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Abstract

This paper introduces a linear model for spacecraft formation dynamics subject to attitude-dependent solar radiation pressure (SRP)
disturbance, with the SRP model accounting for both absorption and specular/diffuse reflection. Spacecraft attitude is represented in
modified Rodriguez parameters (MRPs), which also parameterize the orientation of individual facets for a spacecraft with fixed geom-
etry. Compared to earlier work, this model incorporates analytic approximation of the SRP-perturbed chief orbit behavior in a manner
enabling its use in applications with infrequent guidance updates. Control examples are shown for single-plate representations of hypo-
thetical spacecraft with generally realistic optical parameters. The results demonstrate the validity of the model and the feasibility of
SRP-based formation and rendezvous control in orbits around small bodies and in high orbits around the Earth such as the GEO belt.
� 2020 COSPAR. Published by Elsevier Ltd. All rights reserved.

Keywords: Formation flying; Solar radiation pressure; Linear controls; Perturbations; Dynamics
1. Introduction

Solar radiation pressure (SRP) is the driving force for
solar sails, but it is typically viewed as a disturbance force
and not a control parameter for typical modern spacecraft.
However, in environments where differential solar radia-
tion pressure is sufficiently strong on the scale of the rela-
tive motion dynamics, small sustained variations in
attitude can be used to harness this perturbation for con-
trol – even for spacecraft without sails. While not particu-
larly suitable in low-Earth orbits, the efficacy of this
control method becomes much greater for multi-
spacecraft formations sufficiently far from the planet. The
geostationary (GEO) region is one example. In this region,
the spacecraft are not subject to strong disturbances from
higher-order gravitational effects or drag due to the rarefied
atmosphere. For example, at GEO, the SRP disturbance
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on a BSS-702 Bus is nearly as influential as the third-
body disturbance, and on the same order as the effect of
the of accelerations from the low-order zonal harmonics
(Vallado, 2007). The differential acceleration between two
nearby spacecraft at this altitude has the potential to be
much larger for SRP than for the other disturbances,
because it scales with differences in illuminated spacecraft
area while the other differential accelerations scale with
separation. SRP-based control also becomes a feasible
option for formations in orbit around small bodies such
as asteroids, comets, and moons.

SRP-based control is conceptually similar to differential
drag-based control strategies that already fly, except this
perturbation is typically not fixed in a particular direction
in the LVLH frame (Foster et al., 2018). Furthermore,
unlike with differential drag, the direction of the resultant
disturbance acceleration vector can be partially articulated
by rotating the spacecraft about the axis aligned with the
direction to the sun. The possibility of using small attitude
changes for formation-keeping is appealing because of the
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potential for saved thruster fuel. It is also valuable because
the differential SRP force between identical spacecraft can
achieve the incredibly small values necessary for real-time
and high-precision formation-keeping around small aster-
oids and comets. Even the smallest commercially available
ion thrusters could be too powerful to generate the small
forces needed for continuous control in station-keeping
or high precision formation control in these environments,
requiring them to be used in a pulsed control strategy
almost like chemical thrusters. This contradicts the nature
of their design for very long-duration burns, reducing effi-
ciency and accelerating wear. Other design solutions are
available to partially mitigate this issue, such as pulsed
plasma thrusters (PPTs), but these are not as efficient as
other forms of electric propulsion. In this context, SRP-
based control might be preferred over any type of electric
propulsion, and can be implemented on spacecraft with
traditional geometry and surface materials.

The topic of natural SRP-perturbed orbital dynamics
has been frequently studied, especially in the vicinity of
small bodies (Scheeres, 2012). Many works use a cannon-
ball SRP model, and focus on finding stable orbits while
assuming the force variation with attitude is not significant
(Dankowicz, 1994; Byram and Scheeres, 2009). Some works
also discuss orbit-attitude coupling in the uncontrolled
dynamics, or the coupled effects of multiple perturbations
(Kikuchi et al., 2017; Misra et al., 2016; Lantukh et al.,
2015). Recent work by Kenshiro Oguri and Jay McMahon
focuses on SRP-based orbit control around asteroids
(Oguri and McMahon, 2018). The optical force SRP model
used in their work is essentially equivalent to the one used
here, but their approach is otherwise quite different. Their
work studies orbit control via a chosen subset of the orbit
elements, namely semimajor axis and inclination. The opti-
mal attitude for control is parameterized by two angles,
whose values are obtained numerically based on the current
system state. The paper makes multiple novel analytical
arguments that provide insight about the controlled orbital
dynamics – including attitude constraints to prevent orbital
escape, and even an analytic upper bound for the time of
flight for landing on an asteroid using SRP-based control.

It is worth noting that SRP-based control has also been
extensively studied for solar sails (McInnes, 1999;
Dachwald, 2010; Parsay and Schaub, 2015; Parsay and
Schaub, 2016). Because sails are designed to make the max-
imum use of solar radiation pressure, these works typically
make restrictive assumptions about the spacecraft geome-
try or optical properties. While interesting work has been
done to study the natural and controlled orbital dynamics
using the SRP force, this paper is focused on the topic of
orbital formation control, for which spacecraft with tradi-
tional geometry and design can still produce sufficient dif-
ferences in SRP force to use it as a relative position and
velocity control parameter.

In contrast to the previously mentioned works on the
topic of SRP-based control, a desirable approach would
be to use a relative motion model that requires only occa-
sional updates of the spacecraft orbital elements of one or
more of the spacecraft in the formation. Ideally, a model
accounting for the evolution of the perturbed orbit and
the linearized SRP-perturbed differential dynamics will nat-
urally enable sufficiently reliable situational awareness even
with low navigation update frequency. Lastly, linearization
leverages the smallness of the formation geometry on the
scale of the spacecraft orbits, by allowing for a suitable lin-
ear control law to be developed. Namely, it is amenable to
a linearly optimal LQR control approach – in which the
optimal gain schedule can be computed in advance of the
maneuver, or in a receding-horizon manner. Developing
such a model is the primary focus of this paper.

This paper derives a linearized time-varying (LTV)
model of formation dynamics subject to attitude-
dependent SRP forces. The problem geometry for a single
illuminated spacecraft facet is given in Fig. 1 for a space-
craft that seeks to rendezvous with a nearby chief space-
craft using only the attitude-controlled SRP forces

P
iFSi

for control. The relative state is resolved in local radial,
transverse, and normal directions, which use the chief posi-
tion vector r and angular momentum vector h as
êr ¼ r=r; êt ¼ �êr � êh, and êh ¼ h=h. The vector û points

towards the sun and Ĥ is normal to the planet orbit plane.
The model uses the deputy-chief notation commonly used
in spacecraft formation flying, in which the motion of
one spacecraft (the deputy) is described with respect to
another (the chief), in a local chief-centered frame. The
model may be updated with chief orbit elements with any
desired frequency. Analytical approaches such as the one
used in this paper naturally allow for the evolution of the
spacecraft orbit elements to be approximated for relatively
long timespans, i.e. for several orbits in the numerical
examples. This model can easily be combined with compo-
nents of other models to account for additional system per-
turbations, such as the low-order gravitational harmonics
(Burnett and Butcher, 2018). While it is assumed that
updated relative heading, range, and range-rate data is
periodically available for the spacecraft in the formation,
the relative position and velocity can be efficiently inte-
grated between measurements using the linearized model.
By incorporating accurate and computationally efficient
approximation of system evolution into the model, signifi-
cant decoupling of the tasks of control and navigation is
achievable. Overall, the developments in this paper are a
step towards enabling a highly flexible, simple formation
control strategy suitable for closed-loop SRP-based space-
craft formation control.

This work introduces and develops SRP-based control
for the relative motion of multiple 3-axis stabilized space-
craft in similar orbits, with similar geometry and optical
properties. Assumptions inherent to the approach are that
the deputy-chief separation is small on the scale of the chief
orbit, and that the deputy attitude deviations from the ref-
erence orientation are well-represented by a linearization in



Fig. 1. Problem Geometry for SRP-based Control, with Attitude-Dependent Resultant Force FSi .
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modified Rodriguez parameters (MRPs). In this control
formulation, the chief and deputy are thus assumed to have
similar attitudes. Small variations in the deputy attitude
from the chief attitude induce differences in the resultant
SRP acceleration between the spacecraft. The formulation
is introduced in a way that can be extended to enable con-
trol with a time-varying chief reference attitude, but for
simplicity the chief attitude is assumed to be fixed with
respect to the sun. For the proof-of-concept simulations,
the model is implemented with a single facet only, but
the approach can be easily generalized to a multi-facet
spacecraft model. The approach developed in this paper
could be adapted and extended to find use in future
multi-spacecraft missions to asteroids and comets, and will
also be useful for formation control or orbit maintenance
in high-altitude orbits about the Earth, such as the GEO
belt.

Lastly, it is important to note that the use of SRP for
spacecraft control has already been demonstrated in flight.
The K2 mission was able to make use of SRP effects to
extend the life of the Kepler space telescope mission, which
was suffering from attitude control under-actuation due to
reaction wheel failure. This was done by achieving and
maintaining an orientation to passively minimize the SRP
disturbance along the roll axis (Howell et al., 2014). The
Messenger mission to Mercury used SRP for precision orbit
control, which is particularly notable and relevant to this
work. In that mission, pre-planned attitude and solar array
articulations were used to improve the accuracy of Mercury
flybys (O’Shaughnessy et al., 2009). This was done in an
open-loop fashion, but closed-loop control would be highly
desirable. Closed-loop control should be readily achievable
using SRP models with varying levels of fidelity, and the
work in this paper enables further steps towards that goal.

2. Spacecraft formation dynamics with solar radiation

pressure

The force due to solar radiation pressure on a general
body surface element Ai is given below (Scheeres, 2007):
FSi ¼ �P Rð ÞHi ûð ÞAi qisi 2n̂in̂i � I
� �

þ I
� �

� û û � n̂ið Þ
h

þa2in̂i n̂i � ûð Þ� ð1Þ
with

P Rð Þ � G1

R2
ð2Þ

a2i ¼ B 1� sið Þqi þ 1� qið ÞB ð3Þ
The function P Rð Þ is the solar radiation pressure at dis-
tance R, and G1 is the solar radiation force constant at 1

AU. The term I is the identity dyad, for which I � r ¼ r
for any vector r. Likewise, n̂in̂i is a dyad for which
n̂in̂i � r ¼ n̂i � rð Þn̂i (Danielson, 2003). The specular and dif-
fuse reflectivity coefficients are si and qi, and B is the Lam-
bertian scattering coefficient, û is the unit vector to the sun,
n̂i is the normal vector of the surface element, and Hi ûð Þ is a
visibility delta function, equal to 1 or 0, depending on
whether or not the face is directly illuminated by sunlight.
Fig. 1 highlights the important aspects of the problem
geometry.

For simplicity and generality, this analysis neglects the
effects of secondary reflections from other surfaces. How-
ever, a realistic treatment of the body optical properties
(B; si; qi) is important.

The SRP force can be modeled by considering the sum
of the forces on all illuminated facets. The results in this
paper use a single-facet model of a spacecraft for generality
and to validate the derivation. However, it is emphasized
that this method can be directly generalized to a spacecraft
with fixed geometry and multiple illuminated facets. Sum-
ming over the contributions of all body area elements, an
approximate model of the net SRP force vector on the
spacecraft is obtained:

FS ¼ �P Rð ÞA a2 cos bþ 2qs cos2 b
� �

n̂þ 1� qsð Þ cos bû� �
ð4Þ

where cos b ¼ û � n̂;A is a projected area term, and n̂ is the
corresponding equivalent normal unit vector. This imple-
mentation neglects the eclipse dynamics, but the effect



Fig. 2. Coordinate Frames N and P.
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could easily be re-introduced for a higher fidelity control
implementation. The terms a2; q, and s are illuminated
body-averaged optical parameters. This replaces the
multi-facet SRP force model with a single-plate SRP
force model at some reference orientation. It is always
possible to obtain an equivalent single-plate model repre-
sentation of the resultant SRP force acting on a spacecraft,
for which the sum of the n̂i components of the resultant
SRP force acts along n̂, and the û component is also
reproduced. However, the extent to which attitude-
dependent SRP force variations of the single plate correctly
model the true spacecraft SRP force variations is situation
dependent. Accuracy would be highly dependent on
spacecraft geometry and the optical properties of the
surface facets.

Other approaches of modeling SRP acceleration varia-
tion for small angles are possible, such as a local lin-
earization of the spherical harmonic series representation
(Farrés et al., 2017). The purpose of this work is to
demonstrate the feasibility of using attitude-dependent
SRP acceleration for formation and rendezvous control,
so studies of the control implications of SRP model fide-
lity are left for future work.

2.1. Problem geometry and coordinate frames

Before continuing with the derivation of the linearized
dynamics and control model, the primary coordinate
frames must be defined. First, the rotating frame moving
with the primary body is called the planet frame P, and
is defined by orthonormal vectors

û; Ĥ � û=kĤ � ûk; Ĥ
n o

, where û points from the planet

toward the sun and Ĥ ¼ hp=hp is defined by the planet’s
orbit angular momentum vector hp, normal to its orbit
plane.

Fig. 2 shows the relationship between the N and P

frames. One can describe the rotation from the planet
frame to the primary-centered inertial (N) frame through
two angles:

NP½ � ¼ R1 jð Þ½ � R3 uþ pð Þ½ �>

¼
� cosu sinu 0

� sinu cos j � cosu cos j sin j

sinu sin j cosu sin j cos j

2
64

3
75 ð5Þ

where R1 hð Þ½ � denotes the rotation matrix for a 1-axis
rotation by angle h, and R3 hð Þ½ � is the rotation matrix
for a 3-axis rotation by angle h (Schaub and Junkins,
2018). The angle j is the obliquity of the ecliptic plane
and u is the argument of latitude, or the rotation angle
(in the orbit plane) from the Vernal Equinox to the radial
vector from the sun to the planet. For Earth, j � 23:5�,
and the N frame is the typical Earth-centered inertial
(ECI) frame.
Because this paper is focused on using SRP force for
rendezvous and formation control, the controlled relative
motion of two or more spacecraft is considered. The space-
craft labeling deputy and chief is commonly used in forma-
tion flying literature. The motions of one or more deputies
relative to the chief are used to describe formation or ren-
dezvous geometry without explicitly considering all indi-
vidual spacecraft orbits. Note that one may arbitrarily
decide which spacecraft is designated as the chief and
which is the deputy. In this paper, the chosen representa-
tion for the relative state is to resolve the relative position

Dr ¼ x; y; z½ �> ð6Þ
and velocity

Dr0 ¼ _x; _y; _z½ �> ð7Þ
in the chief-centered rotating local-vertical, local-

horizontal (LVLH) frame. Here, ðÞ0 denotes the derivative
of a state quantity as seen in the LVLH frame. This frame
rotates with the spacecraft orbit and is defined by
orthonormal radial, along-track, and orbit-normal vectors
êr; êt; ênf g. The radial and normal unit vectors are defined

in the usual way, in terms of the chief spacecraft position
r and velocity v : êr ¼ r=r and ên ¼ r� v=kr� vk.

A final rotation from the inertial frame to an orbiting
spacecraft-centered local-vertical local-horizontal (LVLH
frame) may now be defined. The rotation HN½ � is given
below in terms of the chief spacecraft orbit radial and
angular momentum vectors r and h, and equivalently in a
3–1–3 sequence in terms of the spacecraft orbit elements
X; i, and h ¼ xþ f (Schaub and Junkins, 2018):



HN½ � ¼
cosX cos h� sinX sin h cos i sinX cos hþ cosX sin h cos i sin h sin i

� cosX sin h� sinX cos h cos i � sinX sin hþ cosX cos h cos i cos h sin i

sinX sin i � cosX sin i cos i

2
64

3
75 ð9Þ
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HN½ � ¼
r̂>

1
rh r2v� v � rð Þrð Þ>

ĥ>

2
64

3
75 ð8Þ

Thus, the rotation from P to H is:

HP½ � ¼ HN½ � NP½ � ð10Þ
With the system geometry and coordinate descriptions now
defined, a control matrix B½ � can be obtained, which maps
deputy spacecraft attitude deviations to accelerations in the
LVLH frame. The uncontrolled dynamics of an SRP-
perturbed multi-spacecraft formation are also considered
to obtain the system matrix A½ �. The derivation of the lin-
earized system matrix A½ � of the relative dynamics is more
involved than the derivation of B½ �, and therefore is carried
out is a subsequent part of the work.

2.2. Linearized attitude-based SRP control

Modified Rodrigues Parameters (MRPs) are used to
describe the spacecraft attitude, or the attitude of a
single-plate model in this paper. This attitude description
is expressed in terms of the principal rotation elements (an-
gle a and axis ê) (Schaub and Junkins, 2018):

r ¼ tan
a
4
ê ð11Þ

The MRP attitude representation has the benefit of lin-
earizing as r � a=4ð Þê, providing a larger usable range
for linear control than an angular representation (Schaub
and Junkins, 2018).

The mapping to and from a general rotation matrix C½ �
is given below:

C½ � ¼ I3�3½ � þ 8 ~r½ �2 � 4 1� r2ð Þ ~r½ �
1þ r2ð Þ2 ð12Þ

r ¼
r1

r2

r3

0
B@

1
CA ¼ 1

f fþ 2ð Þ

C23 � C32

C31 � C13

C12 � C21

0
B@

1
CA ð13Þ

where f ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11 þ C22 þ C33 � 1

p
; r2n ¼ r>rð Þn, and ~r½ � is

the MRP skew-symmetric matrix.
To use the MRP formulation, the rotation of a vector in

P components into the spacecraft body frame (B) compo-
nents is defined in terms of two successive rotations. The
first is a rotation C1 rrð Þ½ � to the ‘‘reference” attitude, and
the second is a rotation C2 rcð Þ½ � to the current orientation,
which is a controlled deviation from this reference attitude:

Br ¼ C2 rcð Þ½ � C1 rrð Þ½ �Pr ð14Þ
The attitude deviation rc is the control parameter for
attitude-based position control using SRP. This work
assumes that the spacecraft attitude control system is fully
capable of enforcing the needed attitude behavior.

From Eq. 4, substituting n̂ � û for all cos b terms, the
force due to SRP is rewritten below in its P components

using Pn̂ ¼ C1 rrð Þ½ �> C2 rcð Þ½ �>B
n̂ and defining Bn̂ ¼ ê1 and

Pû ¼ ê1, where ê1 ¼ 1; 0; 0½ �>:
FS ¼ �P Rð ÞA a2 n̂ � ûð Þ þ 2qs n̂ � ûð Þ2

� �
C1 rrð Þ½ �> C2 rcð Þ½ �>

�
þ 1� qsð Þ n̂ � ûð Þ I3�3½ �Þê1 ð15Þ

To obtain the B½ � matrix, this equation must be linearized
with respect to the control term u ¼ rc. First, all control-
associated parts are replaced with their expansions up to
O rcð Þ:
C2 rcð Þ½ � � I3�3½ � � 4 ~rc½ � ð16Þ
n̂ � û ¼ ê>1 C2 rcð Þ½ � C1 rrð Þ½ �ê1

� ê>1 C1 rrð Þ½ � � 4 ~rc½ � C1 rrð Þ½ �ê1ð Þ ð17Þ
n̂ � ûð Þ2 � ê>1 C1 rrð Þ½ �>ê1

� �
ê>1 C1 rrð Þ½ � � 8 ~rc½ � C1 rrð Þ½ �ê1ð Þ

ð18Þ
Substituting Eqs. (16)–(18) into Eq. (15), expanding, and
retaining only terms up to O rcð Þ, the linearization of FS

is obtained:

FS � �P Rð ÞA a2 þ 2qsê>1 C1 rrð Þ½ �ê1
� �Þ�

� ê>1 C1 rrð Þ½ �ê1 C1 rrð Þ½ �> I3�3 þ 4 ~rc½ �½ Þð Þ� ��
�4 a2 þ 4qsê>1 C1 rrð Þ½ �ê1

� �
ê>1 ~rc½ � C1 rrð Þ½ �ê1 C1 rrð Þ½ �>

þ 1� qsð Þê>1 I3�3½ � � 4 ~rc½ �ð Þê1 I3�3½ ��ê1
ð19Þ

This equation is linear in rc, and is rearranged below so
that the control vector rc is explicitly isolated:

FS ¼ �P Rð ÞA a2 þ 2qsC1 1;1ð Þ
� �

C1 1;1ð Þ C1 rrð Þ½ �>� �
ê1

�
�4 a2 þ 2qsC1 1;1ð Þ

� �
C1 1;1ð Þ C1 rrð Þ½ �> ~e1½ �� �

rc

�4 a2 þ 4qsC1 1;1ð Þ
� �

C1 rrð Þ½ �> ê1ê
>
1

	 

C1 rrð Þ½ �> ~e1½ �� �

rc

þ 1� qsð Þê1 þ 4 1� qsð Þ ê1ê
>
1

	 

~e1½ �rc

�
ð20Þ

where the shorthand notation C1 1;1ð Þ ¼ ê>1 C1 rrð Þ½ �ê1 is used.
Note that the terms premultiplying rc Eq. (20) represents
the general control matrix B½ � for the system resolved in
P. For a time-varying reference orientation, this matrix is
time-varying.

For the proof-of-concept simulations in this work, it is
assumed that the reference orientation is sun-facing, then
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C1 rrð Þ½ � ¼ I3�3½ � and a simpler form is obtained for the sin-
gle facet model:

FS ¼ �P Rð ÞA 1þ qsþ a2ð Þê1 � 4 a2 þ 2qsð Þ ~e1½ �rcf g ð21Þ

From this result, the B½ � matrix can be isolated for the sys-
tem resolved in P:

B½ � ¼ 4
P Rð ÞA
m

04�3

0 0 �a2 � 2qs

0 a2 þ 2qs 0

2
64

3
75 ð22Þ

Again, note that the B½ � matrix for a more general reference
orientation can be readily obtained by isolating the
control-associated terms in Eq. (20). This can also be easily
resolved in any desired frame by using the appropriate
rotation matrices. Note that in the case of linearization
about a sun-facing reference, the B½ � matrix for the system
resolved in P predicts zero acceleration will be produced
along the û direction due to small controlled attitude vari-
ations. In reality, a small acceleration will be produced, but
this is not captured by the linearization. This suggests that
for a sun-facing reference, motion along the û direction is
instantaneously uncontrollable with linear control. How-
ever, investigations later in the paper show that the system
is still fully controllable.
2.3. Linearized relative motion dynamics under SRP

Having a system matrix A½ � that incorporates the pertur-
bative effects of SRP on the relative motion dynamics will
enable better control performance than by using a system
matrix that doesn’t account for the perturbation, such as
the popular Hill-Clohessy-Wiltshire (HCW) model
(Clohessy and Wiltshire, 1960). This section provides a
derivation of a model for uncontrolled SRP-perturbed rel-
ative orbital motion behavior of the spacecraft, suitable for
use with the proof-of-concept control implementations.

Because the SRP-based control is enabled by deviations
from a reference attitude that is assumed to be fixed in the
P frame, this analysis assumes that if the two spacecraft are
at the same orientation, then the SRP-based differential
acceleration between the deputy and chief spacecraft is neg-
ligible. This implicitly assumes that the deputy and chief
geometry and optical characteristics are similar. In this
case, with both spacecraft at the same orientation with
respect to the sun, the only manifestation of the SRP accel-
eration is on the kinematics of the chief-centered LVLH
frame. Note that depending on the dynamic environment,
this effect may be overshadowed by other disturbance
accelerations.

The angular velocity of the perturbed LVLH frame with
respect to the inertial frame may be described in terms of
the perturbed orbit element rates (Casotto, 2016):

xH ¼ d�
dt

â3 þ di
dt

â3 � ên
kâ3 � ênk þ

dh
dt

ên ð23Þ
where â3 is the vector pointing along the planet polar axis,
the third orthogonal unit vector used for the N frame. The
angle X is the right ascension of the ascending node, i is the
inclination, and h ¼ xþ f is the argument of latitude. The
orbit element rates are obtained using the variational equa-
tions in their Gaussian form to yield the osculating rates
due to the SRP perturbation, resolved in local radial,
along-track, and cross-track components:

aSRP ¼ RSRPêr þ T SRPêt þ NSRPên ð24Þ
d�
dt

¼ r sin h
h sin i

N SRP ð25aÞ
di
dt

¼ rcosh
h

NSRP ð25bÞ
dh
dt

¼ dx
dt

þ df
dt

¼ h
r2

� r sin h cos i
h sin i

NSRP ð25cÞ

The argument of latitude is used to avoid the possibility of
small denominators in the variational equations for near-
circular orbits. The argument of latitude rate has two com-
ponents: the ‘‘unperturbed” argument of latitude rate
_hu ¼ h=r2, and a component due to the regression of the node
fromwhich h is measured (Prussing andConway, 2013). The
expression forN SRP may be obtained using the rotation from
P toH , and the SRP disturbance force resolved inP compo-
nents, Eq. (20), with rc ¼ 0 because the chief attitude is the
reference orientation. In this analysis, it is assumed that
the chief attitude is fixed in the P frame.

NSRP ¼ 1

m
ê>3 HN½ � NP½ �FS ð26Þ

NSRP ¼� P Rð Þ A
m

1� qsð Þ
C1 1;1ð Þ

þ a2 þ 2qsC1 1;1ð Þ

� �
C1 1;1ð Þ ê>3 HN½ � NP½ � C1 rrð Þ½ �>ê1

� � ð27Þ

NSRP ¼� P Rð Þ A
m

1� qsð Þ
C1 1;1ð Þ

þ a2 þ 2qsC1 1;1ð Þ

� �
C1 1;1ð Þ ê>n C1 rrð Þ½ �>ê1

� � ð28Þ

where the unit vector ên is not a function of h due to the
problem geometry:

ên ¼
sinj sinu cos i� sinX cosu sin iþ cosX cos j sinu sin i

sin j cosu cos iþ sinX sinu sin iþ cosX cosj cosu sin i

cos j cos i� cosX sinj sin i

0
B@

1
CA ð29Þ

Assuming the primary body orbit radius R is nearly con-
stant and that the reference orientation is stationary as seen
in the P frame, the only time-varying term in Eq. (28) is the
primary body’s argument of latitude, u. Generally, this
time scale will be much slower than the spacecraft orbit
period about the primary body, and may be slow enough
to ignore for sufficiently short-duration rendezvous.

By applying the transport theorem twice with angular
velocity given by Eq. (23), the kinematics of the perturbed
LVLH frame are given in radial, along-track, and cross-
track components:
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D€r ¼ €x� _xny � 2xn _y � x2
nxþ xnxrz

� �
êr

þ €y þ _xnxþ 2xn _x� x2
n þ x2

r

� �
y � _xrz� 2xr _z

� �
êt

þ €zþ xnxrxþ _xry þ 2xr _y � x2
r z

� �
ên

ð30Þ
where the angular velocity has also been resolved into its
LVLH components:

xr ¼ _X
sin i
sin h

ð31aÞ
xt ¼0 ð31bÞ
xn ¼ _hu ¼ h=r2 ð31cÞ
The term D€r represents the differential perturbing accelera-
tions. If only the SRP differential acceleration is consid-
ered, then, in the case of the earlier listed assumptions,
this term is due only to the differential gravity, which is
assumed to be a two-body potential for now:

D€rJ0 ¼
l
r3

2x

�y

�z

0
B@

1
CA ð32Þ

The choice of local Cartesian/curvilinear coordinates for
treatment of the perturbed relative motion problem has led
to one important limitation: large chief orbit eccentricities
introduce significant analytical difficulties to the derivation,
for multiple reasons. While such problems are still analyt-
ically tractable, this derivation is restricted to cases of e � 0
(near-circular orbits) and _a � 0 (negligible changes to orbit
specific energy). This dynamical model can theoretically be
adapted for perturbed eccentric orbits, assuming _e � 0 still
holds, and that all q terms are updated to account for the
variations in the chief radius. Note that writing _e � 0 only
implies the assumption that the effects from _e are small
compared to the first-order effects of the solar radiation
pressure. However, this will not always be the case. Both
the long and short-term effects of solar radiation pressure
on eccentricity are discussed extensively by Scheeres
(2012). Relaxing of the aforementioned assumptions and
further potential developments of the model are left to
future work.

To first order in the SRP terms, assuming _a � 0 and
_e � 0, it can be shown that the only nonzero angular accel-
eration term is _xr, given below with the nonzero angular
velocity squared terms:

_xr ¼ n
sin i
sin h

d

dh
_X

� �� _X
cos h
sin h

� �
þ _u

sin i
sin h

d

du
_X

� � ð33Þ

xnxr ¼ nq�3=2
r

_X
sin i
sin h

ð34Þ

x2
n ¼

h2

r4
ð35Þ

where qr ¼ r=a and n is the orbital mean motion. From the
near-circular orbit assumption and the assumption _a � 0, it

is implied that r tð Þ � a, thus _hp � n and qr � 1. These
assumptions will not be valid for long time spans if the
SRP disturbance acceleration is large enough to signifi-
cantly change the chief orbit. Evaluating Eqs. 35,33,34,
all nonzero kinematic terms are presented below, explicitly
in terms of N SRP:

xr ¼ r
h
NSRP; xn ¼ h

r2
ð36Þ

_xr ¼ _u
r
h

d

du
NSRPð Þ ð37Þ

xnxr ¼ nq�3=2
r

r
h
NSRP; x2

n ¼
h2

r4
ð38Þ

The final linearized relative motion equations are
obtained and presented below in matrix-vector form,
resolved in the chief-centered LVLH frame, H .

€x

€y

€z

0
BB@

1
CCA¼

h2=r4þ2 l
r3 0 �nq�3=2 r

hNSRP

0 h2=r4� l
r3 _u r

h
d
du NSRPð Þ

�nq�3=2 r
hNSRP � _u r

h
d
du NSRPð Þ � l

r3

2
6664

3
7775

x

y

z

0
BB@

1
CCA

þ
0 2 h

r2 0

�2 h
r2 0 2 r

hNSRP

0 �2 r
hNSRP 0

2
664

3
775

_x

_y

_z

0
BB@

1
CCA ð39Þ

If small variations in the chief orbit radius are known, and
any resulting terms are of the same order as linear SRP-
associated terms, then the substitution of these variations
may be desirable. Otherwise, if r � a 8t, and e is small,
the expression may be simplified further:

€x

€y

€z

0
BB@

1
CCA¼

3n2 0 �n a
hNSRP

0 0 _u a
h

d
du NSRPð Þ

�n a
hN SRP � _u a

h
d
du NSRPð Þ �n2

2
6664

3
7775

x

y

z

0
BB@

1
CCA

þ
0 2n 0

�2n 0 2 a
hN SRP

0 �2 a
hNSRP 0

2
664

3
775

_x

_y

_z

0
BB@

1
CCA

ð40Þ
The position and velocity-associated matrices in Eq. (40)

are denoted as Ap

	 

and Av½ �, respectively. Reusing the state

representation x ¼ x; y; z; _x; _y; _z½ �>, for which one may write
_x ¼ A tð Þ½ �x, the time-varying A½ � matrix is:

A½ � ¼ 03�3 I3�3

Ap Av


 �
ð41Þ

with all components of the linear model defined, the lin-
earized relative orbital motion dynamics can now be
expressed in their usual form:

_x ¼ A tð Þ½ �xþ B tð Þ½ �u ð42Þ
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The A½ � matrix terms are given in Eqs. 40,41. The control-
associated B½ � matrix is given in Eq. (22), with the lower
3� 3 sub-matrix now pre-multiplied by HP½ � to resolve
the resultant control accelerations in the LVLH frame
components.

3. Application to spacecraft formation control

This section discusses and demonstrates the implemen-
tation of the new SRP-perturbed relative orbital motion
model for control.

3.1. Linear SRP-based formation and rendezvous control

Control in this paper is performed using the Linear
Quadratic Regulator (LQR), which is for the design of a
control input u that minimizes the finite-time cost function
shown below, under the action of the linearized dynamics
_x ¼ A½ �xþ B½ �u (Sontag, 1998).

J ¼ 1

2

Z tf

t0

x> Q½ �xþ u> R½ �u� �
dt þ 1

2
x>
f Sf

	 

xf ð43Þ

where Q½ � and R½ � are the state and control-associated

weight matrices, and Sf

	 

is the matrix associated with

the quadratic final state cost. The solution is given below:

u ¼ � Kx½ �x ð44Þ
The time-varying gain matrix Kx½ � is given in terms of S½ �,
obtained by solving the Riccati differential equation with

final condition S tf
� �	 
 ¼ Sf

	 

:

Kx½ � ¼ R½ ��1 B½ �> S½ � ð45Þ
_S½ � þ S½ � A½ � þ A½ �> S½ � � S½ � B½ � R½ ��1 B½ �> S½ � þ Q½ � ¼ 0½ � ð46Þ
3.2. Controllability analysis

Before the SRP-based control is simulated, controllabil-
ity analysis provides some insight into the problem. For
completeness, the time-varying effects of the SRP perturba-
tion are included in the A½ � matrix for the relative motion
dynamics.

For an LTV system with n states, if the following is sat-
isfied, the system is controllable (Sontag, 1998):

rank B0 tð Þ;B1 tð Þ; . . . ;Bn�1 tð Þ½ �ð Þ ¼ n ð47Þ
where B0½ � ¼ B½ � and all other elements are given by the
following:

Biþ1 tð Þ½ � ¼ A tð Þ½ � Bi tð Þ½ � � d

dt
Bi tð Þ½ � ð48Þ

The rank of the controllability matrix, if less than n,
determines the dimension of the controllable subspace.

To facilitate this discussion for SRP-based control, the
B½ � matrix is now resolved into H :

B½ � ¼ 03�3

HN½ � NP½ � BC½ �

 �

ð49Þ
where BC½ � is the constant part of the B½ � matrix:

BC½ � ¼ 4P Rð Þ Am a2þ2qsC1 1;1ð Þ
� �

C1 1;1ð Þ C1 rrð Þ½ �> ~e1½ �� 1�qsð Þ ê1ê
>
1

	 

~e1½ ��

þ a2þ4qsC1 1;1ð Þ
� �

C1 rrð Þ½ �> ê1ê
>
1

	 

C1 rrð Þ½ �> ~e1½ ��

ð50Þ
If the reference orientation is sun-facing, then
C1 rrð Þ½ � ¼ I3�3½ � and a much simpler form is obtained for
BC½ �:
BC½ � ¼ 4P Rð Þ A

m
a2 þ 2qsð Þ ~e1½ � ð51Þ

For this controllability analysis, it is assumed that the ref-
erence orientation is sun-facing. The rotation from P to H

is time-varying, and thus the B½ �matrix will be time-varying
as well. Furthermore, the A½ � matrix is time-varying. The
time-varying terms in the A½ � matrix obtained from Eq.
(40) can be expected to evolve slowly compared to the time
scale of the relative orbital motion dynamics.

Using the SRP-perturbed system A½ � matrix, the control-
lability matrix is obtained in terms of the Bi tð Þ½ � sub-
matrices:

Bi tð Þ½ � ¼ B0
i tð Þ½ � BC½ � ¼ B0

i uð Þ tð Þ
	 

B0

i lð Þ tð Þ
	 


" #
BC½ � ð52Þ

where B0
i uð Þ

	 

and B0

i lð Þ
	 


are the upper and lower sub-

matrices of B0
i tð Þ½ � and the time-varying portion B0

i tð Þ½ �
can be shown to obey the following recursive relationship
and initial values:

B0
iþ1 tð Þ½ � ¼ B0

i lð Þ tð Þ
	 
� d

dt B0
i uð Þ tð Þ

	 
� �
Ap

	 

B0

i uð Þ tð Þ
	 
þ Av½ � B0

i lð Þ tð Þ
	 
� d

dt B0
i lð Þ tð Þ

	 
� �
" #

ð53Þ
B0

0 uð Þ tð Þ
	 
 ¼ 03�3½ �; B0

0 lð Þ tð Þ
	 
 ¼ HP½ � ð54Þ

Using Eq. (53), and recalling B0 tð Þ½ � ¼ B tð Þ½ �, the next two
sub-matrices are shown analytically:

B1 tð Þ½ � ¼ HP½ �
Av½ � HP½ � � HP½ � ~xH ;P½ �


 �
BC½ � ð55Þ

B2 tð Þ½ �¼ Av½ � HP½ ��2 HP½ � ~xH ;P½ �
Ap

	 

HP½ �þ Av½ �2 HP½ ��2 Av½ � HP½ � ~xH ;P½ �þ HP½ � ~xH ;P½ �2� _Av

	 

HP½ �

" #
BC½ �

ð56Þ
where ~xH ;P½ � is an angular velocity term associated with the
rotating frames:

d

dt
HP½ �ð Þ ¼ HP½ � x�H ;P

h i
ð57Þ

The matrix ~xH ;P½ � is skew-symmetric, with the components
of the angular velocity of frame P relative to H , expressed
in P components. Note that it is assumed that angular
acceleration terms are zero because the effect of rotating
frame angular acceleration terms is quite small for near-
circular planetary and spacecraft orbits. Thus,
_~xH ;P

	 
 � 03�3½ �.
The symbolic expressions for each sub-matrix were

obtained via MATLAB and saved as functions. To enforce



Table 1
Simulation 1 Physical Parameters.

Parameter Value

�0 ¼ a; e; i;X; hð Þ 200 km; 0:0; 86:0�; 0:0�; 0:0�

d�0 ¼ da; de; di; dX; dhð Þ 0:0 km; 0:00125; 0:05�; 0:0�; 0:0�

LVLH Initial Conditions Dr ¼ �250êrm;Dr0 ¼ 0:01217êt þ 0:004253ên m=s
Optical constants A

m ¼ 0:5 m2=kg;B ¼ 0:8; s ¼ 0:7;q ¼ 0:3
Primary Body Orbit Radius R ¼ 3:5904� 108 km 2:4 AUð Þ
Primary Body Orbit Angles j ¼ 4�;u0 ¼ 90�

Primary Body Physical Parameters d ¼ 40 km;qa ¼ 2:119 g=cm3;M ¼ 7:1� 1016 kg
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the zero angular acceleration condition, the time-varying
angular terms were truncated to their linear approxima-
tions, h � h0 þ nt and u � u0 þ _ut. The final expression
for the controllability matrix is far too long and complex
to be included here.

Table 1 gives hypothetical parameters for evaluating the
controllability matrix, and for the first set of simulation
results to follow this controllability analysis. Note that d
is the primary body diameter, qa is the body density, and
M is the body mass. Recall that s and q are the specular

and diffuse reflectivity coefficients, and B is the Lambertian
scattering coefficient. The optical parameters for this first
result are values corresponding to a completely reflective
surface (McInnes, 1999), but adding absorption doesn’t
affect the conclusion of the controllability analysis. This
hypothetical simulation data is representative of some
high-altitude orbit over a large asteroid. Only two-body
gravity and SRP perturbations are implemented in the
truth model, since this paper is primarily concerned with
the solar radiation pressure perturbation, which would be
a dominant disturbance at this altitude.

Using the parameters in Table 1, the rank of the control-
lability matrix may be obtained for various times in the
simulation. Numerical results show that the rank of the
controllability matrix is consistently 6, using the MATLAB
rank function with the default tolerance. This function
Fig. 3. SRP-Perturbed Relative Motion.
uses a singular value decomposition and computes the
number of singular values lower than the tolerance. For
the rank function, the default tolerance given a matrix B
is computed in MATLAB as max(size(B))*eps

(norm(B)). Lowering the tolerance (e.g. to 10�10), the
rank of the controllability matrix reduces to 4. These
numerical results suggest that the system is fully control-
lable, with kinematic coupling enabling weak controllabil-
ity of the spacecraft motion along û.

3.3. Testing the SRP-perturbed relative motion model

First, results are presented to demonstrate that the
dynamical model obtained in this paper works as expected.
Namely, the model given in Eq. (40) was simulated for 6
chief orbit periods with the data given in Table 1, along
with a nonlinear truth model. The results are given in
Fig. 3. The system matrix of the SRP model is not re-
initialized with an update of chief orbital elements during
this time frame. There is close agreement between the
SRP model and the nonlinear truth model for the 6 orbits
simulated, as can be seen from the plot of position error in
Fig. 4. This shows that the linearized SRP model is prop-
erly accounting for the SRP disturbance acceleration’s
effects.

3.4. Controlled simulation results

With the efficacy of the linearized dynamical model
demonstrated, finite-time LQR control is now implemented
to obtain the optimal control signals u tð Þ ¼ rc tð Þ. Of partic-
Fig. 4. Model Errors.



Fig. 6. Controlled Position, Case 1.

Fig. 5. SRP-Based Control of Relative Motion, Case 1.

E.R. Burnett, H. Schaub / Advances in Space Research 67 (2021) 3396–3408 3405
ular interest is the full controllability of the system implied
by the analysis in the preceding section. It was hypothe-
sized that controllability is weakest in the projection of
the motion along û. Setting the relative motion to take
place near the terminator plane allows the motion along
û to be easily investigated. Without treating the out-of-
plane associated elements of the Q½ � matrix differently from
the in-plane associated elements, simulation results show
that the motion in the z direction fails to settle. However,
by over-weighing the cost of z and _z in the dynamics, the
controller takes a strategy that seeks to minimize the
motion in this mode, by delaying the settling of the x and
y motion. The controlled relative motion is given in
Fig. 5, showing the deputy relative motion settling to the
vicinity of the chief.

The first simulation demonstrates relative motion regu-
lation control to a chief in a terminator orbit. The non-
optical physical constants and initial conditions are
unchanged from the uncontrolled simulation - thus are
given in Table 1. The control parameters and the new opti-
cal parameters for this simulation are given in Table 2.

The position deviations and control signals are given in
Figs. 6 and 7. The results show that for this case, the con-
troller functions as intended – successfully controlling the
deputy spacecraft to very near the origin of the LVLH
frame, over the course of one month. This is done with
< 10� attitude deviations from the sun-pointing direction.
This is important in the context of this work, because the
Table 2
Control Parameters and Optical Parameters for Simulation 1.

Parameter Value

Q Q ¼ I6�6; except Q 3; 3ð Þ ¼ Q 6; 6ð Þ ¼ 60
R 100I3�3

Sf I6�6

t0;Dt; tf t0 ¼ 0;Dt ¼ 10; tf ¼ 2581510 29:88 daysð Þ
Optical constants A

m ¼ 0:5 m2=kg;B ¼ 0:6; s ¼ 0:25;q ¼ 0:3
attitude variations must remain small in order for the
single-plate SRP model to be accurate.

The second simulation demonstrates control to change a
GEO orbit longitude by 0:544�, or 20 km in the along-track
direction, over the course of 30 days. The optical parame-
ters are the same as in the first simulation, but the other
physical parameters and the new control parameters are
different. These are given in Tables 3 and 4 respectively.
This simulation neglects the perturbative effects of lunar
and solar gravity, which manifest via a long term (53 year)
precession and nutation of the orbit (Anderson et al.,
2015). In this particular case, a scale analysis of the lunar
gravity perturbation will show that there would be suffi-
cient control authority to cancel such perturbations in
addition to controlling the spacecraft to the desired
location.

The motion in LVLH x and y components is given in
Fig. 8. The z motion is quite insignificant in this case, so
it is not shown. Note that the scale of the x motion is mag-
nified in the figure to show the bowed nature of the trajec-
tory followed, and to clearly show the oscillations in the
radial direction. Also note the overshoot in the y direction
followed by the slow settling behavior around the origin. In



Table 3
Simulation 2 Physical Parameters.

Parameter Value

�0 ¼ a; e; i;X; hð Þ 42157 km; 0:0; 0:0�; 0:0�; 0:0�

d�0 ¼ da; de; di; dX; dhð Þ 0:0 km; 0:0; 0:0�; 0:0�; 0:544�

Primary Body Orbit Radius R ¼ 1:496� 108 km 1:0 AUð Þ
Primary Body Orbit Angles j ¼ 23:5�;u0 ¼ 90�

Primary Body Physical Parameters r ¼ 6371 km; l ¼ 398600 km3=s2

Table 4
Control Parameters and Optical Parameters for Simulation 2.

Parameter Value

Q 0:5I6�6

R 105I3�3

Sf Sf ¼ 108I6�6; except Sf 1; 1ð Þ ¼ 1010 & Sf 4; 4ð Þ ¼ 1011

t0;Dt; tf t0 ¼ 0;Dt ¼ 80; tf ¼ 2584240 30 daysð Þ
Optical

constants

A
m ¼ 0:5 m2=kg;B ¼ 0:6; s ¼ 0:25; q ¼ 0:3

Fig. 8. SRP-Based Control of Relative Motion, Case 2.

Fig. 9. Controlled Position, Case 2.

Fig. 7. Control Signals, Case 1.
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practice, the overshoot in y might be undesirable for ren-
dezvous due to the risk of collision, but this problem can
be amended with a better choice of control gains and final
time. There are two time scales of the settling behavior.
Much of the separation is settled in the along-track
direction within 15 orbits, but the control action in the
remaining orbits slowly dampens out the oscillations
mainly in the x and y components. The large final cost
on the relative state ensures that in the final 3–4 orbits,
the relative motion is further settled (see Fig. 9 and 10).

These results suggest that relatively large maneuvers in
the GEO belt are possible with SRP-based linear control,
assuming sufficient time is available for such maneuvers.
Faster settling results would likely be possible through iter-
ation on the current selection of control parameters, but
these results are an adequate demonstration of capability.
The results from cases 1 and 2 show that both closed-
loop rendezvous control and larger changes to a GEO orbit
using a virtual chief are possible using small sustained atti-
tude variations to change the resultant SRP disturbance
force. This is simulated for spacecraft with relatively realis-
tic area-to-mass ratios and unremarkable (neither highly
reflective or absorptive) optical properties. Simulations
with smaller area-to-mass ratios still display the same char-
acteristic behavior, but with longer time spans needed to
achieve the same control objectives.

3.5. Practical considerations

For implementing the control strategy introduced in this
work, several challenges should be explicitly mentioned
and discussed. The first challenge to implementing SRP-
based formation control is the general challenge of reliable
relative state estimation for spacecraft in a formation. The
position of one spacecraft with respect to the other should



Fig. 10. Control Signals, Case 2.
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be known to sufficiently high precision that maneuvers for
rendezvous or reconfiguration pose no practical risk of col-
lision. In practice, this might necessitate that the relative
state estimation be performed with sensors on board the
spacecraft and not rely on differential state measurements
from the ground.

A second and equally fundamental challenge is that suc-
cessful SRP-based formation control is predicated on a suf-
ficiently accurate model of the solar radiation pressure
acting on the spacecraft in a formation. However, if the
spacecraft in the formation have identical design and are
using the same SRP model, then systematic errors in the
SRP modeling will partially cancel. In addition, if two
spacecraft have the same construction and are subjected
to the same orbital environment, then the difference in
resultant solar radiation pressure for the same orientation
should be quite small. The final challenge for implementa-
tion is enforcing that deviations from the reference atti-
tudes remain sufficiently small that the control
linearization is not violated. The constraint was enforced
in this work via choosing an LQR control weight R½ � suffi-
ciently large, but other strategies could be used.
4. Conclusions

This paper derives a new relative motion model account-
ing for the effects of the solar radiation pressure (SRP) dis-
turbance acceleration on spacecraft relative motion. The
kinematics of the SRP-perturbed chief orbit are absorbed
into the linearized plant matrix to accommodate infrequent
updates of the chief orbit parameters. The model demon-
strates the feasibility of SRP-based control in multiple
environments of interest for spacecraft with unremarkable
geometry and surface optical properties. The model is
derived from an existing multi-facet model of SRP force,
obtaining an illuminated body averaged single-plate model
that should be valid for small angular attitude deviations,
especially for spacecraft with large solar arrays, or other-
wise relatively flat spacecraft. Numerical simulations of
SRP-based control for spacecraft with unremarkable geo-
metric and optical properties establish the feasibility of
the use of attitude-dependent SRP force for formation
and rendezvous control.

Future work will explore refinements to the methods
used in this work, and will detail the limitations of the
model and control strategy used in this work. Future work
will also include higher-fidelity multi-facet spacecraft SRP
modeling that is valid for larger attitude variations, and
explorations of how to account for independent articula-
tion of solar arrays in a box-wing spacecraft model.
Finally, the study of uncontrolled SRP-perturbed forma-
tion dynamics may also continue, with updated models to
ease the restrictions made by assumptions in deriving this
model.

A multi-fidelity modeling approach could enable a low-
level control strategy (linear or otherwise) to be corrected
for high precision SRP-based control. Look-up tables gen-
erated in advance (or series fits of such data) could take
place of the linearized approximation of the attitude-
dependent variations in the magnitude and direction of
the resultant SRP acceleration. This work is thus the first
step towards a goal of accurate high-fidelity SRP-based
formation and orbit control.
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