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Computer simulations of spacecraft dynamics are widely used in industry and academia to predict how spacecraft

will behave during proposed mission concepts. Current technology and performance requirements have placed

pressure on simulations to be increasinglymore representative of the environment and the physics that spacecraftwill

encounter. This results in increasingly complex computer simulations. Designing the software architecture in a

modularway is a crucial step to allow for ease of testing,maintaining, and scaling of the software code base. However,

for complex spacecraft modeling including flexible or multibody dynamics, modularizing the software is not a trivial

task because the resulting equations of motion are fully coupled nonlinear equations. In this paper, a software

architecture is presented for creating complex fully coupled spacecraft simulations with a modular framework. The

architecture provides a solution to these common issues seen in dynamics modeling. The modularization of the fully

coupled equations ofmotion is completed by solving the complex equations analytically such that the spacecraft rigid-

body translational and rotational accelerations are solved for first and the other second-order state derivatives are

found later. This architecture is implemented in the Basilisk astrodynamics software package and is a fully tested

example of the proposed software architecture.

Nomenclature

aα;bα; cαi = vectors and variable required for backsubstitution effector equation
Bc; Ec = rigid hub center-of-mass location and effector center-of-mass location

fb̂1; b̂2; b̂3g = body frame basis vectors
c = vector from point B to center of mass of the spacecraft C
fê1; ê2; ê3g = effector frame basis vectors
Fext = vector sum of external forces on spacecraft
�Ieff;Ec

� = inertia matrix of effector about point Ec

�Isc;B� = inertia matrix of spacecraft about point B
LB = vector of sum of external torques of spacecraft about point B
msc; mhub; meff = mass of spacecraft, hub, and effector, respectively

N ;B; E = inertial, body-fixed, and effector reference frames
N;B; E = inertial frame origin, body frame origin, and effector frame origin
Neff , NDOF = number of effectors and number of degrees of freedom of an effector
rB∕N = position vector of B with respect to N
α = effector state variable
vRot;LHS; vRot;RHS = vectors required for backsubstitution rotational equation
vTrans;LHS; vTrans;RHS = vectors required for backsubstitution translational equation
σB∕N = modified Rodrigues parameters representing B with respect to N frame
ωB∕N = angular velocity vector of B frame with respect to N frame

I. Introduction

IMPORTANTaspects when considering software design are the scalability, maintainability, and testability of the software [1]. If the software is
not designed well, adding complexity (scalability), maintaining functionality amid a changing code base (maintainability), and the ease of
verifying functionality (testability) can become extremely laborsome [2]. For complex simulations of spacecraft, this methodology needs to be
considered to avoid these complications. However, multibody dynamics poses a difficult problem because of the coupled nature of the system
through the nondiagonal system mass matrix [3]. This mass matrix relates the dynamical effect of the second-order state variables between all of
the interconnected bodies.

Although multibody dynamics is a complex challenge, not only from an equation of motion (EOM) development perspective but from a
software implementation perspective, there is an abundant amount of open-source software packages simulating multibody dynamics. Bullet [4]
is an open-source multibody dynamics software package that uses the Gauss–Seidel method to solve the system mass inverse for diagonally
dominant matrices [5]. Project CHRONO is an open-source multiphysics software package that uses parallel computing to solve multibody
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dynamics with a large number of degrees of freedom [6]. The Rigid Body Dynamics Library is an open-source multibody dynamics software
package that uses the articulated body algorithm and the composite rigid-body algorithm for solving the dynamics [7]. Moby is a multibody
dynamics software package that uses an interior point quadratic solver to solve for constraints [8]. Although these software packages are powerful
for simulating a large number of bodies at a time, adding spacecraft-specific environmental factors and incorporating flight software into these
open-source packages can be laborsome and is not the intended use of these software packages. Additionally, validation and verification of the
simulation are important for spacecraft missions, and the capability to provide the necessary information for that process is not always a key
feature of these open-source packages.

In contrast to the open-source packages, there are commercial software packages that are solvingmultibody dynamics problems. COMSOL is a
multiphysics software package that has a multibody dynamics module for simulating multibody dynamics [9]. As this is a commercial software,
the details of the software architecture and themethod for solving the complexmultibody dynamics are not readily available. Similarly,Adams is a
multibody commercial software package that can simulate flexible andmultibody dynamics. It allows for the input of CADmodels to simulate the
dynamics of complex systems [10].MathWork’s SimscapeMultibody [11] can generate EOMs to be integrated and can output simulation code to
MATLABorC code.MotionGenesis usesKane andLevinson’smethod [12,13] to output simulation code toMATLAB,C or Fortran and includes
energy and momentum verification [14]. One downfall of these equation-of-motion generators is that the equations are specific to the system,
which introduces scalability, maintainability, and testability issues for software architecture.

Computer graphics also has a strong influence in physics engine software, even though being visually realistic typically takes precedence over
the dynamics accuracy. For example, InteractiveComputer Graphics has a library called PositionBasedDynamics Library [15] that uses position-
based dynamics. This method, which integrates the position and velocity using kinematics, avoids physical constraints but is focused on being
visually realistic. This results in the dynamics not being as accurate but the computations being extremely fast. Indeed, the software can simulate a
very large number of degrees of freedom and is visually appealing [16,17]. Additionally, Interactive Computer Graphics has another physics
engine called IBDS: Physics Library, which uses both forward dynamics and position-based dynamics [18,19].

In contrast to general multibody dynamics software, there are software packages that focus only on spacecraft simulation because of the unique
environment that spacecraft encounter, as well as the specific challenges that modeling spacecraft dynamics entails. STK SOLIS is a software
package for modeling spacecraft with both translational and attitude dynamics, but it does not model disturbances that can change the center of
mass of the spacecraft: for example, flexing solar arrays [20]. The Jet Propulsion Laboratory has a software package called Dynamics Algorithms
for Real-Time Simulation (or DARTS) [21]. This simulation software package uses spatial operator algebra for the development of the multibody
dynamics [22] to create the system mass matrix in a form that can be solved efficiently with a recursive algorithm [23]. NASA’s open-source
software package named 42 [24] allows for spacecraft composed of multiple rigid or flexible bodies using tree topology [25] to formulate the
dynamics, resulting in a system mass matrix inversion solution. OreKit is an open-source software package for spacecraft simulations and flight
software; it models the spacecraft as a rigid body, and the dynamics are primarily focused on defining perturbations as external forces and
torques [26].

The spacecraft-specific software packages described that involvemultibody dynamics have to populate a systemmassmatrix and either have to
find the inverse of the matrix or use other linear algebra techniques [22,23], assuming explicit integration techniques are being used. Populating
the systemmass matrix while retaining a modular software architecture is difficult because the system needs to know the locations of the states in
the system mass matrix and know the relative locations of other coupled states. Additionally, inverting the system mass matrix can be
computationally expensive because the calculation can scale with N3, depending on the form of the system mass matrix and the method used to
invert the matrix, with N being the number of states.

To combat these common problems, this paper introduces a method to generalize the EOMs that is applicable to a wide range of spacecraft
configurations, uses a backsubstitution method to modularize the EOMs, and develops a software architecture that leverages the modularized
equations. Although the prior methods allow for general multibody setups, this method is specifically developed for common spacecraft
configurations inwhich there is a single rigid spacecraft hub ontowhich additional bodies (both rigid and flexible) are attached. This assumption is
a key enabler that leads to an elegant modular framework that can be implemented in numerical simulations without dropping any dynamical
coupling between the components. This allows for the underlying physics to be retained, which enables energy and momentum conservation
checks to be completed. The resulting dynamics software is a turnkey solution that allows the user to rapidly configure a broad range of spacecraft
configurationswithout having to derive equations ofmotion or integrate autocoded equations. Themodular form allows for new types of dynamic
forces and torques to be added without having to rederive all the other spacecraft equations of motion, enabling a layered approach to increase the
simulation modeling capabilities.

II. Modularization of the Spacecraft Equations of Motion

A. Spacecraft Specific Compact Equations of Motion Form

Important considerations when first developing the EOMs are the associated assumptions because they will ultimately dictate how applicable
themathematical structure is to different dynamical systems. Figure 1 shows an example spacecraft with flexing solar arrays and lumpedmass fuel
slosh, and it will be the reference when discussing the assumptions [27]. Because both of these types of physical phenomena change the center of

Fig. 1 Complex spacecraft with multiple degrees of freedom.
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mass of the spacecraft, they are good examples for themultibody spacecraft problems. The common aspect that the majority of spacecraft share is
that at least a small portion can be assumed to be rigid. In Fig. 1, the rigid portion of the spacecraft is the gray cylinder. This portion is called the
rigid-body hub. The hub is assumed to have a nonzero massmhub, a center of mass location Bc, and an inertia matrix defined about its center of
mass �Ihub;Bc

�.
Themost important aspect of the rigid-body hub is that it is the object that the body frameB: fb̂1; b̂2; b̂3g is attached to. To keep the formulation

as general as possible, the body frame origin (pointB) does not have to be coincident with the hub’s center ofmass (pointBc). It is very common to
make the assumption that these two points are coincident, and it makes the derivation of the EOMs simpler [12,28]; however, allowing pointB to
be located at any location fixedwith respect to the rigid hub givesmoregenerality. It is very common in spacecraftmissions that a structure frame is
defined by the structural engineering team,where its origin is not coincidentwith the rigid-body hub’s center ofmass. Therefore, it gives flexibility
in where the body frame origin can be defined. An additional assumption that keeps the formulation as general as possible is the inertia matrix
�Ihub;Bc

�, which does not need to be diagonal when defined in body frame components. The formulation would be simpler but less general if a
diagonal matrix were used [28–30].

Now that the rigid-body hub is defined, the state variables that define the state of the hub at anygiven time are the position of pointBwith respect
to the origin of the inertial frame N (rB∕N), the inertial velocity of point B with respect to point N ( _rB∕N), the modified Rodrigues parameters
(MRPs) representation of the body frameBwith respect to the inertial frameN (σB∕N ), and the inertial angular velocity vector of the body frameB
with respect to the inertial frameN (ωB∕N ). TheMRPs are the chosen attitude parameterization set because it is a minimal set of three parameters
with elegant nonsingular implementations [29]. However, the dynamics are independent of the chosen attitude parameterization; therefore, any
attitude description can be used. These four variables represent the six degrees of freedom that the rigid-body hub exhibits and represent the
12 state variables that are needed to implement a second-order differential equation in software. These, at aminimum, are the states required for the
system. All of the additional degrees of freedom on the system will be referenced to the body frame B.

Now that the important parameters have been defined for the rigid-body hub, other degrees of freedom need to be introduced and generalized.
Figure 1 shows an examplewith the flexing solar panels and lumpedmass fuel slosh as additional degrees of freedom as an example system. Each
of thesemodels are labeled as “effectors.”Each effector is assumed to have amassmeff , a center mass locationEc, and a position vector from point
B toEc (rEc∕B). If the effector has inertia properties, it also has a frame E: fê1; ê2; ê3g and an inertia matrix �Ieff;Ec

� that is defined about its center of
mass Ec. Each effector is assumed to be attached to the rigid-body hub, and therefore not interconnected between other effectors. This a key
assumption that enables the modular form introduced in this paper. However, interconnected effectors can be modeled as a single effector with
multiple degrees of freedom attached to the rigid-body hub.

With the hub parameters and the effector parameters defined, the general formproposed in this research for the hub’s EOMs is shown in Eqs. (1)
and (2). This general form is formalized by using a systematic approach for multiple dynamics problem formulations including flexible solar
arrays [31], spring mass damper-based fuel slosh [27], pendulum-based fuel slosh [32], imbalanced reaction wheels [33], fully coupled mass
depletion [34], and imbalanced variable-speed control moment gyroscopes [35,36]. These references explain the derivations in detail and result in
a familiar form. The first equation proposed for this general form is the translational motion equation:

msc �rB∕N −mscc × _ωB∕N �
XNeff

i�1

XNDOF;i

j�1

vTrans;LHSij �αij � Fext − 2mscωB∕N × c 0

−mscωB∕N × �ωB∕N × c� �
XNeff

i�1

vTrans;RHSi (1)

The system parameters in Eq. (1) include the total mass of the spacecraftmsc, the vector from pointB to the instantaneous center of mass of the
entire spacecraft c, and the body frame relative time derivativewith respect to the body frame of c (c 0).Neff is the number of effectors,NDOF;i is the
ith effector’s degrees of freedom, vTrans;LHSij is a vector for the translational equation that corresponds with the jth degree of freedom of the ith
effector’s second-order derivative of its stateαij, andvTrans;RHSi is the ith effector’s vector contribution to the forces on the right-hand side (RHS) of
Eq. (1). This proposed equation-of-motion form is general and common for any effector attached to a spacecraft. Later in this paper, specific
formulations are illustrated for a select set of effectors.

The rotational EOMs’ forms are proposed to be of the following form:

mscc × �rB∕N � �Isc;B� _ωB∕N �
XNeff

i�1

XNDOF;i

j�1

vRot;LHSij �αij � LB − ωB∕N × ��Isc;B�ωB∕N �

− �I 0sc;B�ωB∕N �
XNeff

i�1

vRot;RHSi (2)

where �Isc;B� is the inertiamatrix of the total spacecraft (hub and effectors) about pointB, �I 0sc;B� is the time derivativewith respect to the body frame
of �Isc;B�, vRot;LHSij is a vector for the rotational equation that corresponds with the jth degree of freedom of the ith effector’s second-order
derivative of its state αij, and vRot;RHSi is the ith effector’s vector contribution to the torques on the right-hand side of Eq. (2).

Finally, the individual effector degree of freedom EOMs are proposed to fit the following form:

ajji �αij �
XNDOF;i

k�1;k≠j
ajki �αik � aαij ⋅ �rB∕N � bαij ⋅ _ωB∕N � cαij (3)

where each effector has NDOF;i EOMs needed to fully describe the motion of that effector. If NDOF;i � 1 for an effector, Eq. (3) simplifies to the
following:

�αi � aαi ⋅ �rB∕N � bαi ⋅ _ωB∕N � cαi (4)

Equations (1–4) are the generalized EOMs that can apply to awide variety of spacecraft. Using this common form yields consistent EOMs that
enable themodular software architecture.While looking at Eqs. (3) and (4), it should be pointed out that the ith effector EOMdoes not include the
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second-order state variables from other effectors, but only the individual effectors and their corresponding degrees of freedom. This is a result of

the assumption that effectors are not connected to other effectors but rather connected directly to the rigid-body hub. This specific form of the

EOMs is a key insight that will allow for modularity between all of the effectors attached to the rigid-body hub.

B. Backsubstitution Method

A product of multibody dynamics is the dynamic coupling between the second-order state variables that results in a nondiagonal system mass

matrix [28]. This can be troublesome in attempting to integrate the EOMs in software. When integrating EOMs, the form that is beneficial is
_X � f�X; t�, where X is the state vector, _X is the time derivative of X, and f�X; t� is a function of the current state and time t. This form is

convenient for numerical integration when using explicit integration techniques and, in this paper, implicit integration is not being considered.

When there is a system mass matrix �M� present, the form changes to �M� _X � g�X; t�. Therefore, a system mass matrix needs to be inverted to

solve this complex problem. This results in two problems with inverting a system mass matrix. First, inverting a matrix can be computationally

inefficient because the calculation can scale with the cube of the number of states, depending on the method used. Second, the modularization of

the dynamics from a software implementation perspective is a difficult task because the system needs to know the location of each effector within

the system mass matrix and locations relative to the other effectors. A backsubstitution method is developed to solve this problem.
Tovisualize the impact of the EOMs’ generalized form, the spacecraft seen in Fig. 2 is used as an example. The spacecraft has panelsmodeled as

two interconnected rigid bodies with a single rotational degree of freedom each. Figure 2 only shows two sets of dual-connected solar panels, but

the example is generalized toNs number of sets. If the EOMswere put into the generalized form from the previous section, the dynamical coupling

of this complex system would be visualized in the following schematic of the resulting coupled differential equations:

2
6666666666666666664

3 × 3 3 × 3 3 × 1 3 × 1 3 × 1 3 × 1 : 3 × 1 3 × 1

3 × 3 3 × 3 3 × 1 3 × 1 3 × 1 3 × 1 : 3 × 1 3 × 1

1 × 3 1 × 3 1 × 1 1 × 1 0 0 : 0 0

1 × 3 1 × 3 1 × 1 1 × 1 0 0 : 0 0

1 × 3 1 × 3 0 0 1 × 1 1 × 1 : 0 0

1 × 3 1 × 3 0 0 1 × 1 1 × 1 : 0 0

: : : : : : : : :

1 × 3 1 × 3 0 0 0 0 : 1 × 1 1 × 1

1 × 3 1 × 3 0 0 0 0 : 1 × 1 1 × 1

3
7777777777777777775

2
6666666666666666664

�rB∕N

_ωB∕N

�θ11
�θ12
�θ21
�θ22

:

�θNs1

�θNs2

3
7777777777777777775

�

2
6666666666666666664

3 × 1

3 × 1

1 × 1

1 × 1

1 × 1

1 × 1

:

1 × 1

1 × 1

3
7777777777777777775

(5)

Equation (5) shows the form of the second-order state variable coupling that results from this configuration. This equation is included as a

schematic to show the form and sparsity of the system mass matrix on the left-hand side (LHS) of the equation. Each element in the matrix is

showing the size of the corresponding submatrix. For example, a 3 × 3 element is indicating that a submatrix of size 3 × 3 is present at that

location. The dashed rows and columns are to indicate that this matrix has been generalized forNs sets of panels and shows that the pattern repeats

throughout the matrix. Equation (5) confirms that the individual degrees of freedom for the sets of solar panels are coupled with each other, but

they do not directly couple through second-order state derivatives with the other sets of panels. This is a key insight and is exploited in the

following backsubstitution method.
Looking further into Eq. (5), all of the solar panel second-order state derivatives are present in the hub translational and rotational equations. On

the other hand, the hub translational and rotational second-order state variables are present in the individual solar panel EOMs. This dynamic

coupling through the hub is another key insight that the backsubstitution method will use to modularize the EOMs.
This section of the paper expresses the vector equations shown in the past section asmatrix equations. These equations do not specify a frame in

which the matrix components are expressed with respect to but when implementing the equations in software, a single reference frame must be

used. A common frame to in which to express the equations would be the body frameB. Since these equations are matrix equations the following

notation is used: the cross product is expressed as � ~a�b, the dot product is expressed as aTb, and the outer product is expressed as abT .
The backsubstitution method is presented for effectors that haveNDOF;i � 1 for this paper but is extended to effectors with multiple degrees of

freedom in Ref. [36]. The first step in the backsubstitution method is to substitute Eq. (4) into both the translational and rotational EOMs for the

rigid-body hub. First, the substitution into the translational motion for NDOF;i � 1 is shown in the following equation:

Fig. 2 Dual-hinged rigid-bodies frame and variable definitions.
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msc �rB∕N −msc� ~c� _ωB∕N �
XNeff

i�1

vTrans;LHSi �aT
αi �rB∕N � bTαi _ωB∕N � cαi � � Fext

− 2msc� ~ωB∕N �c 0 −msc� ~ωB∕N �� ~ωB∕N �c�
XNeff

i�1

vTrans;RHSi (6)

Simplifying and combining like terms yield the translational EOM that has been decoupled from the other effector accelerations:

�
msc�I3×3� �

XNeff

i�1

vTrans;LHSia
T
αi

�
�rB∕N �

�
−msc� ~c� �

XNeff

i�1

vTrans;LHSib
T
αi

�
_ωB∕N � Fext

− 2msc� ~ωB∕N �c 0 −msc� ~ωB∕N �� ~ωB∕N �c�
XNeff

i�1

�vTrans;RHSi − vTrans;LHSicαi � (7)

Following the same pattern for the rotational hub EOM [Eq. (2)] yields the following:

�
msc� ~c� �

XNeff

i�1

vRot;LHSia
T
αi

�
�rB∕N �

�
�Isc;B� �

XNeff

i�1

vRot;LHSib
T
αi

�
_ωB∕N � LB

− � ~ωB∕N ��Isc;B�ωB∕N − �I 0sc;B�ωB∕N �
XNeff

i�1

�vRot;RHSi − vRot;LHSi cαi � (8)

The following matrices are defined to yield a more compact notation:

�A� � msc�I3×3� �
XNeff

i�1

vTrans;LHSia
T
αi (9)

�B� � −msc� ~c� �
XNeff

i�1

vTrans;LHSib
T
αi (10)

�C� � msc� ~c� �
XNeff

i�1

vRot;LHSia
T
αi (11)

�D� � �Isc;B� �
XNeff

i�1

vRot;LHSib
T
αi (12)

vTrans � Fext − 2msc� ~ωB∕N �c 0 −msc� ~ωB∕N �� ~ωB∕N �c�
XNeff

i�1

�vTrans;RHSi − vTrans;LHSi cαi � (13)

vRot � LB − � ~ωB∕N ��Isc;B�ωB∕N − �I 0sc;B�ωB∕N �
XNeff

i�1

�vRot;RHSi − vRot;LHSi cαi � (14)

Using these definitions, the coupled translation and rotation hub EOMs are written compactly as

"
�A� �B�
�C� �D�

#"
�rB∕N

_ωB∕N

#
�

�
vTrans

vRot

�
(15)

Equation (15) represents a systemof six equations that can be solved using the Schur complementmatrix formulation for the partitioned formof

the hub system mass matrix:

_ωB∕N � ��D� − �C��A�−1�B��−1�vRot − �C��A�−1vTrans� (16)

�rB∕N � �A�−1�vTrans − �B� _ωB∕N � (17)

This shows that the backsubstitution method only requires two 3 × 3 matrix inverses. The additional degree-of-freedom second-order state

derivatives are found by backsubstituting these solutions into Eqs. (3) and (4).
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C. Modularization of Energy and Momentum

Akeypart of EOMdevelopment is expressing the total energy andmomentumof the spacecraft for verification purposes. This section describes

the proposed method for how the energy and momentum are calculated andmodularized for each effector to add their contributions to the overall

total energy. It is advantageous to define the energy and momentum of the center of mass of the spacecraft (orbital) and about its center of mass

(rotational). This is because the orbital and rotational energies typically have different orders of magnitude, and so separating these terms will

avoid numerical issues in the verification process, and both quantities should be conserved in applicable scenarios.
First, the orbital energy is analytically expressed to be in terms of the state variables. The total orbital kinetic energy (i.e., kinetic energy of the

center of mass) of the spacecraft is

Torb �
1

2
msc _rC∕N ⋅ _rC∕N (18)

Expanding _rC∕N to be in terms of _rB∕N and _c results in

Torb �
1

2
msc� _rB∕N � _c� ⋅ �_rB∕N � _c� (19)

This simplifies to the final desired equation:

Torb �
1

2
msc�_rB∕N ⋅ _rB∕N � 2_rB∕N ⋅ _c� _c ⋅ _c� (20)

Each effector contributes to c and _c, but it does not have direct individual contributions.Additionally, in this form, each effector does not need to

know about the center-of-mass location of the spacecraft, which is advantageous from a modularity perspective.
The total orbital potential energy depends on what type of gravity model is being used or if other conservative external forces are acting on the

spacecraft. For simplicity, the orbital potential energy due to point gravity is included here, but spherical harmonics and other higher-order effects

could be included:

Vorb � −
μ

jrC∕N j
(21)

It is convenient to combine the kinetic and potential energies into one term Eorb because the total orbital energy of the spacecraft must be

conserved when there are no nonconservative external forces and torques acting on the spacecraft. This is shown in the following equation:

Eorb � Torb � Vorb (22)

Next, there is the expression of the rotational energy. The total rotational and deformational kinetic energy (i.e., kinetic energy about the center

of mass) of the spacecraft is

Trot �
1

2
ωB∕N ⋅ �Ihub;Bc

�ωB∕N � 1

2
mhub _rBc∕C ⋅ _rBc∕C

�
XNeff

i�1

�
1

2
ωEi∕N ⋅ �Ieff;Ec;i

�ωEi∕N � 1

2
meff _rEc;i∕C ⋅ _rEc;i∕C

�
(23)

Expanding and combining like terms results in

Trot �
1

2
ωB∕N ⋅ �Ihub;Bc

�ωB∕N � 1

2
mhub _rBc∕B ⋅ _rBc∕B �

XNeff

i�1

�
1

2
ωEi∕N ⋅ �Ieff;Ec;i

�ωEi∕N

� 1

2
meff _rEc;i∕B ⋅ _rEc;i∕B

�
−
�
mhub _rBc∕B �

XNeff

i�1

meff _rEc;i∕B

�
⋅ _c� 1

2

�
mhub �

XNeff

i�1

meff

�
_c ⋅ _c (24)

Performing a final simplification yields the desired result for which each effector adds its contributions to the rotational energy:

Trot �
1

2
ωB∕N ⋅ �Ihub;Bc

�ωB∕N � 1

2
mhub _rBc∕B ⋅ _rBc∕B

�
XNeff

i�1

�
1

2
ωEi∕N ⋅ �Ieff;Ec;i

�ωEi∕N � 1

2
meff _rEc;i∕B ⋅ _rEc;i∕B

�
−
1

2
msc _c ⋅ _c (25)

This form is advantageous because each effector does not need to know the location of the center ofmass of the spacecraft, but rather they define

their contributions with respect to point B. From a software architecture standpoint, this form will prove to be desirable.
The total rotational potential energy is specific to each effector. For example, the spring joint potential energy for a hinged rigid body is shown in

the following equation:

Vrot �
1

2
kθθ

2 (26)

Each effector might not have a potential energy contribution; however, each effector will have the ability to add their contribution to the total

potential energy. Because the total rotational energy of the system is conserved when there are no nonconservative internal or external forces or
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torques acting on the system, it is convenient to combine the kinetic and potential energies into one term Erot. This is shown in the following
equation:

Erot � Trot � Vrot (27)

It should be noted that, if there are nonconservative forces and torques present in the system, the rate of change of the energy expression in
Eqs. (22) and (27) can be found using the fundamental power equation [29]. The total orbital angularmomentum of the spacecraft about pointN is

Horb;N � mscrC∕N × _rC∕N (28)

Expanding in terms of the state variables yields

Horb;N � msc�rB∕N � c� × � _rB∕N � _c� (29)

The final form of this equation that does not have direct contribution from effectors outside of their contributions to c and _c is

Horb;N � msc�rB∕N × _rB∕N � rB∕N × _c� c × _rB∕N � c × _c� (30)

The total rotational angular momentum of the spacecraft about point C is

Hrot;C � �Ihub;Bc
�ωB∕N �mhubrBc∕C × _rBc∕C �

XNeff

i�1

��Ieff;Ec;i
�ωEi∕N �meffrEc;i∕C × _rEc;i∕C� (31)

Expanding these terms yields

Hrot;C � �Ihub;Bc
�ωB∕N �mhub�rBc∕B − c� × � _rBc∕B − _c�

�
XNeff

i�1

��Ieff;Ec;i
�ωEi∕N �meff�rEc;i∕B − c� × � _rEc;i∕B − _c�� (32)

Distributing this result and simplifying yields the final equation:

Hrot;C � �Ihub;Bc
�ωB∕N �mhubrBc∕B × _rBc∕B

�
XNeff

i�1

��Ieff;Ec;i
�ωEi∕N �meffrEc;i∕B × _rEc;i∕B� −mscc × _c (33)

Again, this form is desirable because the effectors define their contributions with respect to the body-fixed pointB as opposed to the commonly
used center-of-mass location point C, which is varying and depends on the other effectors. This will be leveraged in the modular form of the
software architecture.

The results seen in Eqs. (22), (27), (30), and (33) are the modularized equations for energy and momentum in which the effectors provide
contributions to orbital terms through c and _c and to rotational terms through direct contributions. This form is vital to retain themodularity of the
system, and it validates the software implementation of the dynamics.

III. Example Spacecraft Equations of Motion

To include a meaningful example to apply to this methodology, a first-order approximation to a flexing appended body by using hinged rigid
bodies is chosen. A diagram depicting this phenomenon is shown in Fig. 3. The EOMs developed for this system were discussed in detail in
Ref. [31]. The model is approximating flexing by attaching a rigid body to the rigid-body hub through a torsional spring with spring constant ki
and damping terms ci. Other frames and variables are defined in Fig. 3, and a further description can be seen in Ref. [31].

The equations in this section arematrix equations as opposed to vector equations to leverage some linear algebra techniques. Thismeans that the
matrix quantities need to be expressedwith respect to a common reference frame. The typical frame chosen is the body frameB. The translational
EOM for the hub is shown in Eq. (34) [31]:

Fig. 3 Hinged rigid-bodies frame and variable definitions.
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msc �rB∕N −msc� ~c� _ωB∕N �
XNs

i�1

mspi
diŝi;3 �θi � Fext − 2msc� ~ωB∕N �c 0

−msc� ~ωB∕N �� ~ωB∕N �c −
XNs

i�1

mspi
di _θ

2
i ŝi;1 (34)

This form is in agreement with the general form for the hub translational EOM introduced in Eq. (1). Similarly, the hub rotational EOM is,
in this case,

msc� ~c� �rB∕N � �Isc;B� _ωB∕N �
XNs

i

fIsi;2ĥi;2 �mspi
di� ~rSi∕B�ŝi;3g�θi

� LB − � ~ωB∕N ��Isc;B�ωB∕N − �I 0sc;B�ωB∕N −
XNs

i

f_θi� ~ωB∕N ��Isi;2ĥi;2 �mspi
di� ~rSi∕B�ŝi;3�

�mspi
di _θ

2
i � ~rSi∕B�ŝi;1g (35)

Lastly, the hinged rigid-body single-degree-of-freedom differential equation is

mspi
diŝ

T
i;3 �rB∕N � ��Isi;2 �mspi

d2i �ŝTi;2 −mspi
diŝ

T
i;3� ~rHi∕B�� _ωB∕N

� �Isi;2 �mspi
d2i ��θi � −kiθi − ci _θi � ŝTi;2τext;Hi

� �Isi;3 − Isi;1 �mspi
d2i �ωsi;3ωsi;1

−mspi
diŝ

T
i;3� ~ωB∕N �� ~ωB∕N �rHi∕B (36)

and follows the same form that is introduced in Eq. (4). Equations (34–36) provide the 6� Ns EOMs required to describe the motion of the
spacecraft with flexing appended bodies.

Next, the equations ofmotion need to be placed in the backsubstitution form. The following backsubstitutionmethod is repeated fromRef. [31]
for convenience. First, Eq. (36) is solved for the angular accelerations �θi:

�θi �
1

�Isi;2 �mspi
d2i �

�−mspi
diŝ

T
i;3 �rB∕N − ��Isi;2 �mspi

d2i �ŝTi;2 −mspi
diŝ

T
i;3� ~rHi∕B�� _ωB∕N

− kiθi − ci _θi � ŝTi;2τext;Hi
� �Isi;3 − Isi;1 �mspi

d2i �ωsi;3ωsi;1

−mspi
diŝ

T
i;3� ~ωB∕N �� ~ωB∕N �rHi∕B� (37)

Equation (37) is rewritten into the following compact form to match Eq. (4):

�θi � aT
θi
�rB∕N � bTθi _ωB∕N � cθi (38)

where the terms aθi , bθi , and cθi are defined as

aθi � −
mspi

di

�Isi;2 �mspi
d2i �

ŝi;3 (39a)

bθi � −
1

�Isi;2 �mspi
d2i �

��Isi;2 �mspi
d2i �ŝi;2 �mspi

di� ~rHi∕B�ŝi;3� (39b)

cθi �
1

�Isi;2 �mspi
d2i �

�−kiθi − ci _θi � ŝi;2 ⋅ τext;Hi
� �Isi;3 − Isi;1 �mspi

d2i �ωsi;3ωsi;1

−mspi
diŝ

T
i;3� ~ωB∕N �� ~ωB∕N �rHi∕B� (39c)

Following the derivation seen in the backsubstitution method, Eq. (38) is substituted into the translational and rotational EOMs. The result of this
for the translation EOM is shown in the following equation:

�
msc�I3×3� �

XN
i�1

mspi
diŝi;3a

T
θi

�
�rB∕N �

�
−msc� ~c� �

XN
i�1

mspi
diŝi;3b

T
θi

�
_ωB∕N

� msc �rC∕N − 2msc� ~ωB∕N �c 0 −msc� ~ωB∕N �� ~ωB∕N �c −
XN
i�1

�mspi
di _θ

2
i ŝi;1 �mspi

dicθi ŝi;3� (40)
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Following the same pattern for the rotational hub EOM yields the following:

�
msc� ~c� �

XN
i�1

�Isi;2 ŝi;2 �mspi
di� ~rSc;i∕B�ŝi;3�aT

θi

�
�rB∕N

�
�
�Isc;B� �

XN
i�1

�Isi;2 ŝi;2 �mspi
di� ~rSc;i∕B�ŝi;3�bTθi

�
_ωB∕N � −� ~ωB∕N ��Isc;B�ωB∕N − �I 0sc;B�ωB∕N

−
XN
i�1

f�_θi� ~ωB∕N � � cθi �I3×3���Isi;2 ŝi;2 �mspi
di� ~rSc;i∕B�ŝi;3� �mspi

di _θ
2
i � ~rSc;i∕B�ŝi;1g � LB (41)

The following matrices are defined to match Eqs. (9–14):

�A� � msc�I3×3� �
XN
i�1

mspi
diŝi;3a

T
θi

(42)

�B� � −msc� ~c� �
XN
i�1

mspi
diŝi;3b

T
θi

(43)

�C� � msc� ~c� �
XN
i�1

�Isi;2 ŝi;2 �mspi
di� ~rSc;i∕B�ŝi;3�aT

θi
(44)

�D� � �Isc;B� �
XN
i�1

�Isi;2 ŝi;2 �mspi
di� ~rSc;i∕B�ŝi;3�bTθi (45)

vtrans � msc �rC∕N − 2msc� ~ωB∕N �c 0 −msc� ~ωB∕N �� ~ωB∕N �c

−
XN
i�1

�mspi
di _θ

2
i ŝi;1 �mspi

dicθi ŝi;3� (46)

vrot � −
XN
i�1

f�_θi� ~ωB∕N � � cθi �I3×3���Isi;2 ŝi;2 �mspi
di� ~rSc;i∕B�ŝi;3�

�mspi
di _θ

2
i � ~rSc;i∕B�ŝi;1g − � ~ωB∕N ��Isc;B�ωB∕N − �I 0sc;B�ωB∕N � LB (47)

Equations (42–47) are the final equations needed for implementation into software and will be referenced in the following section when
discussing the modular software architecture.

IV. Modular Software Architecture

Figure 4 shows the Unified Modeling Language (UML)-class diagram for the object-oriented computer programming languages proposed in
this paper. This is the design that allows complex fully coupled dynamics to be implemented in software while retaining a modular architecture.
Additionally, it aims to solve the issues of testability, maintainability, and scalability that fully coupled dynamics problems pose.

The dynamicObject seen in Fig. 4 is a parent class or abstract class that defines the base functionality of the object that will control the
calculation of the system EOMs and essentially solve for the well-known state derivative vector _X � f�X; t�. However, the term state vector is
used loosely here because the stateManager organizes, stores, and controls all states of the system. The dynamicObject is an abstract or
parent class because this will allow for different types of systems to be implemented in the future that are not necessarily using the proposed
backsubstitution method in this paper. Therefore, the spacecraftPlus is an instantiation of the dynamicObject and is the class that is
implementing the backsubstitution method.

In the generalizedEOMs introduced earlier in this paper, the term "effectors" is used to define objects that are attached to the spacecraft and have
dynamic states that need to be integrated. Some examples are: reaction wheels, flexing solar arrays, variable speed control moment gyroscopes
(VSCMGs), fuel slosh, etc. In this modular software architecture, those effectors are called stateEffectors and are illustrated in Fig. 4. In
contrast, dynamicEffectors are phenomena that result in an external forces or torques being applied to the spacecraft. Examples of these
include: gravity, thrusters, solar radiation pressure (SRP), etc.

The stateEffector abstract or parent class is the class that defines the necessary methods (and variables) needed for each effector to
provide contributions to the spacecraft’s mass properties (msc; �Isc;B�; c, etc.) using the method updateEffectorMassProperties and
contributions to the backsubstitution matrices (�A�; �B� : : : vTrans, etc.) using the method updateContributions. Each effector needs to be
able to compute their own state derivatives using the method computeDerivatives. Finally, the method computeEnerMomCon-
tributions is themethod that enables effectors to add their contributions to the energy andmomentum of the system for verification purposes.
Additionally, it should be noted that, in Fig. 4, it shows that both stateEffectors and dynamicEffectors are aggregated in
spacecraftPlus. This allows for the modularity of the dynamics because spacecraftPlus does not know the type of effectors attached
to it, but rather has an array of stateEffectors or dynamicEffectors that makes it general.

Another important aspect of the software architecture is the hubEffector instantiation of stateEffector. The hubEffector is
representing the rigid-body hub defined in the generalized EOM form and has translational and attitude states associated with it. The hubEffector
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is unique to all of the stateEffectors because it is not included in the array of stateEffectors that are looped over in
spacecraftPlus but are rather defined as an object in spacecraftPlus, and its methods are always called in equationsOfMotion().
This is because the assumption for the backsubstitution method, and the generalized EOM form is that the spacecraft will always have a rigid-body
hub with a body frame B attached and with the corresponding states rB∕N , _rB∕N , σB∕N , and ωB∕N .

Because spacecraftPlus is an instantiation of dynamicObject, it inherits the methods that are defined in Fig. 4. The method
equationsOfMotion() is themethod that solves for all of the state derivatives of the spacecraft system.To explain thismethod inmore detail,
Fig. 5 is included to show the flow in pseudocode. The spacecraft mass properties need to be calculated first because, in Eqs. (1) and (2), the total
spacecraft massmsc, inertia �Isc;B�, and other parameters are needed. Next, the gravityEffector class is called to compute the gravity acting
on the spacecraft. This is done at this location because some stateEffectorsmight need to know the gravitational acceleration. Following
this step, thestateEffectors are looped over to find their contributions to the backsubstitutionmatrices and the dynamicEffectors are
looped over to get their contributions to Fext and LB. Now, all of the necessary values have been computed for the hub state derivatives to be
calculated using Eq. (15), which is computed in the hubEffector’s computeDerivatives. Finally, the stateEffectors are looped
over to compute their derivatives using �rB∕N and _ωB∕N .

Because the hubEffector’s derivative calculation is so vital in this structure, Fig. 6 is shown to explain the calculations needed for this step.
Again, this is shown using pseudocode. Additionally, this method shows the interaction between the stateManager and the rest of the system.
The stateManager stores the states of the system in individual objects. These objects can be accessed using a string and, once the object has
been accessed, the methods seen in Fig. 4 under the stateManager class are available. For example, the getState method delivers the
current value of the state stored in that state object. In Fig. 6, the hub effector uses those methods to retrieve the desired information from the
stateManager. Ultimately, setting the derivative values for thehubEffector is the goal of thecomputeDerivativesmethod and does
so by using setStateDeriv for both �rB∕N and _ωBN .

Another important method in this architecture is the computeDerivatives method for a generic stateEffector. To highlight this
method, the hinged rigid bodies example introduced in this paper is used. Figure 7 shows the pseudocode for the computeDerivatives method of a
hinged rigid-body effector. When this method is being computed, �rB∕N and _ωB∕N have already been calculated; therefore, the hinged rigid-body
effector can use the state manager’s method called getStateDeriv, which gives access to those precomputed values. Looking at Eq. (38), the
hinged rigid-body effector uses �rB∕N and _ωB∕N in its calculation, it uses used saved variables for faster results, and it is a benefit of the
backsubstitution method.

The power of this design is thatstateEffectors can just be attached to the spacecraft in no particular order and the scalability of this design
is unconstrained. Adding another effector does not depend on any other effectors, even though the fully coupled nature is still retained. All of the
coupling is through the rigid-body hub, and the analytical form of the backsubstitution method allows for this modularity. Additionally, a fixed-
size system mass matrix is inverted as opposed to a dynamically allocated matrix of varying size, which is common in fully coupled dynamics
simulations.

+ integrate()

integrator

+ equationsOfMotion()

+ integrateState()

+ computeEnergyMom() 

dynamicObject

spacecraftPlus

+ computeBodyForceTorque()

dynamicEffector+ updateEffectorMassProperties()
+ updateContributions()
+ computeDerivatives()
+ updateEnerMomContributions()

stateEffector

gravity

reactionWheels

fuelSloshLinear

fuelTank

hingedRigidBody

+ register()

+ getStates(stateName)

+ getStateDeriv(stateName)

+ setStates(stateName)
+ setStateDeriv(stateName)

stateManager

hubEffector

SRP

thrusters

euler

rK2

rK4

dualHingedRigidBody

VSCMG

fuelSloshPendulum

Fig. 4 UML diagram for modular architecture.
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V. Modular Software Architecture Implementation and Verification

The Basilisk astrodynamics software package is chosen as the implementation code base for the modular dynamics architecture. Basilisk has
modularity as a key feature to the software package, and so retaining this functionality for the dynamics is an important influence. Because the
backsubstitution method attempts to solve the issue of scalability, maintainability, and testability, effectors can be added to this software package
with ease and do not affect the rest of the code base. For example, a software developer can add an effector without changing the
spacecraftPlus implementation and only needs to add code for the current effector while adhering to rules of the software architecture.

The method in verifying that a specific effector has been implemented correctly following the specific guidelines for effectors and that the
effector is in agreement with physics is that the four energy/momentumvalues of orbital energy, orbital angularmomentum, rotational energy, and
rotational angularmomentummust be conservedwhen applicable. The derivation for these quantities for effectors are shown in Eqs. (22) and (33).
Figures 8a–8d are examples of the verification results for the hinged rigid-body effector and are the desired result: the orbital angular momentum,
orbital energy, rotational angular momentum, and rotational energy are conserved down to machine precision. Integrated tests can be used to
confirm conservation of these quantities to validate the different models. This gives verification in not only the hinged rigid-body model but also
the backsubstitution method and the modular software architecture.

hubEffector

computeDerivatives()

    rBN_NState = stateManager.getStateObject('hubPosition')
    rBNDot_NState = stateManager.getStateObject('hubVelocity')
    sigmaBN_State = stateManager.getStateObject('hubRotPosition')
    omegaBN_BState = stateManager.getStateObject('hubRotVelocity')

    rBNDot_N = rBNDot_NState.getState()
    rBN_NState.setStateDeriv(rBNDot_N)

    sigmaBNDot = omegaToSigmaDot(omegaBN_BState.getState())
    sigmaBN_State.setStateDeriv(sigmaBNDot)

    omegaBN_BState.setStateDeriv(omegaBN_Dot)
    rBNDot_NState.setStateDeriv(rBNDDot_N)

end

Fig. 6 : Pseudocode for hubEffector computeDerivatives() method.

spacecraftPlus

equationsOfMotion()

     hubEffector.updateEffectorMassProperties()
     for(effector in stateEffectors)
           effector.updateEffectorMassProperties()
     end

     gravityEffector.computeGravField()

     for(effector in stateEffectors)
           effector.updateContributions()
     end

     for(effector in dynEffectors)
           effector.computeBodyForceTorque()
     end

     hubEffector.computeDerivatives()
     for(effector in stateEffectors)
           effector.computeDerivatives()
     end

end

Fig. 5 Pseudo code for the equationsOfMotion() method within spacecraftPlus.

680 ALLARD ETAL.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
Ja

nu
ar

y 
3,

 2
01

9 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
06

53
 



hingedRigidBody

computeDerivatives()

    theta_State = stateManager.getStateObject('panelTheta')
    thetaDot_State = stateManager.getStateObject('panelThetaDot')
    hubVelocity_State = stateManager.getStateObject('hubVelocity')
    hubRotVelocity_State = stateManager.getStateObject('hubRotVelocity')

    thetaDot = thetaDot_State.getState()
    theta_State.setStateDeriv(thetaDot)

    rBNDDot_N = hubVelocity_State.getStateDeriv()
    omegaDotBN_B = hubRotVelocity_State.getStateDeriv()

     thetaDot_State.setStateDeriv(thetaDDot)

end

Fig. 7 Pseudocode for hingedRigidBody computeDerivatives() method.

a) Change in orbital angular momentum

b) Change in orbital energy

c) Change in rotational angular momentum

d) Change in rotational energy
Fig. 8 Simulation verification results for a rigid hub with a single hinged panel.
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VI. Conclusions

This paper introduces a modular software architecture for fully coupled dynamics and solves the issues of maintainability, scalability, and
testability for this problem. The elegant modularity is achieved by considering a specific spacecraft dynamical system in which a range of
dynamical subsystems is attached to a central rigid hub. The proposed software architecture is shown to be maintainable, allows for a fixed-size
systemmassmatrix to be inverted, allows effectors to be attached to the spacecraft in no particular order, and does not have scaling limitations. The
modular software architecture is verified using energy andmomentum conservation, and it is implemented in the Basilisk astrodynamics software
package.
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