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Nomenclature

Bc,Wci = rigid-hub center of mass location, ith wheel-
frame center of mass location

fb̂1; b̂2; b̂3g = body-frame basis vectors
c = vector from point B to center of mass of the

spacecraft C, cm
di = center of mass offset of ith reaction wheel,

mm
fĝsi ; ŵ2i

; ŵ3i
g = ith wheel-frame basis vectors

Hsc;B = angular momentum vector of spacecraft
about point B, N ⋅m ⋅ s

�Ihub;Bc
� = inertia tensor of rigid-hub about point Bc,

kg ⋅m2

�Irwi ;Wci
� = inertia tensor of ith reactionwheel about point

Wci , kg ⋅m
2

�Isc;B� = inertia tensor of spacecraft about point B,
kg ⋅m2

msc, mhub, mrwi
= mass of spacecraft, hub, and ith reaction

wheel, respectively
N, B, Wi = inertial-frame origin, body-frame origin, ith

wheel-frame origin
N , B,Mi,Wi = reference frame of inertial, body, ith motor,

and ith wheel, respectively
rB∕N = position vector of B with respect to N, m
_rB∕N = inertial velocity vector ofBwith respect toN,

m∕s
Udi = dynamic imbalance parameter, g ⋅ cm2

Usi = static imbalance parameter, g ⋅ cm
usi = reaction wheel motor torque, mN ⋅m
_v = time derivative of a vector v with respect to

the inertial frame N
v 0 = time derivative of a vector v with respect to

the body frame B
θi = ith wheel angle, deg
ωB∕N = inertial angular velocity vector of B frame

with respect to N frame, deg ∕s

σB∕N = modified Rodrigues parameters representing
B frame with respect to N frame

Ωi = ith wheel speed relative to the body frame,
RPM

I. Introduction

M OMENTUM exchange devices are a fundamental component
ofmost spacecraft for both coarse attitude control and precision

pointing. Many modern spacecraft include three or more reaction
wheels (RWs), which consist of a flywheel attached to a motor and
bearing fixed to the spacecraft. A challenge to using RWs is that they
may induce jitter due to mass imbalances in the RW. Characterization
and mitigation of RW-induced jitter on a spacecraft is important
to many missions due to the increasingly rigorous attitude stability
requirements and the necessity of avoiding excitation of the
spacecraft’s structural modes. Excessive vibration of a spacecraft may
be detrimental to its instruments and operation. Additionally, many
instruments require the spacecraft to be held extremely steady in order
to effectively operate or collect data. Optical instruments in particular
often require attitude stability of less than 1 arc-second per second in
order to avoid optical smear or similar effects [1,2]. Vibration isolation
has long been a method of dulling the effects of wheel jitter [3].
Various methods of vibration isolation have been proposed, including
magnetic suspension of RWs as a means of circumventing the jitter
problem [4,5].
RW-induced vibration on a spacecraft is usually characterized

through experimentation before flight in order to validate
requirements. Empirical models of RWs allow static and dynamic
imbalance parameters to be extracted [6,7]. In addition to
experimental demonstration of RW performance on an integrated
spacecraft, it is of interest to use an analytic model of an RW for
simulation in the early stages of spacecraft development.
A popular simplified model of RW jitter involves including forces
and torques resulting from RW static and dynamic imbalances as
external disturbances [3,8,9]. Static imbalance is when the center
of mass of the RWis not coincident with the spin axis, and dynamic
imbalance is due to off-diagonal inertia matrix terms with respect
to the spin axis frame. This model is well established and attractive
due to its low computational requirements—force and torque of jitter
are simply proportional to wheel speed squared. Furthermore, the
simplified formulation allows a model to be constructed directly
from the typical RW manufacturer imbalance specifications: static
imbalance and dynamic imbalance. This allows RWmass imbalances
to be implemented as lumped parameters instead of using specific
terms such as RW center of mass location and inertia tensor [3].
Previous literature puts emphasis on empirical modeling of RW jitter
and the effects of RW jitter within context of spacecraft flexible
dynamics [10–12].
Regarding modeling the momentum exchange device jitter with a

first-principles approach, Zhang and Zhang discuss a fully coupled
model of control moment gyro (CMG) imbalance [13]. While this
contains gyro frame imbalance modeling not required for RWs, the
results are presented without a full derivation and the paper does not
provide the complete system equations of motion (EOMs). These
partial imbalanced momentum exchange device results also do not
discuss how to tie typical manufacturers’ imbalance specifications
directly to the imbalance parameter modeling. Reference [5]
develops the spacecraft EOMs with magnetically suspended RWs,
where the RW center of mass moves relative to the body. However,
this magnetic levitation introduces additional degrees of freedom
(DOFs) and modeling challenges not present in a body-locked
imbalanced RW as studied in this paper.
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The simplified model for representing RW jitter due to static
and dynamic imbalances is not physically realistic due to the
nonconservative nature of adding a system-internal forcing effect as an
external disturbance [14]. The resultingmodel considers only the impact
of thewheel onto the spacecraft but neglects how the spacecraft impacts
the wheel motion. The resulting one-way coupled simplified model has
the primary benefits of algebraic simplicity of the jitter equations and the
associated fast computational evaluation. For spacecraft dynamics
analysis purposes the nonphysical nature of the simplified model does
not necessarily present a problem if the RWs are well balanced with
respect to the overall size of the spacecraft. However, depending on the
quality of the RWbalance in relation to the spacecraft size this approach
may become problematic. Furthermore, the simplified model does
not allow for energy and momentum code validation checks. When
verifying the computer simulation code the spacecraft energy and
momentum checks are critical tools of the dynamics validation process.
Even for a spacecraft simulation that only includes RW jitter, complete
verification of the model is difficult because without energy and
momentum checks a truthmodel is difficult to create. If themodel of the
spacecraft has other complex behaviors such as solar panel flexing or
fuel slosh, the importance of energy and momentum checks increases
rapidly. The coupled nature of these complex spacecraft systems results
in severe challenges with debugging and verification. The energy and
momentum checks become essential in this process.
This paper presents a first-principles–based derivation of the EOMs

for a spacecraft with Nrw RWs subject to general static and dynamic
imbalances. The resulting formulation retains the true physics
governing this fully coupled jitter phenomenon.As a result, energy and
momentum checks are available using this model. A Newtonian/
Eulerian formulation approach is employed. Because the primary
spacecraft body, called the hub, is considered to be rigid, flexible
dynamics are not considered in this paper. However, the formulation is
developed in such a way that adding other modes such as flexing and
fuel slosh is relatively simple [15,16]. Additionally, the relationship
between the first-principles–based fully coupled RW model and the
manufacturers’ specifications characterizing RW static and dynamic
imbalances is discussed. This is of interest as the manufacturers
provide their basic first-order RW jitter performance using the static

anddynamic imbalanceparameters.Numerical simulations investigate
the validity of the presented RW EOMs solution by studying the
system energy and angular momentum responses.

II. Problem Statement

Anoffset in the center ofmass of theRWfrom the spin axis, denoted
static imbalance, results in an internal force and torque on the
spacecraft.An asymmetric distribution ofmass about the RWspin axis
is denoted as the dynamic imbalance and produces an internal
disturbance torque onto the spacecraft. Figure 1 explains these
imbalances geometrically. Ip is a line that is coincident with the center
mass of the RW and illustrates a principal axis of the RW. The static
imbalance results in a center of mass offset of the RW but does not
change the direction of the principal axes. The dynamic imbalance is a
result of one of the principal axes not being aligned with the spin axis.
Deflection of the RW wheel bearing due to static and dynamic
imbalances further affects the vibrational modes of the system;
however, this effect is beyond the scope of this work and is not being
considered. This paper investigates modeling these classical static and
dynamic imbalance behaviors in a first-principles–based approach.
With this jittermodel the RWis still treated as a rigid componentwith a
body-fixed rotation axis, but the rotation axis is not necessarily aligned
with one of theRWprincipal axes, and the RWcenter ofmass is off-set
from this rotation axis by a distance di.
When deriving the EOMs for a spacecraft with Nrw RWs, an

important assumption is made in that the RWs are symmetric and
results in the EOMs to be simplified to a convenient and compact
form [14]. However, if the RWs are imbalanced the EOMs have to be
re-derived to account for the fully coupled dynamics between the
RWs and the spacecraft. This paper follows a development path using
Newtonian and Eulerian mechanics using a formulation that uses a
minimal coordinate description [14].
Figure 2 shows the frame and variable definitions used for this

problem. The formulation involves a rigid-hubwith its center ofmass
location labeled as point Bc, and Nrw RWs with their center of mass
locations labeled asWci . The frames being used for this formulation
are the body-fixed frame, B: fb̂1; b̂2; b̂3g; the motor frame of the ith
RW, Mi: fm̂si ; m̂2i

; m̂3i
g, which is also body-fixed; and the wheel-

fixed frame of the ith RW, Wi: fĝsi ; ŵ2i
; ŵ3i

g. The dynamics are
modeledwith respect to theB frame,which can be generally oriented.
TheWi frame is oriented such that the ĝsi axis is alignedwith the RW
spin axis, which is the same as the motor torque axis m̂si ; the ŵ2i

axis
is perpendicular to ĝsi and points in the direction toward the RW
center of massWci . The ŵ3i

completes the right-hand rule. TheMi

frame is defined as being equal to theWi frame at the beginning of the
simulation, and therefore the Wi and Mi frames are offset by an
angle, θi, about the m̂si � ĝsi axes.
A few more key variables in Fig. 2 need to be defined. The rigid

spacecraft structure without the RWs is called the hub. Point B is the
origin of the B frame and is a general body-fixed point that does notFig. 1 Reaction wheel static and dynamic imbalance.

Fig. 2 Reference frame and variable definitions.
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have to be identical to the total spacecraft center of mass or the rigid-
hub center of massBc. PointWi is the origin of theWi frame and can
also have any location relative to pointB. PointC is the center ofmass
of the total spacecraft system including the rigid-hub and the RWs.
Because of the RW imbalance, the vector c, which points from point
B to point C, will vary as seen by a body-fixed observer. The scalar
variable di is the center of mass offset of the RW, or the distance from
the spin axis, ĝsi to Wci . Finally, the inertial frame orientation is
defined throughN : fn̂1; n̂2; n̂3g, and the origin of the inertial frame
is labeled as N.

III. Equations of Motion

The system under consideration is anNrw � 6 DOF system with the
following second-order terms: inertial translational acceleration of point
B with respect to point N �rB∕N , spacecraft rotational inertial angular
acceleration _ωB∕N , and the angular acceleration of each RW
_Ω1; : : : ; _ΩNrw

relative to the spacecraft hub. Thus, a total of Nrw � 6
equationsmust be developed in order to solve for all second-order terms.
Section III.A describes the derivation of the translational EOM and
represents 3 DOFs, Sec. III.B describes the rotational motion and
represents 3 DOFs, and Sec. III.C describes the motor torque equation
and represents Nrw DOFs.

A. Translational Motion

For the dynamical system considered, the center of mass of the
spacecraft is not constant with respect to the body frame. This results
in the necessity to track the center of mass of the spacecraft and its
corresponding acceleration. Following a similar derivation as seen in
[15], the derivation beginswithNewton’s second law for the center of
mass of the spacecraft seen in Eq. (1).

�rC∕N � F

msc

(1)

HereF is the sumof the external forces on the spacecraft, which has a
mass labeled asmsc. The vector and inertia tensor notation being used
for this work can be seen in [14]. For example, the vector vB∕A is a
vector that points from point A toB. The time derivative of a vector v
as seen by an inertial frameN is denoted byN dv∕dt ≡ _v, whereas the
time derivative with respect to a spacecraft body-fixed frame B is
denoted by Bdv∕dt ≡ v 0.
Ultimately the acceleration of the body-frame or pointB is desired,

which is expressed through

�rB∕N � �rC∕N − �c (2)

where the center of mass position vector relative to B is defined as

c � 1

msc

�
mhubrBc∕B �

XNrw

i�1

mrwi
rWci

∕B

�
(3)

Taking the first and second body-relative time derivatives of point
c results in

c 0 � 1

msc

XNrw

i�1

mrwi
r 0Wci

∕B c 0 0 � 1

msc

XNrw

i�1

mrwi
r 0 0Wci

∕B (4)

because rBc∕B is a body-fixed vector. The ith RW wheel center of
mass location relative to B is given by rWci

∕B.

rWci
∕B � rWi∕B � rWci

∕Wi
� rWi∕B � diŵ2i

(5)

The first and second body-relative time derivatives of rWci
∕B yield

r 0Wci
∕B � dŵ 0

2i
� ωWi∕B × diw2i

� Ωiĝsi × diw2i
� diΩiŵ3i

(6)

r 0 0Wci
∕B � Ωiĝsi × diΩiŵ3i

� di _Ωiŵ3i
− diΩ2

i ŵ2i
(7)

Using the transport theorem [14,17] or cross product rule that
relates time derivatives as seen by different frames, the inertial and
body-relative time derivatives of c are related through

�c � c 0 0 � 2ωB∕N × c 0 � _ωB∕N × c� ωB∕N × �ωB∕N × c� (8)

Substituting Eqs. (1), (7), and (8) into Eq. (2) and grouping second-
order terms on the left-hand side yields the translational equation of
motion.

msc �rB∕N −msc� ~c� _ωB∕N �
XNrw

i�1

mrwi
diŵ3i

_Ωi � F − 2msc� ~ωB∕N �c 0

−msc� ~ωB∕N �� ~ωB∕N �c�
XNrw

i�1

mrwi
diΩ2

i ŵ2i
(9)

Note that the tilde operator designates the skew symmetric matrix,
that is, � ~c�v ≡ c × v. Additionally this notation is still frame
independent as no specific frame is designated and represents the
vector cross product operation in a compact manner. Equation (9)
shows that the translational acceleration, �rB∕N , is coupled with the
rotational acceleration, _ωB∕N , and thewheel accelerations, _Ωi. This is
a result of the fact that the RWs are imbalanced and therefore change
the center of mass location of the spacecraft [14].

B. Rotational Motion

Next the rotational spacecraft EOMs are developed. This
derivation starts with the inertial angular momentum of the total
spacecraft about the general body-fixed point B:

Hsc;B � Hhub;B �
XNrw

i�1

Hrwi ;B (10)

The spacecraft hub and RWangular momentum expressions about
point B are written relating them to the angular momentum about
their respective center of mass locations Bc and Wci as

Hhub;B � �Ihub;Bc
�ωB∕N �mhubrBc∕B × _rBc∕B (11)

Hrwi ;B � �Irwi ;Wci
��ωB∕N � Ωiĝsi� �mrwi

rWci
∕B × _rWci

∕B (12)

The first step to develop the desired rotational EOMs is to take the
inertial time derivative of the system angularmomentumvector about
point B [14].

_Hsc;B � LB �msc �rB∕N × c (13)

The left-hand side of Eq. (13) is found by taking the inertial time
derivative of Eq. (10).

_Hsc;B � _Hhub;B �
XNrw

i�1

_Hrwi ;B (14)

Taking the inertial time derivative of Eq. (11) while using the
transport theorem yields

_Hhub;B � �Ihub;Bc
� _ωB∕N �ωB∕N × �Ihub;Bc

�ωB∕N �mhubrBc∕B × �rBc∕B

(15)

Noting that rBc∕B is a body-fixed vector yields the following
second-order inertial time derivative is

�rBc∕B � _ωB∕N × rBc∕B � ωB∕N × �ωB∕N × rBc∕B� (16)

Substituting Eq. (16) into Eq. (15) and simplifying yields

_Hhub;B � �Ihub;Bc
� _ωB∕N � ωB∕N × �Ihub;Bc

�ωB∕N

�mhubrBc∕B × � _ωB∕N × rBc∕B� �mhubrBc∕B

× �ωB∕N × �ωB∕N × rBc∕B�� (17)
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Employing the Jacobi triple-product identity, a × �b × c� �
�a × b� × c� b × �a × c�, on the right-hand side of Eq. (17) and
using the parallel axis theorem,

�Ihub;B� � �Ihub;Bc
� �mhub� ~rBc∕B�� ~rBc∕B�T (18)

the hub angular momentum derivative is finally written compactly as

_Hhub;B � �Ihub;B� _ωB∕N � � ~ωB∕N ��Ihub;B�ωB∕N (19)

In the above expression it is assumed that all matrix representations
are taken with respect to a consistent reference frame. However, as this
frame is not specified, this compact matrix notation is still frame
independent.
Following an equivalent derivation procedure, the inertial time

derivative of RW angular momentum about point B is

_Hrwi ;B � �Irwi ;Wci
� 0�ωB∕N �Ωiĝsi� � �Irwi ;Wci

�� _ωB∕N � _Ωiĝsi�
�ωB∕N × �Irwi ;Wci

��ωB∕N �Ωiĝsi� �mrwi
rWci

∕B × �rWci
∕B (20)

To simplify the �Irwi ;Wci
� 0 expression, the RW inertia tensor

�Irwi∕Wci
� is defined in its most general form using theWi frame base

vectors as

�Irwi∕Wci
��J11i ĝsi ĝ

T
si �J12i ĝsi ŵ

T
2i
�J13i ĝsiŵ

T
3i
�J12iŵ2i

ĝTsi

�J22iŵ2i
ŵT

2i
�J23iŵ2i

ŵT
3i
�J13iŵ3i

ĝTsi �J23iŵ3i
ŵT

2i
�J33iŵ3i

ŵT
3i

(21)

Note that in Eq. (21) thevector outerproduct between twovectorsa
and b is defined compactly in matrix form as abT . As no specific
frame designation is applied in this notation, and vectorsa andbmust
simply be expressed with respect to the same frame to evaluate abT ,
this formulation is frame independent. The definition of �Irwi∕Wci

�
allows for any RW inertia matrix definition to be considered.
Section IV describes the characterization of the dynamic imbalance
of the RW by defining parameters in �Irwi∕Wci

�.
The body-frame derivatives of wheel-frame basis vectors are

ĝ 0
si � 0 ŵ 0

2i
� Ωiŵ3i

ŵ 0
3i
� −Ωiŵ2i

(22)

Taking the B-frame time derivative of �Irwi∕Wci
� while using the

transport theorem yields

Wi �Irwi∕Wci
� 0 �

Wi
2
664

0 −J13i J12i

−J13i −2J23i J22i − J33i

J12i J22i − J33i 2J23i

3
775Ωi (23)

In the above matrix notation the left-superscript symbol denotes
with respect to which frame the inertia tensor components are
evaluated.
The remaining term in Eq. (20) that needs to be defined is �rWci

∕B.
The RW wheel center of mass location Wci relative to body-fixed
point B is

rWci
∕B � rWi∕B � diŵ2i

(24)

The second-order inertial time derivative of this vector is

�rWci
∕B � di _Ωiŵ3i

− diΩ2
i ŵ2i

� _ωB∕N × rWci
∕B � 2ωB∕N × diΩiŵ3i

�ωB∕N × �ωB∕N × rWci
∕B� (25)

Using Eq. (5) and applying the triple-product identity and parallel
axis theorem

�Irwi ;B� � �Irwi ;Wci
� �mrwi

� ~rWci
∕B�� ~rWci

∕B�T (26)

results in

_Hrwi ;B��Irwi ;B�0ωB∕N ��Irwi ;B� _ωB∕N �� ~ωB∕N ��Irwi ;B�ωB∕N

��Irwi ;Wci
�0Ωiĝsi ��Irwi ;Wci

� _Ωiĝsi �� ~ωB∕N ��Irwi ;Wci
�Ωiĝsi

�mrwi
rWci

∕B×�di _Ωiŵ3i
−diΩ2

i ŵ2i
��mrwi

ωB∕N ×�rWci
∕B×r0Wci

∕B�
(27)

Note that taking the body-relative time derivative of Eq. (26) yields

�Irwi ;B� 0 � �Irwi ;Wci
� 0 �mrwi

� ~r 0Wci
∕B�� ~rWci

∕B�T �mrwi
� ~rWci

∕B�� ~r 0Wci
∕B�T

(28)

Now the definition of the inertial time derivatives of the hub’s

angular momentum and RWs’ angular momentum, Eqs. (19) and

(27), respectively, are substituted into Eq. (14) while making use of

�Isc;B� � �Ihub;B� �
PNrw

i�1�Irwi ;B� to yield

_Hsc;B � �Isc;B� _ωB∕N � � ~ωB∕N ��Isc;B�ωB∕N � �Isc;B� 0ωB∕N

�
XNrw

i�1

��Irwi ;Wci
� 0Ωiĝsi � �Irwi ;Wci

� _Ωiĝsi

� � ~ωB∕N ���Irwi ;Wci
�Ωiĝsi �mrwi

� ~rWci
∕B�r 0Wci

∕B�
�mrwi

� ~rWci
∕B��di _Ωiŵ3i

− diΩ2
i ŵ2i

�� (29)

Finally Eq. (29) is substituted into Eq. (13) to the additional EOMs:

msc� ~c� �rB∕N � �Isc;B� _ωB∕N �
XNrw

i�1

��Irwi ;Wci
�ĝsi �mrwi

di� ~rWci
∕B�ŵ3i

� _Ωi

�
XNrw

i�1

�mrwi
� ~rWci

∕B�diΩ2
i ŵ2i

− � ~ωB∕N ���Irwi ;Wci
�Ωiĝsi

�mrwi
� ~rWci

∕B�r 0Wci
∕B�− �Irwi ;Wci

� 0Ωiĝsi �− � ~ωB∕N ��Isc;B�ωB∕N

− �Isc;B� 0ωB∕N �LB (30)

Equation (30) shows that the rotational EOM is coupled with the

other second-order variables. Similar to the translational EOM, this

coupling is because the center of mass of the spacecraft is not

coincident with point B. The motor torque equation is the remaining

necessary EOM to describe the motion of the spacecraft and is

defined in the following section.

C. Motor Torque Equation

The motor torque usi is the spin axis component of wheel torque

about pointWi. The transverse torques acting on the wheel τw2i
and

τw3i
are structural torques on the wheel and do not contribute to the

motor torque equation.

LWi
� usi ĝsi � τw2i

ŵ2i
� τw3i

ŵ3i
(31)

Themotor torque equation describes how the RWmotor torque usi
relates to the wheel speed derivative _Ωi.
Torque about pointWi relates to torque about Wci by [14]

LWi
� LWci

� rWci
∕Wi

×mrwi
�rWci

∕N (32)

As Wci is the RW wheel center of mass, Euler’s equation [14]

applies as follows.

LWci
� _Hrwi ;Wci

(33)

The RWangular momentum aboutWci is expressed as

Hrwi ;Wci
� �Irwi ;Wci

�ωWi∕N � �Irwi ;Wci
��ωB∕N �Ωiĝsi� (34)
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Note that the Wi frame components of ωB∕N and their
corresponding derivatives are defined as

ωsi � ĝTsiωB∕N ; ωw2i
�ŵT

2i
ωB∕N ; ωw3i

�ŵT
3i
ωB∕N (35)

_ωsi � ĝTsi _ωB∕N ; _ωw2i
�ŵT

2i
_ωB∕N �Ωiωw3i

; _ωw3i
�ŵT

3i
_ωB∕N −Ωiωw2i

(36)

To aid in the simplification of the motor torque equation, �Irwi ;Wci
�

is expressed as an outer product sum as in Eq. (21) and substituted
into Eq. (34) to yield

Hrwi ;Wci
� �J11iωsi � J11iΩi � J12iωw2i

� J13iωw3i
�ĝsi

� �J12iωsi � J12iΩi � J22iωw2i
� J23iωw3i

�ŵ2i

� �J13iωsi � J13iΩi � J23iωw2i
� J33iωw3i

�ŵ3i
(37)

Taking the inertial derivative of the wheel angular momentum
aboutWc in Eq. (37) gives

_Hrwi ;Wci
� ��J11i ĝTsi � J12iŵ

T
2i
� J13iŵ

T
3i
� _ωB∕N � J11i

_Ωi

� ωsi�J13iωw2i
− J12iωw3i

� � ωw3i
ωw2i

�J33i − J22i �
� J23i�ω2

w2i
− ω2

w3i
��ĝsi � Piŵ2i

�Qiŵ3i
(38)

The scalar quantitiesPi andQi are the coefficients of �Hrwi ;Wci
along

ŵ2i
and ŵ3i

, respectively. Because only the coefficient of ĝsi relates to
the motor torque equation as in Eqs. (31) and (32), specifying Pi and
Qi is unnecessary as they do not contribute to theRWmotor torqueusi .
The next step is to define the remaining terms in Eq. (32).

This begins by determining the second inertial derivative of
�rWci

∕N � �rB∕N � �rWci
∕B. Each cross product in Eq. (25) is

evaluated using wheel-frame base vectors. For example,

�ωB∕N �Ωiĝsi� × diŵ2i
� −diωw3i

ĝsi � di�ωsi �Ωi�ŵ3i
(39)

Repeating this procedure yields the following expression for the
right-hand term of Eq. (32). Note that the scalar term Ri is the
derivative component along ŵ3i

and does need to be defined
because only the ĝsi component is desired.

rWci
∕Wi

×mrwi
�rWci

∕N � mrwi
di�ŵT

3i
�rB∕N − ŵT

3i
� ~rWi∕B� _ωB∕N

� ŵT
3i
� ~ωB∕N �� ~ωB∕N �rWi∕B � di�ĝTsi _ωB∕N � _Ωi�

� diωw2i
ωw3i

�ĝsi − Riŵ3i
(40)

The scalar motor torque equation for each RW is obtained by
summing the ĝsi components of Eq. (38) and Eq. (40) and simplifying
to yield

�mrwi
diŵ

T
3i
� �rB∕N ���J11i �mrwi

d2i �ĝTsi � J12iŵ
T
2i
� J13iŵ

T
3i

−mrwi
diŵ

T
3i
� ~rWi∕B�� _ωB∕N ��J11i �mrwi

d2i � _Ωi � J23i�ω2
w3i

−ω2
w2i

�
�ωsi�J12iωw3i

− J13iωw2i
��ωw2i

ωw3i
�J22i − J33i −mrwi

d2i �
−mrwi

diŵ
T
3i
� ~ωB∕N �� ~ωB∕N �rWi∕B�usi (41)

As a form of validation, the balanced motor torque equationmay be
obtained by zeroing out all imbalance terms (di, J12i , J13i , J23i ) and
making the assumptionJ22i � J33i .Under these conditions, Eq. (41) is
simplified to the expected balanced RW motor torque equation [14]

usi � J11i�ĝTsi _ωB∕N � _Ωi� (42)

This concludes the necessary derivations for the fully coupled
EOMs of a spacecraft with RWs containing static and dynamic

imbalances. The EOMs in Eqs. (9), (30), and (41) provide the required
6� Nrw differential equations to fully define the dynamic response.

IV. Imbalance Parameter Adaptation

Because the simplified RW jitter model [8] assumes an external
force and torque on the spacecraft, the EOMs for the fully coupled
model and the simplified RW jitter model are significantly more
complex to formulate and implement. However, due to the coupled
nature of the EOMs, the equivalent terms in the simplified model
compared with the first-principles model are not readily apparent in
EOMs presented thus far. This section investigateswhich terms in the
fully coupled solution are equivalent to the simplified disturbance
model terms. This allows static and dynamic imbalance parameters,
typically available from anRWmanufacturer, to be readily applied to
the fully coupled model.

A. Overview of Existing Simplified Static and Dynamic Imbalance

Model

The well-established method to specify the imbalanced RW
motion is to lump sources of imbalance into scalar parameters. The
simplified RW imbalance model directly uses such specifications to
model jitter as an external torque [3,8]. The static imbalance
component is due to the RW wheel center of mass not being on the
rotation axis ĝsi . This is specified by the parameter Usi , typically
given in units of g ⋅ cm. The static imbalance is thus approximated
through an external force Fsi defined as

Fsi � UsiΩ
2
i ûi (43)

where ûi is an arbitrary unit vector normal to the wheel spin axis. If
the RWis not coincident with the spacecraft center ofmass, torque on
the spacecraft resulting from the static imbalance force is given by the
simplified model as

Lsi � rWi∕B × Fsi � UsiΩ
2
i � ~rWi∕B�ûi (44)

Note that the simplified model uses the approximation
rWci

∕B ≈ rWi∕B since di is small.
Dynamic imbalance is due to the wheel principal inertia axes not

being alignedwith the spin axis ĝsi . This is specified by the parameter
Ud, typically given in units g ⋅ cm2. The dynamic imbalance
component is thus approximated through an external torque Ldi
defined as

Ldi � UdiΩ
2
i v̂i (45)

where v̂i is an arbitrary unit vector normal to thewheel spin axis. Note
that ûi and v̂i are only required to be normal to their corresponding
spin axis ĝsi . This is because the lumped parameters Usi and Udi do
not contain any information on orientation/location of mass
imbalances about ĝsi . Additionally, the initial value of the wheel
angle parameter is arbitrarily chosen, which further emphasizes the
arbitrariness of the vectors ûi and v̂i since they relate to the body
frame through wheel angle θi.

B. Equivalent Terms in the First-Principles Static and Dynamic

Imbalance Model

To relate the simplified model to the first-principles–based model
developedwithin this paper, Eq. (30) is analyzed to identify terms that
directly contribute to torque on the spacecraft. The simplified torque
in Eq. (44) is proportional to the wheel speed squared and the cross
product of wheel location. The first right-hand side term of Eq. (30) is
related to the simplified static imbalance model to yield

UsiΩ
2
i � ~rW∕Bi

�ûi ↔ mrwi
diΩ2

i � ~rWci
∕B�ŵ2i

(46)

Note that ûi is arbitrary, but must lie in the ŵ2i
–ŵ3i

plane. Thus,
without loss in generality, the assumption that ûi � ŵ2i

is made.
Further, making the simplified model approximation rWci

∕B ≈ rWi∕B
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then yields an expression for di in terms of the RW manufacturer–

provided static imbalance coefficient Usi and the wheel mass mrwi
.

di �
Usi

mrwi

(47)

The simplified dynamic imbalance torque inEq. (45) is proportional

again to the square of thewheel speed, and is in the plane orthogonal to

the spin axis ĝsi . Studying again Eq. (30), the last term inside the

summation is compared with the simplified dynamic imbalance

expression.

UdiΩ
2
i v̂i ↔ �Irwi ;Wci

� 0Ωiĝsi � Ω2
i �−J13ŵ2i

� J12ŵ3i
� (48)

As v̂i is an arbitrary unit direction vector in the ŵ2i
–ŵ3i

plane,

taking the norm of Eq. (48) yields the dynamic imbalance

manufacturers’ parameter Udi

Udi �
����������������������
J213i � J212i

q
(49)

in terms of the RW cross-axes inertia’s J12 and J13. This expression
agrees with the relationship found in [3]. Thus, the fully coupledmodel

is underconstrainedwith respect to the implementationof the simplified

model, and some combination of J12 and J13 must be selected for each

wheel such that Eq. (49) is satisfied. Because the unit vector v̂i is
arbitrary (as well as ŵ2i

and ŵ3i
due to the arbitrariness of initial wheel

angle), the following definitions are chosen

J13i � Udi (50a)

J12i � 0 (50b)

To complete the discussion of characterizing RW static and dynamic

imbalances from manufactures’ specifications, the full RW inertia

matrixneeds tobe defined.The balancedRWinertiamatrixdefinition is

assumed to be diagonal in thePi frame: the principal axes frame of the

symmetricRW.TheRWwheel principal inertia Jsi is about the axis ĝsi ,
while the principal inertia Jti is about the transverse axis orthogonal to
ĝsi . For there to only be J13i terms present in theWi representation of

the RW’s inertia matrix, the direction cosine or rotationmatrix between

Wi andPi, labeled as �WiPi�, must be a single-axis rotation about the

ŵ2i
axis, where βi is the angle of rotation. Transforming �Irwi ;Wci

� from
the frame to theWi frame and using small angle approximations yields

Wi �Irwi ;Wci
� �

Wi
2
64

Jsi 0 �Jsi − Jti�βi
0 Jti 0

�Jsi − Jti�βi 0 Jti

3
75 (51)

However, from Eq. (50a), �Irwi∕Wci
� can be written in the following

form:

Wi �Irwi∕Wci
� �

Wi
2
64

Jsi 0 Udi

0 Jti 0

Udi 0 Jti

3
75 (52)

This concludes the necessary steps to relate manufactures’

specifications of RW imbalances to parameters needed for the first-

principles jitter model. In addition, the simplified description of

�Irwi∕Wci
� seen in Eq. (52) simplifies the EOMs developed in the

previous sections due to J12i � J23i � 0. In addition, Eqs. (47), (50a),
and (52) allow adirect comparison of the results of the simplifiedmodel

to the fully coupledmodel, which is discussed in the following section.

Table 1 Simulation parameters for the fully coupled model

Parameter Notation Value Units

Number of reaction wheels Nrw 3 — —

Total spacecraft mass msc 662 kg
Hub mass mhub 644 kg
Wheel mass mrw 6 kg

Hub inertia tensor about hub center of mass �Ihub;Bc
�

B
2
4 550 0.1045 −0.0840

0.1045 650 0.0001

−0.0840 0.0001 650

3
5 kg ⋅m2

Hub CoM location w.r.t. B rBc∕B
B� 1 −2 10 �T cm

Wheel orientation matrix �Gs�
B
2
4 0.7887 −0.2113 −0.5774
−0.2113 0.7887 −0.5774
0.5774 0.5774 0.5774

3
5 — —

Wheel static imbalance Us 1920 g ⋅ cm
Wheel static imbalance Ud 1540 g ⋅ cm2

Wheel CoM offset (derived from Us) d 3.2 mm

Wheel inertia tensor about wheel CoM (derived from Ud) �Irw;Wc
�

W
2
4 0.0796 0 2.0E − 4

0 0.0430 0

2.0E − 4 0 0.0430

3
5 kg ⋅m2

Wheel 1 location vector rW1∕B
B� 0.6309 −0.1691 0.4619 �T

Wheel 2 location vector rW2∕B
B�−0.1691 0.6309 0.4619 �T

Wheel 3 location vector rW3∕B
B�−0.4619 −0.4619 0.4619 �T m

Initial position rB∕N
N � 0 0 0 �T m

Initial velocity _rB∕N
N � 0 0 0 �T m∕s

Initial attitude MRP σB∕N � 0 0 0 �T — —

Initial angular velocity ωB∕N
B� 0 0 0 �T deg ∕s

Initial wheel speeds Ω −558, −73, 242 RPM
Initial wheel angles θ 43, 179, 346 deg
Commanded wheel torques usi 10, −25, 17.5 mN ⋅m

CoM, center of mass.

Note that wheel parameters apply to all wheels unless otherwise specified.
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V. Numeric Simulations

Numeric simulations are provided to demonstrate the first-
principles–based fully coupled imbalanced RW model developed
within this paper. The total angular momentum vector is calculated to
confirm that when no external disturbances are present, angular
momentum is conserved, and system energy is calculated to show that
when no external disturbances or RW motor torques are present,
energy is conserved. The fully coupledmodel is directly comparedwith
the simplified model using the formulation developed in Sec. IV.B.
Simulation parameters used are given in Table 1. The wheel orientation
matrix �Gs� is of size 3 × Nrw with each column containing the spin axis
unit vector for the ith wheel: �Gs� � � ĝs1 · · · ĝsNrw

�. The motor
torques usi are nominally zero until 3.5 s into the simulationwhen they
assume a 0.5 s constant value listed in Table 1. The numerical
integration is performed with a fixed-time step fourth-order Runge–
Kuttamethodusing a time step of 0.1ms.This small time step is chosen
to show the integration error to machine precision. Imbalanced RW
dynamics are stiff coupled differential equations and therefore require
a small step size to show energy and momentum conservation;
however, a larger step size can be used and still retain reasonable
accuracy. To avoid such small time steps it is also possible to use
symplectic integrators to ensure that constraint quantities are
conserved. However, to illustrate the validity of the presented
imbalanced RW EOMs, the explicit Runge–Kutta integration method
is chosen.
The first simulation that is included simulates three RWs. The

purpose of this simulation is to show the effect of RW jitter on a
spacecraft that is initially inertially fixed, and therefore the only
perturbations to the spacecraft will be due to the RW jitter.
Accordingly, the spacecraft has no external forces present and has zero
initial velocity and zero initial angular velocity. The spacecraft’s
attitude is parameterized in terms of modified Rodrigues parameters
(MRPs) [14,18]; however, it should be noted that the development of
the EOMs does not depend on the attitude parameterization; therefore

any type can be chosen. The RWs are initially spinning with specified

values seen in Table 1.

Figures 3–6 show simulation results for the fully coupled and

simplified RWimbalancemodel withNrw � 3wheels. In Fig. 3a, the
attitude of the spacecraft is shown to be drifting due to the imbalance

in the RWs. Note that the simplified model compares well with the

fully coupledmodel angular velocity values in Fig. 3b, illustrating the

expected good agreement between the two models as the simplified

model is used extensively inmission analysis. Figure 3c illustrates the

Euler principal rotation angle [14] between B and N for each case

with the secular drift removed to better illustrate the jitter impact. The

secular drift was found by fitting a fifth-order polynomial to the Euler

principal rotation angle and subtracting out the polynomial to formΦ
seen in Fig. 3c. This shows that the RW jitter results in a perturbation

amplitude of around 8 arc ⋅ s. The jitter performance modeling

difference between the twomodels is visible here in that the principal

angular displacement magnitudes are noticeably different at times.

The translational position and velocity are shown in Figs. 4a

and 4b, respectively. These plots demonstrate that there is a nonzero

effect due to RW jitter on the position and velocity of the spacecraft.

The position and velocity comparison of the fully coupled model and

the simplified model shows that the simplified model is not able to

track either position or angular velocitywell for the given set of initial

conditions. However, it should be noted that the overall translational

motion in both cases is small.

The fact that the wheel speed data for the fully coupled model and

simplified model agree as shown in Fig. 5a demonstrates that the

variation in wheel speed is primarily due to the coupling between the

hub’s angular velocity and wheel speed.

Figure 6 shows the change in energy and momentum plotted versus

time for the fully coupled and simplifiedmodels. Energy is plotted for a

3.5 s duration because the motor torque is zero during this time

(illustrated in Fig. 5b) and the change in energy should be zero.

However, Fig. 6a shows that using the simplified model causes energy

a) Attitude MRP of the spacecraft for the
fully-coupled and simplified models with Nrw = 3

b) Body rates of the spacecraft for the
fully-coupled and simplified models with Nrw = 3

c) Principal angle jitter for the fully-coupled and
simplified models with Nrw = 3

Fig. 3 Attitude, principal angle, and body rates of spacecraft.
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to fluctuate, whereas the fully coupledmodel includes only integration

error. Angular momentum, by definition, should be conserved for a

closed systemunder the influenceof internal torques and is thus plotted

for the entire duration of the simulation inFig. 6b. It canbe seen that the

simplified model violates conservation of angular momentum and the

fully coupled model only exhibits integration error. This confirms that

the fully coupledmodel is agreeing with physics and gives confidence

that there are no errors in the computer code. However, Figs. 6a and 6b

do not provide any verification for the simplified model. If the fully

coupled model was not present to compare to, the simplified model

would be challenging to verify. This highlights the benefit of this fully
coupled model for developing complex spacecraft simulations.

VI. Conclusions

The presented fully coupled first-principles–based RWmodel with
static and dynamic imbalances allows for momentum and energy
checks to be implemented in a simulation. Energy is shown to be
conserved when the motor torques are zero, and momentum is
conserved throughout the length of the simulations. This provides

a) Inertial position of the spacecraft for the
fully-coupled and simplified models with Nrw = 3

b) Inertial velocity of the spacecraft for the
fully-coupled and simplified models with Nrw = 3

Fig. 4 Position and velocity of the spacecraft.

a) Wheel speeds for the fully-coupled and simplified
models with Nrw = 3

b) Open-loop wheel motor torques for the
fully-coupled and simplified models with Nrw = 3

Fig. 5 Wheel angle, wheel speed, and motor torque of RWs.

a) System energy Δ for the fully-coupled and simplified
models with Nrw = 3

b) System angular momentum Δ for the
fully-coupled and simplified models with Nrw = 3

Fig. 6 Change in energy and momentum of the spacecraft.
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validation of the fully coupled model and highlights drawbacks to the
simplified model, which violates conservation of momentum and
energy. However, the first-principles–based fully coupled model
contains significantly more complex equations to simulate, which
results in amore computationally expensive simulation. A comparison
between the first-principle–based model and the simplified model
shows that the imbalance parameter adaptation is adequate because the
fully coupled and simplified models give similar high-level results.
However, because the simplified model is not valid in terms of
conservation of energy and conservation of angular momentum, it is
undesirable when including additional complex dynamical models
such as flexible dynamics or fuel slosh. Finally, this fully coupled
model can be readily implemented in computer simulation using the
well-known manufacturer RW imbalance specifications.
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