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A B S T R A C T   

Debris strikes on operational spacecraft are becoming more common due to increasing numbers of space objects. 
Sample return missions indicate hundreds of minor strikes, but rigorous analysis is often only performed when a 
strike causes an anomaly in spacecraft performance. Developing techniques to identify and assess minor strikes 
that do not immediately cause anomalous behavior can help to validate models for debris populations, perform 
risk assessments, and aid in the attribution of future anomalies. This study introduces debris strikes to a 
spacecraft dynamics simulation and assesses the effect on spacecraft telemetry. Various signal processing and 
change detection techniques are used to identify strikes in noisy telemetry and estimate strike parameters. 
Matched filter wavelets are developed to identify the effects on state telemetry, where errors are autonomously 
corrected by the spacecraft attitude control system. A bank of matched filters is used to estimate the parameters 
of the strike based on a priori knowledge of the spacecraft’s response characteristics. A sequential probability 
ratio test is used to highlight abrupt changes in the spacecraft’s angular momentum. Monte-Carlo analyses are 
conducted to characterize the performance of these algorithms. The results of the various techniques are 
compared in terms of correctly identifying the debris strikes and accurately estimating the strike parameters. 
Developing the capability to catalog and characterize minor debris strikes allows any spacecraft to be used as an 
in situ debris sensor.   

1. Introduction 

The population of trackable fragmentation debris has more than 
doubled in the past 25 years [1]. This is especially concerning because 
while trackable debris can be avoided by maneuvering satellites, most 
fragmentation events also release clouds of debris too small to track. The 
Space Surveillance Network tracks debris down to around 10 cm in LEO 
and 70 cm in GEO [2], but a piece of debris smaller than 1 cm can cause 
mission-ending damage to a spacecraft if it hits a sensitive component 
[3,4]. As of February 2020, there are approximately 34,000 debris ob
jects greater than 10 cm in orbit; but there are approximately 900,000 
objects between 1 cm and 10 cm [5]. Therefore, well under 10% of the 
potentially hazardous debris population is tracked. 

The modeling and measurement situation is especially dire in GEO 
where many valuable satellites are located. Objects smaller than around 
70 cm are untracked, and the small debris models are inherently limited 
due to a lack of capability to obtain data. NASA’s state-of-the-art debris 

environment model, ORDEM3.1, only models GEO debris down to 10 
cm, and even that is an extrapolation from available data on debris 30 
cm and larger [6,7]. Thus, very little is known about the GEO small 
debris environment. While collisions tend to be slower in GEO than LEO 
an object inclined 15◦ will cross an equatorial orbit at approximately 
800 m/s relative velocity, which is still more than fast enough for a small 
object to cause significant damage [8]. 

While data for GEO small debris models is lacking the LEO models 
benefit from radar and occasional in situ measurement data, which is 
typically from sample return missions. However, there have been some 
indications that current LEO debris models may be overly conservative. 
This is burdensome for ongoing programs as it makes it difficult to show 
compliance with debris mitigation standards. A 2017 study by the NASA 
Engineering and Safety Center (NESC) [9] found that NASA’s debris risk 
assessment process overpredicted the likelihood of failure by a signifi
cant amount in multiple case studies, often showing low probabilities of 
consistency between model predictions and on-orbit data. In one 
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example the models predicted between 24 and 160 perturbation events 
while seven were reported. In another 11.3 tank or battery failures were 
predicted while two were recorded. 

These discrepancies are likely due to a variety of factors. The pre
dictions were often better for objects in the well-characterized 400 km 
orbit, where most in situ measurements have occurred, indicating that 
ORDEM’s accuracy may suffer at higher altitudes. ORDEM is also just 
one piece of the risk assessment process. Radar and optical measure
ments correspond to an object’s size, while the object’s mass is more 
relevant to assessing damage potential. Correlating the two requires 
assumptions regarding shape and density. Anomalies are also notori
ously under-reported, and there is always a potential for misattribution 
of an anomaly’s root cause which may affect the number of recorded 
debris-related anomalies. 

Two recent events illustrate the potential effects of strikes from 
untracked debris. In August of 2016, the Sentinel-1A spacecraft expe
rienced an anomaly consisting of an abrupt attitude perturbation (Fig. 1) 
coupled with a slight orbit change and simultaneous decrease in solar 
power output. On-board cameras confirmed a debris strike on the solar 
array. However, the solar array strike was non-catastrophic and opera
tions continued nominally [10]. A year later, in August of 2017, 
Telkom-1 experienced an abrupt anomaly where ground-based sensors 
captured a sudden fragmentation event liberating several debris pieces, 
culminating in the total loss of the satellite. The event appeared to be 
consistent with a pressurized vessel rupture [11], although since the 
satellite was not recovered it is difficult to attribute the anomaly’s root 
cause definitively. The ground-based sensors that observed the event are 
capable of identifying objects down to about 10 cm [12], so a smaller 
object impacting the satellite would not have been observed. 

In aggregate, the above information indicates that there is a signifi
cant population of untracked debris which can impact a spacecraft with 
various effects, ranging from benign perturbations to mission-ending 
damage. There is reason for concern about the accuracy of debris risk 
assessment methods which is likely due to a variety of factors. Key 
contributions include uncertainties in correlating radar measurements 
to damage potential and a lack of data in many orbits. Additional 
measurements of hazardous non-trackable debris populations would 
help to reduce these uncertainties, especially if the measurements pro
vide information relevant to characterizing the damage potential of the 
debris flux. This paper investigates a robust and effective method to 
obtain in situ measurements of debris that is too small to track but still 
large enough to affect a spacecraft. It accomplishes this by applying 
digital signal processing (DSP) and change detection (CD) techniques to 
spacecraft attitude control system (ACS) telemetry to identify and assess 

subtle indications of debris strikes. 
Most prior work on detecting particle strikes involves the assessment 

of a specific event or mission. Similar to the Sentinel-1A anomaly, a 
recent particle strike on NASA’s Magnetospheric Multiscale (MMS) 
constellation caused anomalous behavior but was fully recoverable 
[13]. The strike, which may have been debris or a micrometeoroid, was 
observed as a loss of one shunt resistor and a spike in the ambient plasma 
coupled with a dynamic event. On the spin-stabilized MMS spacecraft 
the dynamic event caused ringing in the accelerometer telemetry, 
excitation of boom vibration resulting in atypical nutation of the 
transverse rotation rates, and temporary loss of valid startracker attitude 
fix. In both the Sentinel-1A and the MMS events the strike caused 
anomalous (but recoverable) behavior which resulted in a thorough 
investigation of the telemetry. A smaller strike with more subtle in
dicators may go unnoticed. 

There have been several papers on the results of sample return 
missions [14,15] or on custom hardware which is flown specifically to 
detect debris [16–18]. There are several studies which use data from 
non-purpose-built hardware to detect dust impacts on spacecraft via the 
induced plasma cloud [19–21], but the majority of dust impacts have 
masses around 10− 9 g or less [22] so the ability of this population to 
harm spacecraft is limited. This paper investigates strikes large enough 
to perturb the spacecraft dynamics, since the hazard is from debris 
pieces large enough to cause damage if impacting sensitive components. 

Some key work has been done by ExoAnalytic Solutions on detecting 
‘momentum impulse transfer events’ on GEO spacecraft using their 
global telescope network. They have proven a capability to detect orbit 
perturbations with in-track velocity changes of 0.2–10 mm/s [23]. Some 
of these are explained with rigorous high-fidelity modeling of solar ra
diation pressure, but others remain unexplained and could be caused by 
on-board systems or, potentially, debris impacts. 

A similar concept is discussed in the 2017 NESC report evaluating 
risk predictions with on-orbit assets [9]. This report compares the pre
dicted vs. reported failures for ISS radiators and pressurized modules 
and for three LEO satellite systems. For one LEO constellation, seven 
events had been observed where satellites experienced sudden unex
pected movements thought to be caused by debris. These movements 
consisted of abrupt changes in satellite mean altitude and/or rotation 
rates. A recommendation of the NESC report is to collect data on satellite 
orbital perturbations and momentum changes. This paper develops al
gorithms to accomplish that using DSP/CD techniques to enhance the 
ability to identify subtle strikes in telemetry. 

A June 2019 paper by the Institute for Defense Analyses (IDA) [24] 
describes the methods used in the NESC report to correlate observed 
orbit perturbations to debris impact events and discusses a framework 
for reporting these events. A database of perturbation events is sug
gested as a tool to improve the characterization of the debris environ
ment and therefore the debris risk assessment process. The paper 
emphasizes the need for additional orbital debris environment data, 
particularly mm-size debris at higher LEO altitudes, for use in improving 
orbital debris environmental models. 

The concept of the IDA paper is similar to this work and the methods 
are highly complementary. While the IDA paper focuses on orbit per
turbations and reporting frameworks, this paper focuses on detecting 
attitude perturbations via telemetry. Since the end goal is to capture 
sufficient data to improve understanding of the debris environment both 
methods have value. Both are capable of detecting strikes that the other 
method misses, and they can be used in tandem to validate subtle per
turbations and improve estimation of strike parameters. 

This research effort, which is also motivated by the NESC study, le
verages established techniques from other fields to aid in characterizing 
the untrackable debris population. Algorithms are developed to monitor 
the attitude telemetry of spacecraft for subtle perturbations indicative of 
minor debris strikes. In approaching the problem from the reverse di
rection, identifying subtle strikes instead of responding to anomalous 
behaviors as they occur, it allows spacecraft operators and the debris 

Fig. 1. Rate gyro measurements from Sentinel-1A anomaly show an abrupt 
spike in rate which is corrected by the attitude control system [10]. 
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community to proactively improve models and methods for assessing 
debris risks and attributing anomalies. Monitoring perturbation events 
offers a unique optic for characterizing the small debris environment 
since the measurement depends explicitly on the mass of the particle 
which is more closely correlated to the damage potential than the size 
measurements obtained via traditional radar and optical systems. 

A spacecraft dynamics simulation is used to model the effect of debris 
strikes on ACS telemetry. The numerical simulation models a 3-axis 
controlled rigid-body spacecraft with four reaction wheels maintaining 
pointing along a reference trajectory (Section 2.1). Debris strikes are 
applied to the simulation per Section 3.1, while noise obfuscates the 
spacecraft’s response to the strikes. Section 3.2 investigates the ability of 
matched filters to identify the ‘signals’ produced in spacecraft state 
telemetry during a debris strike. This includes developing thresholds for 
detection (Section 3.2.2), developing methods to estimate strike pa
rameters (Section 3.2.3), and using a Monte-Carlo analysis to assess al
gorithm performance (Section 3.2.4). Section 3.3 applies CD techniques 
to the momentum telemetry, which exhibits lasting changes when a 
debris strike produces a change in the spacecraft’s inertial angular 
momentum. 

This paper’s core development is applying processing algorithms to 
simulated telemetry to compare the performance of various algorithms 
against known perturbations allowing a definitive assessment of each 
algorithm’s accuracy. A key element of maturing these techniques is 
applying them to on-orbit telemetry, and some preliminary results on 
NASA spacecraft are discussed in Ref. [25]. Another factor is investi
gating how the effectiveness changes based on changes in the spacecraft 
parameters and telemetry noise parameters, and an initial study of these 
trades is presented in Ref. [26]. Other approaches, such as machine 
learning, may also offer promising solutions; but machine learning tends 
to be more of a ‘black box’ approach and often struggles to develop 
adequate verification and validation methods for space applications. 
The algorithms selected for this paper are chosen based on a survey of 
canonical digital signal processing (DSP) and change detection (CD) 
techniques. These canonical techniques are chosen because this research 
effort is intended to develop a robust, well-understood, and 
well-characterized method for an initial study in applying this concept. 

2. Methods for simulation and telemetry processing 

2.1. Spacecraft simulation 

A numerical spacecraft dynamics simulation is used to investigate a 
spacecraft’s response to debris strikes. The simulated spacecraft is 
configured as a rigid-body 3-axis controlled inertially-pointing GEO 
satellite with four reaction wheels (RWs). The state vector consists of the 
spacecraft’s attitude and rate along with the rotation speeds of the four 
reaction wheels. A Runge-Kutta fourth-order integrator is used to inte
grate the equations of motion given in Equations (1)–(3) [27, ch.8]. Note 
that Equations (2) and (3) must be solved simultaneously. 

q̇=
1
2

⎡

⎢
⎢
⎣

− q1 − q2 − q3
q0 − q3 q2
q3 q0 − q1
− q2 q1 q0

⎤

⎥
⎥
⎦ω (1)  

[Isc]ω̇+ Iws[Gs]Ω̇= − [ω̃][Isc]ω+Lext −
∑N

i=1

[

ĝ tiIwsΩi ĝT
giω − ĝgiIwsΩi ĝT

ti ω
]

(2)  

Iws[Gs]
T ω̇+ Iws[IN×N ]Ω̇ = us (3) 

The spacecraft’s rotation rate, ω, is the rate of the body frame rela
tive to an inertial frame, and is expressed in body frame coordinates. The 
attitude quaternion of the body relative to inertial is q, and Ω is an N× 1 
matrix of wheel speeds for N reaction wheels. The external torque 

applied by the debris strike is Lext while ĝsi is the unit vector of the spin 
axis of the ith reaction wheel. The transverse directions are ĝti and ĝgi, 
and the [Gs] matrix is defined as [Gs] = [ĝs1…ĝsN]. The spacecraft inertia 
(with reaction wheels included) is given as [Isc], and the spin-axis inertia 
of each reaction wheel is Iws. An identity matrix is denoted as [IN×N], and 
the applied control torques for each reaction wheel are specified in us. 
These control torques are calculated as shown in Equation (4) to apply a 
desired torque, Ldes, which is calculated per Equation (5). 

us = [Gs]
T
([Gs][Gs]

T
)
− 1Ldes (4) 

Note that the Modified Rodrigues Parameters (MRPs) [28–30], 
denoted as σ, are used as the attitude coordinate for the control law and 
represent the attitude error between the current body frame and the 
desired reference frame. Similarly, δω represents the difference between 
ω and the desired reference angular velocity, ωr [27]. 

Ldes =Kσ + [P]δω − [ω̃][Isc]ω − [Isc]
(

ω̇r − ω×ωr

)
(5) 

The proportional control gain on attitude error is denoted as K, and 
[P] must be a positive definite matrix to guarantee stability via Lyapunov 
functions. 

State noise is added to the system at each timestep in a Gaussian 
random walk. Gaussian measurement noise is added to ω and σ when 
calculating the control torques and is also added to the torque command. 
The state is saved throughout the simulation and then truncated to a 
lower rate to represent downlinked telemetry. Gaussian measurement 
noise is added to this telemetry prior to processing. Table 1 contains the 
parameters used in this simulation. All noise is zero mean. 

The spacecraft’s inertial angular momentum is calculated from the 
noisy state telemetry via 

BH = [Isc]ω +
∑N

i=1
[BW]i

⎡

⎣
IwsΩi

0
0

⎤

⎦ (6)  

NH = [NB] BH (7)  

where BH is the spacecraft angular momentum in the body-fixed frame, 
[BW]i is the direction cosine matrix to go from the ith wheel’s coordinate 
frame to the body frame, [NB] is the direction cosine matrix to go from 
the body frame to the inertial frame, and NH is the spacecraft’s inertial 
angular momentum. Note that the momentum telemetry does not have 
any noise added to it, but it incorporates the noise from the attitude 
telemetry, rate telemetry, and wheel speed telemetry. 

2.2. Digital signal processing techniques 

Matched filters are used on the rate and attitude telemetry to identify 
debris strikes, since the spacecraft’s dynamic response to the strike 
produces a known ‘signal’ in the telemetry. A matched filter will 
maximize the output signal-to-noise ratio (SNR) for a known signal in 
independent and identically distributed Gaussian noise. 

A matched filter functions by taking a known wavelet (the antici
pated signal) and cross-correlating it with a sequence of measurements 
[31, ch.5]. The filter output will increase when the signal is present in 
the noise, as shown in Fig. 5. 

To determine the threshold for detecting a debris strike based on 
filter output, a receiver operating characteristic (ROC) curve is devel
oped empirically and a desired probability of false alarm, α, is selected. 
The ROC curve shows the probability of false alarm (PFA) vs. the prob
ability of detection (PD), which is based on two probability density 
functions (pdfs) (Fig. 2). The first pdf characterizes the filter output 
when no debris strike is present (i.e., the null hypothesis, H o). The 
second pdf characterizes the filter’s peak when a certain debris strike is 
present (H 1). 

Note that in order to decrease the PFA the threshold is moved to the 
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right, but that necessarily decreases the PD for that strike and increases 
the probability of a missed detection, PMD. Thus, selection of a desired 
PFA is a design choice for a given application. A low PFA will detect 
significant perturbations with little risk of false alarms, but will miss 
small but detectable perturbations. A higher PFA will produce more false 
alarms but will also catch the small, subtle perturbations. Also note that 
while Gaussian pdfs are shown in the figure they will only generate 
accurate thresholds if the data is Gaussian. Therefore, the distribution of 
the data should always be checked and appropriate pdfs selected before 
applying this method. 

From the PFA and PD the ROC curves in Fig. 3(a) are developed. A 
desired PFA is selected, and the slope of the ROC curve at the point where 
PFA = α is the threshold for the likelihood ratio test, τthresh. The likeli
hood ratio test, L , is also based on the two pdfs of the filter output 
where 

L (y)= p(y|H 1)

p(y|H 0)
≷
H 1

H o

τthresh (8)  

where p(y|H i) is the probability of y given hypothesis H i. The resulting 
L (y) is compared to the threshold τthresh from the ROC curve and the 
appropriate hypothesis is selected. This threshold is mapped back to the 
filter output by finding the point at which τthresh intersects the L (y) line 
and choosing the corresponding ythresh as the filter output threshold 
(Fig. 3(b)). 

L (ythresh)= τthresh (9) 

Note that the log of the likelihood ratio test (LLRT) is plotted along 
with the log of the threshold since the numbers become large. Under the 
Neyman-Pearson Lemma, this is the most powerful test that maximizes 
PD under the constraint PFA = α[32, ch.2]. For the purposes of debris 
strike detection the filter output is compared to the threshold ythresh. If 
the filter output is above this threshold then a strike is declared and the 
strike parameters are estimated. 

2.3. Change detection techniques 

The inertial angular momentum of a spacecraft is quiescent in the 
absence of external forces, but a debris strike imparts an abrupt change 
in the momentum. Three techniques for detecting changes in quiescent 
but noisy data are applied to the spacecraft momentum: a simple sum
mation filter, a more refined cumulative sum (CUSUM) sequential 
probability ratio test (SPRT), and a Shiryaev SPRT. 

The simple summation filter detects changes by adding the sum of all 
datapoints after zeroing the data to the expected average. For zero-mean 
noise, this sum trends to zero over time so that a value above a certain 
threshold indicates that a fault (or change) has occurred. 

The CUSUM algorithm utilizes the log of the likelihood ratio test 
from equation (8), summed sequentially to give the test statistic Sn [31, 

ch.9]. 

Sn =
∑n

k=1
ln(L (y)) (10) 

The parameter Sn trends negative when the samples, as a whole, are 
more likely to be from H o than H 1, and trends positive when they are 
more likely from H 1. This change in drift is detected through 

Wn = Sn − min
0≤k<n

Sk (11)  

where Wn stays close to zero while Sn trends downward, then grows if it 
trends upward. 

The multi-hypothesis Shiryaev SPRT is implemented for m alterna
tive hypotheses per Malladi and Speyer [33]. They define 

φki =Fki + p̃i⋅(1 − Fki) (12)  

where Fki is the cumulative distribution function (CDF) expressing the 
probability that, at datapoint k, hypothesis i is true. p̃i is the a priori 
probability that a transition to hypothesis i occurs. Fk+1,i is computed 
recursively given each new datapoint xk+1 via equation (13), where 
fi(xk+1) is the pdf given hypothesis i evaluated at xk+1 

Fk+1,i =
φki⋅fi(xk+1)

∑m
j=1φkj⋅fj(xk+1)

(13) 

The CDFs are initialized to Foi, which is the probability that a tran
sition to hypothesis i has already occurred. 

3. Algorithm development 

3.1. Applying debris strike to simulation 

The debris strike is applied to the spacecraft attitude dynamics 
simulation as a brief torque L, computed as follows. The net change in 

Fig. 2. Probability density functions of filter output with no strikes present and 
during a small strike. 

Fig. 3. Development of filter thresholds via ROC curve and LRT.  
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momentum imparted by the debris strike is denoted as Hstrike where Rd/s 

is the location of the strike relative to the spacecraft center of mass, md is 
the mass of the debris, and Vd/s is the velocity of the debris relative to the 
spacecraft. 

Hstrike =Rd/s × mdVd/s (14)  

Hstrike =

∫

L dt (15) 

The torque, L, is applied in the simulation for one time step, and the 
torque magnitude in each axis is calculated such that the total change in 
momentum, Hstrike, is as specified in the problem setup. For convenience, 
the traded debris strike variables are the direction of Hstrike and the mass 
of the debris. The velocity of the debris is fixed at 8 km/s normal to Rd/s, 
which is 1 m. The mass of the debris is traded to investigate different 
magnitudes of debris strike, and is generally between 1 and 100 mg. 
Note that the 8 km/s and 1 m are placeholders, not assumptions. The 
rotational momentum of a strike at 8 km/s and 1 m is equivalent to a 
strike at 4 km/s and 2 m, or 1 km/s and 8 m, etc. These placeholders are 
simply convenient to provide some intuition about the sizes of debris 
strikes that are being discussed, not an assumption on which the analysis 
depends. 

In reality the velocity of debris would be dependent on the debris (or 
micrometeoroid) population it originates from, and the strike could be 
anywhere on the spacecraft. The variables are fixed for simplicity and 
clarity since this paper focuses on modeling the effect on the spacecraft 
and developing detection methodologies, not on modeling the debris 
population. Table 2 lists a variety of impacting particles in various orbit 
regimes which would impart angular momentum equivalent to a 10 mg 
particle striking 1 m off the center of mass (CoM) at 8 km/s with normal 
incidence, imparting 80 mN.m.s of angular momentum to the satellite. 

It is important to note that a strike which breaks through a solar array 
will impart less momentum than the total relative momentum of the 
debris, while a hypervelocity strike which breaks up on the surface will 
cause a plume of ejecta in the reverse direction which can increase the 
imparted momentum by a factor of two or more [36]. This phenomenon 
is referred to as the momentum enhancement factor (MEF) and is 
included in Table 2, but is assumed to be one throughout the de
velopments in this paper. While this effect is critical for accurately 
assessing impact events, the emphasis in this paper is on developing 
detection techniques, not debris population modeling. When these 
techniques are applied to on-orbit telemetry and used to estimate 

parameters in real debris strikes these effects must be accounted for. 
When a debris strike is applied to a truth simulation with no noise, 

the results are as shown in Fig. 4. The strike induces a rotation in the 
spacecraft which is corrected by the attitude control system. It manifests 
as a spike in the spacecraft rate, a drift and correction in the spacecraft 
attitude, and a net increase spacecraft momentum. 

3.2. Matched filter development 

3.2.1. Develop filters to identify strikes 
The truth simulation is used to develop matched filters for the 

spacecraft rate and attitude. To obtain the strike detection wavelet the 
simulation is run with the largest debris strike that does not saturate the 

Table 2 
Particle impact events which impart 80 mN.m.s of angular momentum 
(assuming normal incidence).  

Object Density Size 

Case #1: 100 mg particle impacting 2 m 
from CoM at 400 m/s, MEF = 1 (i.e, GEO) 

MLI square a 0.04269 g/cm2 1.53 cm 
CFRP squareb 1.8 g/cm3 0.75 cm 
Mylar squarec 0.0032 g/cm2 5.59 cm  

Case #2: 3.64 mg particle impacting 1 m 
from CoM at 11 km/s, MEF = 2 d(i.e, LEO) 

Al. sphere 2.7 g/cm3 1.37 mm dia. 
Steel sphere 8.05 g/cm3 0.95 mm dia. 
Copper wiree 8.96 g/cm3 1.29 cm 
CFRP square b 1.8 g/cm3 1.42 mm 
Mylar square c 0.0032 g/cm2 1.07 cm  

a Square of multi-layer insulation, areal density of standard JPL blanket per 
reference [34]. 

b Square of carbon fiber reinforced polymer, 1 mm thick, density per [35]. 
c Double aluminized perforated Mylar, single outer blanket layer per [34]. 
d MEF based on findings in reference [36]. 
e Length of copper wire 0.2 mm diameter. 

Fig. 4. Response of spacecraft to simulated debris strike (60 mg at 8 km/s, 1 m 
from CoG, applied at t = 50 s Hstrike = 0.48 N m s). Note similarity between rate 
telemetry and Sentinel-1A telemetry (Fig. 1). 
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RW torque capability. Since the frequency of the spacecraft’s response is 
the same when correcting any strike too small to saturate the RWs, this 
largest wavelet envelopes the response of the spacecraft to smaller 
strikes. A filter with this wavelet produces a comparable SNR to a 
wavelet that matches the size of the strike, and thus only one detection 
wavelet needs to be run on each axis. A strike which saturates the wheel 
torques is detectable without a closely matched wavelet due to its large 
magnitude. Fig. 5 shows the wavelet developed for the spacecraft rate 
applied to noisy telemetry, with the filter output showing a spike at the 
corresponding time. 

To develop wavelets for a real spacecraft, the developmental 
spacecraft dynamics simulation can be used to determine initial 

wavelets. Once the satellite is in orbit, the spacecraft’s response to other 
momentum-changing events can be used to tune the wavelets. For 
example, a spacecraft’s response to a slight angular momentum impar
ted during a small maneuver has similar characteristics to the response 
to a debris strike. Fig. 6 shows some telemetry from NASA’s Solar Dy
namics Observatory (SDO) recovering its attitude after a maneuver. 

Note that the attitude wavelets are only run on the vector compo
nents of the error quaternion, since the scalar component will always be 
close to one for small errors. Under the small angle approximation, the 
scalar component will remain near one but the vector components will 
vary linearly with φ

2, where φ is the angle of the error in each axis. 

3.2.2. Developing filter thresholds 
The filter thresholds are developed using a Receiver Operating 

Characteristic (ROC) curve. To develop this curve, pdfs of the filter 
output are developed empirically. The first pdf is the filter output with 
no strikes present, to characterize the noise in the filter. Then a specified 
strike is applied to the simulation 1000 times and the filter response to 
each strike is logged and used to generate a pdf of filter response to that 
strike. The strike size is selected such that the center of the bell curve is 
in the vicinity of the desired threshold on the no-strike pdf. To achieve 
this, 30 mg strikes are applied to generate the filter response for attitude 
thresholds, and 40 mg strikes are applied to generate the filter response 
for rate thresholds. From the two pdfs the ROC curves are generated, and 
the slope of the ROC curve at PFA = 0.01% corresponds to the threshold 
for the likelihood ratio test [32]. The likelihood ratio test is applied to 
possible filter outputs and the filter output at which the likelihood ratio 
test exceeds the threshold from the ROC curve is selected as the filter 
output threshold for strike detection. See Fig. 3 for a graphical repre
sentation of this process. 

3.2.3. Determining strike parameters 
Once a debris strike is detected using the matched filter output and 

associated threshold, the task is to assess the magnitude of the debris 
strike. This is accomplished using a bank of matched filter wavelets and 

Fig. 5. Example of matched filter accentuating a 50 mg debris strike applied at 
t = 50 s. Note that when the strike is applied the telemetry increases slightly for 
a few points then decreases slightly, but it is difficult to see in the raw telemetry 
as it is beneath the noise floor. However, the filter produces a distinct spike 
in response. 

Fig. 6. Example of spacecraft correction after a small maneuver imparts a slight 
rotation. Note similarities to simulated debris strike response. 
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determining which filter wavelet shows the closest match to the 
telemetry. Then the size of strike used to generate that wavelet is 
selected as the estimated strike size. Refer to Section 3.1 and Table 2 for 
a detailed discussion on the relationship between strike size as traded in 
this paper and debris strike parameters. 

Four methods are compared to determine which wavelet is closest to 
the telemetry. The first method takes the root-sum-squared error (RSSE) 
between the telemetry and each wavelet then selects the wavelet where 
this is a minimum. The second takes the minimum mean-squared error 
(MMSE), the third the minimum absolute error (MAE), and the fourth 
the sum of the absolute value of the error cubed (‘Cubic’). The results 
show that the MMSE and RSSE have identical performance, which 
makes sense since the errors are penalized identically in both methods - 
as a function of the square of the error. The absolute error is penalized 
linearly while the fourth method penalizes the error cubed. Across 1000 
Monte-Carlo runs with randomized debris strikes, the error in estimated 
strike magnitude for each method is shown in Table 3. Note that these 
errors are for accurately detected strikes only, Section 3.2.4 discusses 
the overall detection performance of the algorithm. Based on these re
sults, the MMSE is selected as the estimation method for the remainder 
of this study. Fig. 7 shows a wavelet bank, simulated telemetry with the 
true state overlaid, and the results of each estimation method along with 
the true strike size. 

3.2.4. Assessing algorithm performance 
To assess the algorithm’s performance, a 1000 run Monte-Carlo is 

conducted randomizing the strike time, size, and direction. The envel
oping matched filters from Section 3.2.1 are run against the telemetry to 
detect strikes per the thresholds developed in Section 3.2.2. When they 
detect a strike the wavelet bank is run at that time and the MMSE is 
computed. The closest-matching wavelet is selected as the strike’s esti
mated size, and that result is compared to the true size. The results, 
shown in Fig. 8, indicate that the attitude filter consistently detects 
strikes larger than 60 mg, while the rate filter consistently detects strikes 
larger than 80 mg. Both filters also detect smaller strikes, but the per
centage detected decreases with smaller strikes. The estimated strike 
sizes cluster in the vicinity of the true strike sizes, but vary by around ±
20 mg. A fair number of outliers are under-predicted by more than that, 
especially via the rate telemetry. 

3.3. Sequential probability ratio tests (SPRTs) 

Three SPRTs are implemented on the angular momentum telemetry, 
as the inertial angular momentum is theoretically quiescent in the 
absence of external torques while a debris strike produces an abrupt 
change in momentum. SPRTs compare the noisy output data to an ex
pected probability distribution and the filter output increases when a 
prolonged deviation from the expected output occurs. Since the mo
mentum changes gradually due to effects like solar radiation pressure 
the parameters of the expected distribution change over time. To apply 
SPRTs to the debris strike problem a sliding window filter is used. This 

sliding window incorporates a ‘pre-window’ which is used to compute 
the expected distribution parameters, providing a fading estimate of the 
most recent distribution parameters. In the ‘post-window’ the SPRT al
gorithms are applied to detect changes from the distribution charac
terized in the pre-window. This causes the filters to peak at the debris 
strike time, when all data in the pre-window is before the strike and all 
data in the post-window is after the strike. 

The simple summation filter subtracts the average of the pre-window 
from the post-window data and then sums the zeroed post-window data. 
When the mean of the post-window is similar to the mean of the pre- 
window the filter output, ysum, is near zero. When a change occurred 
at the junction between the windows the filter output reaches a 
maximum. For m datapoints, 

Fig. 7. Wavelet bank and results from running filters against a 50 mg strike at t 
= 30 s. Minimum error is selected as most probable strike size (48 mg). Results 
from each estimator are compared. 

Table 3 
Comparing error in estimated strike magnitude for each estimation method.  

Estimation Method Mean Error Standard Dev. 

Using Attitude 

MMSE 1.4 mg 8.7 mg 
RSSE 1.4 mg 8.7 mg 
MAE 2.0 mg 10.9 mg 
Cubic 1.5 mg 9.1 mg 

Using Rate 

MMSE − 4.46 mg 13.1 mg 
RSSE − 4.46 mg 13.1 mg 
MAE − 2.95 mg 14.3 mg 
Cubic − 4.50 mg 13.2 mg  
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ysum =
∑m

i=1

(
xi − μpre− window

)
(16) 

The CUSUM algorithm sums the likelihood ratio of each datapoint 
given the μ and σ calculated from the pre-window compared to two 
alternative hypotheses: a displacement of Δμ N.m.s in either the positive 
or negative direction. Then the test statistic Wn from Equation (11) is 
used as the filter output. This also produces a maximum at approxi
mately the time of the strike. 

The Shiryaev algorithm applies the recursive relation in Equation 
(13) to each data point for j alternative hypotheses, where each H j is a 
displacement of nΔμ N.m.s from the μ of the pre-window and n is a 1D 
array of integers from − 10 to 10. The final CDFs (Fj,end) at the end of the 
post window are used as a weights to produce the following weighted 
sum as the estimated change in μ based on the entire post-window 
measurement sequence 

Δμest =
∑j

i=1
niΔμFi,end (17) 

Fig. 9 shows the inertial angular momentum telemetry with a small, 

subtle debris strike. The change in distribution is not readily apparent 
from the raw data, but the highlights in Fig. 9(b) show that the distri
bution underlying the noisy data has changed abruptly. This telemetry 
shows a 10 mg strike, and Figs. 10 and 12 show that the filters respond 
favorably even to subtle changes like this. 

3.3.1. Selecting filter parameters 
The performance of each of the SPRTs is dependent on the filter 

parameters such as the length of the windows and the choice of Δμ. The 
length of the pre-window is fixed at 200 datapoints and the post-window 
at 180 datapoints to allow reasonable computation times during long 
Monte-Carlo runs. The a priori probability of change for the Shiryaev 
algorithm, p̃, is fixed at 1× 10− 6. 

A Δμ of 0.1 N m s is chosen for the CUSUM algorithm, which cor
responds to a 12.5 mg strike. This threshold could be lowered to detect 
smaller strikes, but that would result in additional noise in the absence 
of strikes. Selection of the Δμ threshold is a design choice for a given 
application, depending on whether it is desirable to detect any potential 
small strikes with a higher probability of false alarm or preferable to 
detect only the larger strikes with more confidence. The Shiryaev Δμ 
array is chosen to achieve the desired granularity in strike size estimates. 
A granularity of 5 mg in strike size is selected as the granularity for the 
Shiryaev algorithm, which corresponds to a Δμ of 0.04 N m s. 

With these parameters, the filters produce the results shown in 
Fig. 10 when strikes with magnitudes 5, 10, 15, and 20 mg are applied in 
the x-axis. As shown, the filters struggle to detect the 5 mg strike but the 
10 mg strike and higher are clear. The CUSUM algorithm and summation 
filter both show peaks at approximately the time of the strike, but the 
Shiryaev algorithm tends to have a plateau in the vicinity of the strike. 
This is because this algorithm is developed to provide quick change 
detection, and estimates the parameters directly. As soon as the end of 
the post window starts incorporating the change the algorithm begins 
predicting that the change has occurred, then the estimates for the 
change are refined, becoming less noisy as more of the post-window 

Fig. 8. Detection results per attitude matched filter and rate matched filter, and 
plot of estimated vs. true size. Non-detected strikes and false alarms shown as 
zeros on each axis. 

Fig. 9. Raw momentum telemetry with 10 mg strike at t = 500 s.  
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includes the change. When the window passes the point of the change 
the estimates for the change drop off as the pre-window starts incor
porating the change in its fading assessment of the H o parameters. The 
simple summation algorithm has a noticeable peak for the smallest 
strike, while the CUSUM does not because it is well below its detection 
threshold. However, the noise in the simple summation algorithm is 
nontrivial, while the CUSUM has an excellent SNR for the three larger 
strikes. The Shiryaev algorithm seems to have a high SNR, but it also has 
false alarms just within this short run - a large false alarm on axis 2 at the 
end of the run, and a small spike on axis 3 that doesn’t quite cross the 
threshold just after the 10 mg strike. 

3.3.2. Developing filter thresholds 
To develop detection thresholds the pdf of filter output is used, 

similar to Section 3.2.2. However, the filter output for the SPRT filters is 
not always Gaussian like the matched filter output, so each algorithm’s 
threshold development is tailored to accommodate its unique output 
distribution parameters. The noise distribution for the output of each 
algorithm when no debris strikes are present is developed using a 
simulation with 40,000 filtered datapoints, while the noise distribution 
for the output when a strike is present is developed by applying a 10 mg 

strike to the simulation 1000 times and measuring the peak response. 
Fig. 11 shows the Q-Q plots of the filtered data using distributions 
specific to each algorithm. 

3.3.2.1. Summation filter output distributions. The output of the sum
mation filter with no debris strikes is modeled fairly well by a Gaussian 
distribution. The filter’s output has slightly lighter tails than a Gaussian 
distribution, so the thresholds developed using a Gaussian are somewhat 
conservative in terms of false alarm rate. The peak of the filter output 
when a debris strike is applied is also fairly Gaussian, so the method 
outlined in Section 2.2 is used to develop thresholds for strike detection 
using a desired PFA of 0.01%. Based on the ROC curve, the selected 
threshold for the summation filter is 8.8. 

3.3.2.2. CUSUM output distributions. The CUSUM algorithm has a one- 
sided output and thus requires a one-sided pdf. However, standard 
one-sided pdfs have lighter tails than the data from the CUSUM algo
rithm producing more false alarms than desired. To avoid this, a kernel 
distribution is used. When a debris strike is present the variation in the 
peak of the CUSUM algorithm is two-sided but skewed, and a kernel 
distribution is also used for that model. The pdfs generated by these 
distributions are used to develop the detection thresholds for the 
CUSUM algorithm per Section 2.2. This results in a threshold of 13.4 for 
the CUSUM algorithm. Note that 10 mg is slightly below the size of strike 
that the CUSUM algorithm is tuned to detect, so the output is variable 
resulting in a broad pdf. 

3.3.2.3. Shiryaev output distributions. The Shiryaev algorithm’s output 
is highly non-normal and defied all attempts to model it with standard 
pdfs. This applies to both the no-strike noise parameters and the output 
during debris strikes. Therefore, instead of using a poorly-fitted and non- 
representative ROC curve the thresholds are developed empirically from 
the no-strike noise data. Based on this data, a threshold of 0.03 N m s, or 
75% of the smallest strike the algorithm is tuned to detect is selected. 
This threshold produced a PFA of 0.4% in one long simulation, but the 
threshold’s true PFA is not assessed analytically due to the lack of ac
curate pdfs characterizing the data. 

3.3.3. . Assessing detection performance 
A 1000-run Monte-Carlo is conducted to assess each algorithm’s 

ability to detect debris strikes using the thresholds developed in Section 
3.3.2. The Monte-Carlo randomizes the strike magnitude and direction, 
so it is applied on any combination of the three axes. Fig. 12 shows the 
detection accuracy of each algorithm for various strike sizes. These re
sults indicate that detection performance is excellent for all three algo
rithms for strikes greater than 10 mg. Note that strike direction is 
randomized as well as strike magnitude, so each axis sees only a fraction 
of each strike. 

The detection results for the CUSUM algorithm taper off more 
quickly than the Shiryaev or summation filter results, but this is likely 
due to the filter being tuned to detect strikes slightly larger than 10 mg. 
If the filter were tuned to detect smaller strikes it would likely perform a 
little better, as the SNR is exemplary as shown in Fig. 10. However, the 
filter output noise would increase if it were tuned to detect smaller 
strikes so the current tuning is maintained as a conservative and reliable 
filter. 

The Shiryaev and summation filters show an ability to detect some 
strikes even in the < 3 mg range. It is likely that some of these strikes are 
false alarms. In a run with no strikes and 20,000 datapoints the Shiryaev 
filter produced eight false alarms while the summation filter produced 
one and the CUSUM filter produced zero. In a run the length of this 
Monte-Carlo simulation there would likely be well over 100 false alarms 
for Shiryaev and a dozen or so for the summation filter, although many 
of those would be hidden within the response to real strikes. 

Fig. 10. Output of SPRT filters with 5, 10, 15, and 20 mg strikes applied to the 
x-axis. 
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3.3.4. Estimating strike parameters 
When a strike is detected by the simple cumulative sum filter or the 

CUSUM algorithm an estimate of strike parameters is obtained by 
comparing the average of the pre-window data to the average of the 
post-window data for each axis. The difference in averages is used as an 
estimate of the momentum imparted by the strike. With the Shiryaev 
algorithm’s weighted sum the output of the filter corresponds to the 
estimated strike size, so the filter output is used as an estimate of strike 
parameters. Fig. 13 shows the accuracy of each filter’s estimate of strike 
magnitude by plotting the true vs. estimated strike size. Non-detected 
strikes are shown on the x-axis. These results show that both methods 
do an exemplary job of estimating strike parameters. The estimates from 
the Sum and CUSUM algorithms tend to be more accurate, with nearly 
all the errors within ± 5 mg. The results from the Shiryaev algorithm are 
good as well but have significantly more outliers with poor estimates. 

4. Results 

The matched filters perform well for detecting strikes larger than 
about 40 mg, and can estimate the strike size to within around ± 20 mg. 
Matched filters offer the advantage of Gaussian filter output which al
lows high confidence in the filter’s false alarm rate. This is key when 
these methods are used to evaluate debris populations using on-orbit 
telemetry, since the level of confidence in the results must be 

understood to evaluate whether the measured strikes are reasonable 
based on the modeled fluxes. 

Note that the exact filter thresholds and estimation accuracy are 
dependent on the spacecraft parameters and telemetry noise parameters 
used in this assessment, and will vary with different parameters for 
different spacecraft. Reference [26] discusses some preliminary results 
when trading spacecraft parameters. This work indicates that smaller 
spacecraft are capable of detecting smaller strikes with equivalent 
telemetry noise, but they also have a smaller collection area. Also recall 
that the thresholds are expressed in mg here to provide a straightforward 
and intuitive comparison between methods, but the angular perturba
tions are estimated in N.m.s. Table 2 provides examples of a variety of 
potential impacting particles with equivalent angular momentum 
transfer. 

The performance of the SPRT methods run against the inertial 
angular momentum telemetry is outstanding. They are able to detect 
debris strikes reliably down to 10 mg and occasionally down to 3 mg or 
less. Their estimation performance is also excellent, generally estimating 
strike magnitudes to within ± 5 mg. This excellent performance 
compared to the matched filters is especially noteworthy because the 
momentum telemetry is calculated from the noisy attitude, rate, and 
wheel speed telemetry, whereas the matched filters only see either rate 
or attitude noise. This shows that the SPRT algorithms’ ability to identify 
subtle changes in noisy telemetry is exceptional. 

Fig. 11. Q-Q plots illustrating results when fitting various distributions to filter output.  
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Each SPRT algorithm has unique strengths and weaknesses. The 
summation algorithm offers extremely low computational requirements, 
and very little tuning or a priori knowledge is required to run it effec
tively. Its noise parameters are also fairly well modeled which allows the 
selection of thresholds with predictable false alarm rates. A drawback is 
that it has the lowest SNR of any of the algorithms which may degrade its 
performance on orbit when the measurement and state noise is not 
necessarily Gaussian. However, its extreme computational simplicity 
offers a potential on-board application. State-of-health telemetry is 
typically downlinked at substantially lower rates than on-board data 
processing to conserve bandwidth. Higher rate data could assist with 
accurate detection of small strikes. This simple algorithm could be used 
to screen for strikes using the high-rate on-board telemetry, and buffered 
telemetry could be downlinked at a higher rate if a probable strike is 
detected. This would offer more information to definitively establish if a 
strike has occurred and to assess any effects of the strike. 

The CUSUM algorithm offers consistent performance and a very high 
SNR, with noise parameters that, while not Gaussian, did allow 
modeling via kernel distributions. One feature of this algorithm is its 
tunability: it allows a design choice about the size of strike to detect 
which must be balanced against the risk of false alarms. A drawback is 
that it has a non-trivial computational burden as the likelihood ratios 
must be computed for every datapoint in every sliding window. How
ever, for running on telemetry as it is downlinked or running on his
torical telemetry it performs very well. 

The Shiryaev algorithm is challenging in its highly non-Gaussian 

distribution parameters which make it difficult to assess the false 
alarm rate for a given threshold. It has very good performance but is 
more finicky than the CUSUM algorithm, and it is difficult to determine 
the time of the strike precisely. This could be a detraction if trying to 
identify the effects of the strike in multiple telemetry streams. However, 
this difficulty is partly due to its rapid response to strikes, which could be 
an asset in some applications where only a small window of data is us
able or when quick strike detection is desired. Additional tuning may 
help to improve the false alarm characteristics of this algorithm by 
adjusting p̃ and experimenting with various distributions for strike size 
hypotheses. 

5. Discussion 

Applying these techniques to on-orbit telemetry is a non-trivial 
challenge, as the noise and events experienced by a real spacecraft can 
trip the detection algorithm thresholds even when no strike is present. 
While the theoretical inertial angular momentum is perfectly quiescent 
in the absence of external forces, the reality is more variable. A drift in 
the inertial angular momentum will be interpreted as a debris strike by 
the SPRTs if it produces a significant change between the pre-window 
and post-window. Therefore, the windows must be kept short enough 
that any unmodeled drift in momentum is small relative to the size of 
debris strike that the filters are tuned to detect. Accommodating these 
unmodeled drifts must take into account varying solar activity, gravity 
gradient torques and atmospheric drag for LEO orbits, and any changing 
conditions encountered by satellites in elliptical orbits. 

Spacecraft events which trip the detectors need to be accommodated 
in any algorithms applied to on-orbit telemetry. Planned events can be 
accommodated either by blanking results during occasional events like 
thruster firings, or the SPRTs could be run on a residual generated by a 
spacecraft model that includes all on-board events which change the 

Fig. 13. True size of each strike in 1000 run Monte-Carlo compared to esti
mated size using two estimation methods. 

Fig. 12. Detection performance of each filter on 1000 randomized strikes.  
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measured angular momentum, such as solar array tracking. This would 
highlight any subtle unexpected perturbations. 

However, other unexpected perturbations may be interpreted as 
particle impacts. For example, Bogorad showed that an electrostatic 
discharge (ESD) event can impart momentum to the discharging object 
[37]. This is especially difficult to mitigate as a hypervelocity impact can 
also create an ESD event, so differentiating an ESD event that causes 
momentum transfer from a debris strike that causes ESD is a unique 
challenge. Spacecraft that are prone to ESD may struggle to separate 
strikes from other events, but well-built spacecraft with little risk of ESD 
could use the plasma generated by an impact as validation that an 
impact has occurred. In either case, the data should be examined for 
correlation between probable strike events and solar activities or orbit 
location/charging conditions to determine if ESD is a probable cause of 
any detected perturbations. Similarly, a satellite may experience a dy
namic event due to thermal changes as it enters or exits eclipse which 
could manifest as a change in the observed inertial angular momentum. 
Fortunately eclipse dynamics are easy to screen for in an algorithm 
based on distinct changes in other telemetry (i.e., solar array power). 

Another complication is the fact that spacecraft are not actually rigid 
bodies. In the Sentinel-1A debris strike (Fig. 1) the spacecraft rate 
telemetry exhibited a significant amount of ‘ringing’ which was prob
ably due to the fundamental frequency of the solar array being excited 
by the strike. A similar phenomenon was observed in the MMS strikes 
[13,25]. This ringing obfuscates the effects of the strike as the calculated 
spacecraft momentum oscillates instead of showing an abrupt change, 
and this feature has an effect on the SPRT algorithms’ output. However, 
the oscillation itself might also provide an effect that could be detected 
with the right filter. A spring-mass-damper appendage could be added to 
the simulation for detailed assessment of the effects of appendage 
vibration. 

Additional telemetry types should be considered for their contribu
tions to identifying and assessing debris strikes. If a debris strike is large 
enough to change the orbit measurably the linear momentum may be 
estimated, which can be combined with the angular momentum to es
timate the strike location on the spacecraft. Alternately, hypervelocity 
impacts produce a change in the ambient plasma surrounding a space
craft [21], and mm-size impacts on solar arrays cause degradation in the 
power generation capabilities [38]. These and related features may be 
detectable. 

Alternate data processing strategies may also prove useful for 
detecting impact events. For example, various research efforts continue 
to investigate the practicality of machine learning approaches for 
various space applications [39]. As mentioned in Section 1, machine 
learning techniques may be one interesting approach to solving this 
problem, but at present they often suffer from a lack of clear methods to 
verify and validate their performance. For this initial development, ca
nonical techniques are used to provide a well-understood and 
well-characterized methodology for solving the problem, rather than a 
‘black box’ solution which may include unknown undocumented 
features. 

An essential element of validating the data returned by these 
methods is to compare the strikes predicted via models to detected 
strikes, and to compare results between spacecraft. This model com
parison should take into account micrometeoroid populations as well as 
debris. This method returns the angular momentum of the strike, so a 
small and fast micrometeoroid would manifest similarly to a slower and 
larger piece of orbital debris. The effects of the time-variant flux density 
should also be considered when evaluating these methods. Polar regions 
are expected to exhibit higher debris fluxes for LEO spacecraft and ‘rush 
hours’ are anticipated for GEO spacecraft [40]. The flux of micromete
oroids also shows some variation throughout the year [41], and pre
liminary results indicate that these methods may be able to observe 
these variations [25]. 

There are additional complications even after a debris strike is 
detected and the change in momentum is estimated. As discussed in 

Section 2.1, the momentum imparted by the debris to the spacecraft is 
only a fraction of the momentum of the debris relative to the spacecraft 
if the impactor breaks through. However, if the impactor is stopped by 
the structure the plume of ejecta can cause the imparted angular mo
mentum to exceed the relative momentum of the debris by a factor of 
two or more [36]. This highlights the importance of examining other 
telemetry, such as solar array power output, for indications of the strike. 
If the strike’s location can be identified and any damage assessed it can 
improve the ability to determine whether the estimated strike parame
ters are overpredicting or underpredicting the actual relative mo
mentum of the debris. 

There are of course several relevant elements of the hazardous non- 
trackable debris population that are not entirely captured in various 
types of debris measurement. An impactor’s mass, size, density, and 
shape all play a role in its potential to damage spacecraft and the evo
lution of its orbit. Radar cross section is the primary debris data 
collection technology for small debris in LEO, but the measurement 
corresponds to an object’s size rather than its mass, and the performance 
falls off at higher altitudes. Per the 2017 NESC report [9] the uncertain 
relationship between debris mass and size is likely a nontrivial 
contributor to discrepancies between modeled risks and observed events 
on orbit. 

Therefore, this measurement methodology offers two unique con
tributions to small debris modeling and measurement. For one, the im
pactor’s mass is directly related to the momentum imparted to the 
spacecraft in an impact. Collecting measurements of perturbations from 
benign debris impacts offers a unique capability to generate measure
ments which correspond to the mass flux of hazardous non-trackable 
debris. Understanding this mass flux is a critical element of improving 
models and risk assessments. Also, this collection method can produce 
data in GEO, which has a significant population of critical satellite 
infrastructure but severely limited methods for collecting data on small 
debris populations [42]. 

Improving debris models and risk assessment methods is critical to 
ensuring that effective space environment management is performed as 
the global space industry enters the NewSpace era. Historically, when 
most space missions were exquisite government-funded one-offs, there 
was room for substantial conservatism in debris risk assessment 
methods. As commercial players launch large constellations and 
product-line satellites the debris environment will be increasingly 
stressed while the more rigorous debris mitigation standards are often 
only enforced on government missions [43]. To incentivize responsible 
behaviors among commercially-driven NewSpace actors, accurate 
models are a necessity. Overly conservative models with questionable 
accuracy will not be sufficient to promote responsible behaviors among 
commercial players. Fortunately, the burgeoning population of con
stellations and product-line satellites is a great fit for this type of debris 
data collection solution, with an inherent capability to substantially 
enhance knowledge of the local debris environment. 

6. Conclusions 

This study develops practical and effective methods for identifying 
subtle indications of debris strikes using standard spacecraft telemetry. 
It provides a powerful tool for spacecraft operators to employ satellite- 
as-a-sensor methods [44] to gain insight into the debris environment 
for their spacecraft’s orbit. Additional insight will be critical to enable 
the increasing use of all Earth orbits by burgeoning populations of space 
objects. Substantial populations of debris that can harm a spacecraft are 
untracked and accurately modeling these populations is challenging, 
especially for higher orbits. Leveraging active satellites as in situ debris 
sensors with inherent ability to detect minor strikes would revolutionize 
the space industry’s understanding of the untrackable debris environ
ment to improve debris modeling, anomaly attribution and response, 
and debris risk assessments for future missions. 
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Appendix 

Table 1 
Parameters used in spacecraft dynamics simulation.  

Parameter Value Unit 

S/C Inertia xx 3000 kg.m2 

S/C Inertia yy 2500 kg.m2 

S/C Inertia zz 3500 kg.m2 

RW Inertia 0.16 kg.m2 

RW max torque 0.2 N.m 
RW 1 pointing vector [1, 0, 0] – 
RW 2 pointing vector [0, 1, 0] – 
RW 3 pointing vector [0, 0, 1] – 
RW 4 pointing vector [1, 1, 1] – 
State noise in attitude σ = 1E-8 – 
State noise in rate σ = 1E-8 rad/s 
Meas. noise in attitude sim σ = 1E-6 – 
Meas. noise in rate sim σ = 1E-6 rad/s 
Noise in applied torque σ = 0.001 N.m 
Meas. noise in attitude tlm. σ = 7E-5 – 
Meas. noise in rate tlm. σ = 2E-4 rad/s 
Meas. noise in RW speed tlm. σ = 0.25 rad/s  
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