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Abstract

This paper explores methods for approximating and analyzing the dynamics of highly perturbed spacecraft formations with an
emphasis on computationally efficient approaches. This facilitates on-board computation or rapid preliminary mission design analysis.
Perturbed formation dynamics are often approximated as linear time-varying (LTV) systems, for which Floquet theory can be used to
analyze the degree of system instability. Furthermore, the angular momentum of the relative orbital state can be computed with the
approximate dynamics to provide additional insight. A general methodology is developed first and then applied to the problem of unsta-
ble formation dynamics in asteroid orbits. Here the dominant perturbative effects due to low-order gravitational harmonics and solar
radiation pressure are modeled. Numerical simulations validate the approach and illustrate the approximation accuracy achieved.
� 2020 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Spacecraft relative motion dynamics have been a topic
of study for nearly 60 years, since the introduction of the
well-known Clohessy-Wiltshire linearized model
(Clohessy and Wiltshire, 1960). This model is used for cases
of small separation between two spacecraft in Keplerian
orbits, with the restriction that the spacecraft about which
the relative motion dynamics are linearized is in a circular
orbit. There has been much progress in the field since this
early work. Many researchers have focused on extending
the Clohessy-Wiltshire equations to account for nonzero
chief eccentricity or larger formation separation in Keple-
rian orbits (DeVries, 1963; Melton, 2000; Karlgaard and
Lutze, 2003). Some work has also been done to analyze
the relative motion problem in other coordinate systems,
notably curvilinear coordinates and orbit element
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differences (Schaub, 2004). Additionally, some authors
have considered the effects of various perturbations com-
mon in planetary orbits, including atmospheric drag
(Carter and Humi, 2002), zonal gravity (Schweighart and
Sedwick, 2002; Burnett et al., 2018; Biria and Russell,
2018), and solar radiation pressure (Guffanti et al., 2017;
Parsay and Schaub, 2016). These works are especially valu-
able for multi-spacecraft formations in low-Earth orbit
(LEO) to medium-Earth orbit (MEO). In this region and
in other planetary orbits, the scale of the perturbation is
small in comparison to the two-body acceleration, but
the perturbative effects often still need to be considered.

In the context of relative motion perturbed by gravita-
tional harmonics, notable works include an analysis of per-
turbed formation flight using quasi-periodic invariant tori
(Baresi, 2017), study of J 2-invariant relative motion using
mean orbit elements and dynamical constraints (Schaub
and Alfriend, 2001), and a newer linearized relative motion
model for rotating second degree and order gravity fields
(Burnett and Butcher, 2018). The method of using
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quasi-periodic invariant tori provides an interesting per-
spective and compelling results, while differing significantly
from the other listed works. The dynamics are not approx-
imated, and the formation flying problem is approached
through dynamical systems theory. Unfortunately, the
analysis relies on numerically costly shooting and colloca-
tion methods for computing the tori. Methods that are
more amenable to fast, on-board implementation are
sought. Furthermore, analysis should be extended to con-
sider the simultaneous effects of multiple perturbations as
needed, in addition to the low-order zonal harmonics.

Orbits about asteroids and comets are highly affected by
the rotating or tumbling gravity field, solar radiation pres-
sure (SRP) disturbances, and other forces such as comet
outgassing or thermal radiation pressure from the body.
The weaker gravity of these bodies enables these small
forces to be quite significant to the orbital motion, with
an extremely pronounced effect on the scale of relative
orbital motion. Two trends in spaceflight suggest that more
attention should be paid to studying formation dynamics in
such complex environments. First, multi-spacecraft forma-
tions are becoming more popular for proposed and actual
missions. This is being accelerated by the adoption of
CubeSats and low-cost, modular space hardware (Araguz
et al., 2018). Second, asteroids and comets are increasingly
chosen as targets for scientific space missions (Michel et al.,
2018), while private space companies also have interest in
these bodies for resource characterization and future
extraction.

Operational complexity, light-speed delay, and other
issues require future formation-flying asteroid missions to
operate autonomously. As a result, it is extremely desirable
for computationally efficient, high-accuracy dynamics for-
mulations to be used for on-board navigation and control.
This work both surveys existing tools and proposes new
approaches for efficient analysis.

This paper explores and applies multiple tools from
approximation theory for dealing with the various analytic
challenges in highly perturbed spacecraft formation flying.
In particular, models obtained using perturbation methods
are applied. In addition to their well-known control appli-
cations, these analytic models enable a minimal set of
dynamically influential parameters to be easily identified,
reducing the needed dimensionality of any design-space
parameter studies for formation design. Tools from Flo-
quet theory facilitate the stability analysis. By studying
how the variation of free parameters in the linearized sys-
tem matrix affect the system Floquet multipliers, one can
obtain dynamical insight about a multi-spacecraft forma-
tion, at a fraction of the computational cost of using the
original nonlinear system dynamics.

The various techniques introduced in this paper are
applied to the approximate linear time-varying (LTV)
model of spacecraft relative motion in SRP-perturbed
orbits about stably rotating asteroids. The effects of the
rotating second degree and order gravity field are also
modeled. The results of analytical techniques discussed in
this paper are easily interpreted to efficiently predict the
parametric variations in formation dynamics and stability.

2. Approximating perturbed dynamics

Analytic closed-form exact solutions describing per-
turbed (non-Keplerian) orbital motion do not exist, and
numerical simulation of the perturbed dynamics can be
computationally expensive. However, approximations do
capture some of the complex behavior of the real system,
while adopting simple forms that are far more amenable
to analysis. The choice of frame of reference or coordinate
system affects the ease with which such useful approxima-
tions can be obtained, as well as their degree of accuracy.

The focus of this paper is in using linear time-varying
(LTV) approximations of the relative motion of two or
more spacecraft in similar perturbed orbits. Such approxi-
mations describe the differential dynamics of the relative
state dX ¼ Xd � Xc, where the state is a vector of 6 quan-
tities and the subscripts d and c refer to the spacecraft
labeling deputy and chief commonly used in formation
flying:

d _X ¼ A tð Þ½ �dX ð1Þ
Note that one may arbitrarily decide which spacecraft is
designated as the chief and which is the deputy. Two com-
mon representations for the relative state are to resolve the
relative position

Dr ¼ x; y; z½ �> ð2Þ
and velocity

Dr0 ¼ _x; _y; _z½ �> ð3Þ
in a rotating chief-centered local vertical–local horizontal
(LVLH) frame, or to use differential orbital elements
(chief-centered deviations in an orbit element space). In this
context, ðÞ0 denotes the time derivative of a state quantity
as seen in the LVLH frame. The results in this paper mainly

use the LVLH representation dX ¼ Dr>;Dr0>½ �>. In this
paper, note that d can represent any difference between
any quantities, while D is reserved specifically for the rela-
tive position and velocity of the deputy as seen from the
chief in the rotating frame, and for terms computed solely
using these vectors.

This introductory discussion is kept as general as possi-
ble to accommodate the diversity of possible environmental
perturbations. Resolving the linearized differential dynam-
ics in a perturbed chief-centered frame results in system
matrix dependency on the chief state Xc tð Þ, along with per-
turbative terms ni tð Þ:

A tð Þ½ � ¼ A Xc tð Þ;
X
i

ni tð Þ
 !" #

ð4Þ

Note that the perturbative terms typically have dependence
on the chief state. This notation reflects the possibility that
the system matrix components are factored into perturbed
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and unperturbed quantities. For the LVLH frame descrip-
tion of the differential dynamics, the differential two-body
and perturbation accelerations yield kinetic terms. The
dependence on the chief state manifests as time-varying
kinematic terms which may be described in terms of the

perturbed right ascension rate _X and the argument of lati-

tude rate _h ¼ _xþ _f . Except for the secular component of
_h, the orbit element angular rate terms are on the same
order as the perturbations, and are functions of the chief
orbit position.

In most situations of interest, the orbital mechanics of
the k individual spacecraft in the formation are dominated
by simple two-body gravity, but are subject to other signif-
icant secondary perturbations. Resolving the perturbative
dynamics in terms of associated scaling terms ai � 1 that
reflect their secondary nature, one may write the state
dynamics in terms of two-body gravity (f 0) and deviations
due to the perturbations:

_Xk ¼ f 0 Xkð Þ þ
X
i

aif i Xk; tð Þ ð5Þ

For a finite time span, the solution to these equations is
similar to the two-body solution, with O að Þ deviations
For example, for a perturbed near-circular orbit,
r tð Þ � a0 1þ af tð Þð Þ, where f tð Þ is an approximation of
the deviation, and a0 is the initial orbit semimajor axis.
While the chief dynamics are sometimes linear in the small
terms ai, the associated differential dynamics may contain

many terms of O a2i
� �

and higher, due to kinematic term

dependence on the perturbed chief orbit position. These
higher-order terms are often neglected for analytic simplic-
ity. For linear model accuracy, it is quite important that no
O að Þ terms are missed in the system matrix. Thus, an effort
should be made to capture the variations in lone chief orbit
terms (e.g. r tð Þ) to O að Þ, or to re-initialize the model period-
ically with updated chief orbit parameters. The approxima-
tions of the variations may be obtained through various
analytic techniques (Brouwer, 1959). It is often the case
that the resulting expressions are quasi-periodic, with peri-
ods matching the chief orbit period T c. Thus, one may
write:

A tð Þ½ � ¼ A Xc tð Þ;
X
i

ni tð Þ
 !" #

¼ A Xc t þ T cð Þ;
X
i

ni tð Þ
 !" #

ð6Þ
The perturbative terms ni are O aið Þ (neglecting higher-order
terms) and are also often periodic, with their own associ-
ated periods, T i. If so, then the system matrix A tð Þ½ � will
be periodic, with its period being the least common multi-
ple of all periods: T ¼ LCM T c; T ið Þ. Thus, the differential
dynamics are written in the useful periodic LTV form:

d _X ¼ A tð Þ½ �dX ¼ A t þ Tð Þ½ �dX ð7Þ
An immediate consequence of this approach is that the
degree of instability of uncontrolled spacecraft formations
in highly perturbed orbital environments can quickly be
characterized – a topic to be explored in the next section.
It is comparatively quite easy to analyze or numerically
integrate this single linear system instead of working with
the original nonlinear perturbed orbital dynamics of an
arbitrary number of spacecraft operating in close proxim-
ity. Namely, for the linear model, the fundamental relative
motion dynamics are deputy-independent, and dependent
only on the orbit of a chosen (chief) spacecraft. This
approach has many applications for preliminary mission
design, maneuver planning, impulsive rendezvous plan-
ning, and receding-horizon based closed-loop formation
control.
3. Linear analysis of formation stability

The previously introduced method of approximation of
the perturbed relative motion allows for efficient analysis.
This section discusses two approaches. First, linearized
analysis using Floquet theory is discussed. Then a new
parameter is introduced to describe the evolution of the
formation disturbance with time.
3.1. Application of Floquet theory

Floquet theory is a branch of mathematics for analysis
of LTV systems _x ¼ A tð Þ½ �x with periodic system matrices
A tð Þ½ � ¼ A t þ Tð Þ½ �. One of the main results of Floquet the-
ory is that it is always possible to transform such a system
into one that is LTI via a time-periodic transformation.
The resulting LTI system may be easily analyzed using
the tools of linear systems theory, and it will share stability
properties with the original LTV system (Nayfeh and
Mook, 1979). Floquet theory has been used as an analytic
tool in work on formation flying before (Inalhan et al.,
2002), but the perturbation-based application in this paper
is new.

Let U t; t0ð Þ½ � be the state transition matrix (STM) for the
LTV system, obtained through analysis or by numerical

integration of _U
� � ¼ A tð Þ½ � U½ � with initial condition

U t0; t0ð Þ½ � ¼ I6�6½ �. Since A tð Þ½ � ¼ A t þ Tð Þ½ �, it is clear that
U t; t0ð Þ½ � ¼ U t þ T ; t0 þ Tð Þ½ �. Using this fact, the state tran-
sition matrix from t0 to t þ T can be factored:

U t þ T ; t0ð Þ½ � ¼ U t þ T ; t0 þ Tð Þ½ � U t0 þ T ; t0ð Þ½ �
¼ U t; t0ð Þ½ � U t0 þ T ; t0ð Þ½ � ð8Þ

The constant matrix U t0 þ T ; t0ð Þ½ � is the monodromy
matrix.

Floquet theory guarantees the existence of a T-periodic
transformation P tð Þ½ �, for which it may be assumed
P t0ð Þ½ � ¼ I6�6½ �:
dX tð Þ ¼ P tð Þ½ �z tð Þ ð9Þ
_z ¼ K½ �z ð10Þ
P tð Þ½ � ¼ U t; t0ð Þ½ �e� K½ � t�t0ð Þ ð11Þ



3384 E.R. Burnett, H. Schaub / Advances in Space Research 67 (2021) 3381–3395
The matrix K½ � has eigenvalues kj given in terms of their
associated Floquet multiplier qj, which are the eigenvalues

of the monodromy matrix:

kj ¼ 1

T
ln qj

� � ¼ 1

T
ln eigj U t0 þ T ; t0ð Þ½ �ð Þ� � ð12Þ

In this case the matrix K½ � is:

K½ � ¼ 1

T
ln U t0 þ T ; t0ð Þ½ �ð Þ ð13Þ

Because the periodic transformation P tð Þ½ � is also necessar-
ily bounded, stability of the system in dX is the same as
that of the system in z. The system in z is LTI and easy
to analyze. The system stability can also be studied by
examining the monodromy matrix directly, through the
modulus of the Floquet multipliers. Values of jqjj < 1 cor-

respond to stable modes, while jqjj ¼ 1 corresponds to T-

periodic motion, and jqjj > 1 indicates instability.

The system behavior in z is described in terms of the
eigenvalues ki and eigenvectors mi of K½ �:

z tð Þ ¼
X6
i¼1

cimieki t�t0ð Þ ð14Þ

where in general, the ki and mi, and ci may be complex, but

z 2 R6.
Due to the transformation initial condition

P t0ð Þ½ � ¼ I6�6½ �, the initial conditions are identical in both
spaces, dX 0ð Þ ¼ z 0ð Þ. Thus, the eigenvectors of K½ � corre-
spond to the initial conditions of linearly independent
modes in z and the transformed motion in dX , which inher-
its the stability properties of the modes in z.

Within the set of 6 unique eigenvalues, for any complex
eigenvalue kj, there exists a complex conjugate k�j . Thus, in
the case that all 6 eigenvalues are complex, there are only 3

distinct modes. The jth mode is initialized by any real initial
condition dX 0ð Þ ¼ z 0ð Þ ¼ cjmj þ c�j m

�
j , where cj is allowed

to be complex.
Constructing V½ � column-by-column from the eigenvec-

tors of K½ �, and using Eq. (14) at the initial time, one can
perform modal decomposition of the relative motion from
the initial conditions:

c ¼ V½ ��1dX 0ð Þ ð15Þ
Here the nonzero coefficients in c ¼ c1; c2; . . . ; c6½ �> indicate
contribution from the corresponding modes, or complex-
conjugate components of modes if the coefficients are com-
plex conjugate pairs.

The transformation of the linearized dynamics into z
space enables both stability analysis and modal analysis
to be performed on the complex time-varying linearized rel-
ative motion dynamics. While the application of these
methods is ubiquitous in vibrations research and is also
common some areas of spaceflight such as trajectory gener-
ation, the applications in perturbed formation flying
dynamics are also extensive and comparatively much less
explored. In particular, modal descriptions provide both
powerful insights into perturbed formation behavior as
well as the potential for engineering applications. As one
example, consider that the matrix K½ � may be periodically
re-computed as needed, and the periodically updated eigen-
vectors of its stable modes (if they exist) may be targeted,
enabling rendezvous guidance that takes advantage of the
perturbed formation dynamics. Such strategy could prove
to be much more fuel efficient than impulsive or continuous
maneuver strategies that do not account for the perturbed
dynamics in this way.

In cases where U t; t0ð Þ½ � can be analytically obtained
from the linearized dynamics (typically using symbolic
manipulation software), the analytical and applicational
opportunities are great.
3.2. Systems with incommensurable periods and other

analytic challenges

The system matrix A tð Þ½ � will often be quasi-periodic,
with many chief orbit-periodic terms, along with longer
and shorter period terms due to the perturbations. Analysis
may be difficult for incommensurable periods of time-
varying terms in A tð Þ½ � (e.g. T i ¼ 0:6231 . . . T c), but this
can be remedied to some extent by studying the stability
of the closest reasonable commensurable systems (e.g.
T i ¼ 2

3
T c, thus T ¼ 2T c). For incommensurable periodic

perturbations with T i � LCM T c; T j–i

� �
or very short peri-

ods T i � LCM T c; T j–i

� �
, it may be acceptable to use the

initial or averaged perturbation values, respectively. Terms
with secular or long-period growth can be replaced by
some initial or T-averaged value as needed, but the overall
effect of their changing value should be investigated. Refor-
mulations of the problem (for example, a pragmatic choice
of coordinates) can also be considered to remove secular
terms from the differential dynamics.

The propagation of an uncorrected linearized model of
the perturbed formation flying problem will lose accuracy
over time, due to both the ignored effects of nonlinearity
and the secular growth introduced by approximations that
fail to capture multiple time scales in the dynamics. This
can be mitigated to some degree, and with varying degree
of difficulty, by using other perturbation methods such as
the method of multiple scales (Bender and Orszag, 1991).
However, periodic restarting and re-rectification of chief
orbit elements in A tð Þ½ � will also enable such models to be
used for long-term close-proximity formation and ren-
dezvous control problems.
3.3. Angular momentum of the relative orbital state

Because the relative motion is characterized by time-
varying relative position and velocity, a vector quantity
that captures large variations in either of these vectors is
sought. The angular momentum of the relative orbital state
(AMROS) provides an intuitive view of perturbed forma-
tion behavior:
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Dh ¼ Dr� Dr0 ð16Þ
It is important to note that this term is not the same as the
difference between the angular momentum of the deputy
and the chief, dh. This term is only the component of the
angular momentum difference that is purely associated
with the chief-centered relative state, and independent of
the chief position and velocity:

dh ¼ hd � hc ¼ Dhþ rc � Dr0ð Þ þ Dr� vcð Þ ð17Þ
A simple argument for using this parameter is that it cap-
tures large changes in Dr tð Þ or Dr0 tð Þ that indicate signifi-
cant change to the nature of the relative motion or
relative orbit. However, substitution of the Hill-Clohessy-
Wiltshire (HCW) solutions into Eq. (16) provides another
argument for the rationale of its use. The result for Dh is
expressed in the local radial, transverse, and normal com-
ponents below:

DhHCW rð Þ ¼ �2 3nx0 þ 2 _y0ð Þz0 þ 2

n
_x0 _z0 þ 3!z0ð Þ cos nt

þ n 3t!� y0ð Þz0 sin nt

þ � 2

n
_x0 þ y0 � 3t!ð Þ

� �
_z0 cos nt

þ 2 _x0 þ 3

n
!_z0

� �
sin nt ð18Þ

DhHCW tð Þ ¼ _x0z0 þ 3x0 þ 2

n
_y0

� �
_z0

þ 2

n
! �_z0 cos nt þ nz0 sin ntð Þ ð19Þ

DhHCW nð Þ ¼ � 2

n
21n2x20 þ _x20 þ 24nx0 _y0 þ 7 _y20
� �

þ 2 _x20 þ 7 _y20
� �þ 3nt _x0!

� � cos nt
n

þ 42n2x20 þ n 49x0 _y0 � _x0y0ð Þ� � cos nt
n

� 3 _x0 _y0 þ n2x0y0
� � sin nt

n

� 8nx0 _x0 þ 2ny0 _y0ð Þ sin nt
n

þ 9n2x0t þ 6n _y0t
� �

!
sin nt
n

ð20Þ

The term ! ¼ 2nx0 þ _y0 ¼ 0 is the linearization of the no-
drift condition da ¼ 0 (Schaub and Junkins, 2018). For
unperturbed close-proximity formations, satisfaction of
the no-drift condition manifests in the solution to the lin-
earized dynamics as periodicity of Dh, with the quantity
is predicted to be constant when the relative motion has
no along-track angular offset, parameterized only by non-
zero de and di:

DhHCW ¼ 3x0 þ 2

n
_y0

� �
_z0êt � 2

n
21n2x0 þ 24nx0 _y0 þ 7 _y20
� �

ên

ð21Þ
Any violation of the no-drift condition likewise results in
Dh no longer being periodic or conserved. Thus, the
HCW solution establishes a link between this physical
quantity and the linearized approximation of the no-drift
constraint. The value of Dh tð Þ using the perturbed linear
models will be useful for predicting the degree, timescale,
and manner of formation deviation from classical unper-
turbed geometry. It is important to note that under the true
dynamics, Dh is not truly constant for unperturbed
chief-centered non-drifting relative motion, but instead
fluctuates periodically on a small scale. The scale of these
unperturbed fluctuations is a small fraction (	 0:1%) of
the mean value for formations on any scale that permit lin-
earization. However, the effects of perturbations may result
in fluctuations on the same order as the mean.

The expression in Eq. (21) is an angular momentum vec-
tor normal to the relative orbit plane, which is fixed in the
LVLH frame for unperturbed circular chief orbits. With
the presence of small perturbations, the variation of this
parameter provides a clear illustration of how the relative
orbit grows or shrinks, and how the perturbed relative
orbit plane orientation changes. Specifically, this can be
done by computing the norm of the deviations
Dh tð Þ � Dh t0ð Þ, and the time-varying angle c between
Dh tð Þ and Dh t0ð Þ, representing the angular deviation of
the relative orbit plane:

c ¼ cos�1 Dh tð Þ 
 Dh t0ð Þ
kDh tð Þk kDh t0ð Þk
� �

ð22Þ

Due to its transparent relationship to the relative orbital
state, it will often be illuminating to perform analysis with
the vector quantity Dh.

The stability analysis through Floquet theory describes
the modes of the LTV system using the STM for one period
T of the system matrix. Assuming that this STM has
already been computed for system stability analysis, it
can be used to quickly approximate the future relative
states at t ¼ T (or any other time s 2 0; T½ �) for a given
set of initial conditions. Then, the AMROS can be com-
puted for each initial condition, and the difference between
Dh Tð Þ and Dh 0ð Þ describes the degree and manner in which
the relative motion has been perturbed. The tools of Flo-
quet theory and the AMROS parameter enable rapid
parameter studies for identifying conditions for minimal
relative motion instability, while also providing far more
analytical insight than surveys with the nonlinear dynam-
ics, all with significantly reduced computational cost.

4. Application to spacecraft formations in asteroid orbits

In this section, the analytic arguments and techniques
developed and reviewed in this paper are applied to the prob-
lem of perturbed formation dynamics in orbits around small
asteroids. The approximate model is constructed in part
using a model accounting for C20 and C22 recently obtained
and tested by one of the authors (Burnett and Butcher,
2018). The additional linear perturbative terms due to SRP
were more recently obtained (Burnett and Schaub, 2019).
To the knowledge of the authors, this is the only LVLH
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frame linear relative motion model capable of handling the
perturbative effects of the C22 coefficient. The model is
derived such that the perturbed behavior of the chief orbit
is approximated by time-varying terms in the systemmatrix,
and the kinematics of relative motion are derived with the
effects of the perturbations rigorously accounted for
(Casotto, 2016). This methodology yields models with far
greater accuracy than models which add perturbative terms
to the Clohessy-Wiltshire model in an ad-hoc manner.

Fig. 1 shows that the spacecraft orbit is described with
respect to the plane perpendicular to the asteroid rotation
axis. The axes â1; â2; â3 are aligned with the principal axes
of inertia of the asteroid, and the asteroid is assumed to
be in a spin about the axis of maximum inertia. The right
ascension X is measured from an inertially fixed reference
direction c in this plane, along with the asteroid rotation
angle w ¼ w0 þ ct tracking the â1 vector. The vector û
points towards the sun, and the plane perpendicular to this
vector is the terminator plane. It is assumed that the forma-
tion is centered about a chief in a near-circular orbit, for
which the argument of latitude h ¼ xþ f is a convenient
angular coordinate.

The dominant effects of the gravity field (captured by
coefficients C20 and C22) are accounted for by the linearized
model, along with the influence of SRP disturbances, using
a body-averaged single-plate SRP model. These terms
F 11 ¼ 3� 3
8
C20

R
a

� �2
20 1� 3 sin2 i sin2 h
� �� �

þ 3
8
C22

R
a

� �2
30 cos 2 X� wð Þð Þ 3þ cos 2ið Þ cos 2hþ 2 sin

��
�120 sin 2 X� wð Þð Þ cos i sin 2h�

F 12 ¼ �6C20
R
a

� �2
sin2 i sin 2hþ 3

4
C22

R
a

� �2
8 cos 2 X� wð Þð Þ 3þ cð½

þ32 sin 2 X� wð Þð Þ cos i cos 2h�
F 13 ¼ �15 sin i C20

R
a

� �2
cos i sin hþ 2C22

R
a

� �2
cos 2 X� wð Þð Þ c½

	
þsin 2 X� wð Þð Þ cos h�Þ � a

nh N SRP

F 21 ¼ F 12

F 22 ¼ 3C20
R
a

� �2
sin2 i cos 2h� 3

4
C22

R
a

� �2
4 cos 2 X� wð Þð Þ 3þ coð½

�16 sin 2 X� wð Þð Þ cos i sin 2h�
F 23 ¼ 6 sin i 2C22

R
a

� �2
cos 2 X� wð Þð Þ cos i� Cð Þ cos h½

	
þsin 2 C� wð Þð Þ C cos i� 1ð Þ sin h� þ C20

R
a

� �2
cos i cos h



F 31 ¼ F 13

F 32 ¼ 12C22
R
a

� �2
C sin i cos 2 X� wð Þð Þ cos h� sin 2 X� wð Þð Þ cð

� _u
n2

a
h

d
du N SRPð Þ

F 33 ¼ �1þ 1
4
C20

R
a

� �2
6þ 12 cos2 i� 30 sin2 i sin2 h
� �

þ 1
4
C22

R
a

� �2
cos 2 X� wð Þð Þ �15 3þ cos 2ið Þ cos 2h� 54

��
þ60 sin 2 X� wð Þð Þ cos i sin 2h�
often capture the most important effects for orbits around
large asteroids (Scheeres, 2012). Third-body gravity terms
are neglected, as the orbit is assumed to be of a radius such
that the dominant gravity perturbations are from low
degree and order coefficients of the asteroid gravity field,
and not from external bodies or particular surface features.
The task of including third-body influence in the linearized
model will still often be important, so it is left as future
work. The effects of the orbit geometry play an important
role in the formation dynamics, but the assumptions r � a0
and h � h0 þ nt are appropriate for the time span of several

orbits, where n ¼ ffiffiffiffiffiffiffiffiffiffi
l=a3

p
is the unperturbed mean motion.

The angular rate ratio is defined as C ¼ c=n;R is the Bril-
louin sphere radius, u is the asteroid argument of latitude,
and h is the orbit angular momentum. The model is given
below, in which the kinematics of the perturbed LVLH
frame are well-approximated for several orbits, and the
perturbed chief orbit parameters a;X, and i may be
updated as needed:
€x

€y

€z

2
64
3
75¼ n2

F 11 F 12 F 13

F 21 F 22 F 23

F 31 F 32 F 33

2
64

3
75

x

y

z

2
64
3
75þ

0 2xn 0

�2xn 0 2xr

0 �2xr 0

2
64

3
75

_x

_y

_z

2
64
3
75

ð23Þ
2 i
� ð24aÞ

os 2iÞ sin 2h ð24bÞ

os i sin h ð24cÞ

ð24dÞ
s 2iÞ cos 2h ð24eÞ

þ _u
n2

a
h

d
du N SRPð Þ

ð24fÞ

ð24gÞ
os i sin hÞ ð24hÞ

sin2 i
� ð24iÞ
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For the numerical simulations in this paper, only the
secular variation in the argument of latitude is updated,
all other elements in Eq. (23) are at their initial values.
The angular velocities of the perturbed LVLH frame are
given below:
xn ¼ n 1� 3
4

R
a

� �2
C20 1� 3 sin2 i sin2 h
� �þ 6C22 sin 2 X� wð Þð Þ cos i sin 2hð�	

�1
4
cos 2 X� wð Þð Þ 1þ 3 cos 2h� 2 cos 2i sin2 h

� ���� ð25Þ

xr ¼ 3n R
a

� �2
sin i 2C22 sin 2 X� wð Þð Þ cos hþ C20 þ 2C22 cos 2 X� wð Þð Þ½ � cos i sin hð Þ

þ a
h NSRP

ð26Þ
The term NSRP is the ên component of the SRP disturbance
acceleration acting on the chief spacecraft:

NSRP¼�P ROð Þ

� A
m

1�qsð Þ
C1 1;1ð Þ

þa2þ2qsC1 1;1ð Þ

� �
C1 1;1ð Þ ê>n C1 rrð Þ½ �>ê1

� �
ð27Þ

where A=m is the spacecraft illuminated area-to-mass ratio,

ê1 ¼ 1; 0; 0½ �> and the unit vector ên is not a function of h
due to the problem geometry:

ên¼
sinjsinucosi�sinXcosusiniþcosXcosjsinusini

sinjcosucosiþsinXsinusiniþcosXcosjcosusini

cosjcosi�cosXsinjsini

0
B@

1
CA
ð28Þ
Fig. 1. Problem Geometry.
with solar radiation pressure terms defined below, for a
single-plate model of a spacecraft:

P ROð Þ � G1

R2
O

ð29Þ
a2 ¼ B 1� sð Þqþ 1� qð ÞB ð30Þ

The function P ROð Þ is the solar radiation pressure at aster-
oid orbit distance RO, and G1 is the solar radiation force
constant at 1 AU. The specular and diffuse reflectivity coef-

ficients are s and q, and B is the Lambertian scattering coef-
ficient. In this work, the spacecraft orientations are held
sun-facing, so resultant SRP acceleration is projected
purely along the line from the sun, and the dynamics are
thus identical to a cannonball SRP model for chief and
deputy. The model also assumes that the spacecraft orbits
are near-circular. The model assumes that the chief and
deputy spacecraft are subject to similar net resultant SRP
acceleration, so the primary relative motion effect from
SRP is due to the kinematics of the perturbed LVLH
frame. Accounting for the differential SRP acceleration
would require introducing independent deputy geometric
and optical parameters, as well as tracking the deputy atti-
tude. That would not be desirable for this work in studying
the deputy-agnostic relative motion dynamics, so it is not
done. Lastly, note that the SRP model does not account
for eclipse effects without modification.

The matrix C1 rrð Þ½ � is the rotation matrix from the
asteroid-centered Hill frame to the spacecraft reference ori-
entation. The primary body Hill frame HP is defined by

orthonormal vectors û; Ĥ � û; Ĥ
n o

, where û points toward

the sun and Ĥ is out of the orbit plane of the primary body.
In all cases studied here, C1 rrð Þ½ � ¼ I3�3½ � and thus
C1 1;1ð Þ ¼ 1 (sun-facing). The angle j is the obliquity of the
ecliptic plane and u is the argument of latitude, or the rota-
tion angle (in the orbit plane) from the Vernal Equinox to
the radial vector from the sun to the planet. This model is
derived from the facet-based SRP model given by McMa-
hon and Scheeres (Scheeres, 2007; McMahon and
Scheeres, 2010). The model assumes that the asteroid is
in a circular orbit about the sun, but this could be updated
without great difficulty. The timescale of large variations in
u is very slow compared to the orbit period. The motion of
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the asteroid orbit around the sun is not important here, as
these studies focus on short-term formation behavior of
1� 5 orbits, a timescale on the order of days to a week.
In this context, terms that are functions of u are examples
of long-period terms that can be ignored by assuming
u � u0 for the timescale of interest.

In Eq. (24), the appearance of only the ên component of
the SRP disturbance acceleration, NSRP , should be briefly
explained. Recall that because the differential SRP acceler-
ation between chief and deputy is assumed to be negligible
in this work, the main effect of SRP is in the kinematics of
the perturbed chief-centered LVLH frame. The angular
velocity of the LVLH frame with respect to the inertial
frame may be described in terms of the perturbed orbit ele-
ment rates (Casotto, 2016):

xH ¼ dX
dt

â3 þ di
dt

â3 � ên
kâ3 � ênk þ

dh
dt

ên ð31Þ

where the SRP-perturbed orbit element rates are given
below as functions of the orbit geometry and NSRP :

dX
dt

¼ r sin h
h sin i

N SRP ð32aÞ

di
dt

¼ rcosh
h

NSRP ð32bÞ

dh
dt

¼ dx
dt

þ df
dt

¼ h
r2

� r sin h cos i
h sin i

NSRP ð32cÞ

If the effect of the SRP disturbance is secondary, then its
effect on r tð Þ and h tð Þ will not be particularly pronounced
over short timespans. Thus, the dominant effect will be in
the ên component of the SRP disturbance acceleration,
NSRP . More advanced analysis could incorporate approxi-
mation of the SRP-induced changes to chief orbit radius
and angular momentum in the linear relative motion sys-
tem matrix, but that level of fidelity is unnecessary for
the numerical studies in this work.

Furthermore, in this paper, only secular variation in the
argument of latitude h and body angle rotation rate w are
updated in the numerical simulations of the linear model,
Eqs. (23) - (28). All other elements and quantities are kept
at their initial values.

4.1. Further analysis of the linear model

Note that as i ! 0, ignoring long-period SRP effects, the
equations of motion can be shown to reduce to the follow-
ing highly simplified form:
Table 1
Important Physical Parameters.

Parameters

Asteroid Physical Parameters
Gravity Parameters
Asteroid Orbit Radius
Configuration Parameters
Spacecraft Optical Constants
€x ¼ 3n2 1þ 5
2
aþ 15b cosH

� �
xþ 24n2b sinHy

þ2n 1þ 3
4
a� 9

2
b cosH

� �
_y � a

nh N SRPz

€y ¼ 24n2b sinHx� 12n2b cosHy � 2n 1þ 3
4
a� 9

2
b cosH

� �
_x

þ2 a
h NSRP _z

€z ¼ �n2 1� 9
2
aþ 15b cosH

� �
z� 2 a

h N SRP _y

ð33Þ
where a ¼ �C20
R
a

� �2
and b ¼ C22

R
a

� �2
, and H ¼

2 1� Cð Þhþ Xþ Ch0 � w0ð Þð Þ. For a purely equatorial
orbit i ¼ 0, and X is undefined, so h is measured from the
reference direction c, then H ¼ 2 1� Cð Þhþ Ch0 � w0ð Þð Þ.

Previous analysis (Burnett, 2018) studies these equations
without SRP, including their further reduced LTI form for
C ¼ 1, and finds that the reduced LTI model can success-
fully predict the stability properties of the libration points
(Kaula, 2000) collinear with the â1 and â2 in the rotating
asteroid-fixed frame, and the associated eigenvectors can
be used to produce the stable and unstable manifolds. This
linearized relative motion model can then be viewed as a
generalization of the classical problem of studying motion
in the vicinity of equilibrium points in the rotating body-
fixed frame.

There is much opportunity for future analysis and exten-
sion of this linearized model, both with the current SRP
disturbance terms and with future inclusion of third body
disturbance terms and other increases in fidelity. The task
of deriving and verifying accurate perturbed relative
motion models can be challenging. However, the primary
purpose of this paper is to demonstrate the analytical
and computational utility of such models and the relevance
of approximating highly perturbed formation dynamics in
this way.
4.2. Identifying important parameters for numerical

simulations

The form of Eqs. (24)–(26) lends some insight into
important parameters in the formation dynamics. First,
note that all C22 associated terms are multiplied by either
cos 2 X� wð Þð Þ or sin 2 X� wð Þð Þ, representing the impor-
tance of the evolution of the relative configuration of the
orbit plane and the asteroid orientation. For cases of
C � 1 these terms change slowly, and the value of X� w0

becomes quite important. As the value of C is increased
(corresponding to a raising of the chief semimajor axis),
Values

M ¼ 4:9� 1014 kg;R ¼ 6 km, Ellipsoidal semi-axes: 6, 3, 2.5 km
l ¼ 3:271� 10�5 km3=s2;C20 ¼ �0:0903;C22 ¼ 0:0375

RO ¼ 3:5904� 108 km 2:4 AUð Þ
j ¼ 15�;u0 ¼ 90�; T r ¼ 18:0 h;w0 ¼ 0

A
m ¼ 0:3 m2=kg;B ¼ 0:6; s ¼ 0:25; q ¼ 0:3
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these terms oscillate more quickly, and the importance of
X� w0 on formation dynamics is reduced.

Recall that as i ! 0, the in-plane x and y dynamics
nearly decouple with the out-of-plane z dynamics, with
the exception of kinematic coupling terms due to the
SRP disturbance. The fact that inclination has such an
influence on the dynamics suggest that it is also important
to consider.

The value of semimajor axis is vitally important to for-
mation dynamics, manifesting through the small parame-
ters premultiplying the time-varying disturbance terms,

C2j R=að Þ2; j ¼ 0; 2. It also affects the magnitude of C, deter-
mining whether or not the initial relative configuration of
the chief orbit and asteroid attitude has an important role.

Lastly, the optical coefficients are important due to their
effect on the SRP disturbance, and so is the geometry of
the chief orbit with respect to the direction to the sun, cap-
tured by the coupled orbit angle terms in ên in Eqs. (27)
and (28). For simplicity, the studies in this paper assume that
the asteroid spin axis orientation is known, along with the
spacecraft optical coefficients. The studies consider a family
initially near-circular chief orbits (at varying inclinations
both near and far from the terminator plane) on which to
center the formation. The semimajor axis and inclination
are chosen as the main independent parameters for studying
the highly perturbed formation dynamics in this problem.
5. Numerical simulations and analysis

5.1. Simulation setup

For the results that follow, close-proximity formation
dynamics about a rotating asteroid are considered, with
important physical parameters given in Table 1.

Recall that R is the Brillouin sphere radius, the maxi-
mum extent of the body material from its center of mass.
The linearized relative motion model in Eq. (23) is used
Fig. 2. Maximum Deviation o
to explore the parameter space for prograde and retrograde
near-circular chief orbits. Namely, the inclination of pro-
grade orbits in the terminator plane is iT ¼ 75:0�, and the
set of inclinations tested is between 70� and 105� in one
degree increments. The range of C tested is from C ¼ 3=4
to C ¼ 4, with 25 evenly spaced values for non-modal anal-
ysis results. For the modal analysis, the range is the same
but with even increments of dC ¼ 1=4. The semimajor axis
is related to C through the following equation, where
c ¼ 2p=T r:

a ¼ l
C2

c2

� �1=3

ð34Þ

For angular rate ratios C ¼ 3=4; 1; 2; 3; 4ð Þ, the correspond-
ing semimajor axis is a � 12:5; 15:2; 24:1; 31:5; 38:2ð Þ km.
For simplicity, the initial non-critical chief orbit elements
e0;x0;X0; f 0 are all assumed to be zero. Thus h0 ¼ 0 and
the chief orbit is initially circular. Small initial nonzero val-

ues of chief eccentricity (e.g. O 10�3
� �

) do not significantly

affect the results. The osculating chief orbit eccentricity is
generally of this scale anyway, and can reach higher values
in strongly perturbed cases.

While third body effects are ignored in this study, the
radius of the asteroid sphere of influence is estimated
assuming m � M (Battin, 1987):

rSOI ¼ RO
m
M

	 
2=5
� 205 km ð35Þ

where M is the mass of the sun. Note that at a ¼ 38:2 km,
the sun’s gravity would be a little less than 3% the strength
of the asteroid gravity, so the third-body disturbance
should be included in the approximate model for higher
fidelity in actual applications.

In the studies that follow, for each point in the parame-
ter space, the state transition matrix is computed using the
linearized dynamics for one period of the A tð Þ½ � matrix.
This enables any type of close-proximity relative motion
f AMROS in One Orbit.



Fig. 3. Perturbed Relative Motion with C ¼ 1:25; i ¼ 75�.

Fig. 4. Perturbed Relative Motion with C ¼ 2:0; i ¼ 95�.
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to be studied without re-integrating each initial condition
of interest, and also efficiently provides the monodromy
matrix useful for all subsequent computations.

These studies were performed using numerical integra-
tion of the equations of motion with the Scipy solve_ivp
function with backward differentiation formula (BDF)
adaptive multi-step variable-order integration settings.
The numerical integrator implementations are identical
for the linear model and truth model, and with minimal
speed optimization, simulations with the linear model gen-
erally take about one-third of the time of the truth model.
This comes with the added benefit of saving the STM his-
tory, instead of just the state history from a single initial
condition, as is obtained with the truth model.

5.2. Studies with AMROS parameter

First, the magnitude of the maximum deviation (over one
orbit) of the AMROS parameter is computed with results
from both the linearized model and the truth model. This
involves determining the time t at which kDh tð Þ � Dh 0ð Þk is
maximum, and returning that maximum value. For these
results, the relative motion of a single deputy around the
chief is considered, with the only nonzero differential ele-
ments being de ¼ 0:003 and di ¼ 0:1�. In the unperturbed
case, this would result in periodic bounded planar relative
motion with an average separation on the order of 100
meters, with the linear model predicting conservation of
Dh and the truth model showing small fluctuations.

The results for the highly perturbed asteroid environ-
ment are given in Fig. 2 for one orbit, which is about three
days. The results show strong agreement between the lin-
earized model (left) and truth model (right). The results
also establish that within one orbit, the orbits for C < 2
are much more significantly perturbed than higher altitude
orbits of C > 2.

Since this figure is used to explore and compare behav-
ior throughout the parameter space, the relative values are



Fig. 5. Modulus of Largest Floquet Multiplier.
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more important to study than the absolute values. Both
plots show two bands of highly perturbed relative motion
behavior around C ¼ 1:25 and C ¼ 1:75, with retrograde
orbits (i > 90�) showing less deviation than prograde
orbits, despite their large angular separation from the ter-
minator plane at i ¼ 75�. Overall, the deviations in the
AMROS parameter are clearly strongly dependent on the
value of the angular rate ratio C, with larger deviation
for small values of C. This shows that the largest deviations
from classical relative motion are at low altitude.

Two individual cases from the parameter space serve to
illustrate the severity of the perturbations. Recall that the
initial relative motion conditions parameterized only by
small de and di would classically result in bounded relative
motion in the absence of these perturbations (Alfriend
et al., 2010). First, consider the case from C ¼ 1:25 and
i ¼ 75�. The relative motion is plotted for 4 orbit periods
in Fig. 3. The results show strong agreement for the first
orbit, with divergence between the linear and truth model
afterwards.

The linear model successfully predicts the degree and
manner of the deviation for the first orbit. The truth model
shows that over the course of the next several orbits, the
deputy continues to rapidly drift further away. This long-
term behavior is not well captured by the linear model –
at least not without periodically updating the chief orbit
elements and re-initializing. Such an update and re-
initialization procedure would be reasonable in any on-
board guidance implementation procedure, but these
results evaluate the efficacy of the unaided model. The
eventual failure of the model is an unsurprising phe-
nomenon, given the rapid change in geometry and scale
of the true motion. What is most surprising is the rapid
timescale and manner in which a close-proximity two
spacecraft formation is ripped apart by the dynamics of
the orbital environment. This is not an isolated case: sam-
pling other bright regions in Fig. 2 often results in finding
similar highly destabilized behavior.
To investigate a region in the parameter space where the
maximum deviation of the AMROS parameter is compar-
atively rather low, the case of C ¼ 2 and i ¼ 95� is chosen.
The relative orbital motion is plotted in Fig. 4. The result-
ing relative motion is indeed more stable for short time
spans, and the behavior is well-approximated (without
any re-initialization and chief orbit parameter updates)
for 4 orbits. Since the orbit period in this case is 36 h, this
stable behavior persists and is well-approximated for
6 days. The long-term relative motion is however still
highly unstable, as can be seen from the truth model results
propagated over 10 orbits.

The individual case results in Figs. 3 and 4 reflect gen-
eral observations that the maximum deviation of the
AMROS parameter is a good tool for studying short-
term behavior. As discussed, this parameter can also be
used to study how the relative orbit plane changes over
time, but such results are omitted to make room for other
results.

These results show that the behavior of the AMROS
parameter predicted by the linearized dynamics can be used
to describe perturbation and destabilization of close-
proximity relative motion in the short term, but the long-
term behavior is also of interest. The case used to produce
Fig. 4 shows that short-term stable behavior can still
become destabilized in the long-term. In light of these
results, it is natural to ask if the approximate dynamics
can be used to easily identify cases where relative motion
will be stable for much longer time spans. It turns out that
this is also possible.

5.3. Using tools from Floquet theory and modal analysis

The linearized model is capable of providing much more
information if the preceding results are combined with
other approaches discussed in this paper. The analysis in
this section uses the monodromy matrix and studies the
stability of the LTI transformed system in z, along with



Fig. 6. Relative Orbital Motion Modal Data.

Fig. 7. Relative Motion Modes for C ¼ 2.
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the fundamental relative orbital motion modes predicted
by the linearized model. These provide a wealth of infor-
mation about the system behavior throughout the parame-
ter space.

Fig. 5 shows the variation of the modulus of the largest
Floquet multiplier in the parameter space. Recall that the
Floquet multipliers are eigenvalues of the monodromy
matrix. Any Floquet multiplier with a modulus greater
than 1 is an indicator of the potential for system instability.
Stability can only be ensured only if jqjj 6 1 8j. The data

in Fig. 5 does not provide a complete parameterization of
the degree of instability by itself. The figure does not show
how many unstable modes exist; it only shows the severity
of the most unstable mode. However, the figure still pro-
vides useful insights into the potential for instability
depending on the value of C and i. It is worth noting that
the two horizontal bands in the figure are somewhat remi-
niscent of the data in Fig. 2. For cases with a highly unsta-
ble mode, a given initial condition (such as the initial
conditions used to generate Fig. 2) will likely partially
excite the unstable mode as well – resulting in rapid relative
motion destabilization. This could explain the correlation
of the two horizontal bands.

For weakly unstable systems with all jqj � 1, the desta-
bilization that occurs by partial projections of the initial
condition into the unstable subspace is less rapid than for
systems with a multiplier jqj � 1. Furthermore, formation
geometry selected to avoid exciting the unstable modes will
enable the motion to remain within specified bounds for
longer without corrective maneuvers. Thus, uncorrected
formation stability will still be dependent on the initial con-
ditions of relative states of the spacecraft. This would be
very expensive to study with simulations using the truth
model alone. However, parameter studies with the linear
system can efficiently provide this insight, since the linear
dynamics of the perturbed relative motion can be decom-
posed into linearly independent modes in z space. Recall
that since dX ¼ P tð Þ½ �z and P t0ð Þ½ � ¼ I6�6½ �, the behavior
of the fundamental modes can be represented in dX coor-
dinates as well.
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The approximate model is first used to determine how
the number of relative motion modes varies in the param-
eter space. This data is presented in Fig. 6(a).

It is also useful to consider how many of these modes are
highly unstable. The approach in this work is to determine
if the real part of any of the eigenvalues of K½ � exceeds a
critical value k�, defined below as the minimum value
required for the real exponential term in the z tð Þ solution
to increase by a factor of e in N orbits:

k� ¼ c
2pCN

ð36Þ

Setting N ¼ 10, this is of O 10�6
� �

for much of the param-

eter space surveyed.
The critical value k� is used to create Fig. 6(b). It is

important to keep the limitations of the model in mind
when interpreting these modal results. The relative dura-
tion of model accuracy is highly correlated with the relative
magnitude of maximum deviation in the AMROS parame-
ter. In the most highly perturbed regions of the parameter
space (lower values of C), the linear model only predicts
initial behavior well without re-initialization and update
of perturbed chief orbit parameters. The stability predic-
tions below C ¼ 1:5 are not consistently trustworthy.
Fig. 6(b) predicts that generally for high-altitude orbits,
there are no highly unstable modes, and this property
extends to progressively lower orbits as inclination is
increased to polar and retrograde orbits.

Because all solutions of the linear model will be a super-
position of the fundamental modes, variations in the modal
behavior at intermediate levels of C are complex and worth
investigating. At C ¼ 2, the number of total modes and
their stability properties vary with inclination. This is illus-
trated by Fig. 7. Note that scale is irrelevant for these linear
results. For relative motion centered in the orbit with
i ¼ 75�, there are 6 unique modes, and all eigenvalues are
real. These are plotted for 5 orbits. Three modes are unsta-
ble, and two are highly unstable (modes 5 and 6). Mode 4 is
slightly unstable (k4 ¼ 5:07� 10�7) and mode 3 is stable

(k3 ¼ �5:06� 10�7). Modes 1 and 2 are strongly stable.
Modes 2 and 5 are distorted along-track motion. Such
modes appear throughout much of the parameter space,
but their eigenvectors are poorly scaled, and do not accu-
rately represent the motion of the system for long time
spans. However, modes such as 1, 3, 4, and 5 do reflect
the actual formation dynamics. These modes (or mixtures
of them) could be periodically re-computed and targeted
by a guidance system to enforce desired relative motion
behavior.

Fig. 7(b) shows the modes for relative motion about a
chief with i ¼ 95�, plotted for 15 chief orbits. These repre-
sent the fundamental modes of the same point in the
parameter space used to generate Fig. 4. The eigenvalues

corresponding to each mode are all of scale 10�7, with mul-
tiplying factors k1 ¼ �9:1; k2 ¼ �6:6� 2:5i; k3 ¼ 6:6�
2:6i; k4 ¼ 9:2. From these results, it is evident that the ini-
tial condition of the motion in Fig. 4 has partially excited
the unstable third mode.

Long-term accurate prediction is possible without any
model re-initialization for cases where the relative motion
is not too perturbed to compromise model accuracy. This
is incredibly useful, as it can be used to find relative
motion conditions that would result in bounded forma-
tions with linearly predictable behavior for very long
time spans without correction. Fig. 6 shows that for val-
ues of C > 2:5, there are only 3 or 4 relative motion
modes, and none are particularly unstable. Selecting
C ¼ 4:0 and i ¼ 75�, the modal results indicate that there
are two along-track modes (one stable and one unstable)
and two very similar modes with eigenvalues

k2;3 ¼ �9:7� 10�9 � 6:1� 10�7i. This represents stable
relative motion for long time spans, due to the very
small real parts of the eigenvalues. Fig. 8 is produced
by initializing the mode with the eigenvalue with the
slightly negative real part. The initial condition is just



3394 E.R. Burnett, H. Schaub / Advances in Space Research 67 (2021) 3381–3395
the associated eigenvector with a chosen scaling, given
below in LVLH components in meters and meters/s:

dX0 ¼ cm ¼ 12:5; 7:90; 0:8; 9:69� 10�4; 6:05� 10�4; 7:27� 10�5
� �>

ð37Þ
The first half-period of behavior is shown, amounting to
approximately 10 chief orbit periods. There is a positive rota-
tion of the relative orbit about the êr vector and a shrinking of
the relative position bounds along êr. The approximatemodel
agrees with the true behavior for 10 orbits (30 days), with
some growing distortion visible. The dynamics in this region
of the parameter space are clearly favorable for fuel-efficient
close-proximity formation flying. Overall, the results of
modal analysis provide a wealth of insight into the behavior
of uncontrolled close-proximity relative motion.

6. Conclusions

This paper introduces methods and tools for using
approximate models of relative motion dynamics to study
the behavior of close-proximity spacecraft motion in
highly-perturbed environments. Many of these tools are
already commonly used in other fields, but are compara-
tively unused in formation flying. Themethods are discussed
generally and then applied to the problem of multi-
spacecraft formations in asteroid orbits. Formation design
and rendezvous planning is more difficult in such environ-
ments than in planetary orbits, since the perturbations dra-
matically affect the uncontrolled relative motion dynamics
in complex ways. This is demonstrated by parameter studies
showing the deviation of the angular momentum of the rela-
tive orbital state (AMROS), and by simulation of individual
cases from this parameter study.

Results with an approximate model show that the ana-
lytical approaches discussed provide a wealth of informa-
tion not easily obtained through studies using a truth
model. When propagated without correction, the model
still provides enough dynamical information to identify
orbit conditions that permit long-term stable formations.
Use of tools from Floquet theory also permits modal anal-
ysis of the perturbed relative motion, providing a signifi-
cant boost in understanding of safe and unsafe formation
design in highly perturbed environments.

Opportunities for future work include both expanding
the current studies to consider other environments, and
improving the given relative motion model fidelity and effi-
cacy. In particular, the effects of additional perturbations
could be explored, such as third-body gravity. Efficient
methods for periodic model updating and correction could
also be applied. In addition, a formation and rendezvous
guidance implementation of such models could be devel-
oped and demonstrated. This could be applied in a future
mission using either low-thrust or by exploiting attitude-
dependent variations in the solar radiation pressure
(SRP) force, since the forces required to change and
maintain small formations are typically very small in orbits
around asteroids and other small bodies.
Acknowledgements

This work was supported by the U.S. Department of
Defense through the National Defense Science and Engi-
neering Graduate Fellowship (NDSEG) Program.
References

Alfriend, K.T., Vadali, S.R., Gurfil, P., How, J.P., Breger, L.S., 2010.
Spacecraft Formation Flying. Elsevier, Oxford, U.K..

Araguz, C., Bou-Balust, E., Alarcon, E., 2018. Applying autonomy to
distributed satellite systems: trends, challenges, and future prospects.
Syst. Eng. 21, 401–416.

Baresi, N., 2017. Spacecraft Formation Flight on Quasi-periodic Invariant
Tori (Ph.D. thesis). University of Colorado Boulder.

Battin, R.H., 1987. An Introduction to the Mathematics and Methods of
Astrodynamics. AIAA Education Series, New York, USA.

Bender, C.M., Orszag, S.A., 1991. Advanced Mathematical Methods for
Scientists and Engineers: Asymptotic Methods and Perturbation
Theory. Springer-Verlag, New York, USA.

Biria, A.D., Russell, R.P., 2018. A satellite relative motion model
including J2 and J3 via Vinti’s intermediary. Celestial Mech. Dyn.
Astron. 130, 23.

Brouwer, D., 1959. Solution of the problem of artificial satellite theory
without drag. Astron. J. 64, 378–397.

Burnett, E., 2018. Relative Orbital Motion Dynamical Models for Orbits
about Nonspherical Bodies (Master’s thesis). University of Arizona.

Burnett, E.R., Butcher, E.A., 2018. Linearized relative orbital motion
dynamics in a rotating second degree and order gravity field, AAS 18–
232. Adv. Astron. Sci. 167, 3463–3482.

Burnett, E.R., Butcher, E.A., Sinclair, A.J., Lovell, T.A., 2018. Linearized
relative orbital motion model about an oblate body without averaging,
AAS 18–218. Adv. Astron. Sci. 167, 691–710.

Burnett, E.R., Schaub, H., 2019. Spacecraft Formation and orbit control
using attitude-dependent solar radiation pressure, IWSCFF 19-28. In:
International Workshop on Satellite Constellations and Formation
Flying. IAF Astrodynamics Committee.

Carter, T., Humi, M., 2002. Clohessy-Wiltshire equations modified to
include quadratic drag. J. Guid. Control Dyn. 25, 1058–1063.

Casotto, S., 2016. The equations of relative motion in the orbital reference
frame. Celestial Mech. Dyn. Astron. 124, 215–234.

Clohessy, W.H., Wiltshire, R.S., 1960. Terminal guidance system for
satellite rendezvous. J. Aerosp. Sci. 27, 653–658.

DeVries, J.P., 1963. Elliptic elements in terms of small increments of
position and velocity components. AIAA J. 1, 2626–2629.

Guffanti, T., D’Amico, S., Lavagna, M., 2017. Long-term analytical
propagation of satellite relative motion in perturbed orbits, AAS 17-
355. In: AAS/AIAA Astrodynamics Specialist Conference. American
Astronautical Society.

Inalhan, G., Tillerson, M., How, J.P., 2002. Relative dynamics & control
of spacecraft formations in eccentric orbits. AIAA J. Guid. Control
Dyn. 25, 48–59.

Karlgaard, C.D., Lutze, F.H., 2003. Second order relative motion
equations. J. Guid. Control Dyn. 26, 41–49.

Kaula, W.M., 2000. Theory of Satellite Geodesy: Applications of Satellites
to Geodesy. Dover Publications, New York.

McMahon, J.W., Scheeres, D.J., 2010. New solar radiation pressure force
model for navigation. J. Guid. Control Dyn. 33, 1418–1428.

Melton, R.G., 2000. Time-explicit representation of relative motion
between elliptical orbits. AIAA J. Guid. Control Dyn. 23,
604–610.

Michel, P., Kueppers, M., Cheng, A., Carnelli, I., 2018. The HERA
mission: European component of the asteroid impact and deflection
assessment (AIDA) mission to a binary asteroid. Presentation at the
42nd COSPAR Scientific Assembly. Pasadena, California, USA, 14–22
July 2018.

http://refhub.elsevier.com/S0273-1177(20)30139-3/h0005
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0005
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0010
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0010
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0010
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0015
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0015
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0020
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0020
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0025
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0025
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0025
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0030
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0030
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0030
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0030
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0030
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0035
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0035
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0040
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0040
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0045
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0045
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0045
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0050
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0050
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0050
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0055
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0055
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0055
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0055
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0060
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0060
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0065
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0065
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0070
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0070
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0075
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0075
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0080
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0080
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0080
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0080
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0085
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0085
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0085
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0090
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0090
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0095
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0095
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0100
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0100
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0105
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0105
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0105


E.R. Burnett, H. Schaub / Advances in Space Research 67 (2021) 3381–3395 3395
Nayfeh, A.H., Mook, D.T., 1979. Nonlinear Oscillations. John Wiley &
Sons, Inc., New York, USA.

Parsay, K., Schaub, H., 2016. Drift-free solar sail formations in elliptical
sun-synchronous orbits. Acta Astronaut. 139, 201–212.

Schaub, H., 2004. Relative orbit geometry through classical orbit element
differences. AIAA J. Guid. Control Dyn. 27, 839–848.

Schaub, H., Alfriend, K.T., 2001. J2 invariant relative orbits for spacecraft
formations. Celestial Mech. Dyn. Astron. 79, 77–95.
Schaub, H., Junkins, J.L., 2018. Analytical Mechanics of Space Systems,
fourth ed. AIAA Education Series, Reston, VA.

Scheeres, D.J., 2007. The dynamical evolution of uniformly rotating
asteroids subject to YORP. Icarus 188, 430–450.

Scheeres, D.J., 2012. Orbital Motion in Strongly Perturbed Environments.
Springer-Verlag, Berlin.

Schweighart, S.A., Sedwick, R.J., 2002. High-fidelity linearized J model for
satellite formation flight. AIAA J. Guid. Control Dyn. 6, 1073–1080.

http://refhub.elsevier.com/S0273-1177(20)30139-3/h0115
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0115
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0120
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0120
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0125
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0125
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0130
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0130
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0130
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0135
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0135
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0140
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0140
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0145
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0145
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0150
http://refhub.elsevier.com/S0273-1177(20)30139-3/h0150

	Study of highly perturbed spacecraft formation dynamics �via approximation
	1 Introduction
	2 Approximating perturbed dynamics
	3 Linear analysis of formation stability
	3.1 Application of Floquet theory
	3.2 Systems with incommensurable periods and other analytic challenges
	3.3 Angular momentum of the relative orbital state

	4 Application to spacecraft formations in asteroid orbits
	4.1 Further analysis of the linear model
	4.2 Identifying important parameters for numerical simulations

	5 Numerical simulations and analysis
	5.1 Simulation setup
	5.2 Studies with AMROS parameter
	5.3 Using tools from Floquet theory and modal analysis

	6 Conclusions
	Acknowledgements
	References


