
Relative Motion in the Velocity Frame for Atmospheric
Entry Trajectories

Samuel W. Albert∗ and Hanspeter Schaub†

University of Colorado Boulder, Boulder, Colorado 80303

https://doi.org/10.2514/1.A35753

Relativemotionmodels provide amethodof directly describing the position andvelocity of a deputy spacecraftwith

respect to a chief spacecraft. Common approaches such as the Clohessy–Wiltshire equations describe relativemotion

in a rotating orbit frame aligned with the radial position vector of the chief, and intuitive solutions exist in this frame

for circular or near-circular chief orbits. However, as eccentricity of the chief orbit increases, the along-track and

velocity directions become less aligned and the orbit frame becomes less intuitive. This work revisits several key

relativemotion descriptions in the orbit frame and reformulates them to describemotion in the velocity frame, which

provides an intuitive description ofmotionwith respect to the flight path. Highly elliptic and hyperbolic chief motions

are considered, which are common for atmospheric entry trajectory scenarios. These models are combined with the

extended Allen–Eggers equations into a procedure for analytically estimating the offset in landing location for

formation flying on an atmospheric entry trajectory. Three representative examples are given and compared with

simulation, and range offset predictions are within 6% of total chief range in all cases.

I. Introduction

IN STUDIES of spacecraft formation flying it is common to

represent the relevant dynamics using relative motion models cen-

tered on one spacecraft [1]. This central spacecraft is labeled as the

chief, and all other neighboring spacecraft are labeled deputies. These
models can take the form of exact or linearized relative equations of

motion (EOM), which may admit analytical solutions, and a wide

variety of solutions have been studied [2]. Such relative motionmodels

provide a degree of analytical insight, reduce the computational com-

plexity for simulation, and supply a dynamics representation more
amenable to onboard control and estimation methods. Notably, the

choice of state representation (Cartesian coordinate frame, relative orbit

elements, etc.) has a significant impact on the utility of thesemodels [3].
Existing formation flying literature is primarily concerned with

motion about circular or slightly eccentric elliptical orbits, such as the

well-known works by Hill [4], Clohessy and Wiltshire [5], and

Tschauner and Hempel [6]. In contrast, relative motion about highly

eccentric elliptical or hyperbolic chief orbits has received little dedi-

cated attention. Carter presents a state transition matrix (STM) appli-
cable for Keplerian orbits with any eccentricity in terms of Cartesian

coordinates in a rotating frame with true anomaly as the independent

variable [7], and a time-explicit STM is given by Dang [8]. A direct

solution of the STM for any nonparabolic Keplerian orbit is given by
Reynolds in terms of inertial states [9]. Dang and Zhang present

linearized relative EOM in terms of orbit element differences that are

valid about a hyperbolic orbit [10]; the work by Willis et al. gives a

second-order solution in terms of time and true anomaly of the chief
[11], and Melton shows that this model holds true for hyperbolic

orbits [12]. While the aforementioned approaches provide accurate

models of relative motion about a highly eccentric chief, they do not

necessarily present an intuitive representation in the way that the

Clohessy–Wiltshire–Hill equations do in a Cartesian rotating frame

for motion about a circular chief. This is because all prior work
expresses the Cartesian relative motion coordinates in the rotating
orbit (or Hill) frame of the chief. This frame is not as convenient for
highly eccentric chief orbits, as even the simplest formation, the lead-
follower formation inwhich there is only a difference in true anomaly,
results in a two-dimensional trajectory in the orbit frame. The relative
motion in a lead-follower formation is primarily in the velocity
direction,which is not along an orbit frame unit vector for noncircular
orbits. This is illustrated in Fig. 1, which shows relative motion for a
lead-follower formation about a hyperbolic chief in both the Hill and
velocity frames, where the y axis of the latter is defined as the velocity
direction of the chief; Although the velocity frame is commonly used
in astrodynamics, a direct formulation of relativemotion in this frame
is a novel contribution. This paper explores relativemotion expressed
in the rotating chief velocity frame rather than the orbit frame.
Velocity frame relative motion is of particular interest in scenarios

where force due to atmospheric drag is significant, because drag is
purely along the antivelocity direction. Examples range from the small
perturbing acceleration due to drag in lowEarth orbit, to aerobraking in
which the spacecraft repeatedly passes through the upper atmosphere
to reduce orbital energy, to aerocapture and direct-entry scenarios in
which the vehicle flies deep into the atmosphere and drag becomes the
dominant force. An intuitive and accurate model of relative motion is
relevant to all of these scenarios. For example, propulsionless satellites
can achieve orbit phasing and adjustment by changing attitude to
modulate the amount of drag on each spacecraft, as has been demon-
strated on orbit [13]. A similar method of control can be used during
aerobraking [14]. In a mission deploying two or more satellites into
orbit via aerobraking, understanding the relative motion as affected by
atmospheric drag would be critical. Relative motion is also relevant to
various aerocapture and entry scenarios. The Galileo and Cassini–
Huygens missions each delivered a probe from an orbiter [15,16], and
the Pioneer Venus mission deployedmultiple probes from a single bus
on an entry trajectory [17]. Futuremissions could involve delivering an
entry probe from a mothercraft that then enters the atmosphere to
perform aerocapture [18], simultaneous aerobraking of a satellite
constellation [19], or deployment of multiple probes to a regional
surface network from a single entry vehicle [20]. Intuitive relative
motion models could aid in early reference trajectory design for such
missions, and could also enhance onboard control and state estimation
between the multiple spacecraft. Moreover, aerobraking, aerocapture,
and entry trajectories are typically highly elliptical or hyperbolic,
further motivating representation in the velocity frame. Thus, atmos-
pheric entry trajectories, including aerobraking, are considered as a set
of motivating examples in this study.
The contributions of thiswork are an exploration of relativemotion

models in the velocity frame and the application of these models to
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Keplerian formation flying, differential drag during aerobraking, and
atmospheric entry trajectories. The relative EOM in the velocity
frame are presented, the linearized approximation is developed,
and the nondimensional form is also provided. In addition, descrip-
tions of velocity frame relative motion in terms of orbit element
differences are derived for both elliptical and hyperbolic chief orbits.
Expressions for including differential drag as a perturbing acceler-
ation are developed.Relativemotion during atmospheric flight is also
considered by linearizing the Allen–Eggers solution for ballistic
entry [21]. The Keplerian and atmospheric flight models are then
combined to create a model of relativemotion about an entry vehicle,
and the approximate models are validated against numerical propa-
gation of the full dynamics for several representative example sce-
narios. Relative motion models as described above would benefit an
analyst designing trajectories for multiple codelivered entry vehicles
for applications such as a planetary probe network [20] or probe
delivery by a carrier spacecraft on an entry trajectory [18], as well as
for multiple independently targetable reentry vehicles [22] These
models also could be incorporated into onboard guidance, naviga-
tion, and control algorithms.

II. Keplerian Motion in the Velocity Frame

A. Reference Frame Definitions

Let N∶fn̂1; n̂2; n̂3g be a generic inertial frame. The orbit frame,
also known as the Hill frame, is defined through the base vectors
O∶fôr; ôθ; ôhg. Here ôr is along the orbit radial direction and ôh is
along the angular momentum vector of the spacecraft h � r × v,
where r and v are the position and inertial velocity vectors for the
spacecraft, respectively. Lastly, ôθ completes the right-handed set
and is referred to as the along-track direction. The velocity frame is
defined through the base vectors V∶fv̂n; v̂v; v̂hg, where v̂v is directed
along the inertial velocity, v̂h � ôh, and v̂n completes the right-
handed set. Flight-path angle γ is defined as the angle from the
along-track direction ôθ to the velocity direction v̂v. Finally, true
anomaly f is the angle between the position vector and the eccen-
tricity vector, the latter of which is inertially fixed for Keplerian
motion, such that the angular velocity between the Hill and inertial

frames isωO∕N � _fôh. Figure 2 summarizes these frame definitions,

where ôh is directed out of the page.

B. Exact Relative Equations of Motion

The chief spacecraft position vector is defined as

rc � rcôr � xcv̂n � ycv̂v (1)

where rc is the current orbit radius of the chief spacecraft, and noting
that, under the assumptionofKeplerianmotion, the chief hasnoposition
component in theorbit-normal direction.As the orbit andvelocity frame
only differ by a rotation about ôh, the out-of-planemotion description is
identical in both the orbit and velocity frame. This allows the following
development to focus on the in-plane relative motion.
The deputy spacecraft positionvector is thenwritten in terms of the

relative orbit position vector ρ as

rd � rc � ρ � �x� xc�v̂n � �y� yc�v̂v � zv̂h (2)

noting that here x, y, and z are defined as velocity frame components,
a break from the common use of these variables as Hill frame
components.
The velocity frame rotates with respect to the inertial framewith an

angular velocity of ωV∕N , which expands as

ωV∕N � ωV∕O � ωO∕N � � _f − _γ�v̂h (3)

The time derivative of this vector with respect to the inertial frame,
_ωV∕N , is similarly written as

_ωV∕N � _ωV∕O � _ωO∕N � � �f − �γ�v̂h (4)

Applying transport theorem [1] twice to Eq. (2) to find the second
time derivative with respect to the inertial frame yields the following
kinematic expression for the deputy spacecraft acceleration vector:

�rd � � �x� �xc − 2� _f − _γ�� _y� _yc� − � �f − �γ��y� yc�
− � _f − _γ�2�x� xc��v̂n � � �y� �yc � 2� _f − _γ�� _x� _xc�
� � �f − �γ��x� xc� − � _f − _γ�2�y� yc��v̂v � �zv̂h (5)

An expression for the chief spacecraft acceleration vector �rc is
similarly derived, and in this case is equal to the Keplerian acceler-

ation vector −�μ∕r3c�rc, where μ is the gravitational parameter of the
central body. Equating the vector components in the resulting expres-

sion for �rc � −�μ∕r3c�rc yields the following equations:

�xc − 2� _f − _γ� _yc − � �f − �γ�yc − � _f − _γ�2xc � −
μ

r3c
xc (6a)

�yc � 2� _f − _γ� _xc � � �f − �γ�xc − � _f − _γ�2yc � −
μ

r3c
yc (6b)

The vectors ωV∕N and _ωV∕N are conveniently expressed as [1]

ωV∕N � � _f − _γ�v̂h � α

ζ
_fv̂h (7)

_ωV∕N � � �f − �γ�v̂h � α

ζ
�f −

e�e2 − 1� sin f
ζ2

_f2 v̂h (8)

where the dimensionless quantities α and ζ are defined for ease of
notation:

α � �e cos f� 1� (9)

ζ � �e2 � 2e cos f� 1� (10)

Auxiliary variables defined for concise notation are collected inAppen-
dixA for easy reference. The chief orbit angularmomentummagnitude
h is constant for Keplerian motion, and setting its time derivative equal
to zero yields an expression for true anomaly acceleration [1]:

h � r2c _f (11)

_h � 0 � 2rc _rc _f� r2c �f (12)Fig. 2 Hill and velocity frames.

Fig. 1 Relativemotion about hyperbolic chief shown inHill and velocity

frame components.

ALBERTAND SCHAUB 1615

D
ow

nl
oa

de
d 

by
 U

ni
v 

of
 C

ol
or

ad
o 

L
ib

ra
ri

es
 -

 B
ou

ld
er

 o
n 

Se
pt

em
be

r 
19

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
75

3 



Finally, the acceleration acting on the deputy spacecraft is written as

the sum of Keplerian acceleration plus an arbitrary perturbing accel-

eration vector u � uxv̂n � uyv̂v � uzv̂h,

�rd � −
μ

r3d
rd � u (13)

where rd � �x� xc�2 � �y� yc�2 � z2c is the orbit radius of the

deputy spacecraft.
Substituting Eqs. (6–8) and (12) into Eq. (5) gives a kinematic

expression for acceleration of the deputy spacecraft; equating this

with the kinetic acceleration defined in Eq. (13) and simplifying

yields the exact nonlinear relative EOM in terms of velocity frame

components:

�x� _f
α

ζ
y 2

_rc
rc

−
_fe�1 − e2� sin f

αζ
− 2 _y − x

_fα

ζ
−
μxc
r3c

� −
μ

r3d
�xc � x� � ux (14a)

�y − _f
α

ζ
x 2

_rc
rc

−
_fe�1 − e2� sin f

αζ
− 2 _x� y

_fα

ζ
−
μyc
r3c

� −
μ

r3d
�yc � y� � uy (14b)

�z � −
μ

r3d
z� uz (14c)

Note that the flight-path angle of the chief spacecraft is written

as [1]

tan γ � e sin f

1� e cos f
� e sin f

α
(15)

Therefore, Eqs. (14a) and (14b) can also be written as

�x� _f
α

ζ
y 2

_rc
rc

−
_f�1 − e2�

ζ
tan γ − 2_y − x

_fα

ζ
−
μxc
r3c

� −
μ

r3d
�xc � x� � ux (16a)

�y − _f
α

ζ
x 2

_rc
rc

−
_f�1 − e2�

ζ
tan γ − 2 _x� y

_fα

ζ
−
μyc
r3c

� −
μ

r3d
�yc � y� � uy (16b)

It is worth briefly noting how the relative EOM are correctly

initialized for propagation. A typical scenario is that the position

and inertial velocity vectors of the chief and deputy spacecraft are

known at the initial time, and the relative statemust be computed. The

relative positionvector ρ is computed according to Eq. (2) and rotated

into the velocity frame, providing initial values for x, y, and z. To
complete the full state, relative velocity components _x, _y, and _z are
also required, but these comprise a vector defined as the time deriva-

tive of the relative position as seen by the velocity frame. Using the

transport theorem yields

V _x
_y
_z

≡
Vd

dt
�ρ� � _ρ − ωV∕N × ρ (17)

where _ρ � _rd − _rc is the difference between the inertial velocities of
the deputy and chief spacecraft.

C. Linearized Relative Equations of Motion

To linearize Eqs. (14a–14c), assume that the distance between the
chief and deputy spacecraft is small compared to the chief orbit
radius, �x; y; z� ≪ rc. By taking a first-order Taylor series expansion
about x � y � z � 0, rd is approximated as

μ

r3d
≈

μ

r3c
�1 − 3κ� (18)

where

κ � xcx� ycy

r2c
(19)

Substituting Eq. (18) into the vector expression on the right-hand side
of Eq. (13) and neglecting terms that are quadratic in terms of x, y, or z
results in a further simplification:

−
μ

r3d

V x� xc
y� yc

z
≈ −

μ

r3c

V x� xc − 3κxc
y� yc − 3κyc

z
(20)

Additionally, note that μ∕r3c can be expressed as the following
identities [1]:

μ

r3c
� rc

p
_f2 �

_f2

α
(21)

Substituting Eqs. (20) and (21) into Eqs. (14a–14c) gives the
linearized relative EOM in terms of velocity frame components:

�x� _f
α

ζ
y 2

_rc
rc

−
_fe�1 − e2� sin f

αζ
− 2 _y − x

_fα

ζ

�
_f2

α
�x − 3κxc� � ux (22a)

�y − _f
α

ζ
x 2

_rc
rc

−
_fe�1 − e2� sin f

αζ
− 2_x� y

_fα

ζ

�
_f2

α
�y − 3κyc� � uy

(22b)

�z�
_f2

α
z � uz (22c)

D. Nondimensional Relative Equations of Motion

In the case of relativemotion in the Hill frame, the linearized EOM
take on an elegant form when nondimensionalized by the chief orbit
radius rc and differentiated with respect to the chief orbit true
anomaly f instead of time [1]. These are known as the Tschauner–
Hempel equations [6], and a variety of solution approaches exist in
the literature [7]. For completeness, the equivalent nondimensional
forms of the linearized relative EOM in terms of velocity frame
components are presented here.
Define the nondimensional relative orbit coordinates �u; v;w� as

u � x

rc
v � y

rc
w � z

rc
(23)

Unlike the Tschauner–Hempel equations in the Hill frame, the
velocity frame equations require similarly defining nondimensional
coordinates for the chief spacecraft:

uc �
xc
rc

vc �
yc
rc

wc �
zc
rc

(24)

Denote the derivative with respect to chief orbit true anomaly as
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�� 0 ≡ d��
df

(25)

The following identities relate time derivatives of �x; y; z� to deriv-

atives of �u; v; z� with respect to true anomaly [1]:

_x

rc
� u 0 _f� u

_rc
rc

�x

rc
� u′′ _f2 � u _f2 1 −

rc
p

(26a)

_y

rc
� v 0 _f� v

_rc
rc

�y

rc
� v′′ _f2 � v _f2 1 −

rc
p

(26b)

_z

rc
� w 0 _f� w

_rc
rc

�z

rc
� w′′ _f2 � w _f2 1 −

rc
p

(26c)

Dividing Eq. (22) by rc and substituting Eq. (26) gives the following
nondimensional linearized relative EOM in terms of velocity frame

components:

u′′ � 1 −
α2

ζ2
− 3

rc
p
u2c u − 2

α

ζ
v 0

−
e�1 − e2� sin f

ζ2
� 3

rc
p
ucvc v � ux

rc _f
2

(27a)

v′′ � 1 −
α2

ζ2
− 3

rc
p
v2c v� 2

α

ζ
u 0

� e�1 − e2� sin f
ζ2

− 3
rc
p
ucvc u � uy

rc _f
2

(27b)

w′′ �w � uz

rc _f
2

(27c)

E. Relative Orbit Element Description

A disadvantage of the relative EOM discussed thus far is that, for a

general orbit, describing the relative motion requires solving the

differential equations. As an alternative approach, a direct mapping

between orbit element differences and the Cartesian relative position

vector ρ would provide analytical insight into the relative orbit

geometry. This is provided in Ref. [23] in terms of Hill frame

components. An equivalent mapping between orbit element

differences and velocity frame components can be found by premul-

tiplying that result by the direction cosine matrix (DCM) relating the

two frames, Vρ � �VO�Oρ, where [VO] is [1]

�VO� �
α
ζ

p − e sin f
ζ

p 0

e sin f
ζ

p α
ζ

p 0

0 0 1

(28)

A brief derivation of the equations relating orbit element

differences and Cartesian velocity frame position components is

given here, with additional details provided in Appendix B closely

following Secs. 14.4.1 and 14.6.1 of Ref. [1].
Define the orbit element vector as œ � �a; e; i;Ω;ω;M�T , con-

sisting of semimajor axis, eccentricity, inclination, right ascension

of the ascending node, argument of periapsis, and mean anomaly,

respectively. The orbit element difference vector is then defined as

deputy orbit element vector minus the chief orbit element vector:

δœ � œd − œc � �δa; δe; δi; δΩ; δω; δM�T (29)

A linearized mapping between orbit element differences and

Cartesian relative position is provided by Eq. (30):

Oρ �
δr

r�δθ� cos iδΩ�
r�sin θδi − cos θ sin iδΩ

(30)

To obtain a more intuitive description that does not rely on δθ,
Eq. (30) is reformulated to instead rely on differences in mean

anomaly M (or, in the case of a hyperbolic chief, mean hyperbolic

anomaly N), which will remain constant if δa � 0 for Keplerian
motion [1]. The derivations of each first-order variation are provided

in Ref. [23] and included in Appendix B with the exception of

difference in mean hyperbolic anomaly δN, which is added here to

include expressions that are valid for a hyperbolic chief. The deriva-

tions of δM and δN only differ slightly and are therefore shown here
in parallel.
Take the definitions of mean anomalies M and N in terms of

eccentric anomaly E and hyperbolic anomaly H,

M � E − e sinE (31a)

N � e sinhH −H (31b)

and take the first variations of these expressions,

δM � �1 − e cosE�δE − sinEδe (32a)

δN � �e coshH − 1�δH� δe sinhH (32b)

Note the orbit identities relating E and H with f [1],

tan
f

2
� 1� e

1 − e
tan

E

2
(33a)

tan
f

2
� e� 1

e − 1
tanh

H

2
(33b)

and take the first variations

δE � η

α
δf −

sin f

αη
δe (34a)

δH � ηh
α
δf� sinh f

αηh
δe (34b)

where η � 1 − e2
p

and ηh � e2 − 1
p

.
Additionally, note the following orbit identities [1]:

sinE � η sin f

α
cosE � e� cos f

α
(35a)

sinh H � ηh sin f

α
cosh H � e� cos f

α
(35b)

Substituting Eqs. (34) and (35) into Eq. (32), simplifying, and
rearranging provides expressions for δf in terms of δM and δN:

δf � α2

η3
δM� sin f�2� e cos f�

1 − e2
δe (36a)

δf � α2

η3h
δN −

sin f�2� e cos f�
e2 − 1

δe (36b)

Substituting the orbit identities given in Eqs. (65–73) and (36) into

Eqs. (30), premultiplying by �VO�, and simplifying yields the desired
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mapping, where Eqs. (37) and (38) correspond to elliptical and

hyperbolic chief orbits, respectively.

x � �1 − e2�
ζ

p δa −
a��e2 � 1� cos f� 2e�

α ζ
p δe

−
re sin f

ζ
p �δω� δΩ cos i� (37a)

y � re sin f

a ζ
p δa� 2a sin f

ζ
p δe� p

ζ
p �δω� δΩ cos i� � a ζ

p
η

δM

(37b)

z � r�sin θδi − sin i cos θδΩ� (37c)

x � �1 − e2�
ζ

p δa −
a��e2 � 1� cos f� 2e�

α ζ
p δe −

re sin f

ζ
p �δω

� δΩ cos i� (38a)

y � re sin f

a ζ
p δa� 2a sin f

ζ
p δe� a�1 − e2�

ζ
p �δω� δΩ cos i�

−
a ζ
p
ηh

δN (38b)

z � r�sin θδi − sin i cos θδΩ� (38c)

By sweeping chief true anomaly values through a single full

revolution, the corresponding relative orbit geometry can be analyti-

cally computed according to Eq. (37). In the case of an invariant orbit,

where δa � 0 and the dynamics are fullyKeplerian, this describes the

complete relative orbit geometry. It is important to note that, in the

case of a hyperbolic chief, the equations should only be evaluated for

physically reachable values of true anomaly as defined by the range

�−f∞; f∞�, where f∞ is the asymptotic true anomaly:

cos f∞ � −
1

e
(39)

Note that it is possible for α to equal 0 and cause a singularity in

Eq. (38) for hyperbolic orbits if this constraint is ignored, but that this

singularity is never encountered as long as the physical limitation of

−f∞ < f < f∞ is respected.
To fully describe the spacecraft state, velocity is also necessary,

and this can be obtained by differentiating Eqs. (37) and (38) with

respect to time. The only time-varying quantities appearing in these

equations are true anomaly of the chief f and either difference in

mean anomaly δM or difference in mean hyperbolic anomaly δN,
respectively. The conservation of angular momentum of the chief

spacecraft, given by Eq. (11), can be rearranged to give an expression

for _f:

_f � h

r2c
(40)

To find expressions for δ _M and δ _N, take the first variation of Kepler’s

equation:

δM � δM0 −
3

2

δa

a
�M −M0� (41a)

δN � δN0 −
3

2

δa

a
�N − N0� (41b)

Taking the time derivative of Eq. (41) gives the desired expressions:

δ _M � δ _N � −
3

2

δa

a
n (42)

where n � μ∕a3 is the mean motion.
Equations (43) and (44) give the resulting mappings, for elliptical

and hyperbolic chief orbits, respectively, from orbit element
differences to components of the time derivative of the relative
position vector with respect to the velocity frame. Note that the
inertial velocity of the deputy can be recovered from the relative
velocity components by rearranging Eq. (17).

_x � ehα sin f

arζ3∕2
δa

� h sin f��e2 � 1��ζα − e cos f�α� ζ�� − 2e2�α� ζ��
p�1 − e2�ζ3∕2 δe

−
eh�ζα cos f� esin2f�α� ζ��

pζ3∕2
�δω� δΩ cos i� (43a)

_y � eh�ζα cos f� esin2f�α� ζ��
apζ3∕2

−
3n ζ

p
2η

δa

� 2hα�ζ cos f� esin2f�
r�1 − e2�ζ3∕2 δe� ehα sin f

rζ3∕2
�δω� δΩ cos i�

−
ehα sin f

rη3 ζ
p δM (43b)

_z � h

p
�e cosω� cos θ�δi� h

p
sin i�e sinω� sin θ�δΩ (43c)

_x � ehα sin f

arζ3∕2
δa

� h sin f��e2 � 1��ζα − e cos f�α� ζ�� − 2e2�α� ζ��
p�1 − e2�ζ3∕2 δe

−
eh�ζα cos f� esin2f�α� ζ��

pζ3∕2
�δω� δΩ cos i� (44a)

_y � eh�ζα cos f� esin2f�α� ζ��
apζ3∕2

� 3n ζ
p

2ηh
δa

� 2hα�ζ cos f� esin2f�
r�1 − e2�ζ3∕2 δe� ehα sin f

rζ3∕2
�δω� δΩ cos i�

−
ehα sin f

rη3h ζ
p δN (44b)

_z � h

p
�e cosω� cos θ�δi� h

p
sin i�e sinω� sin θ�δΩ (44c)

III. Application to Differential Drag

The relative motion models developed thus far assume a chief
spacecraft governed only by Keplerian dynamics. For low-altitude
orbits, one of the most important perturbing forces is aerodynamic
drag. While in some cases drag is an undesirable consequence of
operating at low altitude, drag can also be utilized as amethod of orbit
adjustment. Examples include passive end-of-life deorbiting for
satellites [24], constellation phasing [13], and aerobraking [25].
The exact and linearized relative EOM can be straightforwardly
extended to simulate the effect of differential drag using the per-
turbing acceleration vector u. The chief spacecraft is simulated
according to the full dynamics model, including the acceleration
due to drag directed opposite the atmosphere-relative velocity vector.
The perturbation term on the deputy then approximates the differ-
ential drag between the deputy and the chief; that is, if the chief and
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deputy spacecraft are identical in mass, aerodynamic properties, and
attitude, this term should go to zero. Following this reasoning, the
magnitude of the perturbation u � juj is constructed as

u � 1

2
ρcj _rcj2

1

βd
−

1

βc
(45)

where ρc is atmospheric density at the altitude of the chief and β is
ballistic coefficient:

β � m

CDA
(46)

wherem, CD, and A are the mass, drag coefficient, and aerodynamic
reference area of the vehicle, respectively. Ballistic coefficient can be
understood as the ratio of inertial to aerodynamic forces on the
vehicle, and will be treated as constant, which is generally a good
approximation for hypersonic flight [26].
The drag force on the deputy spacecraft is directed opposite the

atmosphere-relative velocity vector of the deputy. However, if the
chief and deputy are close together, this direction is approximately
aligned with the atmosphere-relative velocity of the chief. Further-
more, formost applications the rotational period of the central body is
slow enough that the inertial velocity direction is a good approxima-
tion of the atmosphere-relative velocity. Making these two approx-
imations, the perturbing acceleration due to differential drag can be
treated as entirely in the −y direction of the chief spacecraft velocity
frame. Thus, the full and linearized relative motion EOM [Eqs. (14)
and (22), respectively] are implemented for differential drag by
defining the velocity-frame components of the perturbing accelera-
tion vector u as

ux � 0; uy � −
1

2
ρcj _rcj2

1

βd
−

1

βc
; uz � 0 (47)

It is important to note that in this case, because of the approximations
summarized above, the full relative EOM are no longer an exact
representation of the dynamics. However, they avoid making the
additional approximations of the linearized EOM and should thus
be expected to be more accurate.

IV. Application to Atmospheric Entry Trajectories

For trajectories that pass deep within the atmosphere, such as for
landing or aerocapture, aerodynamic drag goes from being a small
perturbation to being the dominant force acting on the vehicle. In this
section, Keplerian relative motion models are combined with an
analytical approximation of hypersonic flight mechanics to make
predictions of relative motion about atmospheric entry trajectories.
The exoatmospheric portions of entry trajectories are typically either
hyperbolic (in the case of sample return or planetary exploration) or
highly elliptical (in the case of suborbital defense or rapid transport
applications), and therefore thevelocity frame descriptions of relative
motion are well-suited for these applications. Relevant example
missions include probe delivery by a carrier spacecraft on an entry
trajectory [18], codelivery of a probe network [20], or multiple
independently targetable reentry vehicles [22].

A. Enhanced Allen–Eggers Equations

The Allen–Eggers equations were developed in the 1950s and
provide an analytical, closed-formdescription of ballistic (nonlifting)
entry under certain assumptions relevant to the missile applications
for which they were originally derived [21,27]. Namely, these
assumptions include the following:
1) Ballistic entry, meaning a lift-to-drag ratio of L∕D � 0
2) Constant flight-path angle, _γ � 0
3) Negligible gravity compared to drag force, D ≫ g sin γ
4) Zero thrust and constant mass, T � _m � 0
5) Nonrotating planet, such that inertial and planet-relative veloc-

ity and flight-path angle are identical

Additionally, atmospheric density ρ is assumed to be an exponen-
tial function of altitude h:

ρ�h� � ρref exp
href − h

H
(48)

where ρref and href are reference density and altitude (typically
defined at sea level), respectively, andH is atmospheric scale height.
Note that throughout this section the subscript x0 refers to the value
at entry, defined as reaching the atmospheric interface altitude
h0 � r0 − R, whereas the subscript xi refers to the value at some
earlier exoatmospheric initial state.
In the original development of the Allen–Eggers equations, flight-

path angle is assumed to be constant at its value at entry, γ� � γ0 [21].
This is a good approximation for steep entries, but for shallow entry
trajectories an alternate value can improve accuracy [28]. The closed-
form expression given in Ref. [29], described below, is used to
compute γ� in this study and was found to improve prediction
accuracy in the examples shown later in this section. Let V0, γ0,
and ρ0 be the velocity, flight-path angle, and density at entry, respec-
tively. Additionally, let VC � gR

p
be circular velocity, where g is

acceleration due to gravity at the surface and R is planetary radius.
Then, γ� is computed as

sin γ� � sin γ0�2F� − 1� (49a)

F� � 1� H
Rtan2γ0

C
V2
C

V2
0

� V2
C

V2
0

− 1 ln 1 −
β sin γ0
Hρ0

(49b)

C � Ei�1� − Γ ≈ 1.3179 (49c)

where Ei�x� is the exponential integral

Ei�x� � −
∞

−x

e−y

y
dy (50)

and Γ ≈ 0.57722 is the Euler–Mascheroni constant.
The original Allen–Eggers equations do not include a closed-form

expression for range, meaning distance along the planetary surface
from the point of atmospheric entry to landing. However, Putnam and
Braun develop such an expression in an extension and enhancement
of the Allen–Eggers equations by directly integrating the simplified
EOM and without making any additional assumptions [29]. Range s
between the entry radius r0 and current radius r can thus be estimated
as

s � ln �r� − ln �r0�
tan γ�

R (51)

An expression for the offset in range between the chief and deputy
landing locations (where r � R) can be derived by taking the first
variation of Eq. (51) with respect to the entry radius and constant
flight-path angle:

δs�r � R� � −R
δr0

r0 tan γ
� �

ln �R� − ln �r0�
sin2 γ�

δγ� (52)

Note that in Eq. (52) δr0 � rd − rc and δγ� � γ�d − γ�c are both

computed at the moment when the chief vehicle reaches atmospheric
interface, rc � r0.

B. Methodology

By combining the relative orbit element expressions with Eq. (52),
the range offset between landing locations due to a maneuver during
exoatmospheric approach can be predicted analytically. This sub-
section gives an overview of the step-by-step procedure combining
these relative motion models.
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First, define the state of the chief and deputy vehicles at an initial
time before atmospheric entry, and compute the relative orbit ele-
ments δœ. In this work the chief state is computed by defining a state
at atmospheric interface, computing Keplerian orbital elements, then
changing the mean anomaly to a value ofM � −90° to obtain a state
on that same orbit earlier in time. The Cartesian chief state is then
computed and rotated into the velocity frame, and the deputy state is
defined by adding a maneuver defined in the velocity frame. That is,
the chief and deputy have identical position and different velocity
vectors at the initial time. The deputy state is then converted to orbit
elements and used to compute δœ.
Second, the true anomaly of the chief vehicle at atmospheric

interface altitude is computed via Eq. (B11):

f0 � cos−1
a�1 − e2�

r0e
−
1

e
(53)

Third, the relative orbit element equations [Eqs. (37) and (43) for an
elliptical chief or Eqs. (38) and (1) for a hyperbolic chief] are applied
to compute the relative state of the deputy vehicle in the velocity
frame at the epoch when the chief is at atmospheric entry.
Fourth, compute the radial position r, velocity magnitude V, and

flight-path angle γ of both the chief and deputy. This requires con-
verting the chief Keplerian state to inertial Cartesianvectors, as well as
converting the velocity frame relative deputy state to an inertial abso-
lute state. Fifth, compute δr0 and δγ�. Note that when evaluating
Eq. (49) for the deputy the values used for γ0, V0, and ρ0 are those at
the time of chief entry, which for the general case is not identical to the
state of the deputy at entry. Sixth, compute δs from Eq. (52); this is
the range offset at landing predicted due to differences in entry states of
the two vehicles. The predicted bearing of this offset is assumed to
equal the heading angleof the chief at entry,ψB � ψ0;c,where heading

angle ψ is the angle between the projection of the velocity vector onto
the plane normal to the radius vector and a due-North vector in that
same plane (e.g., a 90° heading angle is due-East).
The procedure could stop here, but tends to bemore accuratewith an

additional step. Due to the assumptions of the Allen–Eggers relations,
Eq. (52) is poor at modeling cases such as a lead-follower, where δr0
and δγ� are nonzero at the time of chief entry but the actual range offset
will be very small, due only to the rotation of the planet between chief
and deputy entries. Furthermore, Allen–Eggers relations assume pla-
nar motion and are therefore unable to capture range offset due to out-
of-plane relative motion between the chief and deputy. Thus, the
seventh and final step is to compute range offset at time of chief entry
δs0 and geometrically combine δs0 with δs to find the final prediction
for range offset on the surface, δsf. To do so, use the latitude and

longitude of the deputy at time of chief entry along with the predicted
range offset magnitude and bearing to compute an offset pair of
coordinates. Then, compute the range and bearing angle from the
coordinates of the chief at entry to the pair of coordinates just com-
puted; this provides the final estimate of range and bearing between the
chief and deputy landing locations. For convenience, Appendix C lists
the equations required for this final step.

V. Numerical Results

In this section, the velocity frame relative motion models are
applied to three relevant scenarios: two-body problem (Keplerian)
dynamics about Earth, aerobraking at Mars, and ballistic entry at
Earth. In each case, numerical simulation is used to compare the
approximatemodels against the expected behavior, where the latter is
determined via standard, individual simulation of the spacecraft
dynamics; see Ref. [30] for the relevant EOM.

A. Simulation Methodology

The three-degree-of-freedom EOM are numerically propagated
using the Runge–Kutta method of order 5(4) via the open-source
scipy.integrate.solve_ivp tool [31,32], with relative and absolute
error tolerances of 1 × 10−12. The values assumed for physical
constants are summarized in Tables 1 and 2, where Tp is the rotation

period of the central body. Point-mass gravity is assumed in all
cases.When applicable, atmospheric density in the truth simulation
is calculated by linearly interpolating from a table output by the
2010 Global Reference Atmospheric Models for Earth and Mars
[35,36]; the data are sufficiently dense that linear interpolation is
accurate despite the approximately exponential nature of density. In
every case, the truth model makes the same assumptions about the
underlying dynamics as the relative motion models (e.g., the effect
of J2 is also neglected in the truth models), but makes no additional
approximations.

B. Keplerian Relative Motion

The results in this subsection demonstrate relativemotion behavior
in the velocity frame for purely Keplerian dynamics via two exam-
ples. Table 3 summarizes the chief orbit parameters and orbit element
differences for each scenario, and Figs. 3 and 4 show the results for
scenarios A and B, respectively. In these figures “absolute” refers to
separate simulation of the Keplerian dynamics, “relative” refers to
propagation of the exact relative EOM, “linearized” refers to propa-
gation of the linearized relative EOM, and “oe differences” refers to
sweeping through the relative orbit element equations for all relevant
true anomaly values.
Scenario A is a lead-follower formation. As mentioned in the Intro-

duction, almost all of the relativemotion is along the velocity direction,
with only a small component along v̂n. The linearization ignores this v̂n
component and traverses down and back up along v̂v. These results also
show perfect agreement between the absolute and relative EOM, as is
expected in the absence of any approximations or non-Keplerian
accelerations. Scenario B captures the behavior of a deputy spacecraft
offset only in eccentricity. The lower-right plot intuitively shows how
the deputy begins ahead of the chief, comes closer as the two spacecraft
approach periapsis, and is behind the chief after periapsis.

C. Aerobraking

Aerobraking is the process of repeatedly passing through the upper
atmosphere in order to reduce orbital energy and lower apoapsis. By
utilizing atmospheric drag in place of propulsive maneuvers, this
process enables mass-efficient transfer from an initial high-energy,
highly eccentric orbit to a lower-energy near-circular science orbit.

Table 1 Physical constants

for Earth

Parameter Value

μ 3.986 × 105 km3∕s2 [33]
R 6378.14 km [33]

g 9.81 m/s [33]

Tp 0.9973 days [33]

H 8.5 km [34]

ρref 1.215 kg∕m3 [34]

href 0 km [34]

Table 3 Orbital parameters for example scenarios

Scenario a e i Ω ω δa δe δi δΩ δω δM0

A −7000 km 1.2 0 0 0 0 0 0 0 0 0.5°
B −7000 km 1.2 0 0 0 0 0.005 0 0 0 0

Table 2 Physical constants

for Mars

Parameter Value

μ 4.305 km3∕s2 [33]
R 3397.2 km [33]
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Thus, aerobraking provides a relevant scenario for which drag acts as

a perturbing acceleration and the chief orbit is highly eccentric. In this

subsection, a chief orbit is defined based loosely on the aerobraking

campaign for the 2001Mars Odysseymission [25], then the behavior

of a deputy that is initially offset only in phase and attitude is

simulated using the expressions for u developed in Sec. III.
The initial chief orbit is defined by apses with altitudes of 100 and

10,000 km, and the deputy is initially offset by δM � 0.5°. Both
spacecraft are assumed to have mass of 426 kg and aerodynamic

reference area of 11 m2, similar to Mars Odyssey [25]. During

aerobraking, the attitude of the solar panels with respect to the

velocity vector can be adjusted in order to dissipate more or less

kinetic energy each pass. For the purpose of this example, the deputy

spacecraft is assumed to be in a slightly higher-drag configuration

than the chief, resulting in drag coefficients of 2.2 and 2 for the deputy

and chief, respectively; these values are based on past aerodynamic

analysis for a similar scenario [14]. Lift and side force are neglected

for both vehicles. Figure 5 shows the results from simulating this

relative motion scenario for a duration equal to five periods of the

initial chief orbit.
As mentioned in Sec. III, in this case the relative EOM already

include some level of approximation, and indeed Fig. 5 shows that

there is small but significant disagreement, especially near periapsis.

The linearized relative EOM perform well even across five orbits,

although during the fourth and fifth passes through periapsis (near 22
and 28 h, respectively) the linearization misses important behavior in
the x-axis direction. Note, however, the significantly different mag-
nitudes between motion in the x and y directions.

Fig. 3 Relative motion for scenario A.

Fig. 4 Relative motion for scenario B.

Fig. 5 Velocity frame relative motion about aerobraking trajectory.
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D. Entry Trajectories

The procedure for analytically estimating range offset is applied to

three ballistic entry vehicles and trajectories, chosen to serve as

representative examples and to align with the examples selected in

Ref. [29]. The first scenario is based on the sample return capsule for

the NASA Stardust mission [37,38], which entered Earth’s atmos-

phere on a hyperbolic return trajectory. A second scenario is con-

structed as a modified version of the Stardust scenario with a steeper

entry flight-path angle. The third scenario is a “high ballistic coef-

ficient vehicle on a steep, high-energy suborbital trajectory [29]”; this

case is referred to as strategic and is representative of a ballistic

missile reentry trajectory [39]. The parameters for each scenario

are summarized in Table 4. In every case, the radius at entry is defined

as the atmospheric interface altitude r0 � 125 km, with entry longi-

tude θ0 and latitude ϕ0 set to 0° and an entry heading angle of

ψ0 � 70°. The chief orbit is fully defined by the entry state, but the

semimajor axis, eccentricity, and final range are also included for

reference.

For each chief orbit scenario, three different deputy orbits are

considered. In each case the chief is initialized with a mean anomaly

of M � −90°, the deputy is initialized at the identical position, and

the velocity vector of the deputy at the initial time is modified by a

maneuver with ΔV � 10 m∕s. The three deputy scenarios corre-

spond to directing this maneuver along each of the unit vectors of

the velocity frame of the chief spacecraft. Thus, nine total scenarios

are considered in this section.

Figure 6 andTable 5 summarize the comparison between predicted

and simulated range offset for each of the nine scenarios under

consideration. Figure 6 shows the magnitude of the percent error,
meaning normalized by the simulated range offset, whereas Table 5
reports the absolute values. Table 6 compares the predicted and
simulated bearing of the offset between chief and deputy landing
locations in each scenario, and shows that the predicted bearing was
approximately correct in all cases.
In the cases of maneuvers along the v̂n and v̂v directions, the

predictions are consistently most accurate for the strategic scenario
and least accurate for the Stardust scenario. This is as expected; the
steep flight-path angle and high ballistic coefficient of the strategic
scenario mean the Allen–Eggers assumptions are much more accu-
rate than in the case of Stardust, despite the higher entry speed of the
latter.Most of the error present in the range predictions for these cases
is due to the disparity between the true entry trajectories and the
Allen–Eggers approximations. The cases corresponding to a maneu-
ver along v̂h appear to present an exception to this trend based on
Fig. 6, but examination of Table 5 reveals that the actual error is
similarly small (within 0.5 km) in all cases. Maneuvering along v̂h
primarily serves to offset the orbital plane of the deputy. As a result,
the difference in r0, γ

�, and V0 is negligibly small, but the deputy
enters at a different location and with a different heading angle. Thus,
in the v̂h cases almost all of the final range offset is due to existing
offset at entry, as accounted for by step 7 of the prediction procedure.
Finally, note that while the percent error values are relatively high in
some cases, the errors are small compared to the total range covered
by the chief (sc in Table 4): less than 6% in all cases.

VI. Conclusions

Describing relative motion in terms of velocity frame components
is an intuitive model for motion about highly eccentric chief space-
craft, and provides a complementary alternative to traditional
descriptions in the Hill frame. The EOMand orbit element difference
equations developed in this work give a direct approach that could be
appropriate for onboard use, such as within a navigation filter or for
the design of reference trajectories. Results for several simple sce-
narios about a hyperbolic chief show good agreement between the
linearized and exact solutions and develop a more intuitive under-
standing of the types of relative motion possible about flyby, aero-
braking, or atmospheric entry trajectories. The procedure developed
in this work for analytically predicting the offset in final range for an
atmospheric entry trajectory extends the range of application of these
relative motion models to include steep ballistic entry vehicles, such
as planetary probes. This method would enable rapid onboard esti-
mation of the impact of a maneuver during approach on the entry,
descent, and landing profile of ballistic probes.

Appendix A: Auxiliary Variable Definitions

ζ � �e2 � 2e cos f� 1� (A1)

α � �e cos f� 1� (A2)

κ � xcx� ycy

r2c
(A3)

η � 1 − e2 (A4)

Table 4 Entry trajectory chief orbit descriptions

Scenario V0, km/s γ0, deg β, kg∕m2 a, km e sc, km

Stardust 12.8 −8.2 60 −7554 1.848 805.064
Steep Stardust 12.8 −15 60 −7593 1.815 375.745
Strategic 7.2 −30 10,000 6136 0.477 213.991

Fig. 6 Absolute value of percent error of range offset error, where x-
axis label denotes direction of 10 m/s maneuver during approach.

Table 6 Simulated and analytically predicted offset bearing, deg

v̂n v̂v v̂h

Scenario Truth Predicted Truth Predicted Truth Predicted

Stardust 70.163 69.985 70.357 70.124 −18.103 −16.553
Steep
Stardust

70.005 69.964 70.766 70.613 −18.945 −18.603

Strategic 70.187 70.137 72.119 71.773 −18.575 −18.321

Table 5 Simulated and analytically predicted range offsets, km

v̂n v̂v v̂h

Scenario Truth Predicted Truth Predicted Truth Predicted

Stardust 287.737 334.617 58.484 81.031 13.059 12.772
Steep
Stardust

69.809 78.490 14.660 16.537 12.808 12.497

Strategic 5.780 5.565 1.880 1.903 2.934 2.547
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ηh � e2 − 1 (A5)

Appendix B: Relative Orbit Elements Derivation Detail

In addition to the Hill frame of the chief spacecraftO, defineD as

theHill frame of the deputy spacecraft. Thus,Drd � D�rd; 0; 0�T , and
recall that Ord � O�x� xc; y� yc; z�T . The deputy position vector

is mapped from the deputy Hill frame to the chief velocity frame via
the inertial frame as

Vrd � �VO��ON��ND�Drd (B1)

As before, assume that the distance between deputy and chief is
much less than the chief radius, �x; y; z� ≪ rc. Taking the first
variations of �ND� and rd about the chief spacecraft gives the follow-
ing first-order approximations [1]:

�ND� ≈ �NO� � �δNO� (B2)

rd ≈ rc � δr (B3)

Substituting these approximations into Eq. (B1) yields

Vrd � �VO��I3 � �ON��δNO��
rc � δr

0

0

(B4)

where I3 is the 3 × 3 identity matrix.
Note that the deputy position vector can be written as

Vrd � Vρ� �VO�
O rc

0

0

(B5)

Substituting Eq. (B5) into Eq. (B4), dropping the second-order
terms associated with �δNO��δr; 0; 0�T , and simplifying, the follow-
ing expression is obtained:

Vρ � �VO�
O δr

0

0

� �ON��δNO�
O rc

0

0

(B6)

Schaub and Junkins [1] show that the parenthetical in the right-hand

side of Eq. (B6) is equivalent to Oρ and can be expressed as Eq. (30),
repeated here for convenience:

Oρ �
δr

r�δθ� cos iδΩ�
r�sin θδi − cos θ sin iδΩ

The variation of orbit radius is expressed as [1]

δr � r

a
δa� Vr

Vt

rδθ −
r

p
�2aq1 � r cos θ�δq1

−
r

p
�2aq2 � r sin θ�δq2 (B7)

where

Vr � _r � h

p
�q1 sin θ − q2 cos θ� (B8a)

Vt � r_θ � h

p
�1� q1 cos θ� q2 sin θ� (B8b)

q1 � e cosω (B9a)

q2 � e sinω (B9b)

and

θ � f� ω (B10)

Note also the orbit identities:

r � p

α
(B11)

p � a�1 − e2� (B12)

Taking the first-order variations of Eqs. (B9a), (B9b), and (B12)
gives expressions for their corresponding orbit element differences:

δq1 � cosωδe − e sinωδω (B13)

δq2 � sinωδe� e cosωδω (B14)

δθ � δf� δω (B15)

Appendix C: Useful Coordinate Relationships

Let θ and ϕ be longitude and latitude, respectively, and model the
central body as a perfect sphere for the purpose of these equations.
The range (great circle distance) between points �θ1;ϕ1� and �θ2;ϕ2�
is

d � R cos−1�sinϕ1 sinϕ2 � cosϕ1 cosϕ2 cos�jθ2 − θ1j�� (C1)

and the bearing between them (e.g., the heading angle of the great
circle arc connecting the points) is

ψB � tan−1
cosϕ2 sin�θ2 − θ1�

cosϕ1 sinϕ2 − sinϕ1 cosϕ2 cos�θ2 − θ1�
(C2)

In the case where the coordinates of point 1 are known, along with
the great circle distance and bearing between it and point 2, the
coordinates of the second point can be computed as

θ2 � θ1 � tan−1
sinψB sin�d∕R� cosϕ1

cos�d∕R� − sinϕ1 sinϕ2

(C3)

ϕ2 � sin−1�sinϕ1 cos�d∕R� � cosϕ1 sin�d∕R� cosψB� (C4)
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