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An N-impulse feedback control strategy is developed to mitigate errors in a set of nonsingular orbit element

differences between a chief and deputy spacecraft. Although suitable for general, elliptic chief orbits, this strategy is

motivated by relative orbit control in the geostationary regime, in which nonsingular element descriptions

are especially convenient. The Gauss variational equations for this nonsingular set are developed as a basis for the

N-impulse feedback control strategy, which assumes piecewise constant element errors evaluated once per orbit. The

N corrective impulses are applied at uniform intervals in true anomaly, and the magnitudes thereof are determined

with a swift numerical method. Two examples demonstrate that this method is proficient in helping to detect fuel-

optimal burn locations for general formation and element difference corrections.

I. Introduction

S PACECRAFT formation flight presents a challenging controls
problem that has been extensively studied in the literature. In the

dynamic environment of Earth, naturally occurring drift renders
periodic formation-keeping maneuvers essential to operations — a
myriad of analytical and numerical control formulations have
therefore been developed to perform general formation maintenance
and reconfiguration. In particular, Schaub and Alfriend [1] develop
an impulsive control strategy using the orbit element difference
description of relativemotion [2,3] to stabilize themotion of a deputy
craft relative to the chief spacecraft. Relative orbit errors are evaluated
once per revolution using classical Keplerian elements, and a near-
fuel-optimal impulsive firing strategy is computed to correct these
formation errors over one revolution.With a piecewise constant orbit
element assumption, and the absence of perturbations in the control
development, this analytical firing techniquewill not nullify all of the
formation errors within one revolution — rather, orbit element
difference errors must be re-evaluated prior to each orbit, and the
impulsive scheme reapplied. One of the challenges of this method is
that it is developed using a classical Keplerian element description
that is near-singular for geostationary (GEO) orbits. With renewed
interest in on-orbit servicing and refueling applications, the problems
of relative motion and intersatellite rendezvous, especially in the
GEO regime, acquire a renewed importance [4–6]. In many studies,
propagation and estimation strategies are implemented with these
classical elements, or Cartesian positions and velocities, to charac-
terize relative spacecraft motion. However, these representations are
nonideal for motion at GEO:Keplerian elements are not well-defined
for near-circular and near-equatorial orbits typical of the GEO
regime, and rapidly-changingCartesian statesmask the near-linearity
of geosynchronous motion [7]. Therefore, nonsingular element sets
are most desirable for describing relative motion in the GEO regime.
In this study, the variational equations for a nonsingular element set
are derived, and implemented as the foundation of an impulsive
feedback strategy that seeks to minimize control effort for formation

maintenance applications, or more generally, solutions to the orbital
correction problem. Note that although the numerical examples that
will demonstrate this N-impulse strategy consider a GEO formation
flying problem, the presented nonsingular element formulation is
suitable for all orbit regimes, especially those involving orbits that are
near-circular and/or near-equatorial.
Impulsive feedback control methodologies for formation flying

applications have been extensively studied in the literature. Vadali
et al. [8] present a fuel-optimal technique for controlling mean orbit
element errors using up to six impulses of arbitrary magnitude and
direction. Choi et al. [9] develop a multi-impulse control strategy
using energy matching and the relative angular momentum vector,
and Tong et al. [10] present an impulsive relative orbit controlmethod
tailored for measurements of the relative range and line-of-sight
angles. Prussing and Chiu [11] and Shen and Tsiotras [12] treat the
problem of optimal, time-fixed rendezvous between two spacecraft
on circular orbits, using optimal control theory and multiple
revolution Lambert solutions, respectively, to determine the required
impulse magnitudes. Several studies in the literature (see, for
example, [13,14]) rely upon complex, global optimization strategies
such as genetic algorithms to determine optimal impulsive orbit
corrections.
In the general orbit correction problem, the initial conditions for

complex optimization routines are nonintuitive and difficult to
determine. To alleviate this potential difficulty, this study presents a
time-fixed, N-impulse strategy to determine appropriate initial
conditions for more complicated trajectory optimization algorithms,
costing minimal computing time. This N-impulse method is a
generalization of the impulsive feedback control presented in [1] that
harnesses nonsingular elements instead of the classical elements.
However, in contrast to the method in [1], the algebra associated with
these nonsingular elements renders finding optimal firing times
analytically a very challenging task for general relative orbit errors.
Thus, it is of interest to formulate a new method to solve a simple,
numerical fuel-minimization problem subject to linear constraints, to
rapidly detect locations at which corrective impulses should be
performed. Thanks to the nonsingular element description imple-
mented in this formulation, the new impulsive formation control
technique is applicable for general orbits. Furthermore, the setup
to determine optimal impulse locations is greatly simplified by
transforming the control evaluation into a constrained linear algebra
problem. Simulations are used to study the performance of the
developed N-impulse feedback control technique in the presence of
perturbations that are unmodeled in the control formulation.

II. Development of Gaussian Variational Equations

This study implements an element difference description [2] of
relative motion, using the nonsingular set e ≡ �a; ξ; η; ζ;ψ ; λ�, where
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a is the semi-major axis of the orbit and the other parameters are
defined by [15]

ξ ≡ e sin�ω�Ω�
η ≡ e cos�ω�Ω�
ζ ≡ sin�i∕2� sin�Ω�
ψ ≡ sin�i∕2� cos�Ω�
λ ≡ f� ω�Ω (1)

The classical Keplerian elements of eccentricity e, inclination i, right
ascension of ascending node Ω, argument of periapsis ω, and true
anomaly f are thereby used to assemble the nonsingular set presented
in Eq. (1). The inertial Cartesian state of the chief and deputy
spacecraftmay be readilymapped to the classical elements, which are
thereafter transformed to this nonsingular set using the preceding
formulation. Note that this nonsingular set is amodified variant of the
equinoctial element set established by Broucke and Cefola [16], in
which the tan�i∕2� factor inherent to the ζ and ψ elements has been
replaced with a sin�i∕2� factor to eliminate the singularity occurring
at the retrograde inclination i � 180 deg. The nonsingular set e
furthermore differs from the conventional equinoctial set by
implementing the true anomaly f (instead of the mean anomaly) in
the definition of the true longitude parameter λ, to simplify the
required derivations. Themodified elements given in Eq. (1) arewell-
defined for zero eccentricity and inclination, and are therefore
suitable for describing deputy motion relative to chief orbits in
regimes such as GEO. Appendix A presents the forward linear
mapping from differences in the nonsingular element set in Eq. (1) to
the corresponding Cartesian state of the deputy spacecraft in the Hill
frame of the chief spacecraft.
The Gaussian variational equations for nonconservative per-

turbations to the nonsingular orbital elements are developed to
characterize the sensitivities of this set to thrusting events, as this
formulation quantifies rates of change of these elements in the
presence of nonconservative accelerations. Differentiating Eq. (1):

dξ

dt
� sin�ω�Ω� de

dt
� η

�
dω

dt
� dΩ

dt

�
(2)

dη

dt
� cos�ω�Ω� de

dt
− ξ

�
dω

dt
� dΩ

dt

�
(3)

dζ

dt
� 1

2
cos�i∕2� sin�Ω� di

dt
� ψ

dΩ
dt

(4)

dψ

dt
� 1

2
cos�i∕2� cos�Ω� di

dt
− ζ

dΩ
dt

(5)

dλ

dt
� df

dt
� dω

dt
� dΩ

dt
(6)

Recalling the well-known Gaussian variational equations for the
classical elements �a; e; i;Ω;ω; f� [17]:

da

dt
� 2a2

h

�
e sin far �

p

r
ai

�
(7)

de

dt
� 1

h
�p sin far � ��p� r� cos f� re�ai� (8)

di

dt
� r cos θ

h
ac (9)

dΩ
dt
� r sin θ

h sin i
ac (10)

dω

dt
� 1

he
�−p cos far − �p� r� sin fai� −

r sin θ cos i

h sin i
ac (11)

df

dt
� h

r2
� 1

he
�p cos far − �p� r� sin fai� (12)

wherein ad ≡ arôr � aiôi � acôc denotes the nonconservative
disturbing acceleration expressed in the local radial (ôr), in-track (ôi),
and cross-track (ôc) frame of reference (i.e., the RIC frame) and the
true latitude θ � ω� f. As the semi-major axis a is included in the
nonsingular element set, transformation of Eq. (7) provides the first
variational equation. Noting that e sin f � η sin λ − ξ cos λ, the
rate of change of the perturbed semi-major axis is rewritten as

da

dt
� 2a2

h

�
�η sin λ − ξ cos λ�ar �

p

r
ai

�
(13)

where h and p denote the specific angular momentum and semi-latus
rectum, respectively, and the orbit radius r is given by

r � a�1 − ξ2 − η2�
1� η cos λ� ξ sin λ

(14)

Substituting Eqs. (8), (10), and (11) into Eq. (2), the rate of change of
the element ξ is

dξ

dt
� 1

h

�
−p cos λar � ��p� r� sin λ� rξ�ai

− rη
�
ζ cos λ − ψ sin λ������������������������

1 − ζ2 − ψ2
p

�
ac

�
(15)

where the identities sin�i∕2� sin θ � ψ sin λ − ζ cos λ and
cos�i∕2� �

������������������������
1 − ζ2 − ψ2

p
have been employed in the nontrivial

simplification. Similarly, it can be shown that the rate of change of η is

dη

dt
� 1

h

�
p sin λar � ��p� r� cos λ� rη�ai

� rξ
�
ζ cos λ − ψ sin λ������������������������

1 − ζ2 − ψ2
p

�
ac

�
(16)

The parameters ξ and η contain the eccentricity and theEuler anglesω
andΩ, and thus may be perturbed by radial, in-track, and cross-track
accelerations simultaneously. Substituting Eqs. (9) and (10) into
Eq. (4), the rate of change of the parameter ζ is expressed as

dζ

dt
� r

2h cos�i∕2� �sin θ cos Ω� cos2�i∕2� cos θ sin Ω�ac (17)

Implementing cos2�i∕2� � 1 − sin2�i∕2� and the expression
sin�i∕2� cos θ � ψ cos λ� ζ sin λ, and recalling from trigonom-
etry that sin θ cos Ω� cos θ sin Ω � sin�θ�Ω� � sin λ, this rate
becomes

dζ

dt
� r

2h
������������������������
1 − ζ2 − ψ2

p ��1 − ζ2� sin λ − ζψ cos λ�ac (18)

Equivalently, the rate of change of the analogous element ψ can be
converted into the following:

dψ

dt
� r

2h
������������������������
1 − ζ2 − ψ2

p ��1 − ψ2� cos λ − ζψ sin λ�ac (19)
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The parameters ζ andψ contain the Euler angles i andΩ, and are only
influenced by cross-track accelerations. Lastly, the rate of change of
the longitude parameter λ in Eq. (6) is transformed:

dλ

dt
� h

r2
−
r

h

�
ζ cos λ − ψ sin λ������������������������

1 − ζ2 − ψ2
p

�
ac (20)

Note that a perturbed variation in the longitude parameter λmay only
be induced with cross-track accelerations. Development of the
Gaussian variational equations for the nonsingular element set is
complete; this formulation quantifies sensitivities of the elements to
nonconservative disturbances, and is summarized for reference:

da

dt
� 2a2

h

�
�η sin λ − ξ cos λ�ar �

p

r
ai

�

dξ

dt
� 1

h

�
−p cos λar � ��p� r� sin λ� rξ�ai

− rη
�
ζ cos λ − ψ sin λ������������������������

1 − ζ2 − ψ2
p

�
ac

�

dη

dt
� 1

h

�
p sin λar � ��p� r� cos λ� rη�ai

� rξ
�
ζ cos λ − ψ sin λ������������������������

1 − ζ2 − ψ2
p

�
ac

�

dζ

dt
� r

2h
������������������������
1 − ζ2 − ψ2

p ��1 − ζ2� sin λ − ζψ cos λ�ac

dψ

dt
� r

2h
������������������������
1 − ζ2 − ψ2

p ��1 − ψ2� cos λ − ζψ sin λ�ac

dλ

dt
� h

r2
−
r

h

�
ζ cos λ − ψ sin λ������������������������

1 − ζ2 − ψ2
p

�
ac (21)

These variational equations are nonsingular for circular and
equatorial orbits, and furthermore, as this formulation eliminates the
numerical difficulties arising in the variational equations in classical
elements for near-circular orbits, this nonsingular set is advantageous
for chief motions in the GEO regime. Equation (21) is convenient for
quantifying the effects of a control thrust on each of the nonsingular
elements, and is thus implemented as a basis for the impulsive control
strategy.

III. Development of Impulsive Feedback Control Law

An N-impulse feedback technique is developed for controlling
nonsingular element differences between the chief and deputy
spacecraft at discrete positions in orbit with predetermined impulsive
maneuvers, rather than with continuous thrust. Writing Eq. (21) with
an impulsive Δv thrust in the orbit frame, and considering only the
perturbed response of the longitude parameter rate _λ:

Δa � 2a2

h

�
�η sin λ − ξ cos λ�Δvr �

p

r
Δvi

�
(22)

Δξ � 1

h

�
−p cos λΔvr � ��p� r� sin λ� rξ�Δvi

− rη
�
ζ cos λ − ψ sin λ������������������������

1 − ζ2 − ψ2
p

�
Δvc

�
(23)

Δη � 1

h

�
p sin λΔvr � ��p� r� cos λ� rη�Δvi

� rξ
�
ζ cos λ − ψ sin λ������������������������

1 − ζ2 − ψ2
p

�
Δvc

�
(24)

Δζ � r

2h
������������������������
1 − ζ2 − ψ2

p ��1 − ζ2� sin λ − ζψ cos λ�Δvc (25)

Δψ � r

2h
������������������������
1 − ζ2 − ψ2

p ��1 − ψ2� cos λ − ζψ sin λ�Δvc (26)

Δλ � −
r

h

�
ζ cos λ − ψ sin λ������������������������

1 − ζ2 − ψ2
p

�
Δvc (27)

Note that Eqs. (25) and (26) can be rewritten in the form

Δζ � r sin λ

2h

������������������������
1 − ζ2 − ψ2

q
Δvc �

ψ

2
Δλ (28)

Δψ � r cos λ
2h

������������������������
1 − ζ2 − ψ2

q
Δvc −

ζ

2
Δλ (29)

Corrections in the longitude parameter λ are linearly related to
corrections in the �ζ;ψ� elements, and as a result, errors in the
longitude parameter, and consequently the true anomaly angle,
cannot be independently controlled with a feedback scheme con-
structed around this set of elements. Note, however, that the true
anomaly can be corrected by performing a phasing maneuver in
which the semi-major axis is raised or lowered temporarily, to yield
relative drift for the required phase shift.
An N-impulse approach is implemented to alleviate difficulties

arising in the complexity of the nonsingular variational equations
provided in Eq. (21). Schaub and Alfriend [1] develop an impulsive
firing scheme in which subsets of the full Keplerian element set are
corrected simultaneously, by studying the Gaussian variational
equations to find ideal times at which to execute the corrective maneu-
vers. However, with this nonsingular element set, innate complexity of
the variational equations renders an analogous analytical solution
challenging to determine. Thus, rather than seeking an analytical
solution for the desired nonsingular element corrections, a swift
numerical technique that determines the ideal burn locations for
achieving these relative orbit corrections is sought here.

A. Formulation of Control Strategy

In a manner analogous to that used in [1], element errors Δe ≡
�Δa;Δξ;Δη;Δζ;Δψ�T are held fixed at the beginning of the time
frame of correction. An N-impulse sequence is then implemented
over the current revolution, where the burns are executed at uniform
increments in true anomaly, such that N � 360 deg ∕fΔv, wherein
fΔv is the specified true anomaly increment expressed in degrees per
burn (in this sense, the N-impulse sequence may be treated as a
discretization of a continuous, low-thrust control effort). For the jth
impulse Δvj ≡ �Δvjr;Δvji ;Δv

j
c�T , the contribution to the desired

nonsingular element corrections becomes

Δaj �
2a2

h

�
�η sin λj − ξ cos λj�Δvjr �

p

rj
Δvji

�
(30)

Δξj �
1

h

�
−p cos λjΔv

j
r � ��p� rj� sin λj � rjξ�Δvji

− rjη
�
ζ cos λj − ψ sin λj������������������������

1 − ζ2 − ψ2
p

�
Δvjc

�
(31)

Δηj �
1

h

�
p sin λjΔv

j
r � ��p� rj� cos λj � rjη�Δvji

� rjξ
�
ζ cos λj − ψ sin λj������������������������

1 − ζ2 − ψ2
p

�
Δvjc

�
(32)
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Δζj �
rj

2h
������������������������
1 − ζ2 − ψ2

p ��1 − ζ2� sin λj − ζψ cos λj�Δvjc (33)

Δψ j �
rj

2h
������������������������
1 − ζ2 − ψ2

p ��1 − ψ2� cos λj − ζψ sin λj�Δvjc (34)

wherein the subscript j denotes conditions at the execution of the jth
burn. Parameters without this subscript, including the nonsingular
elements of the maneuvering spacecraft, are fixed at the beginning of
the correction sequence in Eqs. (30–34). As this piecewise constant
assumption neglects the influence of subsequent impulses on these
elements, this feedback strategy is designed to significantly reduce—
not completely eliminate— errors in nonsingular element differences
over a single revolution. Multiple correction orbits may be readily
employed to fully nullify these errors if desired, by fixing the residual
errors at the beginning of each correction orbit, and executing an
updated N-impulse maneuver sequence for the current revolution,
which is computed as follows.
For compactness, corrections to the nonsingular elements due to

the jth burn are rewritten as

Δaj � ΔarjΔv
j
r � ΔaijΔv

j
i (35)

Δξj � ΔξrjΔv
j
r � ΔξijΔv

j
i � ΔξcjΔv

j
c (36)

Δηj � ΔηrjΔv
j
r � ΔηijΔv

j
i � ΔηcjΔv

j
c (37)

Δζj � ΔζcjΔv
j
c (38)

Δψ j � ΔψcjΔv
j
c (39)

where the following definitions have been used:

Δarj ≡
2a2

h
�η sin λj − ξ cos λj� (40)

Δaij ≡
2a2p

hrj
(41)

Δξrj ≡ −
p

h
cos λj (42)

Δξij ≡
1

h
��p� rj� sin λj � rjξ� (43)

Δξcj ≡
rjη

h

�
ζ cos λjψ sin λj������������������������

1 − ζ2 − ψ2
p

�
(44)

Δηrj ≡
p

h
sin λj (45)

Δηij ≡
1

h
��p� rj� cos λj � rjη� (46)

Δηcj ≡
rjξ

h

�
ζ cos λj − ψ sin λj������������������������

1 − ζ2 − ψ2
p

�
(47)

Δζcj ≡
rj

2h
������������������������
1 − ζ2 − ψ2

p ��1 − ζ2� sin λj − ζψ cos λj� (48)

Δψcj ≡
rj

2h
������������������������
1 − ζ2 − ψ2

p ��1 − ψ2� cos λj − ζψ sin λj� (49)

The total corrections Δe �
P

N
j�1 Δej due to the N impulses

executed in the correction orbit are

0
BBBBBBBB@

Δa

Δξ

Δη

Δζ

Δψ

1
CCCCCCCCA
�

0
BBBBBBBB@

Δar1 Δai1 0 : : : Δarj Δaij 0 : : : ΔarN ΔaiN 0

Δξr1 Δξi1 Δξc1 : : : Δξrj Δξij Δξcj : : : ΔξrN ΔξiN ΔξcN
Δηr1 Δηi1 Δηc1 : : : Δηrj Δηij Δηcj : : : ΔηrN ΔηiN ΔηcN
0 0 Δζc1 : : : 0 0 Δζcj : : : 0 0 ΔζcN
0 0 Δψc1 : : : 0 0 Δψcj : : : 0 0 ΔψcN

1
CCCCCCCCA

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

Δv1r
Δv1i
Δv1c

..

.

Δvjr

Δvji
Δvjc
..
.

ΔvNr
ΔvNi
ΔvNc

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(50)

which may be written compactly in the linear form

Δe � �B�ej��Δvseq (51)

where the total corrections Δe are the specified errors in the
nonsingular element set of the deputy. The objective of this feedback
strategy is to compute the N-impulse burn sequence Δvseq that
satisfies Eq. (51) and simultaneouslyminimizes the fuel cost required
to perform the corrective sequence, such that the desired nonsingular
element differences can be efficiently achieved. Because nonsingular
element differences between the chief and deputy spacecraft are
nonintuitive to visualize, the first-order mapping from these dif-
ferences to the relative state in thewell-knownHill frame is presented
in Appendix A. Note that �B�ej�� is of dimension 5 × 3N and cannot
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be inverted. To obtain the fuel-optimal N-impulse sequence, the
following nonlinear programming (NLP) problem governing this
feedback control strategy must be solved:

minimize
Δvseq

J ≡
XN
j�1
kΔvjk �

XN
j�1

�������������������������������������������������������������
ΔvjrΔvjr � ΔvjiΔv

j
i � ΔvjcΔvjc

q

subject toG ≡ �B�ej��Δvseq − Δe � 0 (52)

The minimum-norm inverse of �B�ej�� is inappropriate in this
situation, as this formulation will minimize kΔvseqk, and not the
desired cost function given in Eq. (52): we seek to minimize
the sum of the individual impulse magnitudes, not the vector norm of
the entire impulse sequence. The solution to Eq. (52) provides the
minimum-fuel N-impulse sequence that attenuates the fixed errors
specified in these nonsingular elements. The gradient of the objec-
tive function follows as

∂J
∂Δvseq

�
�

ΔvT
1

kΔv1k : : :
ΔvTj
kΔvjk : : :

ΔvTN
kΔvNk

�
T

(53)

The Jacobian of the equality constraints follows from Eq. (52):

∂G
∂Δvseq

� �B�ej�� (54)

For this study, MATLAB’s constrained minimization solver fmincon
is used with the active-set algorithm to obtain a solution to the NLP
problem posed in Eq. (52). At the beginning of the correction orbit,
the nonsingular element errors Δe are fixed, and �B�ej�� is
precomputed with the given longitude increments

λj � f0 � jfΔv � ω�Ω; j � 1; 2; : : : ; N (55)

wherein f0 is the true anomaly at the beginning of the correction
orbit. The fuel-optimal maneuver sequenceΔvseq is then achieved by
solving Eq. (52) with fmincon, and is executed during the current
revolution to correct the element errors Δe. For the example cases
considered, an initial guess of Δvseq ≡ �Δv1; : : : ;Δvj; : : : ;ΔvN�T
where Δvj � �1; 1; 1�T m∕s ∀ j � 1; 2; : : : ; N is used for
initializing the fmincon optimizer. As this initial guess is not
guaranteed to be suitable for general situations, simulations show that
using a small, nonzeroΔvj ∀ j can assist in improving convergence if
the optimization algorithm fails to determine a solution for a desired
N. For nonintuitive corrections that present challenging convergence
issues, a continuation technique can be harnessed, in which solutions
for coarser true anomaly increments are used to seed the optimizer for
successively finer increments, until a solution for the desired burn
resolution is achieved. The optimizer does not varyN or the impulse
locations in this formulation— only the burn magnitudes are varied.
This strategy uses solutions for smallN as a first guess of solutions for
successively larger N to improve convergence. Dependence of the
optimizer solution on the initial guess for the maneuver sequence
Δvseq and the specified number of impulses N is discussed in
Sec. III.B.

B. Examples of Control Strategy

Two example cases are presented to validate theN-impulse control
developed in Sec. III.A. For simplicity, the deputy and chief are
assumed to begin at the same location on equivalent orbits (thus,
the following examples simulate a deployment sequence in which
the deputy is maneuvered to a different orbit relative to the chief).
Because nonsingular element sets are less intuitive to visualize,
Keplerian orbit element differences are specified for the test
examples; the classical differences are converted into nonsingular
differences required by this N-impulse control technique. Thus, the
nonsingular element set is used here as an under-the-hood mechanism
for avoiding singularities in the variational equations for the classical
elements. As the inertial frame (i.e., J2000) is used for control imple-

mentation, the optimal maneuver sequence must be rotated from the
local orbit frame to the inertial frame during numerical integration and
impulse execution.
Furthermore, the impulse sequences are executed under both

two-body forcing and a perturbed force model that includes 4 × 4
EGM-96 gravitation, luni-solar perturbations, and the solar radiation
pressure (SRP) perturbation. Schaub and Jasper [18] indicate that an
area-to-mass ratio of 0.04 m2∕kg is representative for geostationary
satellites; thus, this value is implemented for computing the cannon-
ball SRP acceleration [19] modeled in these example simulations.
Because this control strategy is formulated under the assumption that
the two-body dynamics are perturbed only by the applied impulses,
including this set of representative environmental disturbances
illustrates that this strategy corrects relative orbit errors, even under
more representative forcing that is unmodeled in the two-body
framework of this technique.

1. Example 1: Inclination Change

The first example examines the case of an inclination change, in
which it is known from basic orbit mechanics that the most efficient
location for a plane change is at the equator crossing [17]. The initial
deputy and desired conditions simulated for this example are
provided in Table 1. Impulses are specified to occur every fΔv �
10 deg for one revolution, such that N � 36 for this example. The
value of the true anomaly increment— and subsequently the number
of impulsesN— is selected arbitrarily in these example simulations,
to illustrate controller validity and performance for various NLP
optimizer configurations. The optimal maneuver sequence is shown
in Fig. 1, and the error history of the nonsingular elements during
execution of this sequence is illustrated in Fig. 2. As anticipated, the
radial and in-track burns are nearly zero at all burn locations, whereas
the cross-track burn spikes at the positions of the descending and
ascending nodes to raise the orbit plane. The total fuel cost for this
burn sequence is Δvcost � 5.379 cm∕s, slightly larger than the
single-impulse solution [20]

Δv1−burn � 2vn sin
Δi
2
� 5.367 cm∕s (56)

where vn is the velocity magnitude at the node and Δi � 0.001 deg
is the specified inclination change. Thus, the control strategy
approximately replicates the optimal single-impulse solution for this
example. Because the control strategy is executed over a single
revolution, the total Δvcost is equivalent for both the two-body and
perturbed forcing cases.

2. Example 2: General Orbit Transfer

The second example illustrates the case of a general orbit transfer,
in which errors in the elements �a; e; i;Ω;ω� are present and require
correction with a multi-revolution maneuver sequence. The initial
deputy and desired conditions simulated for this example are
provided in Table 2. Impulses are specified to occur every fΔv �
5 deg for three revolutions, such that N � 72 burns per correction
orbit for this example. The optimal maneuver sequence is illustrated
in Fig. 3, and the error history of the nonsingular elements during
execution of this sequence is illustrated in Fig. 4. For this solution,
burnmagnitudes in all three orbit frame directions sharply increase at
the ascending and descending nodes during the first revolution,
nullifying errors in the �η;ψ� elements. The semi-major axis is

Table 1 Initial and desired conditions

for Example 1

Element Deputy Desired Δecoe
a 42164 km 42164 km 0 km
e 0.0001 0.0001 0
i 10 deg 10.001 deg 0.001 deg
Ω 0 deg 0 deg 0 deg
ω 0 deg 0 deg 0 deg
f0 0 deg N/A N/A
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corrected after the second revolution, and errors in the �ξ; ζ� elements
aremitigated following the complete three revolution sequence. Note
that the control performs nearly equivalently under both two-body
and perturbed forcing— the fuel cost for this maneuver sequence is
approximately Δvcost � 17.66 m∕s in both the two-body and
perturbed cases.
Relative orbit geometry during execution of the maneuver

sequence for Example 2 is illustrated in Fig. 5. Impulse locations and
the relative trajectory of the deputy in the Hill frame of the chief are
shown in Fig. 5a, and the final orbit as predicted by the full nonlinear
mapping (i.e., inertial differencing of the chief and deputy
trajectories) and the linear mapping given in Appendix A over one
revolution is illustrated in Fig. 5b. This linear mapping therefore
provides a sufficient and computationally efficient means of pre-
dicting relative orbit geometry in the Hill frame with a given set
of nonsingular element differences between the chief and deputy
spacecraft.
It is interesting to highlight the sensitivity of the optimizer solution

for this particular example to the initial guess for the maneuver

sequence Δvseq and the number of impulses N. Table 3 lists the total
fuel cost output by the optimization routine for various initial
maneuver sequences and true anomaly increments. As indicated
by the results on the left of Table 3, the optimizer converges upon
neighboring local minima with similar fuel costs, even as the initial
guess of Δvj � �1; 1; 1�T m∕s ∀ j � 1; 2; : : : ; N is varied by a
factor of 10 — thus, for this example, this control algorithm is

Table 2 Initial and desired conditions

for Example 2

Element Deputy Desired Δecoe
a 42164 km 42164.1 km 0.1 km
e 0.2 0.21 0.01
i 10 deg 10.1 deg 0.1 deg
Ω 0 deg 0.1 deg 0.1 deg
ω 0 deg 0.1 deg 0.1 deg
f0 0 deg N/A N/A
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Fig. 2 Error history of nonsingular elements during burn sequence execution for Example 1.
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Fig. 1 Fuel-optimal burn sequence determined by feedback control strategy for Example 1.
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Fig. 4 Error history of nonsingular elements during burn sequence execution for Example 2.

a) Impulse locations on relative orbit for Example 2 b) Final relative orbit as predicted by two mappings

Fig. 5 Relative orbit geometry in Hill frame during burn sequence execution for Example 2.
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Fig. 3 Fuel-optimal burn sequence determined by feedback control strategy for Example 2.
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sufficiently robust to a sizable range of initial conditions input to the
optimizer. Furthermore, the results on the right of Table 3 highlight
that, in general, the cost of the control solution decreases with
increasing N. This is an intuitive result, as a larger number of burns
over a single revolution better approximates a continuous thrusting
effort, such that optimal impulse locations can be more readily
detected with this algorithm. As convergence is increasingly
challenging with larger N, we emphasize the continuation technique
discussed in Sec. III.A for improvements in performance.

IV. Conclusions

An N-impulse feedback control technique is developed to correct
errors in a set of nonsingular element differences between a chief and
deputy spacecraft. The Gaussian variational equations for this
nonsingular set are derived to construct a basis for this N-impulse
feedback control law. Using this technique, a near-optimal burn
sequence may be rapidly determined to generate an estimate of
appropriate initial conditions for more complex, nonlinear optimiza-
tion algorithms. By specifying impulses to occur at defined incre-
ments in true anomaly, this technique detects fuel-optimal burn
locations for general transfers in which optimal burn locations are
unknown, such that ideal initial conditions for a nonlinear optimizer
seeking a two- or three-burn solution are discerned. Further, because
the nonsingular element set harnessed in this study iswell-defined for
zero eccentricity and inclination, this control strategy is especially
convenient for GEO orbits with these characteristics.

Appendix: Development of Forward Linear Mapping

Derivation of the linear mapping from differences in the non-
singular element set in Eq. (1) to the Hill frame Cartesian state of the
deputy is performed by transforming the variational terms in the
linear mapping developed in [21]. The noninertial Hill frame of
reference is centered at the chief spacecraft and implements rotating
axes that point in the local radial (ôr), in-track (ôi), and cross-track
(ôc) directions of the chief spacecraft [17]. For reference, the Hill
frame description of relative motion is illustrated in Fig. 6. The linear
mapping

X � �A�ec��δe (A1)

whereX � �x; y; z; _x; _y; _z�T is the Hill frame state and δe is the set of
element differences, is thus converted into a form consistent with the
description

δe � ed − ec ≡ �δa; δξ; δη; δζ; δψ ; δλ�T (A2)

where ed and ec denote the elements of the deputy and chief
spacecraft, respectively. The forward mapping linearizes about the
chief motion – deviation from this reference must therefore be small
such that this approximation remains valid in the truncation of higher-
order terms beyond those of the first-order [17]. Note that although
this formulation provides for perturbations, Keplerian motion is
assumed, as each of the nonsingular element differences with the
exception of δλ is invariant in this case.
The complete linear mapping from nonsingular element dif-

ferences is shown to be [22]

x � 1

α
δa − ρ�2aξ� r sin λ�δξ − ρ�2aη� r cos λ�δη� rνδλ

y � r�−2ψδζ � 2ζδψ � δλ�

z � 2r������������������������
1 − ζ2 − ψ2

p f��ψ2 − 1� cos λ� ζψ sin λ�δζ

− ��ζ2 − 1� sin λ� ζψ cos λ�δψg

_x � −
Vr
2a

δa� �Vraξ − h cos λ� δξ
p
� �Vraη� h sin λ� δη

p

�
�
1

r
−
1

p

�
hδλ

_y � −
3Vt
2a

δa� �3Vtaξ� 2h sin λ� δξ
p
� �3Vtaη� 2h cos λ� δη

p

− 2Vrψδζ � 2Vrζδψ − Vrδλ

_z � 2h

p
������������������������
1 − ζ2 − ψ2

p ��1 − ψ2��ξ� sin λ� � ζψ�η� cos λ��δζ

� 2h

p
������������������������
1 − ζ2 − ψ2

p ��1 − ζ2��η� cos λ� � ζψ�ξ� sin λ��δψ

(A3)

These transformations satisfy the linear mapping provided in
Eq. (A1) for the nonsingular set of orbital element differences given
by Eq. (A2). The relative Hill frame state of the deputy can thus be
expressed as a function of the chief elements ec and the instan-
taneous differences δe. Note this description is valid for Keplerian
motion and general elliptic chief eccentricities [17]. Complete details
for the derivation and validation of this linear mapping are presented
in [22].
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