abridged list based on
context

31

Chapter 6. Design

6.4 Intentions
Intentions are contextual suggestions to mutate code at the current editor
location. These can be used to optimise code and prevent errors (JetBrains
s.r.o., 2019c). While working in the editor, the context is used to determine
which intentions are available for a given editor state, using each intention’s
applicable conditions.

6.4.1 Declaration

Each intention is defined by the following components, alongside a string name

to refer to the intention in code and a string description for the user to select
the intention in the editor:

applicable concepts The intention requires the highest concept for which the
intention could apply to be set. At a maximum, the intention can apply
to this concept, and any sub-concepts if this is enabled for the intention.
Providing a strict applicable concept reduces the number of invocations of
the method to determine whether the intention is applicable for the context,
if one is provided for the intention.

applicable children To reduce the applicable concept scope, a child filter can
be applied to specify which children of the node the intention applies for.
This is especially useful where the projection hierarchy is long and one may
not be aware of the context they are in when invoking the intention for a
concept far away from the location of the issue.

applicable context A closure to determine whether the intention is applicable
for the given editorContext and node. Intentions can only be executed
when the intention is applicable for the context, determined by this method
returning true.

execution A closure to be executed when the intention is selected by the user in
the editor area, or when the intention is executed automatically as declared
as a quick fix.

6.4.2 Editor invocation

Where an intention is available, a light bulb is shown beside the editor area gutter
(Figure 6.5). This button can be clicked to show a list of available intentions at
the current context. Hovering the light bulb shows help text mentioning this
interaction, along with a keyboard shortcut alt + enter .

32

Chapter 6. Design

(a) Rough sketch (b) Mockup design (c) Implementation

Figure 6.5
Intention help text on light
bulb hover

Intentions list The list of available intentions is presented beside the current
node as a list. This list can be navigated using the mouse by clicking on an
available intention, or with the keyboard using the and arrow keys, with

enter to choose an intention to apply to the context. Where no intention is
available for the context, the shortcut performs no function, as the light bulb
does not show.

6.4.3 More options

For more options on an intention, the arrow key can present an additional
list of options on the highlighted intention (Figure 6.6). All intentions have two
additional options: navigating to the declaration of the intention in the language,
and disabling the intention.

Disabled intentions do not show in the list of intentions for any context. If a
disabled intention would be the only applicable intention for a context if enabled,
the light bulb is not shown. Intentions can be managed from Alembicue Preferences

Editor Intentions , where a full list of all intentions are available with checkboxes
to enable or disable each intention or all intentions for a language.

Figure 6.6
More intention options

6.5 Type system warnings, errors & info

Checking rules
Checking rule

defined in the language may raise certain type system messages
regarding the current tree. These messages can be one of three types:

• An
::::
error will block compilation of the file, or the instruction in the file, for an

issue which has caused an invalid file.

• A
::::::::
warning should necessitate attention, but will not block compilation.

Warnings can be to suggest preferable compositions of instructions or
instruction components, rather than to state there is a error with the file.

• An
:::::::::::
informative

:::::::::
message which may not necessitate attention, but which may

warrant a reconsideration of the highlighted content in the file.

33

Chapter 6. Design

6.5.1 Resolving

These issues can be resolved with an intention or manually. With experience, one
will likely know what the problem is and how it can be resolved without looking at
the error description — this is where simply highlighting the issue in the editor can
be helpful, without obstructing the user with a full error description. Manually
resolving the error can take the form of using the keyboard or mouse to navigate
to where the problem is, then entering keystrokes to resolve the problem. On
each change to the syntax tree, the checking rules which may apply to the current
context are re-checked, and if the checking rule no longer finds issue with the
code, the error is instantly removed from the projection.

If an intention is used with alt + enter , the checking rule is immediately
applied on selection of any available context-aware intention. Intentions also
provide the ability to suppress any level of message (subsection 6.5.2).

This information is projected in the editor as a wavy underline on the relevant
cells, with a colour appropriate to the type of message to allow the user to
distinguish the level of message without navigating to the cell. Each message
location is highlighted in the scrollbar of the editor area (Figure 6.7) per the
colour of the highest level message at that location, and messages can be quickly
jumped to by selecting the highlight in the scrollbar.

Figure 6.7
Warnings and errors shown
by scrollbar in editor area

6.5.2 Suppressing

One can suppress errors and warnings in the editor. Suppression can apply to
all type system messages for a node, or for a specific message on that node. To
suppress an error, show intentions within the range of the error and choose the
level of suppression.

Message suppression intention interoperability Suppressing an error or
warning will automatically suppress the relevant suggested intention. Disabling
an intention (subsection 6.4.3) does not suppress any corresponding message
automatically, since the user may wish to be prompted to resolve a message but
wish to resolve the message manually, rather than with an automatic intention.

34

Chapter 6. Design

(a) Intention to suppress all type system messages for node, or one or more individual errors
currently raised.

(b) Gutter message indicating suppressed warning on node and option to unsuppress.

Figure 6.8
Intention to suppress type
system messages

6.6 Context assistant
Alongside projected cells containing editable content, and cells for providing
context such as keywords and separators, cells can also be used for the
promotion of operations. Beside intentions (section 6.4) which focus on
potentially useful suggestions for operations to be performed, perhaps in
response to errors, it may be preferable to display options to the user directly in
the editor, where they are prominently displayed for more likely use.

The context assistant is a collection of buttons and menus projected in context
directly beside the cells. These buttons can be accessed by clicking on a
displayed button or subsequent menu item, or with the keyboard shortcut

cmd + alt + enter (Ctrl + Alt + Enter for Windows) which moves focus to the
context assistant and supports and for selection, and for
moving through a submenu, and enter to select an option.

Due to the space consumed in the editor by actions presented in the context
assistant, its use is restricted to times where such suggestions are very likely to
be actioned, and where such options should not be hidden behind an additional
button or keypress. Therefore, the context assistant is used for an empty file to
begin adding instructions to it — the context assistant suggests adding a FROM

instruction, or a comment or ARG, to an empty file (Figure 6.9).

(a) Rough sketch (b) Mockup design (c) Implementation

Figure 6.9
Example context assistant
as implemented in
Alembicue

35

7 Type system
The type system chapter of this report introduces various concepts A concept is defined in the

Background chapter of this
report (subsection 6.1.1).

which
support the language, by providing the basis for the editor, concept behaviour
and text generation of concepts, which can be inherited and overridden by
individual concepts for their functionality. These meta-concepts provide
structure to concepts, two of which are also introduced in this chapter: a
concept to represent an empty line in the editor, named BlankLine

(section 12.1). As with subsequent chapters, discussion of concepts includes
both a description and explanation of syntax as used in and exported by
Alembicue, and a description and explanation of how the implementation is
carried out for the editor in Alembicue.

7.1 Instruction
An instance of Instruction represents a single instruction in a file to be executed.

KEYWORD name
␣

value
␣ Figure 7.1

Example instruction
diagram

7.1.1 Keyword

Every instruction begins with a keyword, identifying the type of instruction.
The keyword is case insensitive, but conventionally written in uppercase
(Docker, 2018c), so this editor follows convention. The keyword is projected in
the KEYWORD style, which by default is bold dark blue as discussed in syntax
highlighting (section 6.2). Separating the keyword from instruction parameters
is whitespace. Following the keyword is the contents of the instruction, such as
arguments to define how the instruction carries out its operation.

Instruction

Instruction_Editor (subsection 7.1.2)
Instruction_Contents

Instruction_Inspector

Instruction_Actions (subsection 7.4.2)
Instruction_Keymap

Instruction_SubstituteMenu (subsection 7.1.2)
Instruction_Behavior (subsection 7.1.3)
Instruction_NodeFactory (subsection 7.2.2)
fix_Instruction_Top

fix_Instruction_Overridden

Figure 7.2
Instruction implementation
hierarchy

7.1.2 Editor components

As noted in Keyword (subsection 7.1.1), every instruction begins with a keyword. Instruction_Editor

This is set in the concept alias (subsection 6.1.1), and projected in the editor by
the Instruction_Editor with the alias cell.

36

Chapter 7. Type system

Instruction_Editor is the wrapper for two editor components:

• Instruction_Contents

The contents component provides the main editable content for the instruction.
This is is projected to the right of the instruction’s keyword (subsection 7.1.1).

• Instruction_Inspector

The inspector components is shown in the inspector tool window while the node For this component to be
displayed in the editor, a
cell projected by this node’s
editor must be focused, or a
child of this node must have
one of their cells focused
and that node must
indicate that this
component should be
placed in the location of the
next applicable editor cell.

is selected in the editor. This has limited utilisation in Alembicue at present,
which is an area to work on in future development (chapter 17).

These can be overridden by subconcepts to Instruction, providing a projection
tailored for the specific instruction.

Keymap It is standardised that shift + cmd + enter complete the current
statement and move the insertion point to a new line inserted below (JetBrains
s.r.o., 2019a). With Alembicue, current statements do not require any further
automatic completion (as there is no need to insert a semicolon to end a line or
similar), so the only action is to move to a newly inserted blank line beneath the
instruction. Instruction

_Keymap
To perform this action on this shortcut, Instruction_Keymap defines

the shortcut to execute a statement to add a new next-sibling1 of a blank line,
matching the file’s element factory (subsection 7.3.1).

item description : <no description>
keystrokes : <ctrl+shift> + <VK_ENTER>
caret policy : ANY_POSITION
show in popup : false
menu always shown : false
is applicable : <always>
execute : (node, selectedNodes, editorContext)->void {
node.new next-sibling(BlankLine);

};

Figure 7.3
Instruction keymap for
statement completion editor
shortcut

Instruction
_SubstituteMenuSubstitute menu Instruction’s substitute menu is intended for providing code

completion assistance to blank lines not currently containing an instruction. This
is discussed further in the implementation of BlankLine (subsection 7.4.1).

7.1.3 Behaviour

In the development of a concept and its associated components, such as editors
and type system definitions, additional executable code may be necessary to
supplement those components or others in Alembicue. A behaviour Instruction

_Behaviour
is a

collection of code, thought of like a class, which contains methods on a concept
and an optional constructor for that concept. Further discussion of usage and
implementation is made in this report where first utilised, such as for automatic
calculation of build stage indexes for multi-stage builds (subsection 8.1.5).

1Various methods provided by an MPS language for language construction support spaces
as part of the method name, since space is not used as a delimiter in a projectional editor —
there is no delimiter because the cell referring to a method name is self-contained.

37

Chapter 7. Type system

7.2 Key-value
A key-value pair is a mapping from one data value to another. The first data value
is known as the key, providing a unique identifier for the record (AWS, 2019). A
set of such mappings forms an associative array. Such pairs are useful for recording
variables and properties in the language, so this implementation is used as a type
in various concept’s children. The implemented type (subsection 7.2.1) is useful
enough in various instructions for its own super-concept KeyValueInstruction

(subsection 7.2.2).

7.2.1 KeyValue

Each pair is declared in the syntax tree with the concept KeyValue. This provides
the editor for the pair: a key cell and value cell separated by an equals sign,
representing the output of text generation on the concept. The equals sign is
projected in the editor as a constant which cannot be selected nor edited, just
providing guidance and context for the cells beside it.

key value
= ␣ Figure 7.4

Key-value pair example

Syntax highlighting Depending on the type of the value for the pair, the
text colour of the projected cell changes (Figure 7.5). This helps immediately
distinguish the type of data stored within, and highlights automatic type
conversation taking place, such as the string tru becoming boolean type when
an e is appended to result in true.

string: foobar number: 1234 boolean: true Figure 7.5
Value type highlighting

Editor actions The editor for KeyValue contains two components, key and
value property cells. To make editing more natural, as well as tab and shift + tab

moving between these cells, the backspace action on an empty value cell moves
the insertion point to the end of the key cell. This imitates the action of pressing
backspace in a regular text editor from the value cell, however unlike a regular
text editor which would delete the equals sign, the projectional editor’s equals
sign does not form part of the underlying structure of the document and cannot
be removed. The custom backspace action, used where the selected cell is not the
key cell and the insertion point is at the leftmost position of the value, will jump
the insertion point to the rightmost point of the key cell, skipping over the equals
sign. Even though the equals sign still remains projected, the effect of being able
to move cells using standard text-based input keystrokes makes the editor feel
natural, imitating the response of a user who has moved to the value in error
with a text editor.

38

Chapter 7. Type system

[> ^{ key } -----> = ^{ value } <] Table 7.1
KeyValue editor

action BACKSPACE
can execute : (editorContext, node)->boolean {
editorContext.getSelectedCell().getCellId() != "kv-key" ;

}
execute : (editorContext, node)->void {
node.select[

in: editorContext,
cell: kv-key,
selectionStart: node.key.length()

];
}

Figure 7.6
KeyValue_Actions backspace
to move from empty value
to key

Text generation Text generation outputs the key and value wrapped in double
quotes if the string contains spaces. Requiring this at the lowest level possible
ensures this step takes place when necessary, so that all keys and values with
spaces are wrapped with quotes in the output.

7.2.2 Key-value instruction
KeyValueInstruction

Various instructions support an associative array as a parameter, to provide data
as values for the execution of the instruction. Such instructions extend the concept
KeyValueInstruction. This concept sets the value children for the instruction, as
a [1..n] (non-empty) array of KeyValue concept instances.

Instruction
_NodeFactoryValue initialisation factory Each key-value instruction requires that at least

one key-value pair is set for the value. To assist with this, each new instruction
which is an instance of a key-value instruction concept should initialise a new
instance of KeyValue and add it to the value list. This is performed with a node
factory which initialises a new concept instance as follows:

newNode.value.add new initialized(<default>);

7.3 File

A rootable concept is a concept (subsection 6.1.1) which has been registered as
being able to be at the root of the abstract syntax tree. This means that while the
concept still has a hierarchical parent, instances of the concepts stored as nodes
in the tree are not required to have a parent.

The file is the rootable concept in the language implemented in Alembicue. It
provides the basis for all instructions, stored as children nodes in a [1..n] (non-
empty) array instruction.

7.3.1 Element factory

While a node factory initialises a node for use in the tree (subsection 9.2.2), an
element factory is concerned with creating new nodes in a list, where the list is an
abstract type or super-concept of the intended concept to be added. The element

39

Chapter 7. Type system

File

instruction

File_Editor

File_Inspector

File_Behaviour

check_File

File_NodeFactory

File_TextGen

Figure 7.7
File implementation
hierarchy

factory for File specifies that a new instance of a BlankLine concept is added as
a node each time a new node is requested to be a child, for example on pressing

enter to mimic a text editor.

7.3.2 Behaviour

The addFROM File
_Behaviour

File behaviour’s purpose is to support the context assistant
(section 6.6). This behaviour assists with the creation of the common first
instruction in a File, that of FROM (section 8.1). When the file is empty, the
context assistant suggests the insertion of a FROM instruction at the top of the
file. Selecting this action calls this addFROM behaviour.

if (this.instruction.all({~it => it.isInstanceOf(BlankLine); })) { If only blank lines
this.instruction.forEach({~it => it.detach; }); Remove blank lines

}
this.instruction.insert(0, new node<FROM>()); Insert at the top of the file

Figure 7.8
File’s addFROM behaviour

7.3.3 Text generation

As File is the rootable concept, any instances of this concept should produce a
new output file. By supporting rootable nodes as beginning a file, more than one
tree is supported in Alembicue by creating one file for each tree.

File
_TextGenThe production of the output text file is controlled with a text generation aspect.

This aspect controls metadata of the output file, as well as its contents.

File name The file name is set as the name of the node in the tree prepended
with ‘Dockerfile-’, unless the name of the node is exactly ‘Dockerfile’ in which
case ‘Dockerfile’ is set as the name. This convention is chosen as ‘Dockerfile’ is
the standard file name (Docker, 2018c), and Alembicue supports more than one
Dockerfile output requiring disambiguation. Alembicue itself does support more
than one node with the same name, since the projectional editor refers to the
underlying structure to disambiguate rather than the name of the node, but the
plain text output text does not have this ability, so this step is taken to avoid
having every file name be ‘Dockerfile’ in multi-file projects.

40

Chapter 7. Type system

Instructions For generating text from the list of instructions stored under the
File node, the text generation iterates the list and calls the text generation aspect
of each instruction to create a line of text, then outputs this followed by a line
break (Figure 7.9). Each instruction has a TextGen instance, either custom to
the concept or inherited from a super-concept, which is responsible for the specific
instruction instances being generated as text.

foreach line in node.instruction { Iterate all instructions
concept switch (line.concept) { Concept-aware switch
exactly BlankLine : Skip invoking text generation on empty line
append \n ; Blank lines are preserved in final output
break;

subconcept of Instruction : Bug fix
continue; Perform default behaviour

default : Default behaviour invokes instruction generation
append ${line} \n ; Each instruction is line break separated
break;

}
}

Figure 7.9
File text generation for
each instruction

7.4 BlankLine
BlankLine

Representing blank lines in a file, the BlankLine concept is an instruction which
provides no output. Projected in the editor as an editable constant, blank lines
support the typing of characters on top, for the purpose of creating an instruction.
A blank line concept is used as this is regarded by the editor as a valid instruction,
despite serving no programmatic purpose, as this allows the blank line to be
preserved both in the editor without being rejected from the tree as an incomplete
instruction, and in the output file as an empty line (Figure 7.9).

7.4.1 Instruction completion
BlankLine
_EditorWhile typing to begin an instruction, at first this string is highlighted with a red

background to indicate text which does not create a valid instruction. Once the
keyword for an instruction is typed, the BlankLine is replaced with the instruction
matching the typed keyword. This transformation occurs as soon as a valid
instruction keyword is completed. Until this point, the syntax tree has not been
modified with the partial instruction line, and the output text does not contain
this invalid string. This is demonstrated with FROM (Figure 7.10).

41

Chapter 7. Type system

(a) EmptyLine instance (b) Invalid partial left side
transform entered

(c) Completed
transformation to
instruction instance

Figure 7.10
New instruction keyword
automatic completion
example

BlankLine
_TransformationMenuLowercase To further aid with completion of instructions, lower case instruction

completion has been implemented. Since instruction keywords are defined to be
uppercase (subsection 7.1.1), entering a lower case string for a keyword could not
form a valid instruction without transformation. Therefore, lower case strings
can be more aggressively completed, since it is not expected that the user is
continuing to type at full speed without looking at the output on the screen,
as may be the case with a partially completed upper case keyword. This more
aggressive completion will create an instruction as soon as enough letters have
been entered to uniquely identify a keyword for an instruction. For example, to
enter the instruction ENTRYPOINT while ENV also exists as an instruction, typing
‘ent’ would instantly complete the transformation to ENTRYPOINT.

section({ side transform : left }) {
parameterized
parameter type: mapping<string, concept<>>
parameter values: (editorContext, node, model)->

sequence<mapping<string, concept< >>> {
list<concept<Instruction>> concepts = concept/Instruction/

.sub-concepts(model)

.where({~it => Only complete instructions, determined as concepts with keywords
it.getName().toUpperCase().contentEquals(it.getName()); }).toList;

map<string, concept<>> out = new hashmap<string, concept<>>;
concepts.forEach({~it => Build list of completions
string name = it.getName().toLowerCase();
int lastUniqueChar = 0; Index of disambiguating character
do { Calculate length of keyword prefix needed for uniqueness
string substring = name.substring(0, ++lastUniqueChar);
if (concepts.where({~it => Unique if substring matches exactly one concept

it.getName().toLowerCase().startsWith(substring); }).size == 1)
{ break; }

} while (lastUniqueChar < name.length());
out[name.substring(0, lastUniqueChar)] = it.asConcept;

}); List contains unique substrings of disambiguation length
out.toList;

}
action
text (parameterObject, editorContext, node, model, pattern)->string {
parameterObject.key;

}
can execute <always>
execute (parameterObject, editorContext, node, model, pattern)->void {
node.replace with(parameterObject.value.new initialized instance());

} Ensures initialisation of new node is performed using factory
action type (parameterObject, editorContext, node, model)->node<> {
parameterObject.value.asNode;

} Provides hint to editor of the type of action taking place
}

Figure 7.11
Implementation of
aggressive side
transformation for
instruction completion

42

Chapter 7. Type system

7.4.2 Instruction deletion

Now that the instruction is in the tree, it might want to be deleted. Deletion in a
regular text editor usually involves moving the insertion point to the right-most
position of the line, and ‘backspacing’ the line, or using a keyboard shortcut in
an editor supporting such an action to remove a line or number of lines. In a
projectional editor, the entire projection does not reside on one line, and neither
does any part of the projection necessarily need to conform to such line-based
conventions.

Deletion of an instruction in Alembicue can be performed in two ways. The least
ambiguous method is through pre-selecting the range to be removed. For more information on

selecting nodes in
Alembicue, see Selection
(subsection 13.2.3).

Selecting
a node in the editor first (such as with alt +), then pressing backspace ,
will delete the node without confirmation, since the selection has been specifically
made.

Without pre-selecting a range of cells forming a node, simply pressing backspace

when there is no string character immediately preceding the insertion point is an
ambiguous action, since there may not be a natural next character to be removed,
or whether one or more nodes themselves should be removed. Where there is
not an action aspect specific to an instruction or cell to be performed on the
‘backspace’ action, a deletion approval is shown in the editor (Figure 7.12). A
deletion approval is shown as a light red background around the cells in scope to
be deleted. Pressing backspace once more confirms the deletion, removing the
node from the tree.

(a) Example existing
instruction

(b) Highlighted scope of
deletion approval request

(c) Deleted instruction

Figure 7.12
Deletion approval of
ambiguous deletion
command for node

Instruction
_ActionsReplacement with BlankLine In a regular text editor, deleting the contents of

a line (such as removing the instruction it contains) does not remove the entire line
itself — in the case of ‘backspacing’ mentioned, an additional backspace keypress
would be required to shift the insertion point to the line above.

However, in a projectional editor, simply removing the node from the tree would
completely remove its projection from the editor, shifting the insertion point to
the line above. Since this is likely to be unexpected behaviour, a backspace action
was implemented. This action operates on the deletion of all instructions carried
out without a scope being pre-selected (otherwise the insertion of a new node may
be even more unexpected).

43

Chapter 7. Type system

When backspacing a blank line, no confirmation is needed, so the action
immediately removes the blank line the node from the tree. Otherwise, deletion
approval is requested, highlighting the relevant nodes in the editor which are to
be removed. Once approval is given, the instruction is replaced with a newly
initialised blank line instance. By replacing the node on the tree in this manner,
the ordering of the nodes and positioning of the insertion point is retained
appropriately.

if (node.isInstanceOf(BlankLine)) {
node.detach; Deleting a blank line does not require confirmation

} else {
if (node.approveDelete [in: editorContext]) Require second action for confirmation

{ return; }
node.replace with new initialized(BlankLine); Replace non-blank instruction

}

Figure 7.13
Replacing instruction
instances with blank line on
deletion

7.5 Comment

All line comments begin with a # and are followed by any string. All inline
comments are surrounded by /*…*/. Comments in the editor are projected using
the comment formatting as covered in Syntax highlighting (section 6.2).

Lorem ipsum dolor sit amet.
/* Lorem ipsum dolor sit amet. */

Figure 7.14
Example line and inline
comment

7.5.1 Line comments
Comment

For the implementation of line comments, an instruction (section 7.1) was created
for this purpose. These instructions do not create a new layer in the resulting
image, but are still represented as such in the editor, with the Comment concept
inheriting from the Instruction concept. Comments have one property, a string

text which contains the text of the comment. Line comments are output in the
resulting Dockerfile in the same form they are projected in the editor.

[-

^{ text }

-]

Table 7.2
Comment editor

Projection The octothorpe is purely a symbolic projection — as the document
does not need to be parsed, the # serves no syntactic purpose unlike it would with
programming languages based on plain text files. In a regular text document
containing source code, comments are parsed and removed from the resulting
syntax tree. However, when the tree is the source of the projection in the editor,
comments do need to be stored in the tree. This concept is the support for
instances of comments being stored as nodes in the abstract syntax tree of the
document.

44

Chapter 7. Type system

7.5.2 Inline comments

Unlike line comments, inline comments are not reflected in the output file, and
are merely projected into the editor as a separate component. Sections of the tree
can be commented and uncommented using cmd + / , a shortcut for Code

Comment .

Furthermore, inline comments are not designed for freeform text, and instead are
instances of syntactically correct partial abstract syntax trees, with an annotation
that it is not part of the tree for validation or type system purposes. This ensures
the tree remains correct while containing comments. For example, commenting a
child node filling a required ([1]) child position will immediately instantiate a new
instance of the child to be completed, ensuring the parent’s requirement for a child
is always fulfilled. This also applies in the other direction, where uncommenting
the now commented child will comment the newly instantiated child, ensuring
only one child is present at any time.

(a) Pre-comment

(b) Post-comment of command child and creation of new required child

(c) Uncomment of commented child comments new child

Figure 7.15
Example inline comment
and uncomment actions

45

8 Environment configuration
Configuring the execution environment for an image begins with the FROM

instruction specifying the base image (section 8.1), then arguments to the image
are provided with LABEL, ENV and ARG instructions (section 8.2). This chapter
introduces these concepts, how they are used in a file to configure an
environment, and their implementation in Alembicue.

8.1 FROM

Indicating a new build stage, FROM specifies the image used.

FROM name
␣

version

:
as␣

␣
alias

␣ Figure 8.1
FROM instruction diagram

8.1.1 Parameters to a build stage

Parameters to the FROM instruction include the name and version of the image for
the stage, and a name to refer to the stage later on in the build process in the
case of multi-stage builds (subsection 8.1.5).

name The name of the image to base this build stage on, which matches the
name of an image available in a repository or locally tagged (docker run

-t name).

version The version of the base image to be pulled ‘pulling’ an image refers to
downloading an image from
an image repository, such as
Docker Hub or self-hosted
repository.

, matching an available version
for the named image (docker tag name repository/name:version).

alias A name to refer to this build stage later in the file in the case of multiple
build stages.

Figure 8.2
FROM editor examples

8.1.2 Image version either/or implementation

The version of the image is given as a parameter to this instruction. The concept’s
two properties, tag and digest, are projected in the editor with a vertical cell
layout, with light blue braces surrounding. tab and shift + tab move the insertion
point between these two cells, among others. Following the image name, a colon
precedes the version number or name, or an at sign precedes the revision hash.

When one of the two parameters has a value, the other parameter is hidden,
alongside its corresponding prefix (: or @) and blue braces wrapping the

46

Chapter 8. Environment configuration

FROM
property
(subsection 8.1.1)

image

tag

digest
name
(subsection 8.1.5)

(a) FROM concept hierarchy

Instruction

InstructionEditor
…
FROM

FROM_Editor

::::::::::::::::::::
fix_InsertMissingFROM
(subsection 8.1.4)

FROM_Inspector

check_FROM

FROM_TextGen

(b) FROM implementation hierarchy

Figure 8.3
FROM implementation
hierarchy

parameters. Since it is not possible to have an empty value for either property,
these properties are marked as ‘auto deletable’ in the editor projection, so that
an empty value automatically removes the property node from the tree rather
than storing an empty string.

[> { image } [/

?[> : ^{ tag } <]

?[> @ ^{ digest } <]

/]

as ^{ name } # R/O model <] Table 8.1
FROM editor

8.1.3 Postfix version property code completion

A common version name for a tag is ‘latest’ which ensures the latest base image
is used, so this is provided in code completion. Furthermore, many images use
the postfix ‘-alpine’ on the version name to indicate that the version of image is
itself based on the Alpine Linux distribution, so this too is provided in code
completion (section 6.3) to append on the current value entered. In the manner
of a transformation menu (subsection 12.2.1), using the common ctrl + space

shortcut, ‘latest’ and ‘latest-alpine’ is offered as suggestion on an empty cell
(Figure 8.4), and when the cell is partially filled the ‘-alpine’ suffix to the
current text is offered’.

Figure 8.4
FROM instruction editor,
‘latest’ tag code completion

Implementation Code completion as mentioned for assisting with choosing
common tags for images is available at any time when the insertion point is
placed within the tag cell. As an addendum to the completion cases mentioned,
there are two more cases to consider: if the current value of the cell matches
‘latest’, this is offered as a partial completion of the rest of the word, alongside
that exact value with ‘-alpine’, and if the current value is ‘alpine’ the ‘-alpine’
suffix is no longer suggested (‘alpine-alpine’ is nonsensical). All these cases are
combined into a menu part providing property values.

47

Chapter 8. Environment configuration

(_, node)->list<string> {
list<string> values = new arraylist<string>; List to store completion items
values.add("latest"); Latest is always a standalone option
if (node.tag.isNotEmpty && To append to current text, there must be existing text

node.tag.endsWith("alpine")) { Don’t keep appending when alpine is already selected
values.add(node.tag + "-alpine''); Append suffix to existing value

} else {
values.add("latest-alpine"); Offer to replace existing value

}
values; Return list of completions

}

Figure 8.5
Menu part providing
property values for tag in
FROM instruction

8.1.4 Placement of instruction

The placement of FROM in a file has two requirements, a requirement for inclusion
and a requirement for relative ordering among other instructions.

Inclusion requirement To make sure the file contains a FROM instruction, the
checking rule check_Filecheck_File contains a clause to ensure that there exists such an
instruction within the File’s children: file.instruction.ofConcept<FROM>

.isNotEmpty.

To resolve the issue, the quick fix fix_InsertMissingFROM is available as an
intention to add a FROM instruction to the file. Regardless of how simple an error
is to fix, providing an intention to resolve the problem ensures a consistent
interaction exists to resolve errors automatically for the user. The quick fix uses
Instruction’s getFile method to traverse the tree up to an insertion point, then
inserts a new FROM instance.

Ordering requirement To ensure all FROM instances in a suitable correct
location given other instructions in the file, another checking rule check_Filein check_File

exists. The checking rule (Figure 8.6) iterates over instructions up to the
first FROM instruction if it exists, checking that all non-blank non-comment
instructions , are allowable instructions: FROM or ARG. This is performed in two

steps instead of a single filter on the list so that those nodes can be
individually targeted with an error message.

node<FROM> fromIns = ins.ofConcept<FROM>.first;
ins.headList (ins.indexOf(fromIns))
.where({~it => !(permitted meta); })

.forEach({~it => if (!(permitted instructions)) {

error "error message" -> it;
}});

Figure 8.6
Checking rule pseudocode
for ordering requirement on
FROM instructions

8.1.5 Multi-stage builds

The FROM instruction begins a new build stage. Generally, a single file contains
a single FROM instruction, and therefore a single build stage, which may create
many layers from various subsequent instructions. A file may contain more than
one build stage, denoted by more than one FROM instruction, which can be used

48

Chapter 8. Environment configuration

to perform actions with different base images. The ability to copy artefacts from
one build stage to another without scripts outside of the build process allows for
streamlined build pipelines and encourages a reduction in size of the final image.

To refer to the image with the base image defined by the FROM instruction, a
name can be provided. This name is used in instructions which are able to
perform actions with multiple images, for example COPY which can copy files from
a previous image into the current image (section 11.4). This optional parameter
is only useful if such instructions exist, and an info level message is shown in
the editor if a name is given without being used, similar to warning messages in
other IDEs which are used to highlight unused variables in code (JetBrains s.r.o.,
2019b).

Editor implementation Unless multi-stage builds are required, it is not
generally necessary to provide an alias for a build stage. Therefore, the editor
does not need to require an alias be provided, or even encourage its use when it
is not necessary.

The editor cell for providing an alias is pre-filled with a placeholder, and the cell
is not highlighted red when empty. The editor cell can be navigated to with tab,
and the placeholder is removed when the user types. Since the ‘as’ separator is
not output when an alias is not provided, this word is projected greyed out until
the alias is no longer empty, at which point it returns to blue.

(a) Projection without stage alias (b) Projection with stage alias

Figure 8.7
FROM editor projection of as
separator

Numerical reference Multi-stage builds can also have stages referred to
numerically, by the index of the stage. Each FROM instruction begins a new
stage, incrementing the build stage index. The index of the stage is displayed to
the right of FROM’s configuration, as a read-only numerical cell beside an
octothorpe. The number is calculated from the tree, updating dynamically as
the instruction changes position or as instructions around it change, such as by
moving FROM or adding/removing FROMs above.

The calculation is automatic, using an Instruction behaviour (subsection 7.1.3)
to determine the index. The behaviour Instruction

_Behaviour
, int indexOfType(), is calculated through

File inspection (Figure 8.8).

this.ancestor<concept = File> Tree ancestor traversal until concept is File
.instruction All File instructions
.where({~it => Filter to create new list determined by predicate
it.concept.equals(this.concept); }) Concept must match current node to be counted

.indexOf(this); Index of current node in new list

Figure 8.8
Instruction behaviour
indexOfType

49

Chapter 8. Environment configuration

8.2 LABEL, ENV & ARG

Three instructions inherit KeyValueInstruction (subsection 7.2.2): LABEL, ENV

and ARG. These instructions are conceptually and syntactically very similar, but
provide different meaning per the schema.

ENV

ARG

LABEL

key
␣
␣

␣

\n

value
=

\
␣

Figure 8.9
LABEL, ENV and ARG
instruction diagrams

8.2.1 Comparison

LABEL Store key-value metadata about an image. for example a description.
Labels apply to the entire image, not just instructions which follow.
Labels apply to the image and are unavailable from the container
(without reflection.) Here, reflection is used as a

reference to more advanced
containerisation ideas, e.g.
passing the Docker socket
to allow the container to
‘escape’ its isolation. This
is outside the scope of this
language-based project.
Mentioning it here provides
context in comparing these
instructions, as it would be
incorrect to say that it is
not possible to access labels
from the container.

ENV Set environment variables for commands run in the container, such as
with the RUN instruction. Environment variables also persist to the
container (Docker, 2018c), therefore applying to the ENTRYPOINT and
CMD instructions, as well as other commands run in an image (for
example interactively). Environment variables can be overridden by
orchestration: tooling used to run a container based on an image can
modify the execution of the container without creating a new image,
such as with docker run --env foo=bar imagename to be run in a
command with CMD ${foo}. Environment variable

expansion with CMD will use
the shell expansion; dollar
expansion is syntax for sh
and bash among others.

ARG Set build variables for the image build process (subsection 3.1.2).
These variables are available in subsequent instructions in the file,
such as to provide parts of a WORKDIR (section 11.1) path or CMD

parameter. Unlike the other two instructions, the value to a key-value
pair for ARG is optional. This is supported in Alembicue with a
KeyValueOptionalInstruction which extends KeyValueInstruction and
overrides the requirements for a value in the editor projection and the
text generation aspects. Values for build arguments can be given as
part of image orchestration where a container is to be run but an
image is needed, or when a specific image is requested to be built
on-demand with custom parameters, such as with docker build

--build-arg foo=bar imagename.

50

Chapter 8. Environment configuration

All three types of key-value instruction have their values presented when
inspecting the image, and are inherited by subsequent build stages, whether in
the same file (subsection 8.1.5) or from another file. Variables can be used in
instructions with ${} if following Dockerfile expansion, or the relevant expansion
formatting of the shell being used if set with SHELL or specified as part of
another command instruction (section 9.2).

8.2.2 ARG before FROM

An ARG instruction can precede the first FROM instruction. This is an exception to
the checking rule of FROM check_FROMwhich would otherwise prevent instructions appearing
before the first FROM. This is useful in the case where the base image used in the
first build stage should be parameterised using a build argument.

However, due to ARG’s scoping of not applying to the entire image but just the
contained build stage, the variable is then unavailable in the actual build stage
for instructions to use it, despite there not being such a build stage declaration
above the first ARG. To use the build argument inside the build stage for future
instructions, it is necessary to redeclare the variable with an additional ARG

instruction repeating the name of the variable to reassign its scope.

ARG foo=bar
FROM abc:$foo
RUN echo

:::
$foo

(a) Undefined variable

ARG foo=bar
FROM abc:$foo
ARG foo
RUN echo $foo

(b) Repeated ARG declaration to redefine
variable

Figure 8.10
Example of undefined
build-time variable caused
by ARG scoping

8.2.3 List folding

For the key-value pairs stored as children in these instructions, code folding can
hide the potentially lengthy values stored and only display the keys. While folded,
the keys of the pairs are shown comma separated in a single line, reducing the
height in the editor consumed by the projection of the list.

The gutter edge shows arrows around the region which can be folded, and clicking
either arrow button folds the list into a single line. Clicking again on the button
in the gutter edge, or clicking on the folded list, unfolds the list back to its original
form.

(a) Unfolded (b) Folded

Figure 8.11
Code folding of list of
key-value pairs

51

9 Execution preparation
With a defined and configured environment for the container (chapter 8),
commands can be executed within. This chapter introduces the super-concept of
many command-based instructions which defines the structure and editor of a
command. Also introduced are the instructions which extend this concept,
including the ability to execute instructions at compile time of the image or
runtime of the container.

9.1 Command
A command is a line of code which is interpreted and executed, such as by a
shell. Docker images support running commands in a shell or with exec. Each
command is comprised of a string command property which stores the command
to be executed, and a boolean isShell which indicates whether the command is
run in a shell or with exec, referred to hereinafter as the ‘form’ of the command.

[- [> ?* R/O model access * ?" ^{ command } ?" <] -] Table 9.1
Command editor

9.1.1 Changing command form

Execution occurs by default in a shell, such as /bin/sh -c. The option is given to
execute the command without a shell by calling exec with the executable given.
This alternative form is given to the build process as an array of strings, where the
first string is the executable to be run, and subsequent strings are arguments to
the executable; for example ["foo", "bar", "baz"] where foo is the executable,
and bar and baz are parameters.

Alembicue provides an abstraction level above this, removing the need to
construct the array delimiters and separators in the string. The projectional
editor allows for the entering of the raw command string in either shell or exec
form, then signifying whether the command needs to be converted to an array of
strings by setting isShell. This boolean can be changed with the following
functionality available in the editor, provided by the aspect shown on the right
of the item.

exec → shell A completion Command
_Editor

menu item is provided which converts the exec
command to a shell command. This projects (non-editable, non-selectable)
quotes around the string indicating the shell form is in use.

shell → exec Attempting to Command
_Actions

delete either quote, by pressing backspace at the
left-most point of the command string or pressing delete at the right-most
point of the command string, will remove the quotes from both sides of the
string and the projection of the shell.

52

Chapter 9. Execution preparation

exec → shell and shell → exec An intention Command
_ToggleForm

is presented in either form which
converts the command to the other form. This intention is always available
when the insertion point is located within the command string.

These functionalities providing tree operations which simplify the editing
experience of the projectional editor, providing natural editing reminiscent of a
text editing environment.

(a) Command in exec form (b) Command in shell form with shell
projection (subsection 9.2.1)

Figure 9.1
Command editor projection
of forms

9.1.2 Shell text generation

If a shell is required for a command, the command must be generated to text as
a JSON array (Docker, 2018c). This is performed using Command

_TextGen
text generation which

splits the string on spaces and inserts the necessary delimiters (Figure 9.2).

append
{[\\} \n { "} Begin JSON array containing strings
${node.command.replaceAll(" ", "\", \\\\\n \"")} Elements split by string delimiters
{" \\} \n {]}; End final string and JSON array

Figure 9.2
Command shell form text
generation

9.2 Command instruction
Instructions centring around a command which is to be executed by a shell extend
CommandInstruction. CommandInstructionThis concept defines the required child command used to store
the instance of the concept Command (section 9.1) to be executed.

CommandInstruction

command [1]

CommandInstruction_Editor

CommandInstruction_SubstituteMenu

CommandInstruction_NodeFactory

CommandInstruction_SetSHELL

CommandInstruction_TextGen

(a) CommandInstruction hierarchy

Command

command

isShell

Command_Editor

Command_Actions

Command_Behaviour

Command_ToggleForm

Command_TextGen

(b) Command hierarchy

Figure 9.3
CommandInstruction
implementation hierarchy

53

Chapter 9. Execution preparation

9.2.1 SHELL

The shell used for a command in shell form can be changed with the SHELL

instruction (subsection 9.2.1).

SHELL command
Figure 9.4
SHELL instruction diagram

Command shell projection To assist with editing a command in shell form,
the shell which will run the given command is projected in the editor. This read-
only model access queries the tree and returns command for the closest prior SHELL
which would take effect if one exists, or returning the default shell command if
there is no such instruction. Since the shell command prepended to the given
command string is a projection of the relevant SHELL instruction’s command, it
always reflects the most appropriate value of the SHELL instruction.

9.2.2 Node factory

On creation of the command instruction, it is required that the command child
contain an instance of a command. This is enforced by the language separately
ensuring such a child is present and providing type system messages where this
has been overridden. In addition to this, to make the editing experience smoother,
a CommandInstruction

_NodeFactory
node factory is used to automatically create a child when the parent instruction

is added to the tree, positioning the insertion point within the created command
so that the user may begin typing a command string immediately.

9.2.3 Change SHELL

To change the shell used, the exec form can be given the shell as the executable.
For example, to run the command ‘foo bar baz’ with bash instead of sh, the exec
form of the command can be given ‘/bin/bash -c foo bar baz’ which is output
as text as ‘["/bin/bash", "-c", "foo bar baz"]’.

Alternatively, the shell can be configured with the SHELL instruction first, which
changes the shell for all instructions which come after it. An intention is provided,

CommandInstruction
_SetSHELL

available when the command in a CommandInstruction is in shell form, which
creates a new SHELL instruction before the current instruction and moves the
insertion point to the new instruction ready to be entered. This intention provides
a natural method for editing an otherwise read-only projection of content in the
editor.

54

Chapter 9. Execution preparation

9.3 RUN, CMD & ENTRYPOINT

Three instructions extend the CommandInstruction concept, providing the ability
to execute commands. Each of RUN, CMD and ENTRYPOINT take a command or part
of a command to be executed during building an image or running a container.

RUN Executes a command at build time on top of the previous layer,
saving the result as a new layer in the image.

CMD Sets a default command to be executed when the image is run. Only
one CMD can take effect for an image (subsection 9.3.2).

ENTRYPOINT Sets the command to be passed the input command when running a
container.

The simplicity of the implementation of these three instructions is testament to
the implementation of Command and CommandInstruction being able to adapt to
these semantic instructions and provide accurate text generation to the output
file.

RUN

CMD

ENTRYPOINT

command
␣
␣
␣

Figure 9.5
RUN, ENTRYPOINT and CMD
instruction diagrams

9.3.1 Using CMD with ENTRYPOINT

When a container is run, the CMD instruction’s command provides the command
to be executed (Docker, 2018c). This command is provided as an argument to the
entry point of the container, which by default is /bin/sh -c (Charmes, 2014). CMD

sets default parameters for the container (Docker, 2018c), which can be overridden
at runtime.

The entry point of the container can be changed with the ENTRYPOINT instruction,
which provides the command given the parameters from the CMD instruction if
one exists, or the runtime arguments if those exist. Parameters to the command
given in ENTRYPOINT are discovered and used by the engine in the following priority
order, from highest to lowest:

1. Runtime parameters, which could be passed from the command line invocation
such as with docker run -it name cmd.

2. An orchestration engine providing a command, such as with the command key in
the compose file for a service declaration (Docker, 2016).

55

Chapter 9. Execution preparation

3. The CMD instruction’s command in the file if one exists, or the last Since only the last CMD is
read, multiple CMDs throw a
type system warning in
Alembicue
(subsection 9.3.2).

CMD if more
than one is found in the file.

4. None; ENTRYPOINT is used as-is.

This means the value of the command cannot be known at build time because it
can be changed later. In contrast, ENTRYPOINT is fixed at build time. Therefore,
any parameters or flags required by the image should be provided in ENTRYPOINT.

9.3.2 Overridden CMD instructions

Only the last CMD in a file takes effect, with other instances of CMD instructions
being ignored. Ignored CMD instructions are given a check_CMDtype system warning in the
projectional editor from the CMD checking rules. This warning can be resolved with
the generic quick fix intention on any ignored instruction, fix_Instruction

_Overridden
which when executed

removes the instruction from the tree.

While the type system check is specific to CMD, this intention to remove
overridden instructions is written to be generic to any instruction which may be
found to be overridden through data flow analysis of the file. Data flow analysis
helps ascertain when certain instructions override the values of other
instructions. This is an extension of existing tools for programming languages
which can identify unreachable code — data flow analysis in Alembicue can be
used to identify instructions which are reachable but have no effect on the
resulting image or container. This is a powerful technique ensuring streamlined
files where every instruction can have a noticeable impact on build time and
complexity of the image layers, and reducing the likelihood of bugs by
identifying issues which may have been overlooked.

56

10 Container configuration
With the environment of the image now configured (chapter 8), additional
configuration can be set before or between execution of commands (chapter 9)
or modification of the filesystem (chapter 11). These extra commands provide
the ability to set the user which runs subsequent commands (section 10.1), add
‘trigger’ instructions to be executed in subsequent images (section 10.3), and
configure the signal sent to the container on a subsequent orchestration message
to stop (section 10.2). Much like the chapters that came prior, this chapter
discusses these three instructions in terms of their syntax, editor, behaviour,
and implementation in Alembicue.

10.1 USER

While the user of all commands defaults to root, it is possible to override this
default using USER to configure the user and group.

USER

UID

␣

GID
:

user
␣

group
:

: :

Figure 10.1
USER instruction diagram

USER

user

group

USER_Editor

USER_CreateWindows

USER_TextGen

Figure 10.2
USER implementation
hierarchy

10.1.1 User and group

USER takes one required parameter, user, and one optional parameter, group.
Either parameter can be a string or integer, where the string is the name of
the user or group, and the integer is the user ID or group ID respectively. No
additional input is necessary to choose either data type (such as a conventional
programming language using quote characters); instead, the type is implied, and
the projection of each parameter denotes the implied type, with syntax
highlighting for String or Number applied to the cell containing each parameter.

[> { user } : { group } <] Table 10.1
USER editor

57

Chapter 10. Container configuration

10.1.2 Creation of user

In a Unix-like container, the user and group given as parameters to the USER

instruction are created if either does not exist in the inherited image. Therefore,
no additional instructions are necessary to use a new user for subsequent
commands.

However, in a Windows container, the user (and group if necessary) must be
manually created before the user can be used. USER

_CreateWindows
The operation to create the user

can be generated from the parameters to the USER instruction. This automation
is implemented as an intention which can be executed by the user with alt +

enter . The intention adds a RUN instruction with a command to create a new
user with net user (Figure 10.3).

node<Command> cmd = node Get new command property
.new prev-sibling(SHELL) Set shell before instruction
.command.set new(<default>); Set new instance of command in instruction

cmd.command = "cmd /S /C"; Set command to Windows equivalent
cmd.isShell = false; Ensure command to set shell is not using previous shell

(a) Set shell for Windows

node<Command> cmd = node Equivalent acquisition of command
.new prev-sibling(RUN) Run command after setting shell
.command.set new(<default>);

cmd.command = "net user /add " + node.user; Create user
cmd.isShell = true; Use shell set by previous instruction

(b) Create user in Windows

Figure 10.3
Automation of prerequisite
instructions for USER on
Windows

10.2 STOPSIGNAL

The STOPSIGNAL instruction defines the signal sent to the container when
orchestration requires it to quit, to inform processes within of the impending
shutdown of the container.

STOPSIGNAL

ID

␣ SIG
␣

signal
Figure 10.4
STOPSIGNAL instruction
diagram

10.2.1 Completion

A signal can be provided numerically or as a string. Since the possible signals
which can be sent are derived by the kernel of the container which is run, it is
not possible to provide an exhaustive list of signals which could be sent.

IEEE’s POSIX® defines a list of standard signals (Josey et al., 2004) which provide
the opportunity for potentially relevant code completion. STOPSIGNAL

_Editor
Various signals from this

standard are incorporated into STOPSIGNAL’s projectional editor cell for the signal

property as a menu part providing property values. This allows for the completion
of common signals in kernels complying with this part of the standard.

58

Chapter 10. Container configuration

10.3 ONBUILD

Instructions which would normally be executed as part of compiling the image
can be delayed until the container is built from the image using ONBUILD.

ONBUILD · · · Figure 10.5
ONBUILD instruction diagram

10.3.1 Trigger instruction

ONBUILD has one required child: a sub-concept of instruction (section 7.1). This
contains the actual instruction, called the trigger instruction, which is to be
executed when ‘triggered’ by a subsequent build of the next image based on the
one containing this ONBUILD instruction.

When no instruction has yet been given for the trigger, the trigger instruction is
set to an instance of Instruction. This provides the correct code completion and
other functionality similar to that of a blank line in the document, while not being
specific to any instruction or defaulting to any particular instruction instance.

Instruction

ONBUILD

instruction [1]

ONBUILD_Editor

ONBUILD_Actions

ONBUILD_Constraints

ONBUILD_TextGen

Figure 10.6
ONBUILD implementation
hierarchy

10.3.2 Deletion action on child and parent

To correctly handle the deletion of the trigger instruction versus the ONBUILD

instruction itself, a deletion action is defined ONBUILD
_Actions

which performs the scoping
adjustments necessary to delete or request approval for deletion of one or the
other.

If a deletion is requested by the user, such as using backspace actions, the
defined action aspect checks whether a sub-concept of instruction is provided as
an instruction child to ONBUILD. If that is the case, there exists an entered
trigger, which should be deleted first (node.detatch). If not, a deletion approval
is requested for the entire ONBUILD instruction, which if granted removes the
instruction’s node from the tree and replaces it with a blank line (Figure 10.7).

This custom action makes removal of nested instructions easier, without needing
the user to pre-select a scope of nodes to be deleted. In a text editor, the
instruction is written on one line (for example as ONBUILD ABC xyz), so using
backspace to remove all characters to the right of ONBUILD would allow the
insertion of a new instruction in its place. This deletion action imitates this

59

Chapter 10. Container configuration

with the projectional editor nodes, performing the action first on the child of the
node, then the node itself, providing a natural editing experience.

if (node.instruction.concept.isExactly(Instruction)) {
if (node.approveDelete [in: editorContext]) { return; }
node.replace with new initialized(BlankLine);

} else {
node.instruction.set new(Instruction);

}

Figure 10.7
ONBUILD backspace action to
handle deletion of contained
trigger instruction versus
the container ONBUILD
instruction

10.3.3 Constraints for parent

The trigger instruction ONBUILD
_Constraints

cannot be another ONBUILD instruction, or FROM, or a
comment (Docker, 2018c). This is enforced with a parental constraint on the
ONBUILD instruction.

Type constraints defines the concepts of the nodes permitted to be present as a
child. By checking constraints throughout the user interface as editing is being
performed, numerous abilities are restricted where constraints are in place,
assisting code completion menus with the instructions which are permitted to be
initialised in that location, as well as substitution menus and transformation
actions. This integration between different aspects of the editor ensures syntax
when combining multiple instructions, each with their own syntax that has
already been checked.

60

11 Filesystem modification
The filesystem of the image can be modified using instructions to provide
additional files and folders to the image from the current The context is the directory

structure in which the
image is built.

context. This is
supported through a Path concept (section 11.3) — this provides filesystem
navigation for ADD and COPY (section 11.4). For configuring the image, WORKDIR

(section 11.1) and VOLUME (section 11.2) supplement filesystem interactions
between the host and image or container respectively. This chapter introduces
these instructions’ syntax and implementation in Alembicue, alongside briefly
covering their functionality to provide context to the decisions made in
producing the language specification and projectional editor components.

11.1 WORKDIR

The working directory for subsequent instructions in the build phase is set with
WORKDIR. Similar to the shell command ‘cd’, this instruction changes the
directory used for relative paths within the image, such as a destination for a
COPY (section 11.4). The instruction is the most basic of all instructions within
the language, with one path property stored as a string.

The path constructs defined in the next section are not used for WORKDIR’s path

string for two reasons:

• It is not possible to determine the state of the filesystem of the image before
execution to know where the path is pointing to. Files and folders in the image
filesystem are dependent on all previous instructions, including the base image
used for building, and any commands executed previously which may create files,
such as an installation using a package manager like apt.

• Unlike a local relative path which provides checking that the path exists on the
filesystem, the WORKDIR path does not need to exist. If the path does not exist, it
will be created.

WORKDIR path
␣

/
Figure 11.1
WORKDIR instruction diagram

11.2 VOLUME

A volume is a mounted path in a container. The image can define directories in the
image’s filesystem to be used as mount points for running containers of the image.
The VOLUME instruction declares such paths to be mounted and stored outside the
container. For more control over mount points and the location and type of the
filesystem used for storing the volume in the host, container orchestration should
be used alongside or instead of this instruction.

61

Chapter 11. Filesystem modification

VOLUME takes path parameters representing the location in the image which requires
mounting from outside the container, such as from a location on the host or a
location in another container. Since this location is not within the realm of the
image or container itself, it is not possible for the image definition to prescribe
how the volume should be stored outside the container — this is the reason for
the rudimentary nature of the VOLUME instruction.

VOLUME

path

␣

\n

\
␣

[
␣

path

\n

\

,]

␣

Figure 11.2
VOLUME instruction diagram

11.3 Path
A path is a string which specifies a location in a filesystem. The Path concept as
implemented in Alembicue supports the use of paths as parameters for
instructions, providing a projectional editor and text generation for path
definitions, alongside behaviours to determine whether the path currently exists
on the filesystem. There are two types of path implemented in the Alembicue
language: local paths and remote paths.

http content

component / Figure 11.3
Path diagram

11.3.1 Local relative path

Local paths, realised with the PathRelative concept, represent a location in the
filesystem of the current build context. Since the build context is the root of
the filesystem tree provided to the image build process, all paths are relative to
this location, hence the implementation name featuring the word ‘relative’. These
paths begin with a full stop indicating the current directory, then follows with
any number of path components, each providing the name of a directory to follow,
potentially with the last component providing a filename.

The PathRelative concept acquires much of its functionality from
BuildSourceProjectRelativePath (Figure 11.5), a concept provided by Build
Language. As well using languages to create functionality for which they were
designed to represent, as discussed earlier in this report (section 5.1), the

62

Chapter 11. Filesystem modification

individual concepts which are used to define the language can be used on their
own. This helps simplify the implementation of various behaviours of the
PathRelative concept.

Each path is defined by various components, each stored under the compositePart

child. This optional child can store at most one part, which is another instance of
a PathRelative. This creates a hierarchy of parts of the path which can be joined
together to form an entire path. For example, the path ./foo/bar/baz is stored
using three compositePart children, where head stores the string of the current
hierarchy position (foo, bar, baz) and tail stores the compositePart at the next
hierarchy level down (Figure 11.4).

Figure 11.4
Node explorer displaying
example PathRelative
instance

Editor The projectional editor developed for a path mimic a normal string
storing the path, with forward slashes delimiting path components. The head is
the editable part of the projection containing the string of the current directory
level, and the tail is the projection of the child nodes which each display their
head, producing a projection of the entire tree.

To make editing smoother, transformations and actions are available in the editor.
When the cursor is at the right-most point of the head, pressing / will create
a new composite part and move the insertion point into the new path segment
after the projection of the / character constant. To complement this, pressing

backspace at the left-most point of an empty head will delete the composite
part (removing the forward slash projection) and move the insertion point to the
end of the previous head. These actions imitate the writing of a path in a normal
text editor, by using the addition and deletion of the slash path delimiter, as
would be expected with a normal path string, to control adding and removing
child nodes in the tree.

[- ^{ head } ?^ / ?AR% tail /empty cell: [- <<…>> -] % -] Table 11.1
PathRelative editor

63

Chapter 11. Filesystem modification

11.3.2 Remote path

A remote path points to a location accessible through HTTP. The Alembicue
language supports such paths where applicable with the PathRemote concept. This
provides the ability to download resources for use in a build context. Such paths
are strings denoted by the prefix http, and point to a location which is downloaded
with a GET request before being passed into the parameter where the path is
given.

Path

Path_Behaviour

PathRelative

compositePart [0..1]

BuildSourceProjectRelativePath_Editor

BuildSourceProjectRelativePath_TransformationMenu

buildScript_nodeFactories

BuildRelativePath_Behaviour

PathRelative_TextGen

PathRemote

path

PathRemote_Editor

PathRemote_Behaviour

PathRemote_TextGen

Figure 11.5
Path implementation
hierarchy

11.4 ADD & COPY

To add files from a given path, the ADD and COPY instructions take the source path
and provide the files to the image at the given destination path. Both instructions
take a list containing one or more paths as source and a destination path string
to place the files. Files and folders given in the path are required to be available
in the build context (subsection 3.1.1), as they are copied into the resultant image
and saved to disk as part of the image build process. While both instructions are
similar, each has functionality that the other does not, as follows:

ADD With an ADD instruction, if a source path given is to an archive file, such
as .zip or .tar, this archive is automatically extracted into the destination
directory rather than being copied literally, removing the need to extract
the archive manually using a RUN command.

ADD also supports remote paths as source paths which point to resources
available over HTTP, which can be downloaded by Docker and copied (or
extracted if an archive) into the destination. These automations simplify
the addition of resources into the image.

COPY Using the COPY instruction can be regarded as a more literal copy from
source to destination, without such automatic operations being carried out

64

Chapter 11. Filesystem modification

like extraction or downloading. This also allows for one extra piece of
functionality: the ability to copy files and folders from other build stages
in a multi-stage build process (subsection 8.1.5).

As COPY is a similar instruction to ADD, the COPY concept extends the ADD concept,
with additional aspects for its functionality (Figure 11.6).

ADD

destination

source [1..n]

chown [0..1]

ADD_Editor

ADD_Editor_Parameters

ADD_TextGen

COPY

from [0..1]

COPY_Editor_Parameters

COPY_FROM

COPY_Constraints

Path

USER

FROM
Overrides

Figure 11.6
ADD and COPY
implementation hierarchies

11.4.1 Sources list

To make it clear what is being copied where, a vertical collection is used for
storing the list, which is placed to the left of a projected right arrow pointing to
the destination path. Where the list contains more than one source, the list is
placed in grey brackets which help identify the list in the projection separately
from the projection of the destination path, while simultaneously communicating
that all the provided source paths will be copied to a single destination list.

Validation These paths are validated as existing on the filesystem, with red
text used if the path does not exist at the current time, and dark purple if the
path does exist. Black is reserved for path delimiters and not used to display the
result of validation to distinguish between successful validation and no validation
having taken place. Validation on the path name is provided as guidance only,
since the lack of a valid file at the location is not a syntax error in the document
itself, as the issue is located outside of the document. This means compilation
cannot be prevented if the source does not exist as it may exist at a later date,
or due to a different context location for the build.

Code completion for paths is provided, suggesting and completing names of files
and folders currently existing in the project folder which by default is used as the
context of the build. This helps the user provide the correct path to a location of
their choice alongside validation of the path.

65

Chapter 11. Filesystem modification

COPY local only The COPY instruction only supports local paths. To define
this requirement in the language, a child COPY

_Constraints
constraint is defined on COPY which

requires that children of the COPY concept are not instances of PathRemote.
This removes remote paths from code completion in the sources list, prevents the
typing of a remote path in the COPY instruction, and throws a type system error
message if a remote path is otherwise somehow entered.

Figure 11.7
ADD sources list to be copied
with path validation and
completion for folder name

11.4.2 Change file owner

The chown command changes the owner of a file, such as with a RUN command.
To simplify changing the owner for added files, parameters to perform a chown
operation can be passed to the ADD or COPY instructions. This is incorporated into
Alembicue by passing a USER instruction as a parameter.

On text generation, the parameters to the USER instruction are extracted from
the node and printed to the output file as necessary for this instruction. Using
the USER instruction shows a consistent editing experience, promoting the same
editor component for the same case of providing a username and group name for
the purposes of selecting a user. This demonstrates a benefit of a projectional
editor, where the USER instruction keyword can be projected into the editor to
guide the user into expected parameters, despite not including the USER keyword
in the output file. In a regular text editor, the USER keyword would have to be
parsed from the file and removed before the file could be used. This would be a
potentially unsafe operation especially, in the case of a syntax error elsewhere in
the document, where the USER keyword could be mistaken for a separate
instruction instead of a parameter to ADD or COPY — not an issue that exists with
a projectional editor notion.

Figure 11.8
Performing ‘chown’ by
passing USER to ADD

66

Chapter 11. Filesystem modification

11.4.3 COPY from build stage

COPY overrides COPY
_Editor_Parameters

the editor component ADD_Editor_Parameters with its own
parameters component to provide the additional parameter used to specify the
build stage to copy from. This is appended to the list of parameters provided by
ADD to the right side of the projection of the instruction’s contents. The vertical
list of parameters moves to the right as the source and destination increase in
width. Once the width of the instruction contents becomes too wide, the
parameters wrap to underneath the instruction contents.
[/
[- (/ % source % /)

/empty cell:
<default>

[/
? <constant>
[> → ^{ destination } <]
/]

[/
[> --chown= % chown % <]
ADD_Editor_Parameters
/]

-]

/]

Table 11.2
ADD editor

Parameter for referencing The parameter to COPY to receive a reference to a
build stage is provided as an editor component. COPY

_Editor_Parameters
This editor component is placed

in the ADD_Editor_Parameters cell in the ADD_Editor which allows COPY to inherit
ADD’s editor while providing its own additional customisations and functionality
where necessary in an extensible fashion.

[> --from= (% from % -> [> * model access * ---> # Instruction_Contents # <]) <]

Table 11.3
COPY --from

Parameter for referencing The main editable cell is the property (from) which
accesses the reference stored by COPY. This is a model accessor (Figure 11.9) which
makes reference to a model based on the input. If a numerical reference is given,
the number must exist as a build stage. If a name is given, the name refers
to the named build stage given after the ‘as’ in the referenced FROM instruction.
The transformation menu COPY_FROMpresents the list of available nodes within scope for the
user to choose from, providing completion for numerical and named referencing
including swapping the number for a name in the case where a name is given for
the stage number.

get{ (editorContext, node)->string {
if (node.name.isNotEmpty) { return node.name; } Use stage name if available
String.valueOf(node.indexOfType()); If stage is not named, use index of stage

}}
set{ (text, editorContext, node)->void {
if (!text.matches("[0-9]+")) {
node.name.set(text); Set name of stage to name given if not numerical

}
}}
validate{ (text, node, oldText, editorContext)->boolean {
text.contentEquals(String.valueOf(node.indexOfType())) ||

!text.matches("[0-9]+");
}}

Figure 11.9
Model accessor for COPY’s
reference to build stage

67

Chapter 11. Filesystem modification

Scope of reference The reference to a build stage for multi-stage builds is
made to a build stage in the current file, denoted by a FROM instruction in the
file. When providing a reference, COPY

_Constraints
scope constraints ensure ensure the reference

exists and is available to be used for this instruction. This constraint on the from

property is a reference scope provider, which provides a list of nodes that are
within scope of the COPY instruction, to be checked when editing occurs. This list
is created by looking at the current node’s previous siblings at instruction level
and providing any instances of FROM instructions to the reference. Restricting
the search to previous siblings prevents the reference being made to future build
stages declared in the file but which are not available yet.

68

12 Metadata management
The two instructions introduced within this chapter do not directly affect
properties of the built image nor execution in the container, but rather provide
information for orchestration engines when running containers based on the
image. These instructions can be ignored or replaced by orchestration at
runtime — the intention is to provide helpful hints to software meant to aid
with the running of container-based software. Providing the MAINTAINER of an
image (section 12.1) is useful for organisational and responsibility purposes, and
providing a list of network ports opened with the EXPOSE instruction
(section 12.2).

12.1 MAINTAINER

The maintainer of the image can be set with MAINTAINER.

MAINTAINER maintainer
␣ Figure 12.1

MAINTAINER instruction
diagram

12.1.1 Parameter

This instruction takes one parameter, a name or email address of an individual or
organisation representing the entity with maintenance responsibility of the image.
This may be the author of the image, or a party responsible for its continued
advancement. The maintainer given should be a contact point for queries and
concerns regarding the image. RFC-822 provides a convention to follow for the
value of this instruction’s parameter, namely that the maintainer should be in
one of the following two forms (Crocker, 1982):

spec example
phrase <addr-spec> foo bar <foo@example.com>

addr-spec foo@example.com

12.1.2 Placement in file

MAINTAINER can be given at any location in the file, since it does not affect
execution of any instructions preceding nor succeeding, and sets the maintainer
for the entire file. This is one of few instructions which can be placed before This is against the standard

requirement that FROM be
first in a file. For more
details including
implementation of this rule,
see ‘ARG before FROM’
(subsection 8.2.2).

flow issue the first FROM instruction in a file. The editor handles this instruction
with even fewer restrictions than ARG, another instruction which can be placed
prior to the first FROM. MAINTAINER is an excluded instruction in the checking rule
for relative positioning of FROM in a file (Figure 8.6).

69

Chapter 12. Metadata management

12.1.3 Deprecation of instruction

Docker version 1.13.0 deprecated the MAINTAINER instruction (Vass, 2017) after
discussion in 2016 regarding its usefulness given the more flexible LABEL instruction
(Cormack, 2016).

Any uses of MAINTAINER are projected in the editor with the keyword strike through
to indicate deprecation. A warning level message is displayed which highlights
the issue to the user but does not block compilation, since the Docker engine still
supports processing MAINTAINER instructions (Docker, 2018a).

Figure 12.2
Warning: ‘MAINTAINER’ is an
instance of deprecated
concept

Deprecation implementation The mapping from an instance of the
MAINTAINER instruction to a key-value (section 7.2) for the LABEL instruction is
maintainer=value. Automatically mapping from one to the other is provided
with the MAINTAINER

_Convert
error intention MAINTAINER_Convert. This intention replaces a

non-empty MAINTAINER instruction with the necessary key-value pair in a new
LABEL instruction.
execute(node, _)->void {
string author = node.author; Temporarily store current author
node<KeyValue> label = node

.replace with new(LABEL)

.value

.add new(<default>); Create new key-value pair child for replacement node
label.key = "maintainer"; Standard key equivalent for maintainer
label.value = author; Apply author from maintainer to label

}

Figure 12.3
MAINTAINER Replace
MaintainerWithLabel error
intention

70

Chapter 12. Metadata management

12.2 EXPOSE

The image can inform container orchestration of the ports a container which is
based on this image requires with the EXPOSE instruction.

EXPOSE port
␣

\n

udp

/
tcp

/
\

␣ Figure 12.4
EXPOSE instruction diagram

EXPOSE

port

EXPOSE_Editor

EXPOSE_Behaviour

check_EXPOSE

EXPOSE_Sort

EXPOSE_TextGen

(a) EXPOSE implementation hierarchy

Port

port

protocol

PortProtocol

tcp

udp

Port_Editor

Port_Actions

Port_ProtocolList

Port_Constraints

Port_Swap

(b) Port implementation hierarchy

Figure 12.5
EXPOSE implementation
hierarchy including Port &
PortProtocol

12.2.1 Port & Protocol

To define network connectivity for a container, the image declares the ports
opened with the EXPOSE instruction (section 12.2). The children of this
instruction are instances of the PortProtocol concept, which encapsulates such a
declaration. Each instance is composed of two properties, port and protocol.

A port number is an integer between 0 and 65535 inclusive. While port 0 is
usually reserved, port 0 is seen as a request for an available port. The application
is not granted port 0, but instead another port is allocated (Mitchell, 2019). A
constraint on the property value for port ensures the value falls within the range
required.

The two networking protocols supported are TCP and UDP. An enumeration
encapsulates these options, providing onto complete for enumeration names and
a name for projection in the editor, as well as enumeration values used in text
generation of the concept.

The projection for a declaration of port with protocol mimics the text generation
of such. The port number, followed by a forward slash, then the protocol name,
is both how the text generation outputs the PortProtocol concept, and how the
editor projection for the concept is read.

71

Chapter 12. Metadata management

• Non-numeric characters are prohibited in the port property value cell, and typing
such produces no output.

• Only enumeration names of protocols are permitted in the protocol cell, and
code completion assists with the input of such. Also shown in the completion
menu for protocol is an option for ’both’ protocols; on selection, TCP is given as
the protocol for the selected declaration, then the port number is used in a new
declaration added as next sibling, with UDP given as the protocol.

Port_ProtocolList
Transformation menu To provide code completion (section 6.3) for
PortProtocol declarations, a transformation menu is declared. A transformation
menu provides augmented code completion for a given cell. A list of code
completion options is generated from the enumeration (Figure 12.6), and
choosing an option inserts the corresponding enumeration value into the tree at
that location. Additional options are suggested where relevant, inserting
multiple enumeration instances by duplicating the port declaration. This
streamlines node insertions by avoiding the need to completely type the protocol
name, or perform the multiple step process of creating an additional port and
protocol declaration for an additional protocol on the same port.

enum/PortProtocol/.members.foldLeft(new arraylist<string>,{list<string> s, it =>
s.add(it.name); s; })

(a) Generation of list of potential protocol values

enum/PortProtocol/.memberForName(parameterObject).getPresentation();

(b) Parsing of list for promotion to code completion

node.protocol.set(< TCP >);
node<Port> pair = node.new next-sibling(Port);
pair.port = node.port; pair.protocol.set(< UDP >);

(c) Supplementary entry in code completion to duplicate the port declaration with its
counterpart protocol

Figure 12.6
Presenting code completion
list with transformation
menu for PortProtocol

12.2.2 Sorting

The list of port declarations should be sorted numerically increasing. check_EXPOSEThe order
is checked with the checking rule which provides a type system message at info
level, and an intention is suggested to perform the sorting EXPOSE_Sort. This keeps ports in
their standard order for preferable code style. EXPOSE

_Behaviour
The intention uses the behaviour

aspect to determine intention eligibility.

if (this.port.isEmpty)
{ return false; }

int port = 0;
foreach declaration in this.port {
if (declaration.port < port)

{ return true; }
port = declaration.port;

}
false;

(a) canSort behaviour

if (this.port.isEmpty)
{ return; }

nlist<Port> ports =
this.port.sortBy(

{ it => it.port; },
asc

).toList;
this.port.clear;
this.port.addAll(ports);

(b) sort behaviour

Figure 12.7
EXPOSE behaviour aspect

72

Part III:

Integrated Development
Environment

With the language syntax defined and incorporated into a projectional editor,
increasing the usefulness of the editor is possible by creating an integrated
development environment (IDE). This contains the language definitions and
projectional editor, alongside other functionality such as version control system
integration (section 14.4) and Docker orchestration. This part introduces and
explains the Alembicue application functionality incorporated with the editor to
provide a fully featured IDE.

73

13 Editor integration
The crucial part of the integrated development environment is providing an editor
for files. The projectional editor designed and developed is integrated into the
application to provide support for editing.

13.1 Document editor
Since the projectional editor is the core of the application, it takes up the most
space in the application window. This area contains the functionality for
performing the node operations discussed in implementation, such as adding and
manipulating instructions.

Figure 13.1
Mockup of editor interface

13.1.1 Current line

While the structure of the file projected in the editor is not entirely conformant
to lines, text entered into cells are still horizontal in nature, so applying colour
to the line containing the cell can be useful in highlighting where the insertion
point is currently located and the scope of the edit. This highlight in Alembicue
is a yellow background which is behind all other background colours, and extends
into the gutter at the left of the editor.

Figure 13.2
Highlight on line with
insertion point

74

Chapter 13. Editor integration

13.1.2 Node explorer

The underlying structure of the document is an abstract syntax tree. The node
explorer provides the ability to see the tree structure as a hierarchy as it is recorded
and stored without the projectional editor. To display the node explorer for a
node, right-click or secondary click on a projection and choose ‘Show Node in
Explorer’ from the context menu, or press ctrl + X . The node explorer shows
the concept used for the instance of the node, as well as properties and children
stored in the node, and references made to other nodes. Disclosure triangles show
further nested information in each hierarchical level (besides clicking, opens
the triangle). This can be useful in determining exactly how the file is built up
and confirming the correct information is being stored in the background, a useful
debugging tool for confirming the file’s values are received correctly by the build
process.

Figure 13.3
Node explorer example
displaying contents of node
for RUN instruction

13.2 Navigation
In the editor, navigation can be performed with the keyboard or with the mouse.
Each cell projected by an editor aspect (section 6.1) has two properties to assist
with supporting navigation, which are queried when navigation is attempted.

selectable A selectable cell permits navigation to place the insertion point placed
within the cell. The default for cells is true, but this is overridden to false for
all keywords, such as those to signify an instruction. By preventing selection
of a keyword, the insertion point is ensured to be within the contents of an
instruction, rather than in a fixed keyword, which assists with arrow key
navigation by skipping the keyword (subsection 13.2.1).

editable An editable cell permits the typing of characters to be reflected in the
cell. With this property false, all keyboard keys attempt to perform actions
rather than inserting or modifying characters. For example, if the insertion
point is placed in a selectable but not editable cell, and the backspace key
is pressed, a deletion approval is requested for the containing node rather
than the character literally preceding the insertion point. Non-editable cells
provide points to affix structure to for navigation, without being part of the
underlying tree.

75

Chapter 13. Editor integration

13.2.1 Arrow keys

Arrow key keyboard navigation is handled when the insertion point is located
within a cell for a node’s editor aspect.

and Vertical navigation moves between vertical collections, such as that
of a list of key-value pairs if present, then when this list is exhausted, moving
between instructions. This navigation still ensures the destination cell to
be navigated to is selectable per the selectable property.

and Horizontal navigation attempts to keep the insertion point within
the current line (subsection 13.1.1) of the file, first moving the insertion
point one character left and right respectively, then once the string of text
in the cell has been exhausted in a particular direction, moving to the closest
cell to the left or right in line with the current cell.

The destination cell where the insertion point is moved to must have the
selectable property with a value of true. Where there are no more cells to
either side, wrapping is performed, looking for the next selectable cell in the
line above or below, such as a preceding or subsequent instruction’s contents.
Having the instruction keyword override selectable to be false makes this
horizontal navigation between instructions more efficient by skipping the
keyword.

Using alt alongside the horizontal arrow keys, navigation with the arrow keys
can be augmented. When the insertion point is placed within a selectable cell
containing Words are defined in this

context as being strings of
any characters separated by
spaces.

multiple words, alt switches horizontal navigation from character
increments to word increments. When the end of a cell is reached, alt switches
horizontal navigation to cell increments, and places the insertion point at the
furthest end of the cell from the direction the cell has been reached from, such
that subsequent alt -augmented horizontal navigation is also incremented by
cells, skipping the current content of any cell regardless of the number of words.
This increases efficiency of moving through longer files while still iterating through
every selectable cell in the projection.

13.2.2 Mouse clicks

Clicking with the mouse in the editor moves the insertion point to that location
if the underlying cell has the selectable property. If not, the closest cell which has
the selectable property, with horizontal preference, is selected for the insertion
point, which is placed at the horizontally closest location in the cell. This mimics
a text editor by being able to move the insertion point to the end of a line of
text by clicking anywhere to the right of the currently entered text on the line,
making the editor feel more natural for appending text.

76

Chapter 13. Editor integration

13.2.3 Selection

More than one cell can be selected at once, including across nodes. The range of
a selection can increase or decrease up and down the hierarchy, and to previous
and next siblings. Keyboard shortcuts are available for creating a selection, which
are as follows:

alt + Expand selection up hierarchy to words, cells, parent cells and parent
nodes (Figure 13.4).

alt + Shrink selection down hierarchy back towards the original single
insertion point from which the selection was expanded.

shift + Expand selection to previous siblings at current hierarchy elevation
reached with alt + or shrink selection to subsequent siblings at current
hierarchy.

shift + Expand selection to subsequent siblings or shrink selection to
previous siblings at current hierarchy.

These four commands can be thought of as moving a second selection point around
beside the insertion point and performing a tree-based selection between the two
points, where alt moves the selection point up and down the hierarchy and

shift moves the selection point along siblings.

Selections in the abstract syntax tree are required to be contiguous, such that no
siblings can be skipped in a selection. Therefore, this keyboard-based approach
to selection manipulation, and the actions available with this keymap, are able
to produce any valid selection range and scope, for further manipulation of the
contents of the selection using other actions, such as backspace for deletion, or
moving (subsection 13.2.4).

(a) Expanded to word (b) Expanded to string in cell

(c) Expanded to cell projection for one
KeyValue node

(d) Expanded to list projection of
KeyValue nodes

(e) Expanded to projection of ENV
instruction containing children

(f) Expanded to file containing list of
instructions

Figure 13.4
Steps of repeated
invocations of selection
expansion keyboard
shortcut

77

Chapter 13. Editor integration

13.2.4 Moving nodes

Nodes can be moved among their siblings with shift + cmd + or shift

+ cmd + . This moves the currently selected node to the location of its
previous sibling or subsequent sibling respectively. If there is no current selection,
a minimal selection is made until a list can be identified for the sibling operation.
If the end of the list has been reached, but another list supports children of
the same type in the same hierarchy, the move is performed removing the node
from its current list and appending or prepending it to the destination list. For
example, a key-value pair can be moved from the start of an ENV’s list to the end
of a previous LABEL’s list by moving the insertion point to the first key-value pair
child of ENV and pressing shift + cmd + .

13.2.5 Duplicating nodes

Nodes being projected in the editor can be duplicated by pressing cmd + D .
This copies the node, along with all its properties and children, and adds the copy
as a subsequent sibling to the current node.

Initiating the shortcut with no selection duplicates the node most relevant for
duplication: where the node is part of a list of other nodes and accepts a
subsequent element. For example, a child node filling a single optional child
declaration in a concept ([0..1]) will not be duplicated, because the maximum
allowed is 1, so the duplication algorithm looks up the hierarchy until an
ancestor is reached where there are n children allowed for a child declaration
([0..n] or [1..n]), then duplicates this node.

Duplications are also permitted with pre-selected nodes. Where a selection has
been made (subsection 13.2.3), initiating a duplication will check whether the
selection permits further nodes using the same checks as without a selection, then
duplicates the entire selection of nodes. For example, selecting items at indices 1

and 2 in a list of 4 items, then duplicating with cmd + D , will result in a list
of [0, 1, 2, 1, 2, 4] (where these number represents the index of the original item).

This allows for very fast tree mutations as all children are copied to the newly
created node. A very useful example of duplication is in the source list for an ADD

instruction — with any part of a path selected, cmd + D will duplicate the
path for a second source including all path components to be edited.

78

14 Project integration
Alembicue has the ability to create and manage different projects containing sets
of files. These projects store files independently in different locations on the
filesystem. This chapter documents the functionality of Alembicue regarding
wrapping the editor in the full application interface including the dialogs for
creating new projects and files in those projects (section 14.3), as well as version
control system integration (section 14.4).

14.1 Out of box experience
The out of box experience (OOBE) is the experience presented on the very first
launch of the application. This must be crucial to guide the user into the launch
experience given in subsequent launches, without too many preliminary steps.
The Apple Human Interface Guidelines are clear with onboarding guidance.

Avoid asking for setup information up front. People expect apps to just
work. Design your app for the majority and let the few that want a
different configuration adjust settings to meet their needs. […] If you must
ask for setup information, prompt for it in-app the first time, and let users
modify it later in your app’s settings. (Apple, 2019a)

For providing such an experience, the only difference between OOBE and
subsequent launches is one modal, asking whether settings should be imported
from a location, or to set up as new. Settings can be exported from Alembicue
with File Export Settings… and imported with this OOBE modal or later with
File Import Settings… . If a new major version of Alembicue is released, this modal
will automatically detect an older version’s settings if stored in the default
location and offer to import them without needing to manually specify a
location. For other settings imports, it is necessary to choose a location of the
settings file to import them. Once settings are imported, or the modal is
dismissed indicating the user wishes to proceed with setting up as new, the
standard Alembicue launch procedure begins.

Figure 14.1
‘Out of box experience’
modal to import existing or
exported settings

79

Chapter 14. Project integration

14.2 Welcome experience
If there is no current project open, the first window displayed by Alembicue is the
Welcome dialog (Figure 14.2). This dialog displays the Alembicue logo, alongside
the application name and version information.

Figure 14.2
Alembicue IDE welcome
dialog

14.2.1 Options

Three main options are presented for the user to choose from:

Create New Project Opens the new project wizard (Figure 14.4) to create a
new project (section 14.3). This is discussed further in the next section.

Open Project Open the filesystem browser to find a project in the filesystem.
Support local and remote destinations, any project whose files can be viewed
in the operating system file browser can be opened directly through Open
Project.

Figure 14.3
Alembicue IDE open
project folder browsing
dialog

80

Chapter 14. Project integration

Check out from Version Control Opens a dialog to clone a project
(Figure 14.5) from a version control system repository by providing a URL
source and filesystem path destination. For projects whose contents are
tracked by VCS but which already exist on the filesystem, the normal
filesystem browser accessible through Open Project should be used, and
version control integration is automatically enabled on the project.

14.2.2 Additional options

Three additional options are also shown at the bottom of the dialog:

Events Additional information relevant to the current state of the IDE, such
as information regarding available updates and application configuration, is
accessible with the Events menu.

Configure Changing preferences, importing and exporting settings, and
configuring the Java virtual machine can be performed using items in the
Configure menu.

Get Help Additional support, including links to the Alembicue website
(section 16.3) and extra tips for using the IDE, using the Get Help menu.

Figure 14.4
Alembicue IDE new project
wizard

14.3 New project wizard
On creating a new project, either from the welcome dialog (section 14.2) or from
File New Project… ., the New Project wizard is opened (Figure 14.4). The wizard
aims to simplify creating a new project by taking parameters to common options
and generating a project which meets the requirements given.

81

Chapter 14. Project integration

14.3.1 Project parameters

For creating an Alembicue project containing a Dockerfile, the wizard takes the
following parameters:

Project name The name of the project used to refer to the project in the
future, and by default used as the directory name to store
the project. Project name helps disambiguate projects in the
recent projects list to open the project in the future, and to
refer to the project in the cases where multiple projects are
open at once.

Project location A location on the filesystem to store the project. Folders
not currently on the path will be created, before the project
is created within. This can be an empty folder or a folder
currently containing files, the latter of which is common in
cases where existing software should be containerised —
any existing files are not disturbed and Alembicue can work
alongside.

Dockerfile name The name of the Dockerfile to be saved to disk. By default,
a Dockerfile has the name ‘Dockerfile’ (no extension), but in
cases where multiple Dockerfiles may be in a project, it can be
helpful to provide a name here to avoid confusion later. This
name can be changed at any point using Refactor Rename or

shift + F6 on the file.

Project format For compatibility with old systems, it is possible to change
the format for saving the abstract syntax tree to disk from the
default .mps format (XML contained in a directory) to .mpr

(serialised XML concatenated into a single file). Choosing
OK on the dialog creates and opens the project. If a project
is already open, the user is prompted whether to replace the
currently open project with the newly created project or to
open the new project alongside the existing one.

82

Chapter 14. Project integration

14.3.2 Creation steps

In the creation of a new project, the wizard carries out the following steps. These
steps could be performed manually without the wizard, which is just there to
automate the process given the parameters from the user. For automation, these
steps are carried out as a post-startup activity, delegated until model access is
available (giving control first to the language workbench (subsection 3.2.3) to
initialise the platform on the specific operating system).

1. Create a new empty project in the filesystem location given by the user in the
wizard, with the model root set to models/. This sets the location for all files to
be created using the language to be placed in this folder by default.

2. Create a new module in the project, with the generator output path set to
source_gen/. This sets the text generation aspects to place their output in this
folder by default when ‘make’ is performed on the project containing Alembicue
files.

3. Create a new model in the module, with model (and therefore module)
dependency on the com.georgegarside.alembicue language, available with the
language definitions built into the environment.

4. Create a new root node in the model, of concept File (section 7.3). The File
concept is marked rootable, which indicates the concept can begin a new abstract
syntax tree. On the creation of a new root node, a new tree is generated ready
for children to be appended.

5. Set the name property of the file to the parameter given in the creation of the
project. By default, the name is set to ‘Dockerfile’.

6. Add a new blank line to the file by creating a new instance of the BlankLine
concept and adding the new node as a child to the new File instance.

7. Navigate the editor to the newly created file, giving it focus, ready for the user to
begin editing. The insertion point is placed on the first line of the new file, with
the context assistant shown (section 6.6).

83

Chapter 14. Project integration

14.4 Version control system
Alembicue integrates Git and Subversion version control systems at both an
application level and directly with the editor.

14.4.1 Import from repository

Existing projects stored in a remote version control system can be downloaded
and imported into Alembicue including all their revision history. This process is
referred to as ‘cloning’ the repository. To begin the process, choose ‘Check out
from Version Control’ in the welcome dialog (Figure 14.2). By providing a URL
to the repository and a local directory to store the project, the repository located
at the URL can be downloaded into the local directory, opened in Alembicue and
automatically configured for integration of the version control system used. This
allows you to get started with the project really quickly, whether as a tutorial
project to follow along or in a multiple developer environment where a project
has already been set up such as for production.

Figure 14.5
Version control system
clone repository dialog

14.4.2 Code change hints

In a regular text editor, changes lines of text are marked as such by the version
control system and can be presented to the user within the text editing
environment, such as using a mark in the gutter. This usually makes it easier to
see what has been changed in the working copy since the last commit.

To enhance this functionality, hints are provided throughout the language
definition to suggest what has been changed, rather than just where the change
has occurred. For example, the EXPOSE instruction provides VCS hints for
changing, adding, and removing, for both ports and protocols (Figure 14.6).

Markers These hints are presented as coloured markers in the gutter of the
editor. This makes comparing what has been changed in the editor in real time
intuitive, without having to identify changed lines and then secondarily check
what has been changed within.

84

Chapter 14. Project integration

Figure 14.6
Version control system
change hint examples
shown in editor gutter

• Hovering a mark displays a brief summary of the changes contained within, and
also highlights the cells in the projectional editor which represent the change
(Figure 14.6). The colour helps identify the type of change that has taken place,
with green for addition, blue for modification, and grey for removal.

• Clicking on a mark in the editor presents a popover with the previous revision
of the code displayed before the change (Figure 14.7). A toolbar is shown in the
popover which contains the additional functionality of navigating to the  next
change and  previous change, as well as providing the ability to  rollback
current changes to the previous revision,  compare the changes using the model
viewer (subsection 14.4.3), and  copy previous revision to the clipboard.

Figure 14.7
Version control change
popover showing snippet of
previous revision

14.4.3 Model comparison

A common feature used in a version control system (VCS) is the ability to compare
one file with another. It is regarded that VCS are used with text files, due to the
nature of how a VCS tool will ‘record changes and determine conflicts on a line-by-
line basis’ (Ernst, 2012). This is against the nature of projectional tooling which
does not have a direct mapping to a line concept, and therefore would be generally
difficult to view changes and resolve conflicts working with the underlying tree
structure as stored in XML text.

85

Chapter 14. Project integration

A possible solution is to use a VCS to track the output file, generated by
Alembicue for use with Docker, for comparing changes between revisions and
resolve conflicts. However, this means one looks at the output file to compare
changes rather than using the projectional editor, a lesser viewing environment,
and resolving conflicts would then need to be done by editing the output text
file too, a lesser editing environment. The output text file should not be the
primary storage method for information preservation long-term — the abstract
syntax tree stored by and edited with Alembicue should be the focus of tooling.

Therefore, a custom viewer for changes tracked with a VCS would be optimal in
assisting with version control of the abstract syntax tree.

Model viewer Since lines in a projectional editor are somewhat of a deception
(subsection 13.1.1), it would be disingenuous to display the underlying abstract
syntax tree as the changes made by the user to a file, since it is the projectional
editor that is in use.

The model viewer provides this VCS-based comparison of projectional editor files
in Alembicue. Providing the functionality of a ‘diff’ on the two files, the model
viewer is displayed within the commit and diff windows. It is possible to use the
model viewer to view changes in ‘diff’ views (such as changes between commits),
pre-commit (changes between working copy and latest commit) and from any two
files in the repository currently or in history.

Figure 14.8
Alembicue model viewer
displaying changes between
working copy and last
commit

86

Part IV:

Review

87

15 Testing
Alongside informal immediate developer testing of added components as part of
development, two forms of formal testing were used: unit testing and integration
testing. Unit testing (section 15.1) was run automatically and aims to identify
problems with the language structure and aspects used to define the editor.
Integration testing (section 15.2) was performed by the developer following test
plans and incorporated regression testing towards the end of the project.
Testing is an important component of software engineering by attempting to
identify issues with individual code or the resultant behaviour from a
combination of various aspects. The use of formal testing provided verifiable
testing procedures to each instance of a test which could then be reproduced at
a later date or by a different party. Both forms of testing are discussed in this
chapter, including a summary of the tests that took place.

15.1 Unit testing
To test the language definition, projectional editor and other aspects, automated
unit tests were run after each change was made to the code and at each release.
Each test is defined by a name and description, identifying the test and what
is being tested; the state of a portion of an abstract syntax tree, represented in
the projectional editor alongside a recorded insertion point position; steps to be
executed on the tree as part of the test, including keystrokes and actions by IDs;
and the final state of the portion of the tree (Figure 15.1).

Editor test case FROM_Latest
description: Latest tag on image
before: <cell FROM image[:<no tag>;@<no digest>] as <no name> #-1>
result: <cell FROM foo:latest as <no name> #-1>
code:
type "foo"
press keys <any>+<VK_TAB> ;
invoke action by id: jetbrains.mps.ide.editor.actions.Complete_Action
press keys <any>+<VK_ENTER> ;

Figure 15.1
Example unit test
FROM_Latest

15.1.1 Running tests

All tests are run in a new minimal instance of Alembicue which is started without
a GUI for the autonomous running of the tests. Each test can succeed or fail,
depending on if any test prerequisites are not met, any constraints on the test
fail, or the state of the tree at the end of the test does not match the given end
state. Output is generated from the tests to summarise the results.

15.1.2 Test summary

All 36 automated tests passed by the end of the project, indicating that the
components tested successfully carried out the task they were tested for.

88

Chapter 15. Testing

Aspect Behaviour tested Result

1 BlankLine Transformation to instruction using fully entered name 

2 BlankLine Transformation to instruction using partial entered lowercase name 

3 BlankLine Creation of comment using transformation 

4 BlankLine_Editor Deletion of blank line deletes current line with insertion point 

5 BlankLine_SubstituteMenu Prevention of blank line from being inserted as instruction in the file 

6 BlankLine
_TransformationMenu

Context assistant presented with correct options where circumstances
meet requirements



7 Comment Approve deletion of comment replaces with blank line 

8 KeyValue Entering and generation of key value pair 

9 KeyValue_Editor Backspace from first position in value cell to last position in key 

10 KeyValueInstruction Value is required and shows error when missing 

11 KeyValueInstruction_Editor Creation of new key value pairs on return key to imitate new line 

12 KeyValueInstruction
_SubstituteMenu

Prevention from being manually inserted as an instruction in the file 

13 KeyValueOptionalInstruction Value is optional and does not show error 

14 KeyValueOptionalInstruction
_SubstituteMenu

Prevention from being manually inserted as an instruction in the file 

15 ONBUILD Supports necessary child instructions 

16 ONBUILD_Editor Approve deletion of child instruction separately to parent instruction 

17 ONBUILD_Constraints Prevent incorrect children from being created 

18 USER Supports setting user and child 

19 FROM Supports code completion for setting latest tag 

20 Command Creation of command in exec and shell form 

21 CommandInstruction Inclusion of command in instruction form 

22 CommandInstruction
_SubstituteMenu

Prevention from being manually inserted as an instruction in the file 

23 ADD Filesystem validation of path given exists on system 

24 COPY Referencing to build stage inside and outside of scope 

25 COPY_Constraints Ensure reference to FROM instruction is in scope 

26 COPY_Constraints Prevent remote paths being provided 

27 PathRelative Creation and removal of path segments using keyboard shortcuts to
provide inputs to the editor



28 PathRemote Appropriate recognition of remote path instead of relative path for URL 

29 EXPOSE Correct acquisition and display of enumeration for protocols 

30 Port_Constraints Ensure port number given is within range 

31 Instruction_Keymap Ensure creation of new blank line from insertion point position in child
cells of previous instruction



32 Instruction
_SubstituteMenu

Restrict creation of instructions where lack of build context does not
permit creation of such



33 Instruction
_TransformationMenu

Prevention from being manually inserted as an instruction in the file 

34 CommandInstruction
_NodeFactory

Creation of child command alongside creation of instruction 

35 Instruction_NodeFactory Creation of child key-value pair alongside creation of instruction 

36 File_NodeFactory Creation of first blank line instruction in new file 

Table 15.1
Unit tests

89

Chapter 15. Testing

15.2 Integration testing
During development, new commits made into the version control system
(section 5.3) included a test plan (Figure 15.2). This was written by the author
to detail the steps which were taken to test the introduction of that specific
commit on top of the existing code. Having already carried out these tests on
integration, these test plans were followed manually once again as part of
regression testing to ensure nothing released in an earlier commit had been
broken by a later commit. Test plans are recorded on the project Phabricator in
the Differential (code review) module, thus the test plans are referred to as
Differential test plans.

In Differential, 75 revisions were recorded, of which 22 contained a test plan.
These test plans were manually performed on the version of Alembicue ready for
release (1.0.0 EAP) (section 16.4). All such test plans were passed successfully.

90

Chapter 15. Testing

Figure 15.2
Phabricator Differential
revision code review test
plan

91

16 Release
To build Alembicue and its language as a fully functional IDE required some
steps (section 16.2), and to release the software to be downloaded required more
steps (section 16.3). This chapter documents the steps required and completed to
take the language definition and IDE development to a released piece of software,
including multiple versions (section 16.4).

16.1 Name
The name ‘Alembicue’ is a portmanteau of ‘alembicate’ and ‘cue’, where the idea
of production and transformation from ‘alembicate’ refers to the manner in which
abstract syntax trees are transformed and text files produced, and the idea of
producing such text files from the ‘cue’ to articulate the tree with text generation
in response to a request.

alembicate, v. 1627. transitive. Chiefly figurative: to produce, refine, or
transform (an idea, emotion, etc.) as if in an alembic. Cf. alembicated
adj.

cue, n.2 1553. 1c. A stimulus or signal to perception, articulation, or
other physiological response.

Oxford English Dictionary (1989).

16.2 Compilation
From language definition to standalone IDE application, there are a number of
steps involved. These steps are documented in the following subsections.
Compilation is based on Apache Ant, a framework for automating the building
of applications from source code by specifying stages to be executed and
pre-requisites required for those stages. MPS provides a custom projectional
domain-specific language to interact with Ant, called ‘Build Language’
(jetbrains.mps.ide.build). This language is used as an abstraction of an Ant
build script written with XML — the language’s generator aspect transforms
the declarations and projectional code to instances of concepts from MPS’s
projectional XML, which text generation uses to write out XML for Ant to
ingest. Ant is used for development builds of the Alembicue language
(subsection 16.2.2), and distribution builds of the Alembicue application
package containing the language and integrated development environment
(subsection 16.2.3).

92

Chapter 16. Release

16.2.1 Model checker

Before the language can be made, the model checker verifies that the language
is valid using automated rules. These rules ensure the project and language
structure is correct, that each reference target exists in the resultant tree after all
tree operations, and that all language constraints and type system checks pass.

16.2.2 Build for development

The development build of the language includes the following steps:

1. The Alembicue language is compiled from the languages folder using the model
definition of com.georgegarside.alembicue.mpl as the starting point to find and
compile all language files for each aspect (section 6.1).

2. Resource files are loaded and added to the output. This is used for iconography,
providing images used throughout the language, for example in the project wizard
when selecting the language (section 14.2).

3. Dependencies to the Alembicue language are imported to the build and
extracted into the output. Languages required for the compilation of Alembicue
are jetbrains.mps .baseLanguage, jetbrains.mps.build and MPS.Editor.

With the language compiled, it is integrated into a ‘plugin’, which provides a
wrapper to the language suitable for providing the projectional editor components
into a non-projectional environment. This is performed as follows:

1. A blank plugin is created to set the metadata, including version, build number,
and date.

2. Dependences to the Alembicue projectional editor and IDE enhancements are
extracted, which includes mpsStandalone, mpsVcs, mpsMakePlugin and
mpsContextActionsTool. These dependencies are provided by the MPS language
workbench providing the base for the plugin to be developed on top of, thus
providing packages which Alembicue is based upon.

3. The built language mentioned previously is extracted into the plugin.

4. Additional code for the UI not included in any language aspect is extracted,
such as default settings for the IDE; branding including logos, splash screens
and ‘About Alembicue’ information; and vendor information to link back to the
website for the project.

93

Chapter 16. Release

16.2.3 Build for distribution

For the automation of building a distribution version of the software, Apache
Ant provides a framework for scripting builds. A custom script was written to
integrate the Ant build script for continuous integration in Phabricator. When
a new release is committed and pushed to Phabricator, steps are performed to
build all three types of application.

Ant build With the prerequisite of having built for development
(subsection 16.2.2), the Ant build script for distribution is run (Figure 16.1).
This is run in a Docker container set up for Ant build workflows, providing a
portable environment containing the prerequisites required for building the
software.
docker run
--rm \ Automatically clean up container after build is run
-v "$(pwd)":/app:delegated \ Mount current directory in container as /app

sgrio/ant \ Image for providing ant binary
bash -c "
/opt/apache-ant/bin/ant \ Location of ant defined in image
-Dbasedir=/app -f /app/build.xml && Dbasedir ant option avoids cd

/opt/apache-ant/bin/ant \
-Dbasedir=/app -f /app/buildDistribution.xml"

Figure 16.1
Distribution build step 1:
Ant built

Upload artefact Each artefact built, one for each of macOS, Windows and
Linux, are uploaded to Phabricator’s artefact tracking (Figure 16.2). This
provides a link to download the artefact for use in the repository and on the
webpage (subsection 16.3.3).

find app/build/artifacts/AlembicueDistribution/ \
-name "Alembicue*" \
-exec arc upload --json

Figure 16.2
Distribution build step 2:
Phabricator artefact upload

PHID Each file artefact is given an incrementing ID number to refer to the
artefact. However, to use the artefact with other systems as part of continuous
integration, the artefact needs an identifier which is unique across all aspects of
the continuous integration workflow. Phabricator provides a ‘PHID’, similar to a
universally unique identifier (UUID), which identifies an item in Phabricator for
reference by other Phabricator components or external tools. To determine the
PHID of the uploaded artefact, a query is made utilising the Phabricator API.
This PHID is used in the following step for association with another PHID.

echo '{"constraints": {"ids": [upload ID]}, "limit": "1"}' | Search predicates
arc call-conduit \ Make API call
--conduit-uri https://phabricator.georgegarside.com/ \
--conduit-token ${API token} \
file.search | Perform search on file artefacts
jq -r '.response.data[0].phid' Parse response for PHID

Figure 16.3
Distribution build step 3:
Get PHID of artefact from
ID

94

Chapter 16. Release

Pin artefact to build With the artefact uploaded to the file storage and a
unique identifier for the artefact, the file is associated with the build to provide
a download link associated with the version control revision used to generate it.
This provides a persistent link between the built application and the source code
which was used to produce it.

echo "{
\"buildTargetPHID\": \"build PHID to attach artefact\",
\"artifactKey\": \"type of artefact, e.g. macOS/Windows\",
\"artifactType\": \"file\",
\"artifactData\": {\"filePHID\": \"artefact PHID (Figure 16.3)\"}

}" |
arc call-conduit \
--conduit-uri https://phabricator.georgegarside.com/ \
--conduit-token ${API token}
harbormaster.createartifact Create artefact association with build

Figure 16.4
Distribution build step 4:
Associate artefact with
continuous integration build

16.2.4 Code signing

Gatekeeper on macOS verifies developers of macOS software. Code signing
attaches a digital signature to the application, verifying that it has been released
without modification from its source. To perform code signing, the Developer
ID certificate (Figure 16.5) containing the code signing purpose is attached to
the released application.

With the Developer ID applying a signature to the application, Apple can verify
that the software source is legitimate. To verify the authenticity of the software
itself, Apple provides a notary service which ensures no malicious content is found
in the application. The service publishes a list of tickets for authorised software,
and provides a counterpart ticket which is ‘stapled’ to the released application,
which Gatekeeper on macOS can check (Apple, 2019b).

(a) Certificate details (b) Certificate extensions including code
signing purpose

Figure 16.5
Apple Developer ID
certificate for code signing

95

Chapter 16. Release

16.3 Webpage
To promote Alembicue and present the software for download, a webpage was
created (Figure 16.11). This webpage advertises key features and functionality of
Alembicue, with animated demonstrations of functionality.

The webpage is available at:
https://georgegarside.com/apps/alembicue/

16.3.1 Header

The header of the website (Figure 16.6), below the hero animation
(subsection 16.3.2), features an attention-seeking headline followed by a brief
introduction to Alembicue consisting of a few words of each unique selling point
of the software. Each key feature is highlighted in a colour and with an
appropriate symbol beside, such as an insertion point for scoped editing, a type
system warning message underline for an available intention and a quick fix icon
for an available error intention. A link to the code repository containing the
source code of the project is placed beside the call to action download button,
taking you to the download section of the page (subsection 16.3.3).

Figure 16.6
Webpage header

16.3.2 Animation

The website contains numerous animations which play through functionality of
the editor. This attracts attention to various components of the editor which
provides crucial indication of usage, alongside the textual description. These
videos are very short, a few seconds in length, and autoplay In a HTML5 and

autoplay-blocked
environment, autoplay is
achieved by having the
muted attribute set.

and loop. Such
videos include a demonstration of code completion and ‘multi-line’ projectional
editor example (Figure 16.7), and a demonstration of type system messages and
intentions (Figure 16.8).

96

https://georgegarside.com/apps/alembicue/

Chapter 16. Release

(a) FROM version property postfix completion (b) ADD projectional editor multi-line example

Figure 16.7
Webpage video 1

(a) MAINTAINER deprecation replacement error
intention

(b) Type system warning for multiple
instances of LABEL

Figure 16.8
Webpage video 2

16.3.3 Download

Links to download a pre-built package of the software are included near the
close of the page content (Figure 16.9). Three buttons provide links to
download Alembicue for macOS, Windows and Linux. These download a disk
image (in the case of macOS) or a ZIP archive containing the application.

Figure 16.9
Webpage software download
links

16.3.4 Testimonials

The webpage content concludes with an overview of star ratings received and
testimonials received from users. Making submitted testimonials publicly
available on the webpage helps visitors to the project see how useful the software
has been for others, encouraging downloads for them to try it themselves.

Testimonials, reviews and comments are all provided using the form at the bottom
of the page, consisting of a freeform textarea to receive messages from people. All
messages were read and noted by the author, for analysis and observation, as well
as bug fixing and identification of improvements. Testimonials from users provide
very useful feedback for establishing whether the software is useful and which
areas to focus on for future work. Assessing testimonials is a very useful evaluation
technique, presented in this report’s Evaluation section (subsection 17.3.1).

(a) Review stars (b) Testimonials

Figure 16.10
Webpage review stars and
testimonials

97

Chapter 16. Release

Figure 16.11
Screenshot of webpage for
Alembicue

98

Chapter 16. Release

16.4 Versions
Semantic Versioning 2.0.0 specification is followed for versioning the pre-releases
and releases of Alembicue. This helps communicate releases establishing new
API and demonstrate backwards compatibility without the need to parse
incomprehensible change logs, such as from the project version control
(section 5.3), or lengthy release notes.

Under this scheme, version numbers and the way they change convey
meaning about the underlying code and what has been modified from
one version to the next. (Preston-Werner, 2013)

While versioning numerically does signify various properties about the release, it
is not a replacement for a textual description of the changes made in each revision.
The changes made in each version are provided in Table 16.1 for versions prior to
release and Table 16.2 for the release version and subsequent versions.

Alongside semantic versioning, ‘EAP’ is displayed beside all version numbers for
current releases, indicating that these releases are part of the Early Access
Programme. Such terminology refers to the ‘ethical, compliant, and controlled
mechanisms [to] outside of the […] trial space and before the commercial launch’
(Patil, 2016). These releases are meant for the public to use, as opposed to
alpha and beta releases meant for internal and external testing respectively, but
which also signifies the potential lack of feature completeness and other
considerations. This encourages feedback on the software and promotes the
active early development in the product’s lifecycle.

99

Chapter 16. Release

0.1-a1 •

Merge branch ‘dev/composition’
Migrate common components to new language alembicue.common
Service file with FROM instruction

0.1-b1 •

Require FROM to be
:::
first

::::::::::::
instruction

Simplify common language removing empty models
FROM text generation
Editor refactoring & adjustments

0.1 •

Add RUN instruction and transformation of BlankLine to instruction
Add CMD instruction
Add LABEL instruction
Add MAINTAINER instruction and intention to use LABEL
Add EXPOSE instruction with Port & PortProtocol
Add ENV instruction and KeyValueInstruction interface
Add ADD instruction with Path concept & refactor KeyValueInstruction interface to concept

0.2-b1 •

Use indent buffer for Mapping TextGen
Context Actions to set/unset chown on ADD instruction
Instruction folding

0.2 •

Add ENTRYPOINT instruction and create CommandInstruction
Add Command for CommandInstruction and VOLUME instruction
Add USER instruction and refactor stylesheets into common language
Add WORKDIR instruction & create Windows user intention
Add ARG instruction with KeyValueOptional

0.2.1 •

Refactoring TextGen for new lines in commands/etc
Tidy inspection editor
Set up Differential revisions
Replace ‘next applicable editor’ with editor components

0.2.2 •

::::::
Quick

:::
fix for missing FROM

::::::
Quick

:::
fix for inserting a missing FROM

Port autocomplete to create both TCP and UDP
Fix

::::::
empty

:::
file not showing BlankLine

0.3-b1 •

:::::::
Trailing

:::::::
blank

::::
line info message

Only check blank line if file contains FROM
getFile() behaviour for Instruction
EXPOSE

:::::
check

::::
and

::::
fix

:::
for

::::::::::
duplicates

:::::::::::
Deprecated

::::::::::
strike-out in editor

0.3 •

BlankLine transformation menu in context editor
EXPOSE

:::::::::::
Port_Swap

:::::::::
intention

FROM editor show position in file
check_File permit MAINTAINER before FROM
Add ONBUILD editor and

::::::::::
constraint preventing FROM child

Table 16.1
Changelog for pre-release
versions

100

Chapter 16. Release

1.0 •

Vertical grid for instructions in file
ADD filesystem completion & validation
::::::
Quick

:::
fix fix_KeyValueInstruction_Merge

Move file checking rules to individual instruction checks
ADD use reference to USER for chown
KeyValue actions/keymap
COPY with reference to FROM

1.0.1 •
Add

::::
type

:::::::
system

:::::::::::
instruction

:::::::::
message suppression

Standalone IDE create project wizard

1.1 • SHELL command

1.1.1 • Fix backspace deleting previous node

1.1.2 • Fix chown USER editor in ADD and add remote path URL

1.1.3 • Fix Path text generation for both remote and relative

1.1.4 • Fix transformations and actions for creation and deletion

Table 16.2
Changelog for release
versions

101

17 Evaluation
Establishing that the project has met a success criteria (section 17.1) is an
objective way to evaluate the success of a project. Furthermore, discussing the
release of Alembicue (section 17.2) and subsequent reception from testimonials
received (section 17.3) assists with evaluating the impact of the project’s
deliverables. This chapter details the successes and failures making up the
project aim using objective criteria and subjective discussion.

17.1 Success criteria
To establish success of the project, it is necessary to demonstrate the project’s
ability to meet all the requirements set out as objectives (section 1.4) at the start
of the project. The following is an evaluation of the project’s work product in
terms of these criteria.

1. Establish prerequisites to the project beginning, including its motivation,
methodology and work plan to ensure the project stays on track.

 The initial motivation of the project was established early, as was presented
in its initial form in the project brief, before other parts of the project were
considered. This ensured the project had the necessary basis to be regarded
as a suitable final year project, as well as incorporating the necessary scope
to make the project a viable solution to a real issue. The motivation was
established further through the additional work which was done as part of
this project report to demonstrate the motivation to the reader (section 1.2),
establishing the usefulness of the deliverables.

 The development methodologies (section 1.5) were also established before work
on the project began, to ensure that all work carried out could be assessed
appropriately at its conclusion. A plan of the work to be carried out was
completed as part of this assessment, included in the report (subsection 1.5.2),
to be followed through the project. Both the methodologies and the work plan
were followed, with the work plan being adjusted as necessary as estimations
could be made more accurate. This ensured the project was completed in a
timely manner and to a high quality.

2. Research and review existing literature in the field for a greater understanding of
the work which has taken place prior.

 Existing literature was researched and reviewed as part of the completion of
the literature review chapter of this report (chapter 2). This shaped the work
on the project, providing a set of standards established in the past for the
deliverables in this project to follow, as well as demonstrating areas which
were found to be promising for this project to explore further. Alongside
exploring the research, reviewing such work provided additional benefit by

102

Chapter 17. Evaluation

critiquing and complementing the decisions and assumptions made, both of
which were developed on further by this project in many areas.

− One area which was covered in the literature review was the integration of the
editor with the compiler such as through compiler-specific application binary
interfacing with the containing application. While the literature review did
demonstrate that this was a promising area for future work, it was not explored
in this project as it would arbitrarily link Alembicue to a specific existing
compiler. Since the compiler is part of the BuildKit responsible for producing
the image (Nephin et al., 2019), interfacing directly with it would require
knowledge of the implementation of containerisation; an interesting topic by
itself but which was not the focus of this language-orientated project.

3. Research, discuss and present conclusions, for an overview of containerisation
necessary for the development of the containerisation language, and language
workbenches for the implementation of the language.

 Given an established focus on editing and language through literature review,
establishing and understanding the specification of the language to be
developed is crucial in creating appropriate deliverables for interoperability
with this existing framework. Researching the containerisation process
(section 3.1), so far as to understand the the applicability of the language to
its provisioning of layers in the image build process, provides a greater
understanding of how the language should be developed and the usage
pertinent to developers. This also lead to the investigation and
summarisation of the different language workbenches which could be used to
develop various parts of the deliverables focused on language — this
investigation was covered in the report (section 3.2) and conclusions were
drawn providing the language workbench tooling decision used in the project.

4. Establish weaknesses in existing tooling for containerisation, and areas for
innovation in Alembicue, through a detailed gap analysis.

 The detailed gap analysis (chapter 4) performed in this project highlighted
the shortcomings with many existing tools that provide a small subset of the
functionality of the deliverables in this project. These issues with the existing
tooling can be analysed objectively and contributed to the overall assessment of
the software development efforts made in this area previously. By determining
areas on which Alembicue can improve over these existing software, it can be
shown that Alembicue is more suited to certain aspects of the development of
containerisation.

5. Choose and set up tooling to begin development, including version control and
continuous integration.

103

Chapter 17. Evaluation

 Various languages needed to be learned for this project to take place
effectively, given the choice of language workbench made for objective 3, and
which were covered in this report (section 5.1). Establishing the learning
effort for these languages and their applicability to the solutions ensured
that effort was placed in the correct areas of the language suitable for use in
development of deliverables for this project.

 Assistive development tools were used to configure an environment for
working and developing in, including version control (section 5.3) and
continuous integration (section 16.2). The successful use of these tools
assisted with development by streamlining development, providing history
for the project and ensuring quality of the released software through
automated testing (chapter 15).

6. Design and implement a base level of the language, with core concepts such as
the abstract syntax tree, and extensibility for continued development.

 For the underlying structure of the language, core concepts were developed
including the concept of an instruction (section 7.1), key-value pairs
(section 7.2), a file concept (section 7.3), blank lines (section 7.4) and
comments (section 7.5). These provided the necessary language foundation
upon which the language acquired features through the use of these concepts
to provide instructions. A successful implementation here was crucial in
being able to provide a language which has semantic structure and with
extensibility for future work, both in the scope of this project and in the
future. This objective was met successfully, demonstrated through the
implementation of the rest of the language making frequent and obligatory
use of these concepts in providing functionality and syntax.

7. Design, develop and implement instructions for the language, including
projectional editor components for each instruction, type system constraints and
behaviours.

 The basis of Alembicue was designed once all the prerequisites were addressed.
This established important concepts, including the aspect model (section 6.1),
and language functionality, such as intentions (section 6.4) and type system
checking (section 6.5). The implementation of this was a success in providing
extensibility for the rest of the language.

 All instructions established in the language specification were implemented
successfully, for configuring the environment (chapter 8), execution
(chapter 9), container (chapter 10), filesystem (chapter 11) and metadata
(chapter 12). Incorporating the syntax of the instructions into the language
was carried out alongside the development of editing components for
Alembicue’s projectional editor. The implementation of each instruction was

104

Chapter 17. Evaluation

the core of this project, and successfully completing this objective provided
the necessary basis for the usability of the language outside of a technical
demonstration of the capabilities of Alembicue to potential public release for
use in production environments.

8. Develop and implement an integrated development environment, incorporating
the projectional editor environment and Docker orchestration to run the language.

 Given the development of editing components for concepts in the language,
incorporating the projectional editor into Alembicue provided the ability to
edit documents written using the language (section 13.1). This provided the
crucial functionality of the project in the software, ensuring its suitability for
providing an accessible interface for the language, making use of the editor
components developed alongside the instructions for the language.

 Docker integration in Alembicue provides orchestration capabilities to the
software, adding the ability to control Docker to build the image from the
Dockerfile written using Alembicue and to run a container based on the
image. This provides end-to-end workflow integration from empty Dockerfile
to running container using Alembicue, meeting this objective to provide an
integrated development environment.

9. Perform suitable testing of each component of Alembicue and the overall
application using established practices and methods.

 Testing of Alembicue was carried out alongside development (chapter 15), both
manual and automated. By using both types of testing, an increased range of
functionality of the software could be evaluated for mistakes and inaccuracies.
All tests passed by the end of the project, successfully meeting this objective.

10. Release Alembicue for download and use by developers to write their own
containerisation files.

 Alembicue was successfully released on its product webpage (section 16.3) and
demonstrably in use by developers given the positive testimonials received as
part of feedback solicited from users. The release of Alembicue was a success,
measured in the release evaluation section of the report (section 17.2).

11. Evaluate the outcome of the project against each objective and the project’s
overall aim, including feedback received from Alembicue’s release and possible
future work to be carried out.

 Evaluation was performed as part of the review of the project, the findings of
which are detailed in the evaluation section of the report (chapter 17). This
evaluation also included reviews of Alembicue post-release, where feedback
was incorporated into determining the reception of the software from the
target market. Making sure each objective and deliverable was suitably met

105

Chapter 17. Evaluation

demonstrates the success of the project as a whole, incorporating all the
necessary components of the project and providing value to those who will
use Alembicue and work on it in the future.

17.2 Release
From release of Alembicue version 1.0 up to the time of analysis, a period of 1
month and 2 weeks has elapsed (from March 2019 to midway through April 2019).
Additional updates and improvements were made to the project page and to the
Alembicue application, which were rolled out during this time as covered in the
release section of this report (section 16.4).

During this time, Alembicue’s project page (https://georgegarside.com/apps/
alembicue/) was visited 30, 821 times (Figure 17.1). Acquisition of such visits can
be broken down into two main categories: organic search, and direct or referral
acquisition.

04/03 09/03 14/03 19/03 24/03 29/03 03/04 08/04 13/04 18/04
0

20

40

60

80

Date, day/month for 2019

C
ou

nt
pe

r
ho

ur

https://georgegarside.com/apps/alembicue/

Visitors Downloads

Figure 17.1
Alembicue webpage
statistics

17.2.1 Organic search

87% of page acquisitions are accounted for by organic search, the majority source
by far. According to reports generated by Google Search Console, the most
organic clicks and impressions from a search engine results page are the result
of queries on Google which can be categorised as follows:

Docker editing interest docker editor docker ide dockerfile editor

These queries are from people interested in solutions for editing Docker,
namely Dockerfiles. Alembicue can be considered solution to this given its
abilities to provide editing for Dockerfiles with its projectional editor
(Part 5.4.2), and the regular placement of Alembicue in the search engine
results pages (SERPs) for these queries demonstrates an established
relevance to Alembicue.

106

https://georgegarside.com/apps/alembicue/
https://georgegarside.com/apps/alembicue/
https://georgegarside.com/apps/alembicue/

Chapter 17. Evaluation

Common Dockerfile issues dockerfile maintainer deprecated

Alembicue can help prevent common issues with Dockerfiles utilising
intentions (section 6.4). The highest ranked query in this category regards
the deprecation of the MAINTAINER instruction in the Dockerfile language
specification, and Alembicue provides automation of the migration path to
the correct instruction to be used instead (subsection 12.1.3)
demonstrating its relevance to this query through the first feature
advertisement on the webpage.

General concept interest projectional editor

Queries also relate to the general concept of projectional editing. With
Alembicue providing an innovative implementation of this concept, it is
relevant to many of these queries, and this is demonstrated through
Alembicue’s consistent appearance in various SERPs for queries in this
category, leading to interest in the project and subsequent interaction
(subsection 17.2.3). The regular appearance of Alembicue in search engine
results for these terms shows that the project is applicable to many queries
made by users. This demonstrates the success of the project in its
application to these key areas through the provision of appropriate
deliverables (subsection 1.4.1) as part of Alembicue’s development and
culminating in Alembicue’s release.

17.2.2 Direct or referral

Visits to the Alembicue project page account for is approximately 4% of the total
visits to the https://georgegarside.com domain over the same time period, with
over 660, 000 domain visits.

According to Quantcast (2019), the existing audience to the George Garside
Network (which includes this domain) is heavily biased towards technology &
computing, with audience interest in this category 3.8× average internet users.
georgegarside.com features content on generic development and programming,
and a large proportion of developers are familiar with or have an interest in
cloud computing in general (Stack Overflow, 2019). prior to the addition of this
project page there was no Docker-specific or containerisation-focused
development content on the site. With 4% of site traffic, this is regarded as a
very healthy page especially for a new project and for an audience lacking a
demonstrative interest in Docker.

107

https://georgegarside.com
georgegarside.com

Chapter 17. Evaluation

17.2.3 Conversions

The average visitor spent 4 minutes on the Alembicue project webpage. This
demonstrates audience engagement with the content of the page, which can be
attributed to presenting interesting functionality of Alembicue highlighting
functions novel and unique to Alembicue, as well as being presented in an
engaging format using animations demonstrating Alembicue’s interface and
interactions.

From engagement with the page, Alembicue was downloaded 855 times
(Figure 17.1). This is a conversion rate from page view to download of almost
3%, which can be regarded very highly, as it is not expected that visits are from
users with compatibility with the software, and some visits are from users who
have already downloaded the software. With such a high conversion rate, it can
be regarded that the content of the page is enticing visitors to try the software,
which demonstrates both the engagement of the page and the intrigue presented
by the concepts portrayed in the software.

The visits to the project page by desktop operating systems are distributed almost
equally between macOS and Windows which account for the largest proportion,
and the same distribution is apparent with downloads of Alembicue (Figure 17.2).
This shows that the choice of building the software for the three platforms of
macOS, Windows and Linux was a choice which has benefited the audience of the
software, since excluding one of the platforms could have lost a large proportion
of potential usage.

Download

Visit
3.1

6.2

6.6

41.7

35.5

52.1

54.8

Percentage by operating system

Breakdown of action type by operating system excluding mobile

macOS Windows Linux Other

Figure 17.2
Downloads by desktop
operating systems

108

Chapter 17. Evaluation

17.3 Reception
Alembicue has been received well following release on the website. The feedback
form on the page has received numerous comments and a star rating was given
along with many of the comments. The ratings are tallied (Figure 17.3) and show
a clear preference to higher ratings, with an average of 4.3 out of 5. This is a very
positive response to such an early version of the application, and demonstrates
the value of the product both to its current audience and potential market.

Average:

4.3
out of 5

1
2
3
4
5 62

17

6

1

8

St
ar

s

Review star summary Figure 17.3
Summary of stars received
in testimonials

17.3.1 New project issues

Various testimonials were received from users regarding the setup process of
Alembicue following the initial release (version 1.0).

Dotfuscate, Indonesia‘It just say loading for hours, pulling the screen changed to please wait few
second after text gone nothing happen’

Ehsanviery, U.S.A.‘Would you please tell me why I getting blank page whenever I open the
application??’

densajangel, U.S.A.‘Can’t open the app I downloaded but when I log in, the screen turned all white.’

Saikie88, Philippines‘Your app doesn’t work. It’s just all white page.’

Through feedback received which included the user agent string for the
submission, and further testing carried out on virtual machines, it became
apparent that on occasion there were issues with carrying out the creation of a
new project in certain environments. Such issues included the creation of a
project which lacked the necessary dependencies on the Alembicue language,
therefore being unable to create a new file to begin work.

This was resolved through improved exception handling and user flow
management through the new project wizard (section 14.3), which was released
with version 1.0.1 16.2. Having resolved this issue and released a new version
which could be downloaded from the webpage, many reviews were updated,
demonstrating that the problem had been rectified.

Nick-Snack, Argentina‘The developer fixed the bug, and now the app works perfect!’

Wind Band FM, U.S.A.‘App works like a charm now! Thank You!!! :D’

109

Chapter 17. Evaluation

17.3.2 Setup concerns

Some feedback received raised issues around getting started with Alembicue.

JustAedan, UK‘I am new to this so can someone help me by telling me how I set up’

Sunlight Gaming, U.S.A.‘I need a bit of help’

chris.pakalns, Latvia‘I don’t understand what is this all about’

Mivang, U.S.A.‘I don’t really understand how it work’

With the lack of detail as to what part of the application these people were
having difficulties with, it’s not possible to say for sure what could be improved.
Various additional releases were made after the first public release of Alembicue
(section 16.4), including to address issues on creating new projects
(subsection 17.3.1) which could also be the source of these comments.
Additional work could be to speak to users with issues and gain additional
information on the cause of such problems, so that this could be addressed in a
future feature release of the application.

On the contrary, some feedback directly contradicts the other feedbacks received
regarding a lack of understanding of the application.

russen., UK‘Not bad at all. Seems a lot of people are not reading and understanding
how the app works.’

TheJoePiper, UK‘Great app I think most of the bad reviews here are from rival developers!
Or people who don’t understand. Very silly people. This is a great app.’

It is apparent that the application requires some level of understanding before use,
but alongside all the other commendations received (subsection 17.3.3), it can be
said that this level is generally appropriate for the target audience. However,
future work could involve the creation of a full user guide for the application
which could help new users get started with the application more easily.

110

Chapter 17. Evaluation

17.3.3 Commendations

These commendations demonstrate the usefulness of the software to the majority
of those who have used it, which is a very encouraging sign that Alembicue has
met its needs and is appropriately serving users.

JGL 1980, U.S.A.‘So far so good….’

Kanzai zhao, South Africa‘There’s no need to complain’

J0725, U.S.A.‘Great app App works as intended’

Satoshi king, U.S.A.‘I was pleased with this app up to this point. It wasn’t good or bad, it had
issues like every app but they were easily over looked.’

MissFierceness, U.S.A.‘Really great app and wonderful support. The one time I had a technical
issue, I sent a DM to the developer and he had a fix ready in a matter of
hours. Great app interface! Keep up the good work!’

shadymcgavin, U.S.A.‘It Is what it says’

TerraByte, India‘I have had no problems. Appears valid and legit. Thanks !’

Alexander Lynn, U.S.A.‘Works well, minimal interface’

265run, U.S.A.‘Great App! Enjoy using this.’

Heddropolis, U.S.A.‘So far so good I like it so far.’

Harald Grausam, Germany‘Funktioniert. Bin allerdings noch lange nicht soweit dieses auch zu testen.’

FernD0ll, U.S.A.‘Love the app! It’s easy and offers a lot of options.’

DAH1968, UK‘I’ve been using this app for a couple of weeks now and I can’t fault it so
far — it does what it says on the tin! So far so good. It runs great, and
looking back through the reviews, the developer actually takes the time
and energy to respond to comments, good or bad.’

Andrydtd, Italy‘Nel complesso bella app”

Shaundebastion, U.S.A.‘I’m not understanding the negative reviews when it comes to this app; it
does exactly what the description of the app says it does and even more.
Great app!’

Thefearjr, U.S.A.‘Amazing! I do not know why everyone keeps rating this app low. It’s
amazing. I’ve been using it for a while and I have no complaints thank
you for creating such an amazing app!’

Thenameismaster, India‘Great app and genuine very good app. Seems legit’

Alex74gZ, Italy‘Se fa quel che promette è top App’

JeromeFami88, Philippines‘Don’t know why other users are having bad experiences. I have no issues
at all.’

Mynoraxis, Australia‘App seems to be working fine for me.’

Sir Jhom, Canada‘Easy to use UI.’

Gunner Stahl, U.S.A.‘Why would anyone give this app anything less than 5 stars!?! What’s not
to love?!’

Arturo Larssen, Canada‘Excellent app one of the best’

Kate Grr, UK‘This is a nice app and I hope it continues to work.’

kadz, U.S.A.‘Awesome Find Imo a must have for any enthusiast’

G31573RF4HR3R, U.S.A.‘Waiting for an app like this. Still loving this app! Use it daily.’

Hydroplosion, U.S.A.‘Simple, Functional, Works as intended. Good job.’

111

Chapter 17. Evaluation

17.3.4 Concept feedback

In addition to the general commendations received (subsection 17.3.3), some
positive feedback made specific mention to the concepts used in Alembicue.
Innovative concepts employed throughout include the projectional editor and the
use of contextual guidance to assist the user with writing files. Such feedback is
encouraging that the concepts are useful, providing helpful information and
recommendations to the user along the way. This is the most encouraging
feedback received as it demonstrates that future work in the area of projectional
editing is worthwhile — something the market is looking for at the moment.

Anonymous, U.S.A.‘This is cool! I like the concept. Overall it is well made and I think you
are very intuitive to make this app.’

higheloplays, U.S.A.‘Nice app Im loving the app seriously the whole concept of it is really cool.’

EzraRose, U.S.A.‘Seems like a very interesting concept & I’m excited to try it’

However, some feedback on the concept appeared to demonstrate some difficulties
with the application.

stefan4427, Germany‘Dass man die manuell eintippen muss ist schon echt nervig, aber dass man
nicht einmal korrigieren kann ohne gleich neu einzugeben reicht mir schon um
zu erkennen dass es sich hier um eine sehr schlecht umgesetzte App-Idee handelt.’
(Google Translate: ‘That you have to type in manually is really annoying, but that
you can not even correct without reentering is enough for me to realise that this is a
very poorly implemented app idea.’)

Due to a lack of detail in what exactly was causing difficulty, it is not possible
to say for certain what aspect of the editor was problematic in this case. It is
possible to speculate that the difficulty here was caused by instructions becoming
fixed upon entering.

On successfully entering an instruction, the keyword for the instruction is fixed,
and the instruction must be deleted in its entirety to change the keyword for the
instruction. Unlike a regular text editor, where the keyword is just text on the
page, the keyword in the projectional editor is a projection of the underlying node,
and cannot simply be selected and edited. However, in a projectional editor, it
would not make sense to be able to edit the keyword without changing the entire
instruction, since the contents of the instruction is dependent on the type of
instruction used. Removing the entire instruction is the only way to change the
keyword because the keyword is a direct projection of the type of node used to
represent that information in the tree.

Where possible, intentions provide automatic conversion between different types
of node, such as from the deprecated MAINTAINER instruction to the LABEL

instruction while keeping the contents of the instruction (transforming it to the
necessary child type for the new instruction), and future work involves creating
more of these contextual intentions available to the user.

112

Chapter 17. Evaluation

17.3.5 Released versions

A few comments were made about the author releasing new versions of the
software after development. This kind of feedback demonstrates the benefits of
releasing new versions to fix issues and add functionality. For a full list of
functionality added to the software after release, see Versions (section 16.4).

lso3333, France‘Service contact efficace, j’avais un problème d’adresse et on m’a
accompagner jusqu’à la résolution du problème. App agréable sans pubs
et épurée, l’essentiel est là.’
(Google Translate: ‘Effective contact service, I had an address problem and I was
accompanied until the problem was solved. Nice app without ads and refined,
the essential is there.’)

Corey_M_R1, UK‘Bettered Interface. Recent updates have shown some great improvements.’

Hannon96, U.S.A.‘Great developer who listens to people fixed it. Thank you !’

17.3.6 Suggested improvements

From the feedback received, some users suggested potential future work which
could improve the application. While feedback on bugs and functionality issues
were addressed where possible in the subsequent releases between the first
release version of Alembicue and the time of writing this report, additional work
suggested could not be put within the scope of this project and must be left to a
later date.

Radioactive, Pakistan‘Very Good App, Lovin it. Thank you for this app it works flawlessly.
Looking forward for some fun settings to play with like dark theme etc.’

A dark theme for the editor interface could be implemented in a future version,
as currently the background of the editor is white and the syntax highlighting is
a fixed colour palette appropriate for the light background. A dark application
interface is currently available through the appearance settings of Alembicue, but
the editor remains light.

17.4 Future work
There are many possibilities for future work on this project given the
extensibility of the language and the development software used. Providing the
source code to the project as open source on Phabricator allows anyone to
contribute improvements to the software, which can be compiled and released
on the webpage for everyone else to use. Furthermore, incorporating the
language editor into Alembicue removes the need for contributors to set up their
own development environment and instead can focus on contributions to the
language and functionality of the software. This helps encourages contributions
to the software, as well as future work being done myself.

113

Chapter 17. Evaluation

17.4.1 Language functionality

The needs of containerisation platforms change as new functionality is
developed. Updating the language with more instructions as such needs change
helps keep Docker at the forefront of the field. Therefore, updating the
Alembicue language alongside ensures it provides this new functionality to
everyone, not just those who wish to manually add instructions to Alembicue.
Such addition of instructions can be made by extending existing instructions or
extending the Instruction concept with new concepts that define their own
parameters, as well as an editor component to provide the projectional editing
environment for that instruction. Once these components are built, the existing
functionality provides the instruction in the same manner as existing
instructions, such as with code completion, without any additional steps from
the developer. Such extensibility is a key benefit to Alembicue and will help
keep the software relevant in the future.

17.4.2 Contextual assistance improvements

Context-aware behaviours are one of the most useful pieces of functionality
provided by Alembicue on top of the language itself. Adding more of these
behaviours, including intentions and more type system checking rules, warnings
and errors, helps increase the editor’s awareness of the code and encourages best
practices in the development of such files.

While many intentions and contextual rules were added to the language as part
of this project, the time constraints and scope of the project prevented the
continued addition of more — the current Alembicue language definition and
aspects (excluding the code necessary for the integrated development
environment and application) is currently over 10,000 lines of Java, and the
scope of the project within the timescales defined place a limit on how much
assistant functionality can be built in. This is an obvious avenue to continue to
develop Alembicue to make the software better at recognising improvements
that can be made to the code.

17.4.3 Orchestration languages

In addition to the Dockerfile language used by Docker to build one image, other
languages are available for other software which focus on other parts of the
containerisation workflow.

Docker Compose is a tool for the creation of multi-container setups, each
container based on a Dockerfile. Compose files only support a subset of YAML
— certain syntax is valid YAML but invalid in compose files. Whilst tools exist
to syntax check YAML documents, there does not exist an editor to assist with
writing compose files, such that issues could be found prior to submitting the

114

Chapter 17. Evaluation

file for composition. Docker provides docker-compose config to validate and
view compose files, but this does not show all problems with the files, and also
must be run regularly and manually to check the document for errors.

Extending Alembicue with support for Docker Compose, and by extension
Kubernetes, will allow Alembicue to work with automated orchestration of
images created using Dockerfiles also created with Alembicue, alongside manual
orchestration using the existing Docker integration. This would provide the
same benefits as discussed with Dockerfiles to more of the containerisation field
and associated platforms.

115

18 Conclusion
The aim of the project was to design, development and release an integrated
development environment, called Alembicue, for composing Docker images
centred around a projectional editor for Dockerfiles. As this report has
demonstrated, the project has been a success; all Success criteria evaluation

(section 17.1)
objectives were met, and

deliverables were created to a high standard and released to great reception.

As identified in a detailed gap analysis covering existing first-party and third-party
tool support, no Gap Analysis (chapter 4)tool existed which was capable of providing sufficient syntax
support for assisting developers in writing Dockerfiles. Alembicue, through a

Design (chapter 6)design of a complete language with specification of properties, constraints and
Type system (chapter 7),
Environment (chapter 8),
Execution (chapter 9),
Container (chapter 10),
Filesystem (chapter 11),
Metadata (chapter 12)

type system, provides a formality and consistency that the existing solutions do
not. Furthermore, using an innovative integration between syntax tree and editor,
additional benefits were provided to the user of Alembicue including contextual
intentions and suggestions for best practices. This functionality was provided
alongside the revolutionary projectional editor which ensures syntax compliance
and removes the need for parsing text in determining syntax and applying syntax
highlighting — exceptional functionality both to this field of cloud computing and
to programming in general.

The reception of Alembicue after release has been significant, encouraging and
positive, Reception (section 17.3)demonstrating the successful development of the application and its
ability to fill a gap in the market identified. This release was aided by previous
work in developing a website with an audience interested in this field, which

Release (section 17.2)helped bring an existing audience of my previously released software to this new
project, but analysis of the release also demonstrates the project acquiring a
new audience separately; this is an encouraging identification of broad
suitability to a popular field.

While the scope of the project was large and the project itself covering many
aspects, the completion of all objectives demonstrates that the scope was chosen
well, of an appropriate difficulty keeping in mind the time constraints on the
project. The time required for learning new programming languages Languages (section 5.1)necessary
for the project was underestimated in the planning stages, but by planning at a
high level Methodology (section 1.5)until more information could be obtained for each development stage
allowed adjustments to be made to the schedule to ensure a timely delivery.

Alembicue provides a unique combination of language definition and
projectional editor, with strong advantages over common parser-based text
editing. This project has demonstrated the superiority of such editing paradigms
and the favourable experience it provides to the entire field of programming.

116

Bibliography
Anlauff, M., Kutter, P.W. and Pierantonio, A., 1999. Tool support for language design and

prototyping with montages. International conference on compiler construction. Springer,
pp.296–300.

Apple, 2018. Mac keyboard shortcuts [online]. Available from:
https://support.apple.com/kb/HT201236 [accessed 5 November 2018].

Apple, 2019a. Apple Human Interface Guidelines - Onboarding [online]. Available from:
https://developer.apple.com/design/human-interface-guidelines/ios/app-

architecture/onboarding/ [accessed 10 April 2019].

Apple, 2019b. Notarizing Your App Before Distribution [online]. Available from: https:
//developer.apple.com/documentation/security/notarizing_your_app_before_distribution

[accessed 12 April 2019].

AWS, 2019. What Is a Key-Value Database? [Online]. Available from:
https://aws.amazon.com/nosql/key-value/ [accessed 15 March 2019].

Borras, P., Clément, D., Despeyroux, T., Incerpi, J., Kahn, G., Lang, B. and Pascual, V., 1988.
Centaur: the system. Vol. 13, 5. ACM.

Charmes, G., 2014. What is the diffference between CMD and ENTRYPOINT in a Dockerfile? [Online].
Available from: https://stackoverflow.com/a/21564990/1549818 [accessed 11 February 2019].

Chen, M. and Nunamaker, J.F., 1989. Metaplex: an integrated environment for organization and
information system development. International conference on information systems: proceedings
of the tenth international conference on information systems: boston, massachusetts, united
states. Vol. 1989, pp.141–151.

Collberg, C., 2009. CSc 453 Compilers and Systems Software, 1: Compiler Overview [online].
Available from:
https://www2.cs.arizona.edu/~collberg/Teaching/453/2009/Handouts/Handout-1.pdf [accessed
31 October 2018].

Cormack, J., 2016. Begin process of deprecating MAINTAINER [online]. Available from:
https://github.com/moby/moby/pull/25466 [accessed 10 February 2019].

Crocker, D., 1982. RFC-822: Standard for the Format of ARPA Internet Text Messages. Network
Information Center.

Dias, C. and Weatherford, S., 2018. vscode-docker/readme.md [online]. Available from:
https://github.com/Microsoft/vscode-docker/blob/master/README.md [accessed 14 April 2019].

Docker, 2016. Compose file version 2 reference [online]. Available from:
https://docs.docker.com/compose/compose-file/compose-file-v2/ [accessed 11 February 2019].

117

https://support.apple.com/kb/HT201236
https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/onboarding/
https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/onboarding/
https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution
https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution
https://aws.amazon.com/nosql/key-value/
https://stackoverflow.com/a/21564990/1549818
https://www2.cs.arizona.edu/~collberg/Teaching/453/2009/Handouts/Handout-1.pdf
https://github.com/moby/moby/pull/25466
https://github.com/Microsoft/vscode-docker/blob/master/README.md
https://docs.docker.com/compose/compose-file/compose-file-v2/

Docker, 2018a. Deprecated engine features [online]. Available from:
https://docs.docker.com/engine/deprecated/ [accessed 10 February 2019].

Docker, 2018b. Docker glossary [online]. Available from: https://docs.docker.com/glossary/
[accessed 12 March 2019].

Docker, 2018c. Dockerfile reference [online]. Available from:
https://docs.docker.com/engine/reference/builder/ [accessed 2 November 2018].

Efftinge, S., 2015. 15 Minutes Tutorial [online]. Available from:
https://github.com/eclipse/xtext/blob/website-published/xtext-

website/documentation/images/30min_editor.png [accessed 3 April 2019].

Efftinge, S. and Koehnlein, J., 1972. Xtext 2.9 - new & noteworthy. EclipseCon NA 2016,
7–10 February 2016 Reston. Virginia: EclipseCon.

Ernst, M., 2012. Version control concepts and best practices [online]. Available from:
https://homes.cs.washington.edu/~mernst/advice/version-control.html [accessed 7 April
2019].

Evans Data Corp., 2018. Global Developer Population and Demographic Survey 2018.

Eysholdt, M. and Behrens, H., 2010. Xtext: implement your language faster than the quick and
dirty way. Proceedings of the acm international conference companion on object oriented
programming systems languages and applications companion. ACM, pp.307–309.

Fowler, M., 2005. Language Workbenches and Model Driven Architecture [online]. Available from:
https://www.martinfowler.com/articles/mdaLanguageWorkbench.html [accessed 4 January 2019].

Fowler, M., 2008. ProjectionalEditing [online]. Available from:
https://martinfowler.com/bliki/ProjectionalEditing.html [accessed 30 October 2018].

GNU, 2008. GNU nano: Overview: 1.2 release [online]. Available from:
https://www.nano-editor.org/overview1.2.php [accessed 3 January 2019].

Gomez, L., 1988. Learning to use a text editor: Some learner characteristics that predict success.
Applied Ergonomics, 19(1), p.76.

Gomez, L., Egan, D., Wheeler, E., Sharma, D. and Gruchacz, A., 1983. How interface design
determines who has difficulty learning to use a text editor. Proceedings of the sigchi conference
on human factors in computing systems. ACM, pp.176–181.

Hunt, A. and Thomas, D., 1999. The Pragmatic Programmer: From Journeyman to Master.
Reading, Massachusetts. and et al.: Addison-Wesley.

JetBrains s.r.o., 2017. MPS Meta Programming System [online]. Available from:
https://www.jetbrains.com/mps/ [accessed 4 April 2019].

118

https://docs.docker.com/engine/deprecated/
https://docs.docker.com/glossary/
https://docs.docker.com/engine/reference/builder/
https://github.com/eclipse/xtext/blob/website-published/xtext-website/documentation/images/30min_editor.png
https://github.com/eclipse/xtext/blob/website-published/xtext-website/documentation/images/30min_editor.png
https://homes.cs.washington.edu/~mernst/advice/version-control.html
https://www.martinfowler.com/articles/mdaLanguageWorkbench.html
https://martinfowler.com/bliki/ProjectionalEditing.html
https://www.nano-editor.org/overview1.2.php
https://www.jetbrains.com/mps/

JetBrains s.r.o., 2018a. DevOps - The State of Developer Ecosystem Survey in 2018 [online].
Available from: https://www.jetbrains.com/research/devecosystem-2018/devops/ [accessed
21 April 2019].

JetBrains s.r.o., 2018b. Domain-specific languages [online]. Available from:
https://www.jetbrains.com/mps/concepts/domain-specific-languages/ [accessed 4 April 2019].

JetBrains s.r.o., 2018c. MPS Structure [online]. Available from:
https://confluence.jetbrains.com/display/MPSD20182/Structure [accessed 5 April 2019].

JetBrains s.r.o., 2019a. Code completion: statement completion [online]. Available from:
https://www.jetbrains.com/help/idea/auto-completing-code.html#statements_completion

[accessed 6 April 2019].

JetBrains s.r.o., 2019b. Code Inspection: Unused local variable [online]. Available from:
https://www.jetbrains.com/help/rider/UnusedVariable.html [accessed 13 March 2019].

JetBrains s.r.o., 2019c. Intention actions [online]. JetBrains s.r.o. Available from:
https://www.jetbrains.com/help/idea/intention-actions.html [accessed 28 March 2019].

Josey, A., Cragun, D., Stoughton, N., Brown, M., Hughes, C. et al., 2004. The Open Group Base
Specifications Issue 6 IEEE Std 1003.1, 2004 Edition. The IEEE and The Open Group, 20(6).

Kats, L.C. and Visser, E., 2010. The spoofax language workbench: rules for declarative
specification of languages and ides. ACM sigplan notices, 45(10), pp.444–463.

Kelly, S., Lyytinen, K. and Rossi, M., 1996. MetaEdit+ a fully configurable multi-user and
multi-tool case and came environment. International conference on advanced information
systems engineering. Springer, pp.1–21.

Klint, P., 1993. A meta-environment for generating programming environments. ACM
Transactions on Software Engineering and Methodology (TOSEM), 2(2), pp.176–201.

Klint, P., Van Der Storm, T. and Vinju, J., 2009. Rascal: a domain specific language for source
code analysis and manipulation. 2009 ninth ieee international working conference on source
code analysis and manipulation. IEEE, pp.168–177.

Knibbe, W., 1994. PIM for Macs speeds access to information. InfoWorld, 16(3), 22.

Ko, A., Aung, H. and Myers, B., 2005. Design requirements for more flexible structured editors
from a study of programmers’ text editing. CHI’05 extended abstracts on human factors in
computing systems. ACM. Portland, Oregon, USA, pp.1557–1560.

Konopko, C., Shatalin, A. and Pech, V., 2011. Base Language - MPS 1.5 Documentation [online].
Available from: https://confluence.jetbrains.com/display/MPSD1/Base+Language [accessed
20 April 2019].

119

https://www.jetbrains.com/research/devecosystem-2018/devops/
https://www.jetbrains.com/mps/concepts/domain-specific-languages/
https://confluence.jetbrains.com/display/MPSD20182/Structure
https://www.jetbrains.com/help/idea/auto-completing-code.html#statements_completion
https://www.jetbrains.com/help/rider/UnusedVariable.html
https://www.jetbrains.com/help/idea/intention-actions.html
https://confluence.jetbrains.com/display/MPSD1/Base+Language

Koorn, J., 1992. GSE: a generic text and structure editor [online]. Amsterdam, The Netherlands:
University of Amsterdam. Available from:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.6948%5C&rep=rep1%5C&type=pdf

[accessed 2 November 2018].

Kuiper, M. and Saraiva, J., 1998. Lrc—a generator for incremental language-oriented tools.
International conference on compiler construction. Springer, pp.298–301.

Lamb, L. and Robbins, A., 1998. Learning the vi Editor. 6th ed. O’Reilly & Associates.

Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nordstrom, G.,
Sprinkle, J. and Volgyesi, P., 2001. The generic modeling environment. Workshop on intelligent
signal processing, budapest, hungary. Vol. 17, p.1.

McMahon, L., 1978. SED — A Non-interactive Text Editor.

Mernik, M., Lenič, M., Avdičaušević, E. and Žumer, V., 2002. Lisa: an interactive environment for
programming language development. International conference on compiler construction.
Springer, pp.1–4.

Mitchell, B., 2019. What is port 0 used for? [Online]. Available from:
https://www.lifewire.com/port-0-in-tcp-and-udp-818145 [accessed 21 February 2019].

Moolenaar, B., 1998. Vim reference manual: Vim Version 5.0 §syntax-highlighting [online].
Available from: http://vimdoc.sourceforge.net/htmldoc/version5.html#new-highlighting
[accessed 3 January 2019].

Nephin, D., Tiigi, T., Howard, J., Vass, T., Goff, B. et al., 2019. Moby/builder.go at master
moby/moby [online]. Available from:
https://github.com/moby/moby/blob/master/builder/dockerfile/builder.go [accessed 12 April
2019].

Oxford English dictionary, 1989. 2nd ed. Oxford: Clarendon Press.

Patil, S., 2016. Early access programs: benefits, challenges, and key considerations for successful
implementation. Perspectives in clinical research, 7(1), p.4.

Performance Computing, 1984. Interview with Bill Joy. Unix Review [online]. Available from:
https://web.archive.org/web/20120210184000/http://web.cecs.pdx.edu/~kirkenda/joy84.html

[accessed 5 February 2019].

Preston-Werner, T., 2013. Semantic Versioning v2.0.0 [online]. Available from:
https://semver.org/spec/v2.0.0.html [accessed 11 April 2019].

Quantcast, 2019. George Garside Network [online]. Available from:
https://www.quantcast.com/measure/profile/network/p-M86TpqD_mH-L8 [accessed 18 April 2019].

120

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.6948%5C&rep=rep1%5C&type=pdf
https://www.lifewire.com/port-0-in-tcp-and-udp-818145
http://vimdoc.sourceforge.net/htmldoc/version5.html#new-highlighting
https://github.com/moby/moby/blob/master/builder/dockerfile/builder.go
https://web.archive.org/web/20120210184000/http://web.cecs.pdx.edu/~kirkenda/joy84.html
https://semver.org/spec/v2.0.0.html
https://www.quantcast.com/measure/profile/network/p-M86TpqD_mH-L8

Rae Technology Inc., 1996. Hierarchical structure editor for web sites. US Patent US5911145A.
1999-06-08.

Smolander, K., Lyytinen, K., Tahvanainen, V.-P. and Marttiin, P., 1991. MetaEdit—a flexible
graphical environment for methodology modelling. International conference on advanced
information systems engineering. Springer, pp.168–193.

Söderberg, E. and Hedin, G., 2011. Building semantic editors using jastadd: tool demonstration.
Proceedings of the eleventh workshop on language descriptions, tools and applications. ACM,
p.11.

Solmi, R., 2011. Whole Platform Project [online]. Internet Archive. Available from:
https://sourceforge.net/apps/mediawiki/whole/index.php?title=Whole_Platform_Project

[accessed 3 April 2019].

Solmi, R., 2017. Whole Platform [online]. Available from: https://whole.sourceforge.io [accessed
3 April 2019].

Sorenson, P.G., Tremblay, J.-P. and McAllister, A.J., 1988. The Metaview system for many
specification environments. IEEE software, 5(2), pp.30–38.

Stack Overflow, 2018. Stack Overflow Developer Survey 2018 [online]. Available from:
https://insights.stackoverflow.com/survey/2018 [accessed 3 April 2019].

Stack Overflow, 2019. Stack Overflow Developer Survey 2019 [online]. Available from:
https://insights.stackoverflow.com/survey/2019 [accessed 18 April 2019].

Sufrin, B., 1982. Formal specification of a display-oriented text editor. Science of Computer
Programming, 1(3), pp.157–202.

Teichroew, D., Macasovic, P., Hershey, E.A. and Yamamoto, Y., 1980. Application of the
entity-relationship approach to information processing systems modelling. Proceedings of the 1st
international conference on the entity-relationship approach to systems analysis and design.
North-Holland Publishing Co., pp.15–38.

Teitelbaum, T. and Reps, T., 1981. The Cornell Program Synthesizer: A Syntax-Directed
Programming Environment. Communications of the ACM, 24(9), pp.563–573.

Turnbull, J., 2014. The Docker Book: Containerization is the new virtualization. James Turnbull.

Vass, T., 2017. Moby/moby releases: v1.13.0 [online]. Available from:
https://github.com/moby/moby/releases/tag/v1.13.0 [accessed 10 February 2019].

Voelter, M. and Pech, V., 2012. Language modularity with the mps language workbench. 2012
34th international conference on software engineering (icse). IEEE, pp.1449–1450.

121

https://sourceforge.net/apps/mediawiki/whole/index.php?title=Whole_Platform_Project
https://whole.sourceforge.io
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2019
https://github.com/moby/moby/releases/tag/v1.13.0

White, O., 2014. IDEs vs. Build Tools: How Eclipse, IntelliJ IDEA & NetBeans users work with
Maven, Ant, SBT & Gradle [online]. Available from: https://jrebel.com/rebellabs/ides-vs-
build-tools-how-eclipse-intellij-idea-netbeans-users-work-with-maven-ant-sbt-gradle/

[accessed 3 April 2019].

Yuen, R., Yew, W., Hon, N. and Endo, S., 1997. Assembly language software development system.
Consumer Electronics, 1997. ISCE’97. and Proceedings of 1997 IEEE International Symposium
on. IEEE, pp.138–141.

122

https://jrebel.com/rebellabs/ides-vs-build-tools-how-eclipse-intellij-idea-netbeans-users-work-with-maven-ant-sbt-gradle/
https://jrebel.com/rebellabs/ides-vs-build-tools-how-eclipse-intellij-idea-netbeans-users-work-with-maven-ant-sbt-gradle/

	I Foundation
	Introduction
	Overview
	Motivation
	Benefits
	Objectives
	Methodology

	Literature Review
	Plain text editing
	Structure editing
	Projectional editing

	Background
	Containerisation
	Language workbenches

	Gap Analysis
	dockerfile-editor.com
	Visual Studio Code
	docker build

	Tools
	Languages
	Environment
	Version control
	LaTeX

	II Projectional Editor
	Design
	Aspects
	Syntax highlighting
	Code completion
	Intentions
	Type system warnings, errors & info
	Context assistant

	Type system
	Instruction
	Key-value
	File
	BlankLine
	Comment

	Environment configuration
	FROM
	LABEL, ENV & ARG

	Execution preparation
	Command
	Command instruction
	RUN, CMD & ENTRYPOINT

	Container configuration
	USER
	STOPSIGNAL
	ONBUILD

	Filesystem modification
	WORKDIR
	VOLUME
	Path
	ADD & COPY

	Metadata management
	MAINTAINER
	EXPOSE

	III Integrated Development Environment
	Editor integration
	Document editor
	Navigation

	Project integration
	Out of box experience
	Welcome experience
	New project wizard
	Version control system

	IV Review
	Testing
	Unit testing
	Integration testing

	Release
	Name
	Compilation
	Webpage
	Versions

	Evaluation
	Success criteria
	Release
	Reception
	Future work

	Conclusion
	Bibliography

