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Applications, such as autonomous rendezvous and docking for CubeSats, on-orbit assembly of space stations, and

orbital-debris harvesting or removal technologies, require relative-motion guidance-and-control-approach

application for close-proximity operations with frequent trajectory controls. This study expands upon current

relative-orbit approaches in delivering a nonsingular osculating linearized-relative-orbit-element state extracted

from the Clohessy–Wiltshire equations’ integration constants capable of including perturbation accelerations and

control. The Lagrangian brackets, used in Lagrange’s planetary equations and other osculating forms, are applied to

the acquired state vector to obtain the elegantly simple kinematics. The proposed relative-motion state vector is

promising for a range of proximity operations, as it provides the capability to include perturbation accelerations and

control without altering the formulation and no loss of geometric insight. The linearized-relative-orbit-element

variational equations are validated with a differential drag example. The Lyapunov control theory is applied to

developa linearized-relative-orbit-element feedback-control lawdemonstrating transitioningbetween relative orbits.

The linearized-relative-orbit-element control formulation is implemented for two relative-orbit reconfigurations

illustrating the geometric insight inherent in the developed approach.

I. Introduction

C LOSE-PROXIMITY relative-orbit control has applications in
fractionated satellite formations, rendezvous and docking, and

relative-motion sensing and estimation missions. Close-proximity

maneuvering, sometimes as close as tens of meters, is a control-
dominated environment where the primary sources of error are from
relative sensing and thrust inaccuracies. Long-term propagation

accuracy is not as critical as having simple to implement and effective
guidance, navigation, and control (GNC) algorithms. Investigation
into improving relative-motion GNC methods is further encouraged
by the growing utilization of small satellites, CubeSats, and large

constellations and formations [1]. One such representativemission is
the NASA CubeSat Proximity Operation Demonstrator (CPOD)
autonomous docking technology demonstrator [2,3]. The CPOD

mission maneuvers a three-unit CubeSat pair through a low Earth
orbit (LEO) relative approach from hundreds of meters down to
multiple meter separation, including docking, to demonstrate the
feasibility of autonomous circumnavigation maneuvers on modern

CubeSat platforms. In such close-proximity operations where the
chaser satellite is circumnavigating only tens of meters apart, small
orbit corrections will frequently be required to account for sensor and

thruster errors. In addition, the close-proximity relative motion
between control updates is strongly dominated by the Keplerian
relative-motion solution.
The close-proximity GNC approaches are also applicable for

several touchless orbital-debris removal technologies being

developed, including ion-sheppard [4–7], active eddy-current
detumble [8], and electrostatic tugging [9–13]. In all these scenarios,
the servicer and debris objects are flying only 2–10 craft radii apart
and will require continuous station keeping. Here, electrostatic,

magnetic, or ion control force is of the order of the differential gravity

force, and perturbed relativemotion is well modeledwith a linearized
gravity-field model. Additional close-proximity mission concepts
flying only a few craft-radii apart are being considered for satellite
component harvesting (Defense Advanced Research Projects
Agency Phoenix), or on-orbit servicing and refueling [14]. Debris
and servicing-related missions benefit from continuous feedback
control to address the short-term mission-critical operations in the
presence of perturbations and modeling errors. The reference
trajectories of these proximity missions, including the CPOD
mission, are composed of several relative-orbit reconfigurations to
transition between safety ellipses, V-bar, and additional mission-
relevant relative-motion segments. In all these cases, having a
relative-motion description that is geometrically insightful facilitates
planning and implementing these reconfiguration and close station-
keeping maneuvers.
The choice of relative-motion kinematics can help simplify the

feedback-control development, or can more easily visualize the
perturbed relative-motion geometry due to disturbances, such as ion
exhaust, magnetic actuation, or electrostatic tugging. A relative-orbit
element, or ROE, is defined as the state obtained by differencing the
orbits of the considered spacecraft. Several spacecraft missions,
particularly on small and CubeSat missions, are already notable
implementation ROE control schemes [15–17]. A group of research
considers describing the relative motion through differencing of
inertial orbit elements [18–20]. The benefit here is that these
kinematics can scale to elliptical orbits and larger separation distances.
However, the description requires a complex kinematic chain, inwhich
the inertial position and velocity are mapped through the Earth
coordinate frame toyield orbit-element differences describing the local
relative motion. Another promising kinematic approach is to use
inertial differencing of the eccentricity and inclination vectors, as has
been applied to the PRISMAmission [21,22]. Here, too, inertial orbit
quantities are differenced to obtain the relative motion.
In contrast, linearized solutions, including the Clohessy–Wiltshire

(CW) equations, were developed to assist in Gemini’s rendezvous and
docking missions [23]. The CW equations are applicable for circular
chief orbits and small separation distances. The CWequations receive
significant attention due to the number of space assets that operate in
circular, or near-circular, orbits. The geostationary belt (GEO) and the
International Space Station are two of the most notable circular orbits
that experience significant formation flying, rendezvous and docking,
and proximity operations. CubeSat missions, which are often injected
into circular LEO orbits as secondary payloads, also constitute a
growing market for relative-motion control. The CW equations
describe the motion using time-varying Cartesian or curvilinear
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coordinates, and have an elegant analytical closed-form solution of the
linearized relative motion [23]. This relative-motion solution is

insightful in determining the geometry of the relative motion. New
solutions to the linearized relative motion continue to be developed
using both rectilinear and curvilinear state spaces [24–27]. In

particular, in 2004, Lovell et al. proposed using some of the integration
constants of the CW relative-motion solution as the ROE elements as
control variables. The control of these ROEs is demonstrated via Hill-

frame impulsive velocity changes [26], or continuous on–off thruster
solutions [28]. The relative-motion geometry is discussed in detail by
Lovell and Spencer in [29]. An excellent technical report of ROEs as

integration constants of relative motion and control formulations is
presented by D'Amico in [30].
There is a rich literature on ROEs that focuses either on the

differential orbit-element formulations [19,31–33] on the eccentric-
ity/inclination-vector-difference formulation [27,30,34], and using

integration constants of the CW solution [25,35,36]. This paper
expands on the work that considers a relative-motion description
based on the CW integration constants. The earlier work by Lovell

and Tragesser in [25] considers subsets of the CW integration
constants as linearized relative-orbit elements (LROEs). However,
although these coordinates do provide elegant geometric insight, not
all are invariants of the unperturbed relative motion. The control in

these formulations, as well as follow-on work [37], is implemented
via impulsive Hill-frame velocity changes. Recent work by Spencer
illustrates the use of these LROEs to perform relative-orbit targeting

with artificial potential functions [36]. Of concern, these LROEs are
also singular for particular relative-motion types, like the lead–
follower formation. Ichimura and Ichikawa investigate in [35] using

CWinvariants to control the relative-orbit geometry impulsively. The
invariants chosen are also singular for lead–follower and in-plane
formations, same as with the LROE in [25], and no variational

equations of these CW invariants are developed.
This paper investigates describing and controlling the relative

motion using a set of six singular CWintegration constants presented
in 2003 in [38], aswell as nonsingular variations thereof. The original
linearized relative motion is described in terms of in-plane and

out-of-plane cyclic-motion amplitudes, phase angles, as well as along-
track and radial offsets. As with the related CW invariant relative-
motion descriptions earlier, the in-plane phase angle is singular for the

lead–follower formulation, and the out-of-plane phase angle is singular
for planarmotions.Of interest is how the original CWequations can be
modified to yield a nonsingular LROE formulation, and find the
associated variational equations. For example, having LROE

kinematics with continuous perturbations is required when modeling
the influence of magnetic, electrostatic, or thruster-plume-based
formation flying. Using LROEs here is convenient in that they readily

describe the current osculating relative-orbit geometry. The CW
invariants used by Ichimura and Ichikawa [35], discussed previously,
are closely related geometric parameters to the singular invariants used

in [38]. In contrast to the earlier work, developing nonsingular
variational equations ofCWinvariants allows for continuous control or
perturbation influences to be included. Vallado [39] provides an

elegant nonsingular CW solution in terms of the initial Cartesian Hill-
frame position and velocity coordinates. These initial conditions are
invariants of the unperturbed linearized relative motion, but do not

provide any geometric insight into the resulting relative orbit. This
paper investigates new variational equations for both singular and
nonsingular CW invariant formulations based on the LROE discussed

in [38]. The use of these particular LROE formulations is illustrated by
studying how differential atmospheric drag perturbs the relative-orbit
shape. The shape changes are readily apparent in the LROE states,
thanks to their geometric interpretation. Further, to illustrate how

LROE-based control solutions can be developed with the associated
variational equations, the Lyapunov theory is employed to develop a
relative-orbit tracking control. A large relative-orbit shape-

reconfiguration maneuver is investigated and studied with numerical
simulations. This control is analogous to how Gauss’s variational
equations are used to derive Lyapunov-based inertial orbit control

solutions [40], but applied to the LROE variational equations.

II. Linearized Relative-Orbit Elements

The relative motion of the considered ROEs is derived in the

Hill frame defined in Fig. 1. The Hill frame is defined by

H � fôr; ôθ; ôhg, in which ôr is alignedwith the reference craft orbit
radius, ôh is alignedwith the reference craft orbit angularmomentum,

and ôθ completes the orthonormal reference frame. The deputy

spacecraft motion is described relative to a chief reference craft. The

focus of this work is the reduction of the relative-orbit problem to the

CWequations that describe the motion of the deputy about a circular

reference orbit. The linearized relative equations of motion of a

deputy about a circular chief are given by [23]

�x − 3n2x − 2n _y � ax (1a)

�y� 2n _x � ay (1b)

�z� n2z � az (1c)

For unperturbed Keplerian motion, the inertial acceleration

components ax, ay, and az are set to zero, allowing this differential

relative-motion equation to be analytically integrated [23,38].

x�t� � A0 cos�nt� α� � xoff (2a)

y�t� � −2A0 sin�nt� α� − 3

2
ntxoff � yoff (2b)

z�t� � B0 cos�nt� β� (2c)

The preceding formulation is taken from [38], in which A0 is the

amplitude measure of the in-plane cyclic component, B0 is the

magnitude out-of-plane cyclic component, α and β are the respective
phase angles of the cyclic motions, xoff is the static radial offset, and
yoff is the along-track offset at the epoch time. Other integration

constants could have been chosen, such as the Hill-frame Cartesian

initial conditions [39], or drift rates instead of xoff , such as in [35].

Naturally, there are direct transformations between all these sets of

CW invariants. However, each CW set has its own advantages

regarding simplicity of implementation, singular behavior, or

geometric insight.
Using these LROE invariants of the unperturbed CW equations,

the Hill-frame velocity coordinates are expressed as

_x�t� � −A0n sin�nt� α� (3a)

_y�t� � −2A0n cos�nt� α� − 3

2
nxoff (3b)

Fig. 1 Local-vertical/local-horizontal rotating Hill frame for formation

flying [38].
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_z�t� � −B0n sin�nt� β� (3c)

The CW equations provide a convenient form for directly
prescribing the relative orbit, and are often used for geometric insight
of the relative-orbit shape. Themagnitudes of the scaling and phasing
terms enable the direct shaping of the relative orbit. It is the
geometrically intuitive nature of these constants that motivates the
following development. The relative position described by Eq. (2) is
limited by the underlying assumption to neglect perturbation
accelerations allowing constants to appear in the CW equations as
invariants of the unperturbed linearized motion. This work considers
the invariants as a set of ROEs and develops the necessary osculating
state dynamics to reintroduce perturbation accelerations. As this set
of ROEs is derived from the linearized motion solution, the invariant
vector of the CW equations is referred to as an LROE.
Taken at the epoch time, the invariants of motion A0, α, B0, β, xoff ,

yoff , and the CW solution provide a position and velocity of the
deputy spacecraft about the circular chief orbit. The Cartesian and
LROE state vectors are

s � � x y z _x _y _z �T �
�
r
ν

�
(4a)

œ � �A0 α xoff yoff B0 β �T (4b)

An inverse mapping between a Cartesian state s and the LROEs is
obtained in Eq. (5), in which the current mean motion and time of the
chief spacecraft are used:

A0 �
��������������������������������������������������������
9n2x2 � _x2 � 12nx _y� 4_y2

p
n

(5a)

α � tan−1
�

− _x

−3nx − 2 _y

�
− nt (5b)

xoff � 4x� 2
_y

n
(5c)

yoff � −2
_x

n
� y� �6nx� 3 _y�t (5d)

B0 �
��������������������
n2z2 � _z2

p

n
(5e)

β � tan−1
�
−_z

nz

�
− nt (5f)

The inverse mapping allows the LROEs to be obtained at any point
in time given the relative motion of the system as mapped from the
CW Hill frame to the LROE space. Consider the CW equations in
Eq. (1) and the inversemapping in Eq. (5). If the elliptical invariantA0

or B0 is zero in Eq. (1), then the angles α and β are ambiguous. In
addition, the inverse mapping introduces an inverse tangent function
that is subject to singularities and the secular term nt that must be
modulo 2π for consistency over longer time spans. The inverse-
mapping epoch time is a free variable and can be chosen as the most
convenient time or reset throughout operation to combat secular
growth in the terms. The free time variable is inherited from the CW
equations, in which an epoch is chosen, and the phasing and
coefficients are computed to match the epoch state. This mapping is
required unless additional logic is included or further reduced forms
of the equations are used. The CWequations, therefore, are unable to

provide a unique solution to the leader–follower configuration
without modification. These singularities in the CW form motivate
alternate or modified forms of the CW equations and invariant set.

III. Nonsingular Modification to the LROE Set

The preceding singularities of the CW invariants presented
in [33,38] are addressed by a new LROE formulation. Note that these
new nonsingular LROEs can also be applied to the relative-motion
kinematics being developed by [25,29]. Ambiguities and
singularities arise with the two phase angles α and β for particular
relative-orbit geometries. To remove these issues, the following
trigonometric expansions are used:

A0 cos�α� nt� � A0 cos�α� cos�nt� − A0 sin�α� sin�nt� (6a)

A0 sin�α� nt� � A0 sin�α� cos�nt� � A0 cos�α� sin�nt� (6b)

in which new LROE parameters A1 and A2 are defined as

A1 � A0 cos�α� (7a)

A2 � A0 sin�α� (7b)

which replace the singular A0 and α parameter set. The ambiguity of
the linear combination of A0 and α is removed in place of two
perpendicular scaling terms. Similarly, the new nonsingular
out-of-plane LROEs are defined as

B1 � B0 cos�β� (8a)

B2 � B0 sin�β� (8b)

Using the simplifications in Eqs. (6a) and (7a), the new CW
solution is rewritten into the proposed nonsingular LROE form as

x�t� � A1 cos�nt� − A2 sin�nt� � xoff (9a)

y�t� � −2A1 sin�nt� − 2A2 cos�nt� −
3

2
ntxoff � yoff (9b)

z�t� � B1 cos�nt� − B2 sin�nt� (9c)

The time derivative of the modified CW solution provides the
relative-motion rates.

_x�t� � −A1n sin�nt� − A2n cos�nt� (10a)

_y�t� � −2A1n cos�nt� � 2A2n sin�nt� −
3

2
nxoff (10b)

_z�t� � −B1n sin�nt� − B2n cos�nt� (10c)

The newLROE set is of all in units of distance providing additional
implementation simplicity.

œ � �A1 A2 xoff yoff B1 B2 �T (11)

Whereas the earlier LROEs contained both distance and angle
measures, the nonsingular LROEs only contain distance measures.
The LROEs defined in Eq. (11) are obtained from Cartesian Hill
frame states through the following inverse mapping:
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A1 � −
�3nx� 2 _y� cos�nt� � _x sin�nt�

n
(12a)

A2 �
�3nx� 2 _y� sin�nt� − _x cos�nt�

n
(12b)

xoff � 4x� 2 _y

n
(12c)

yoff � −
2_x

n
� y� �6nx� 3 _y�t (12d)

B1 � z cos�nt� − _z sin�nt�
n

(12e)

B2 � −z sin�nt� − _z cos�nt�
n

(12f)

The analytic inverse allows Hill-frame measurements to be easily
mapped into LROE information.
Similar to the singular LROE set, the modified LROE inverse

mapping has time as a free variable. The ability to set t to any desired
epoch may introduce improvement or degradation in relative-orbit
reconfiguration. The reconfiguration from one LROE set to another
represents the reconfiguration between two relative orbits with
respective phasing. If the phasing is not a constrained parameter, then
the time parametermay be selected for themost cost-efficient transfer
between two relative-orbit geometries [35]. In contrast to the inverse
mapping of the classical LROEs, the nonsingular LROE mapping
fromCartesian states is free of singularities. This allows these LROEs
to readily describe or control the relative orbit for any relative
trajectory shape.

IV. Lagrangian-Bracket Development of LROE
Variational Equations

A. Overview of Variational-Equation Development

Gauss’s variational equation is a classic result that shows how
invariants of the unperturbedmotion (i.e., inertial orbit elements) will
vary in the presence of perturbation accelerations [41]. This section
derives the analogous variational equations for both the classical and
new nonsingular LROEs. The Lagrangian-bracket methodology
evolves the invariants of motion present in a dynamic system’s
analytical solution to match the perturbed solution at the prescribed
time. Given the inverse mappings provided in Eqs. (5) and (12), the
sensitivity matrices are computable. The LROE set œ, otherwise
invariant, evolves according to [38]

_œ � �L�−1
�
∂r
∂œ

�
T

ad (13)

in which r is the deputy position vector, and ad is the disturbance
acceleration. The Lagrangian-bracket matrix �L� is defined by

�L� � ∂s
∂œ

T �J� ∂s
∂œ

(14)

and �J� is the symplectic matrix. A full description of the Lagrangian-
bracket methodology is included in chapter 12 of [38]. The equations
of motion for the LROEs in Eq. (13) are simplified by defining the
control matrix �B� as

�B� � �L�−1
�
∂r
∂œ

�
T

(15)

allowing the LROE equations of motion to assume the following

familiar dynamics form:

_œ � �B�u (16)

This algebraic expression is similar to Gauss’s variational

equations for inertial orbit elements, which is heavily used in

perturbation and control studies. Applying this derivation approach

to the invariants of the linearized relative motion will lead to the

desired LROE variational equations.

B. Classic LROE Variational Equations of Motion

First, the variational equations of the original LROEs in Eq. (4b)

are developed. The necessary partials for Eq. (14) are developed by

first defining the simplifying terms:

κα � nt� α κβ � nt� β (17)

Utilizing the κα and κβ definitions, the partial derivatives of the

relative position vector with respect to the classic LROEs are

∂r
∂œ

�
2
4 cos�κα� −A0 sin�κα� 1 0 0 0

−2sin�κα� −2A0 cos�κα� − 3
2
nt 1 0 0

0 0 0 0 cos�κβ� −B0 sin�κβ�

3
5

(18)

Similarly, taking the partials of r in Eq. (2) and ν in Eq. (3) with

respect to the LROE set in Eq. (4b) yields the following Lagrangian-

bracket-matrix components:

L1;2 � −5A0n L2;4 � −2A0n sin�κα�
L1;3 � −3n2t cos�κα� � 4n sin�κα� L3;4 � 3n∕2
L1;4 � 2n cos�κα� L5;6 � −B0n
L2;3 � A0n�4 cos�κα� � 3nt sin�κα��

(19)

The sparsely populated �L� is presented in component form, in

which the skew-symmetric property is required to build the full

matrices. Inserting the inverse of Eq. (19) and the partials in Eq. (18)

into Eq. (15) yields the desired classic LROE variational-equation �B�
matrix.

�B�classic �
1

n

2
6666664

− sin�κα� −2 cos�κα� 0

− cos�κα� 1
A0

2 sin�κα� 1
A0

0

0 2 0

−2 3nt 0

0 0 − sin�κβ�
0 0 − cos�κβ� 1

B0

3
7777775

(20)

As expected, the _α and _β evaluations are singular if the A0 and B0

parameters are, respectively, zero.
Naturally, all the linearized relative-motion variational equations

must be related to other dynamic forms, as they describe the same

physical relative trajectory. For example, using Eq. (20) yields

_xoff �
2

n
ay (21)

The orbit-element-difference-based ROE variational equations

used in [18] can be related to these classical LROE variational

equations. For example, note that xoff � δa [33]. Thus, assuming a

circular unperturbed chief orbit and using Gauss’s variational

equations [41], the xoff variational equation must be

_xoff � δ _a � _a � 2a2

h
ay �

2

n
ay (22)

However, other LROE elements have a more complex relationship

to the inertial orbit-element differences, such as B0 �
a

�������������������������������
δi2 � sin2iδΩ2

p
or the phase angles α and β. In this case, the

process of taking the time derivative and applyingGauss’s variational
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equations is not as straightforward. The presented Lagrangian-
bracket approach is elegant in that it uses the analytical CW
formulation directly and does not require the use of the Gauss’s
variational equations as a subresult.

C. Modified LROE Lagrangian-Bracket Development

Next, the nonsingular LROE set defined in Eq. (11) is considered.
Following the same approach used to develop the Lagrangian
brackets for the classical CW form, this section develops the
Lagrangian brackets for the modified LROEs. Taking the partials of
the CW state in Eq. (9) with respect to the nonsingular LROEs yields

∂r
∂œ

�
2
4 cos�nt� sin�nt� 1 0 0 0

−2sin�nt� −2cos�nt� −3∕2nt 1 0 0

0 0 0 0 cos�nt� − sin�nt�

3
5

(23)

L1;2 � −5n L2;4 � −2n sin�nt�
L1;3 � −3n2t cos�nt� � 4n sin�nt� L3;4 � 3n∕2
L1;4 � 2n cos�nt� L5;6 � −n
L2;3 � 4n cos�nt� � 3n2t sin�nt��

(24)

Again, the sparsely populated and skew-symmetric matrix �L� is
presented in component. Inserting the inverse of Eq. (24) and the
partials in Eq. (23) into Eq. (15) for the modified state vector in
Eq. (11) gives the modified LROE �B� matrix:

�B�modified �
1

n

2
6666664

− sin�nt� −2 cos�nt� 0

− cos�nt� 2 sin�nt� 0

0 2 0

−2 3nt 0

0 0 − sin�nt�
0 0 − cos�nt�

3
7777775

(25)

It can also be shown that the Poisson-bracket approach confirms
the Lagrangian-bracket forms presented. Note that, with these
variational equations, the denominators can never go to zero, yielding
a nonsingular LROE variational equation. This elegantly simple
�B�modified matrix allows for the geometrically insightful LROE to be
used as control variables, or to study the impact of a continuous
disturbance, such as drag or Lorentz forces, would have on the
relative-orbit geometry.

V. Perturbation Effects Present in Modified LROEs

Next, the impact of differential atmospheric drag on the relative-
orbit geometry is investigated with the nonsingular LROEs. This
section provides a numerical validation of the analytical variational
LROE equations by comparing them to the full nonlinear solution.
Further, it provides an illustrative example how a continuous
disturbance will vary the LROE parameters, providing insight into
how the relative-orbit geometry varies. Consider the influence of drag
on a spacecraft defined by the drag acceleration expression:

�r � −
1

2
CD

A

m
ρAkVAkVA (26)

The drag-model parameters assume the following density model:

ρA � ρ0e
−�r−r0�∕H (27)

in which the reference atmospheric density is ρ0 � 3.614 ×
10−13 km∕m3, the reference radius is r0 � �700 km� REarth�, and
the scaling height is H � 88.6670 km. The contribution from the
rotation of theEarth’s atmosphere includes theEarth spin rate.Drag is
applied to each spacecraft in the full nonlinear numerical analysis
initialized an equatorial circular LEO chief with a semimajor axis of

a � 6778 km. The simulated inertial state is composed of position
and velocity for both uncontrolled chief spacecraft and deputy
spacecraft. The simulations are propagated for a duration of 10 chief
orbits at Δt � 0.5 s with drag as the only non-Keplerian
perturbation. The chief is given a CD � 2.0 with a representative
area ofA � 3 m2 and mass of 970 kg. The deputy differs only with a
drag coefficient of CD � 2.2.
In this illustrative example, the influence of the described drag

model is considered in a planar-ellipse spacecraft formation defined
by the initial modified LROE set:

œ0 � �A1;0 A2;0 xoff;0 yoff;0 B1;0 B2;0 �T
� � 20 0 0 0 0 0 ��m�

Figure 2 reflects the effect of drag on the relative-orbit geometry by
visualizing the solution of the nonlinear simulation by mapping the
inertial simulation states to their equivalent LROE values. The LROE
parameters shown are extracted at each time step using the inverse
mapping provided. The out-of-plane B1 and B2 parameters remain
zero and are not shown. Notable are the xoff error in Fig. 2c and the
yoff error in Fig. 2d. As expected, the nonzero value and secular
growth of xoff shears the relative motion apart with the yoff trend
diverging from a bounded formation. However, the cyclic in-plane
motion, described through A1 and A2, only undergoes periodic
osculating variations without any secular growth.
Next, the simulation is repeated using the LROE variational

equations, and compared to the inertial simulation result to validate
the expressions found. The differential drag of the two spacecraft
expressed in theHill frame is introduced as a disturbance acceleration
to evolve the LROEs over several orbits. The predictive model
computes the instantaneous velocity of both the deputy and the chief
using the initial chief epoch, the current time, and the instantaneous
LROEs. The differential drag on the formation is achieved by
differencing the acceleration due to drag on the respective spacecraft
as expressed in the Hill frame. The errors between the nonsingular
variational LROE simulation and the inertial simulation are shown in
Fig. 3. Only the first five orbits are shown to better discern the detail
near initialization and before theΔyoff grows significantly. The drag-
perturbed relative-motion prediction matches well over the first few
orbits with initial errors on the order of 0.1 mm. This numerically
validates the derived LROE variational equations. However, over the
course of 10 orbits, the estimate of the xoff grows due to the
linearization errors and further drives the yoff away from the truth.
The relative-orbit size described by A1 and A2 is submillimeter in
accuracy initially, and then grows in sinusoidal fashion as the position
error grows. The degradation of the estimate is expected due to the
first-order approximation of the relative motion.
The classical LROE parameter variations of A0 and α are shown in

Fig. 4. The xoff and yoff elements have the equivalent mapping as the
modified set. The ΔA0 value in Fig. 4a is much larger than the
nonsingular LROEΔAi errors over the first few orbits. The modified
set combines the size, A0, and phasing, α, into two terms that are
orthogonal, enabling less prediction error.
Periodically reinitializing the LROEs can combat the growing

errors in the LROEs due to linearization and reinjection. Recall that
the LROEs are chosen at a specific epoch time, and so the LROEs
could be recomputed from inertial estimates to provide several more
orbits of acceptable prediction. It is important to note that inclusion of
an eccentric chief craft reduces the validity of the LROE
prediction model.

VI. Continuous-Feedback-Control Development

A continuous feedback control is employed if tight station keeping
or trajectory tracking is required. Gauss’s variational equations
have been used extensively to derive inertial and differential orbit-
element-based control strategies [18,40]. This section derives a
Lyapunov-based feedback-control strategy, in which the deputy
satellite assumed to be able to achieve a desired inertial control
acceleration vector u � ad to drive the osculating LROEs toward a
set of reference LROE states œr�t�. Having œr varying with time
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allows for unnatural circumnavigation solutions to be considered as

well [42]. The LROE tracking-error measures are defined as

Δœ � œ − œr (28a)

Δ _œ � _œ − _œr � �B��u − ur� (28b)

A Lyapunov-based control approach is employed that follows the

development of the mean orbit-element-difference control in [18].

The Lyapunov candidate function is defined as

V�Δœ� � 1

2
ΔœT �K�Δœ (29)

in which �K� is a 6 × 6 symmetric positive definite gain matrix.

Taking the time derivative of the Lyapunov function and substituting

the LROE variational equations yield

_V�Δœ� � ΔœT �K��B��u − ur� (30)

The following LROE feedback-control law is proposed:

a) - prediction error b) - prediction error

c) off - prediction error d) off - prediction error

Fig. 3 LROE prediction error in the presence of drag.

a) perturbed by drag b) perturbed by drag

c) perturbed by drag d) perturbed by drag
Fig. 2 LROE evolution in the presence of drag.
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u � ur − ��B�T �B��−1�B�T �K�Δœ (31)

The resulting Lyapunov rate is

_V�Δœ� � −ΔœT �K��B���B�T �B��−1�B�T �K�Δœ � −yT��B�T �B��−1y
(32)

in which y � �B�T �K�Δœ. Note that ��B�T �B��−1 is a symmetric
positive definite 3 × 3matrix. The Lyapunov time derivative defined
in Eq. (32) is negative semidefinite guaranteeing Lyapunov stability.
To prove asymptotic stability, the vector ymust be shown to zero only
when the LROE error is zero. Because the matrix �K� is chosen to be
positive definite, the term �K�Δœ is always nonzero if the error is
nonzero. However, due to the state dependency of the �B� matrix,
there are instantaneous points in time, inwhich y is zerowith nonzero
LROE tracking error. Although the combination of �B�T �K�Δœ may
instantaneously go to zero, the largest invariant set, in which the
product remains zero for all time, is in which Δœ is zero at which
point the control effort is zero. Thus, LaSalle’s invariance principle
delivers asymptotic stability.
The LROE control form shares many similarities to the control

implementation for orbit-element differences. Recall that the
prescribed error form is an ROE difference of the linearized motion.
Capitalizing on the parallels with orbit-element differences, many
other control forms are available from orbit-element-difference-
control literature with a few shown in chapter 14 of [38].

VII. Inertial Simulation Control Implementation

The proposed relative-orbit description and associated control law
are assessed using an inertial orbit simulation solving the full
nonlinear two-body problem. As motivating examples, large close-
proximity relativemaneuvers are required in the electrostatic tugging
research for orbital servicing [43], as well as the proposed CubeSat-
Proximity Operations Demonstrator mission [3]. The numerical
analysis assumes Keplerian orbits with an equatorial circular LEO
chief with a semimajor axis of a � 7550 km. The simulated inertial
state is composed of position and velocity vectors for both
uncontrolled chief spacecraft and controlled deputy spacecraft. The
simulations are propagated for a duration of 10 chief orbits to fully
illustrate the near-steady-state behavior. The sample LROE
reconfigurations considered transfer from a planar ellipse to a lead–
follower and back again. These cases demonstrate the breadth of the
controller and target specific singularities or coupling effects that
render the classical CW parameterization insufficient. Notice that the
reference LROE states ωr are set to constant values for each case.
This study restricts the relative orbits to small separation distances
and demonstrates two planar reconfiguration cases. Both cases use
full inertial nonlinear simulation at an integration time step of 0.5 s.
The use of the LROE state and LROE controller enables

reconfiguration between a planar-elliptic relative orbit to lead–
follower and back again. Recall that the current relative orbit and
desired relative orbit are both described by an LROE set. The first
case considered is the planar elliptic to the lead–follower. Desired is a
transition from a zero offset 2-1 ellipse to a standoff distance in the

along-track direction ahead of the chief. The second case considered
is the return from the lead–follower back to the initialized planar
ellipse. The initial conditions and reference for the second case are the
swapped values for the first case. The lead–follower formation is
defined through yoff � 30 m, whereas the 2-1 ellipse is defined via
A1 � 20 m. All other reference LROE values are zero. The feedback
gain matrix �K� is selected to be

�K� � n · diag��1; 1; 30; 1; 1; 1�� (33)

Note that the gain on xoff tracking errors is much larger than the
other gains to ensure the bounded relative-motion condition (i.e.,
xoff � 0) is regained quickly.
The transfer between the initial and reference LROEs is

dominantly achieved within three orbits. The Hill-frame recon-
figuration is shown in Fig. 5, in which the planar ellipse to lead-
follower relative orbit reconfiguration ends at the final lead-follower
point. The return to the planar ellipse is shown where the final point
resides on the 2-1 ellipse.
As can be seen in the Hill-frame reconfiguration to the lead–

follower, the deputy satellite initially moves along an elliptical
path as the along-track offset is increased. Over the following
orbits, the ellipse shifts with slight expansion before contracting
onto the reference point. By inspection, the size of the relative-
motion ellipse initially grows prescribed by the coupling in the
variational equations in the along-track position. The planar elliptic
to the lead–follower is a planar reconfiguration, and, therefore, the
decoupled out-of-plane motion remains zero. During the return to
the 2-1 ellipse, the deputy initially shifts the along-track offset back
toward the desired zero offset as the relative-orbit scaling term is
driven to a slightly decreased value. Once the controller moves the
along-track error into the vicinity of zero, the controller drives the
scaling term toward the increased value required for the 2-1 relative
ellipse. The darker-green-layered 2-1 ellipse demonstrates that,
following the third orbit, the deputy does remain on the prescribed
2-1 ellipse.
The modified LROE time history provides additional insight into

the reconfiguration. Shown in Fig. 6 are the time histories of the
two scaling terms A1 and A2, as well as the along-track and radial
offsets with colors corresponding to the respective reconfigurations
in the Hill frame; Fig. 5. The simultaneous reconfiguration of the

a) - prediction error b) - prediction error

Fig. 4 Classic LROE prediction error in the presence of drag.

Fig. 5 Hill-frame reconfiguration between two relative orbit types.
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terms A1 and yoff provides an interesting balance in the evolution of
the relative orbit. Notably, the first half-orbit brings the xoff down
and, therefore, the error up to sheer the deputy forward to the desired

offset. The lightly damped but magnitude restricted response in xoff
is due to the large gain placed on Δxoff . The current selection of a

Δxoff error gain 30 times greater in magnitude than the other errors

provides sufficient control authority without exceeding �2 m of

offset. Additional tuning of the xoff term may provide a range of

performance with the limits of divergence if the gain is zero and no

control authority if the gain is infinite. The combination of the

scaling terms provides a noticeable effect in the Hill-frame

representation. Referring back to Fig. 5, the relative ellipse appears

to rotate. This effect is attributed to the collective variation inA1 and

A2 after the transition in offset. The greatest insight gained from the

LROE errors in Fig. 6 is that the lead–follower to the elliptic

evolution is the negative elliptic to the lead–follower. A strongly

supported conclusion is that the trajectory between two relative

orbits follows the same evolution of LROEs with only a sign

difference in the forward and reverse reconfigurations. Such

consistent evolution between two relative orbits is inherent in the

Lagrange bracket formulation. This method then suggests that

optimal reconfigurations may be obtained as a parameter sweep.

A logarithmic study of the LROE error shows the convergence

behavior of the implemented control. Around the completion of three

orbits, the controller is considered within sufficient accuracy of the

reference location with additional convergence occurring over the

following orbits. The logarithmic error for the LROEs is shown in

Fig. 7. As claimed, the majority of the error is reduced after

completion of three orbits. The humped variation in the A1 and A2

parameters corresponds directly to the half-orbit period.

a) parameter error b) parameter error

c) off parameter error d) off parameter error

Fig. 6 LROE error for lead–follower to planar ellipse to lead–follower.

a) parameter log error b) parameter log error

c) off parameter log error d) off parameter log error

Fig. 7 Logarithmic LROE error for planar ellipse to lead–follower.
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The errors presented in Fig. 7 are not expected to go to exactly zero.
The LROE formulation is a first-order mapping with some errors
incurred by the inverse mapping. Thus, the error obtained is near the
best possible given the formulation andmapping equations. TheHill-
frame control effort to produce the desired reconfiguration is shown
in Fig. 8 on both linear and logarithmic scales to illustrate the
transient and long-term effort. The top plot shows the first half of the
reconfiguration, in which the bottom plot shows the logarithmic
control effort. As can be seen in Fig. 8, the primary control effort is in
the initial radial direction. This is expected because the yoff is
controlled through the drift incurred by an xoff , and the A1 scaling
term is most dramatically reduced by the Hill x-direction
acceleration. The slight y-direction acceleration is present with the
direct impact requiring further study. The logarithmic control effort
suggests that the reconfiguration is primarily complete following the
completion of the third orbit.
The LROE control approach successfully reconfigures between a

planar-elliptic relative orbit and lead–follower configurations.
Otherwise, infeasible with the classic CW form, the modified LROE
form provides no singularities in the transfer space. An analysis of
Fig. 5 reveals that the along-track offset is first corrected before the
ellipse scaling factor A1. Further analysis of the Lagrangian brackets
should reveal a greater sensitivity to the along-track position and the
radial offset influence than the elliptic scaling factors.

VIII. Conclusions

The LROE variational equations are developed for nonsingular
invariants of motion of the rectilinear Clohessy–Wiltshire (CW)
solution. Because the LROEs provide a strong geometric insight,
they are a useful tool to analyze how a perturbation impacts the
relative trajectory geometry. This is illustrated through an
atmospheric drag example. An LROE-based continuous feedback
control is presented to illustrate the simplicity of setting up relative-
orbit shape control to servo on a set of reference LROE states. Future
work will consider LROE-based impulsive control methods, as well
as expanding the LROE kinematics to the curvilinear CW
formulation.
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