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A B S T R A C T

Understanding natural relative motion trajectories is critical to enable fuel-efficient multi-satellite missions
operating in complex environments. This paper studies the problem of computing and efficiently parameterizing
satellite relative motion solutions for linearization about a closed chief orbit. By identifying the analytic
relationship between Lyapunov–Floquet transformations of the relative motion dynamics in different coordinate
systems, new means are provided for rapid computation and exploration of the types of close-proximity natural
relative motion available in various applications. The approach is demonstrated for the Keplerian relative
motion problem with general eccentricities in multiple coordinate representations. The Keplerian assumption
enables an analytic approach, leads to new geometric insights, and allows for comparison to prior linearized
relative motion solutions.
1. Introduction

A large body of work has studied the nature of satellite relative
motion in Keplerian and perturbed orbits. Generally, linearized or non-
linear dynamic models tailored to a particular application are derived
and solved to yield linear or nonlinear solutions. The problem of close-
proximity relative motion in the vicinity of satellites in circular orbits
was solved by Clohessy and Wiltshire in 1960 [1], and the solution
for general elliptical orbits was derived by Tschauner and Hempel
in 1965 [2]. Both of these solutions provide analytic and reasonably
concise expressions for solving the close-proximity relative motion
problem. In the years since, there has been a great deal of continued
analysis of the Keplerian relative motion problem, focusing on relative
motion design using the natural solutions and impulsive maneuvers, or
continuous feedback control on the relative state. Additionally, many
researchers have explored the influence of orbital perturbations on the
relative motion dynamics and their solutions [3–5]. In the course of
this research, many different coordinate representations of the relative
motion problem have been developed for various divergent applica-
tions. The most common types are local coordinate representations, in
which the relative state is resolved in terms of local relative position
and velocity, orbit element differences [6], and relative orbit elements
(ROEs) [7,8]. ROEs in particular are of note because they describe
relative motion similarly to orbit elements, but with more of a local ge-
ometric interpretation. While many works pursue developments in only
a single coordinate representation, there have been some successful
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works that exploit the relationship between coordinate representations
for achieving control and modeling goals [9].

One interesting line of work is in determining the simplest and
most convenient parameterizations of natural relative motion. Largely
a question of the choice of coordinates, this also involves factoring the
resultant solution in a given set of coordinates in a manner convenient
or illuminating for the astrodynamicist. The state transition matrix is an
unwieldy means by which to explore relative motion. Instead, other sets
of fundamental linear solutions can be chosen to serve as a functional
basis. Custom geometric interpretations of the solutions might also
be possible, in which the relative motion solution is factored into a
more concise or workable form. One example of this is the nonsingular
relative orbit element set for the Clohessy–Wiltshire solution [7,10].
The pursuit of desirable parameterizations of relative motion is a solved
problem for the Clohessy–Wiltshire case, a manageable problem for
more general elliptic orbits, but is largely unexplored for the wide
variety of periodic and almost-periodic orbits in multi-body and small-
body applications. In particular, to maximize geometric insight of
natural relative motion in these more complex settings, various types
of relative state coordinates must be explored. Some of these might be
altogether different from the more familiar types used in Keplerian or
weakly perturbed orbits.

To address the problem of efficiently studying the nature of relative
motion in the vicinity of general closed orbits, this paper leverages
the classical idea of the modal decomposition, used extensively in
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Fig. 1. Example satellite relative motion as a sum of individual modes.

he theory of vibrations [11]. All small deflections of a continuous
nd homogeneous body can be expressed as a linear weighted sum
f independent mode shapes, which each have their own associated
requency. In the same manner for the satellite relative motion problem
n the vicinity of a closed orbit, all possible motions are the sum of 6
ndependent fundamental motions with their own shapes and associ-
ted frequencies. Fig. 1 illustrates this conceptually with a depiction
f relative motion decomposed into three simpler constituent modal
otions. One benefit of the modal decomposition approach is that

scillatory, unstable, and drift motions are naturally isolated from one
nother. There are also many other benefits which will be discussed.

Several classical concepts and past works are highly relevant to
his paper. First, this paper employs Lyapunov–Floquet theory [12],
hose application to the relative motion problem has seen limited

tudy thus far. In Ref. [13], a Lyapunov–Floquet (LF) transformation
elating the Clohessy–Wiltshire and Tschauner Hempel dynamics is
xploited for relative motion control design. In Ref. [14], the authors
pply the LF transformation to the Tschauner–Hempel problem with
ubic nonlinearities and examine the effect of the nonlinearities on
he dynamical variables via averaging theory. Additionally, a simple
F transformation is used in Ref. [15] when incorporating the secular
ffect of the 𝐽2 perturbation on orbit element differences. The LF trans-

formation is applied to control design elsewhere in literature. Ref. [16]
studies control design for dynamical systems with time-periodic coef-
ficients using the LF transformation and the backstepping technique.
This is applied to control of a system with two statically coupled
pendula subject to periodic forcing. In Ref. [17], control of systems with
periodic coefficients is discussed and LF theory is applied to control of
an industrial mechanism. In addition to past work applying LF theory,
there has been some work on geometric analysis of relative motion
solutions for eccentric orbits. Ref. [18] explores the geometric inter-
pretation of the Tschauner–Hempel [2] and Yamanaka–Ankerson [19]
solutions, as well as the novel geometric parameterizations of those
solutions. Some of the fundamental solutions derived in that paper are
analogous to the ones obtained in this paper in the analytic application
to Keplerian relative motion dynamics. Finally, this paper also makes
use of the geometric method relating local curvilinear or Cartesian
coordinate representations to orbit element differences [9,20].

Most past applications of the LF transformation to satellite rela-
tive motion and other systems have been explicitly for control design
and not for relative motion planning, and past developments of fun-
damental linear relative motion solutions and ROEs have not made
extensive use of Lyapunov–Floquet theory. Furthermore, the relation-
ship between LF transformations in various coordinates has not been
appreciated in literature studying the Keplerian relative motion prob-
lem. This paper fills that gap in the literature, encouraging works using
multiple sets of coordinates to take greater advantage of LF theory. It
also highlights the benefits of examining the relative motion problem
from the perspective of fundamental relative motion modes.

This paper stems from a larger research effort to describe spacecraft
relative motion in the vicinity of almost-periodic orbits through a
highly generalized application of the modal decomposition method
[21]. The authors are exploring the numerical application of the LF
transformation to study relative motion in the vicinity of desirable long-
term stable orbits in highly perturbed environments, such as around as-
teroids and in multi-body systems. The nature of relative motion in such
49

𝑥

orbits is examined through a perturbative application of Lyapunov–
Floquet theory to the linearized relative motion problem. In essence,
the relative state is approximately described for some timespan by a
modal decomposition, by discarding the small non-periodic part of the
system plant matrix. Formation and rendezvous design is highly sim-
plified in such settings if the underlying approximate relative motion
modes can be identified. They serve as a simple basis for admissible
natural motions, which can be numerically re-computed as needed to
achieve the necessary accuracy. In the application of the necessary
numerical methods, it has been numerically more convenient to work
in orbit element differences than local Cartesian or curvilinear coor-
dinates, even though the latter coordinates are much more directly
useful for analysis, relative motion design, and control. As a result,
the relationship of the LF transformations obtained in different relative
motion coordinate sets became a topic of interest. This work takes
several steps back from numerical efforts with perturbed dynamics and
examines the application of the modal decomposition to the Keplerian
relative motion problem to seek analytical insight into these relative
motion modes.

This work is organized as follows. First, in Section 2, the Lyapunov–
Floquet (LF) transformation of the relative motion problem is reviewed,
for which the relative state is transformed by an orbit-periodic linear
transformation to a coordinate set with linear time-invariant (LTI)
dynamics. The idea of the modal decomposition is also introduced.
Afterwards, the relationship between LF transformations and LTI forms
for any two sets of relative motion coordinates is derived. The general
dynamics of relative motion in local coordinates and quasi-nonsingular
(QNS) orbit element differences are discussed, and the LF transfor-
mation and LTI form for the Keplerian case is then derived in QNS
element differences in Section 3. This facilitates the derivation of the
LF transformations and LTI forms for local Cartesian and spherical
coordinate representations. This exercise provides some new insights,
connections to past works, and solutions with useful properties. Sec-
tion 4 briefly discusses the application of the modal decomposition
method to perturbed dynamics. Overall, the paper provides an illumi-
nating and unifying approach to parameterizing and exploring relative
motion in the vicinity of closed orbits.

2. Fundamentals and theory

2.1. Motivating example

To motivate the arguments in this paper, consider an introductory
exercise using the simple well-known relative motion problem defined
by Clohessy and Wiltshire [1]. This problem studies the dynamics
of the relative state of a deputy spacecraft with respect to another
spacecraft called the chief, which is in a circular orbit. The relative state
is augmented relative position and velocity 𝒙 =

(

𝝆⊤, 𝝆′⊤)⊤ resolved
in a chief-centered rotating coordinate frame called the Hill or local
vertical–local horizontal (LVLH) frame as below:

𝝆 = 𝑥𝒆̂𝑟 + 𝑦𝒆̂𝑡 + 𝑧𝒆̂𝑛 (1a)

′ =
𝐻d
d𝑡 (𝝆) = 𝑥̇𝒆̂𝑟 + 𝑦̇𝒆̂𝑡 + 𝑧̇𝒆̂𝑛 (1b)

he vector triad
{

𝒆̂𝑟, 𝒆̂𝑡, 𝒆̂𝑛
}

forming the LVLH frame is defined below
n terms of the chief inertial position, velocity, and orbit angular
omentum vectors 𝒓𝑐 , 𝒗𝑐 , and 𝒉𝑐 , and ( )′ denotes the time derivative

f quantities as seen in this frame.

𝒆̂𝑟 = 𝒓𝑐∕𝑟𝑐 (2a)

𝒆̂𝑛 = 𝒉𝑐∕ℎ𝑐 (2b)

𝒆̂𝑡 = 𝒆̂𝑛 × 𝒆̂𝑟 (2c)

The linearized unforced relative motion dynamics for the Clohessy
Wiltshire (CW) problem are given below:

̈ − 2𝑛𝑦̇ − 3𝑛2𝑥 = 0 (3a)
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𝑦̈ + 2𝑛𝑥̇ = 0 (3b)

𝑧̈ + 𝑛2𝑧 = 0 (3c)

where 𝑛 =
√

𝜇∕𝑎3 is the mean motion. Note that the out-of-plane 𝑧
motion is a simple harmonic oscillator. The solutions to any linearized
relative motion equations can generally given in an STM format as
𝒙(𝑡) = [𝛷(𝑡, 𝑡0)]𝒙(𝑡0). Ignoring the simple and decoupled 𝑧 component
of the solution, the planar part of the STM is given below with epoch
time 𝑡0 = 0:

[𝛷(𝑡)] =

⎡

⎢

⎢

⎢

⎢

⎣

(4 − 3 cos 𝑛𝑡) 0 sin 𝑛𝑡
𝑛

2
𝑛 (1 − cos 𝑛𝑡)

6(sin 𝑛𝑡 − 𝑛𝑡) 1 − 2
𝑛 (1 − cos 𝑛𝑡) 4

𝑛 sin 𝑛𝑡 − 3𝑡
3𝑛 sin 𝑛𝑡 0 cos 𝑛𝑡 2 sin 𝑛𝑡

−6𝑛(1 − cos 𝑛𝑡) 0 −2 sin 𝑛𝑡 4 cos 𝑛𝑡 − 3

⎤

⎥

⎥

⎥

⎥

⎦

(4)

To illuminate the nature and types of planar relative motion per-
mitted by Eq. (4), there are a few options. First, in the case of CW
dynamics, the first two rows of the 4-state STM in Eq. (4) can be
factored into a simple and geometrically insightful pair of expressions:

𝑥(𝑡) = 𝐴0 cos (𝑛𝑡 + 𝛼) + 𝑥off (5a)

𝑦(𝑡) = −2𝐴0 sin (𝑛𝑡 + 𝛼) − 3
2
𝑛𝑡𝑥off + 𝑦off (5b)

where 𝐴0, 𝛼, 𝑥off, and 𝑦off are ROEs that are functions of the initial
relative state conditions. These are defined in Ref. [7]. Eq. (5) shows
that the planar relative motion is in a 2:1 ellipse when 𝑥off = 0, and
otherwise drifts in the along-track direction. This concise and highly
specialized expression stems from the simplicity of the CW dynamics.
In relative motion cases where the STM is more complicated than the
form given in Eq. (4), an alternate and more general approach for
understanding the relative motion is needed.

One alternate approach is to consider an expression of the relative
motion in terms of fundamental solutions 𝝃𝑖:

𝒙(𝑡) =
6
∑

𝑖=1
𝑐𝑖𝝃𝑖(𝑡) (6)

The 𝑐𝑖 constants are functions of the initial conditions. A prudent choice
of fundamental solutions enables the relative motion to be investigated
and designed by simply varying the weighing constants, with the
fundamental solutions designed such that their geometry is as simple
as possible. In this manner, the constants perform a similar function to
ROEs, by directly providing geometric insight.

The most obvious fundamental solutions are the columns of the
STM, for which 𝒄 = 𝒙0 in Eq. (6). These are typically inconvenient for
geometric interpretation. For the case of the CW problem, two of the
four columns of the planar STM given by Eq. (4) have drifting com-
ponents, whereas the drifting part of the solution is one-dimensional.
A superior parameterization would thus isolate the drifting motion
to only one fundamental solution, with the associated constant 𝑐𝑖
providing a no-drift constraint 𝑐𝑖 = 0. Such a set of solutions is
offered by the eigenvalue decomposition of the planar CW problem into
independent modes. More generally, the modal decomposition serves as
an attractive parameterization of the relative motion solution regardless
of the dynamics and orbit geometry, for any periodic orbit. This will be
discussed later.

For the planar CW problem, which has LTI dynamics, the decompo-
sition is computed below:

[𝐴2D] =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 1 0
0 0 0 1
3𝑛2 0 0 2𝑛
0 0 −2𝑛 0

⎤

⎥

⎥

⎥

⎥

⎦

= [𝑉 ][𝐽 ][𝑉 ]−1 (7)

[𝑉 ] =

⎡

⎢

⎢

⎢

⎢

0 − 2
3𝑛 − 1

2𝑛 − 1
2𝑛

1 0 − 𝑖
𝑛

𝑖
𝑛

0 0 − 𝑖
2

𝑖
2

⎤

⎥

⎥

⎥

⎥

(8)
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Fig. 2. Planar relative motion modes for the Clohessy–Wiltshire problem.

[𝐽 ] =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
0 0 0 0
0 0 𝑛𝑖 0
0 0 0 −𝑛𝑖

⎤

⎥

⎥

⎥

⎥

⎦

(9)

Using the theory of superposition, the solution to the in-plane dynamics
is given below:

𝒙(𝑡) = 𝑐1𝒗1𝑒𝜆1,2𝑡 + 𝑐2
(

𝒗1𝑡 + 𝒗2
)

𝑒𝜆1,2𝑡 + 𝑐3𝒗3𝑒𝜆3𝑡 + 𝑐4𝒗4𝑒𝜆4𝑡 (10)

where 𝒗𝑖 is the 𝑖th column of [𝑉 ]. Evaluating this at 𝑡 = 0, let the
solution constants be defined as 𝒄 ≡ (𝑐1, 𝑐2, 𝑐3, 𝑐4)⊤ Solving 𝒄 = [𝑉 ]−1𝒙0
yields the following values for the constants 𝑐𝑖:

𝑐1 = 𝑦0 −
2
𝑛
𝑥̇0

𝑐2 = − 6𝑛𝑥0 − 3𝑦̇0
𝑐3 = 3𝑛𝑥0 + 𝑖𝑥̇0 + 2𝑦̇0
𝑐4 = 3𝑛𝑥0 − 𝑖𝑥̇0 + 2𝑦̇0

(11)

The solution given by Eq. (10) is written in a simpler form, noting
𝜆1,2 = 0, and removing the imaginary part of the constants via the
factorization 𝑐3 = 𝑐R + 𝑖𝑐I, and 𝒗3 = 𝒗R + 𝑖𝒗I:

𝒙(𝑡) =𝑐1𝒗1 + 𝑐2
(

𝒗1𝑡 + 𝒗2
)

+ 2𝑐R
(

𝒗R cos 𝑛𝑡

− 𝒗I sin 𝑛𝑡
)

−2𝑐I
(

𝒗R sin 𝑛𝑡 + 𝒗I cos 𝑛𝑡
) (12)

Thus, 𝑐R = 3𝑛𝑥0 + 2𝑦̇0, 𝑐I = 𝑥̇0, and the fundamental modal solutions
weighed by constants 𝑐1, 𝑐2, 𝑐R, and 𝑐I are plotted in order in Fig. 2.
The initial positions of the oscillatory solutions are marked with an x,
and they are scaled such that they do not overlap.

The third and fourth modal solutions are simply two different
phases, forming a basis on the 2:1 ellipse, and the first modal solution is
a constant offset in the along-track direction, whose scale and direction
is determined by the magnitude and sign of 𝑐1. Comparing this to
Eq. (5), it is clear that the insights of the ROE-based solution have
been recovered. For bounded relative motion, the relative orbit is a 2:1
ellipse which can be centered anywhere in the along-track direction.
Inspecting the drift solutions in Eq. (12) and in Fig. 2, the magnitude
of 𝑐2 determines the rate of along-track drift, and its sign determines
the direction.

As demonstrated by the simple CW example, the strength of a modal
decomposition for analysis is that it naturally separates out oscillatory,
drifting, and stable/unstable components of the relative motion. For
the Keplerian problem, there will always be one relative motion drift
mode and no more that three in-plane oscillatory modes. For general
periodic orbits, the nature of the relative motion varies based on
the dynamics, and concise analytic solutions become impossible. It is
in these settings where a modally decomposed solution resolved in
favorable coordinates becomes most valuable to the astrodynamicist.
However, the application of the theory to the Keplerian case connects
strongly to other literature on the topic.
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2.2. Relative motion dynamics

In a coordinate-based dynamics approach (as opposed to the
coordinate-invariant approaches of geometric and variational mechan-
ics [22]), the choice of coordinates for a system determines the form
of the dynamics. For the relative motion problem, the two most com-
mon representations are (1) local coordinates of relative position and
velocity and (2) the coordinates of orbit element differences. The first
is easily physically interpreted, and the latter is often mathematically
more convenient. The general perturbed linearized dynamics for both
representations are important for this paper and are both reviewed
here.

Starting with local coordinates, consider the Cartesian relative state
defined previously as 𝒙 =

(

𝝆⊤, 𝝆′⊤)⊤. Dropping the 𝑐 subscript for chief
rbit parameters, the general linearized dynamics in these coordinates
re given below in terms of the chief radial vector 𝒓 and angular
elocity vector 𝝎 and their derivatives [5]:

̇ =

[

03×3 𝐼3×3
𝜕
𝜕𝝆

(

𝒓̈𝑑 − 𝒓̈
)

−
[ ̃̇𝝎

]

− [𝝎̃] [𝝎̃] −2 [𝝎̃]

]

𝒙 (13)

= 𝑟
ℎ
(

𝒓̈ ⋅ 𝒆̂𝑛
)

𝒆̂𝑟 +
1
𝑟
(

𝒓̇ ⋅ 𝒆̂𝑡
)

𝒆̂𝑛 (14)

𝝎̇ = 𝑟
ℎ

( 𝑟̇
𝑟
(

𝒓̈ ⋅ 𝒆̂𝑛
)

− 2 𝑟
ℎ
(

𝒓̈ ⋅ 𝒆̂𝑡
) (

𝒓̈ ⋅ 𝒆̂𝑛
)

+
(

𝒓⃛ ⋅ 𝒆̂𝑛
)

)

𝒆̂𝑟

+ 1
𝑟

(

(

𝒓̈ ⋅ 𝒆̂𝑡
)

− 2 𝑟̇
𝑟
(

𝒓̇ ⋅ 𝒆̂𝑡
)

)

𝒆̂𝑛
(15)

where the tilde on a symbol denotes the transformation of its vec-
tor into the cross-product matrix, and all matrices appear in square
brackets. The above expressions are general, and apply to Keplerian
and non-Keplerian dynamics. For the Keplerian case, they simplify
significantly into a more common form that can be found in Ref. [7]. An
inconvenience of these equations is that they are time-varying if 𝝎̇ ≠ 𝟎.
Further, for the perturbed problem, they can assume a very complicated
form and the effects of perturbations are almost irrevocably mixed in
with the Keplerian contribution. Furthermore, computation of the plant
matrix requires information about the derivative of the force model,
shown here explicitly as the jerk, 𝒓⃛.

An alternative parameterization in terms of orbit element differ-
ences 𝛿𝐨𝐞 = 𝐨𝐞𝑑 − 𝐨𝐞𝑐 separates out the effect of perturbations from the
unperturbed linear dynamics, which are trivial except in one element.
This paper will use the differential quasi-nonsingular (QNS) elements
given by 𝛿𝐨𝐞 = (𝛿𝑎, 𝛿𝜃, 𝛿𝑖, 𝛿𝑞1, 𝛿𝑞2, 𝛿𝛺)⊤. The Gauss planetary
equations are provided below. Note 𝑞1 = 𝑒 cos𝜔, 𝑞2 = 𝑒 sin𝜔, 𝜃 =
𝜔 + 𝑓 is the argument of latitude, and the other elements are classical
semimajor axis 𝑎, inclination 𝑖, and right ascension of the ascending
node 𝛺.

𝑎̇ = 2𝑎2
ℎ

(

(𝑞1 sin 𝜃 − 𝑞2 cos 𝜃)𝑎𝑟 +
𝑝
𝑟
𝑎𝑡
)

(16a)

𝜃̇ = ℎ
𝑟2

− 𝑟 sin 𝜃 cos 𝑖
ℎ sin 𝑖

𝑎𝑛 (16b)

𝑖̇ = 𝑟 cos 𝜃
ℎ

𝑎𝑛 (16c)

̇1 =
𝑝 sin 𝜃
ℎ

𝑎𝑟 +
(𝑝 + 𝑟) cos 𝜃 + 𝑟𝑞1

ℎ
𝑎𝑡 +

𝑟𝑞2 sin 𝜃
ℎ tan 𝑖

𝑎𝑛 (16d)

̇2 = −
𝑝 cos 𝜃

ℎ
𝑎𝑟 +

(𝑝 + 𝑟) sin 𝜃 + 𝑟𝑞2
ℎ

𝑎𝑡 −
𝑟𝑞1 sin 𝜃
ℎ tan 𝑖

𝑎𝑛 (16e)

𝛺̇ = 𝑟 sin 𝜃
ℎ sin 𝑖

𝑎𝑛 (16f)

n the absence of perturbations, the only nonzero term in Eq. (16) is the
rue latitude rate 𝜃̇ = ℎ∕𝑟2. Factoring the Keplerian component of the
acobian of the right hand side of Eq. (16) into the mostly zero matrix
𝐴𝛿𝐨𝐞,0(𝑡)], the complicated but typically sub-dominant perturbation-
nduced component of the Jacobian is written as [𝛿𝐴𝛿𝐨𝐞(𝑡)] and the

linearized differential QNS dynamics are written concisely below:

𝛿𝐨̇𝐞 =
(

[𝐴 (𝑡)] + [𝛿𝐴 (𝑡)]
)

𝛿𝐨𝐞 (17)
51

𝛿𝐨𝐞,0 𝛿𝐨𝐞 𝛿
The benefit of Eq. (17) over Eq. (13) is that the jerk no longer needs to
be computed, the effects of perturbations are neatly separated out in the
dynamics, and the remaining Keplerian component is fairly simple. A
disadvantage is that the differential QNS elements are not as well-suited
for geometric interpretation.

Refs. [20] and [7] discuss the geometric method, which relates the
relative state in local coordinates to the relative state in differential
QNS elements:

𝒙(𝑡) =
(

[𝐺0(𝑡)] + [𝛿𝐺(𝑡)]
)

𝛿𝐨𝐞(𝑡) = [𝐺(𝑡)] 𝛿𝐨𝐞(𝑡) (18)

here [𝐺0(𝑡)] captures the Keplerian component of the mapping. The
𝛿𝐺(𝑡)] matrix captures the perturbation-induced component of the
apping and is typically sub-dominant to [𝐺0(𝑡)]. Ref. [20] demon-

trates the derivation of [𝛿𝐺(𝑡)] for the 𝐽2 perturbation.

.3. The Lyapunov-Floquet transformation in any coordinates

The modal decomposition of solutions to a system of ODEs is
raditionally defined for autonomous equations, but essentially all non-
veraged relative motion except the CW problem is characterized
y non-autonomous differential equations. However, the Lyapunov–
loquet transformation [12] can be used to equate a linear time-varying
LTV) dynamic system with periodic plant matrix to an LTI counterpart
ia a periodic coordinate transformation:

= [𝑃 (𝑡)]𝒛 = [𝑃 (𝑡 + 𝑇 )]𝒛 (19)

here 𝒛 represents the coordinate set for the LTI equivalent of the
ystem in 𝒙, with the following simple LTI dynamics:

̇ = [𝛬]𝒛 (20)

he LF transformation and the LTI matrix are any pair of matrices
𝑃 (𝑡)], [𝛬] satisfying the following matrix differential equation:

𝑃 (𝑡)]−1
(

[𝐴(𝑡)][𝑃 (𝑡)] − [𝑃̇ (𝑡)]
)

= [𝛬] (21)

n analytically solving this equation, which can be challenging, one
eeks periodic solutions for the individual elements of [𝑃 (𝑡)] while also
equiring the elements of [𝛬] to be constant. In practice, the periodicity
onditions for all non-trivial elements of [𝑃 (𝑡)] constrain the admissible
orms of [𝛬], but still allow for variations in the values of elements in
𝛬] depending on the form of [𝑃 (𝑡0)]. As a result, there can be more
han a single pair of matrices satisfying Eq. (21).

A unique definition of the LF transformation is given below us-
ng the monodromy matrix. This transformation conveniently equals
dentity at the epoch time:

𝑃 (𝑡)] = [𝛷(𝑡, 𝑡0)]𝑒−[𝛬](𝑡−𝑡0) (22)

𝑃 (𝑡0)] = [𝑃 (𝑡0 + 𝑘𝑇 )] = [𝐼] (23)

𝛬] = 1
𝑇

ln (𝛷(𝑡0 + 𝑇 , 𝑡0)) (24)

The difficulty of computing the LF transformation varies depending
on the coordinates chosen to parameterize the problem. For example,
for the Keplerian case, the LF transformation in orbit element differ-
ences is shown to be identity except for a single row, whereas the
transformation for local coordinates [13] is much more difficult to
identify.

Motivated by the multitude of possible coordinates to parameterize
the relative motion problem and the inconvenience of computing the
LF transformation from scratch in a given coordinate set, a means to
obtain the LF transformation in one set of relative motion coordinates
from the transformation in any other set is derived here.

Let 𝒙 denote the relative state in the desired local coordinates and
𝐨𝐞 denote the relative state in the orbit element differences. As already
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shown with Eq. (18), these two representations are approximately
related by an orbit-periodic linear mapping:

𝒙 = [𝐺(𝑡)] 𝛿𝐨𝐞 (25)

The following linear mapping between the STMs is obtained using
Eq. (25):

[𝛷𝒙(𝑡, 𝑡0)] = [𝐺(𝑡)][𝛷𝛿𝐨𝐞(𝑡, 𝑡0)][𝐺(𝑡0)]−1 (26)

The following mapping between the plant matrices can also be shown:

[𝐴𝒙(𝑡)] = [𝐺(𝑡)][𝐴𝛿𝐨𝐞][𝐺(𝑡)]−1 + [𝐺̇(𝑡)][𝐺(𝑡)]−1 (27)

Let [𝑃𝒙(𝑡)] and [𝑃𝛿𝐨𝐞(𝑡)] denote the LF transformations, transforming the
two coordinate sets to their corresponding LTI coordinates:

𝛿𝐨𝐞 = [𝑃𝛿𝐨𝐞(𝑡)]𝒛𝛿𝐨𝐞 (28)

𝒙 = [𝑃𝒙(𝑡)]𝒛𝒙 (29)

These transformations are used to relate the plant matrices for the LTI
forms of both coordinates, choosing [𝑃𝒙(𝑡0)] = [𝑃𝛿𝐨𝐞(𝑡0)] = [𝐼6×6]:

[𝛬𝒙] =
1
𝑇

ln
(

[𝛷𝒙(𝑡0 + 𝑇 , 𝑡0)]
)

= 1
𝑇

ln
(

[𝐺(𝑡0 + 𝑇 )][𝛷𝛿𝐨𝐞(𝑡0 + 𝑇 , 𝑡0)][𝐺(𝑡0)]−1
)

(30)

oting [𝐺(𝑡0+𝑇 )] = [𝐺(𝑡0)], the matrix logarithm is factored as follows:

[𝛬𝒙] = [𝐺(𝑡0)] ⋅
1
𝑇

ln
(

[𝛷𝛿𝐨𝐞(𝑡0 + 𝑇 , 𝑡0)]
)

⋅ [𝐺(𝑡0)]−1

= [𝐺(𝑡0)][𝛬𝛿𝐨𝐞][𝐺(𝑡0)]−1
(31)

The LTI matrix for the local coordinate relative motion representation
is simply a change-of-basis of the LTI matrix for the quasi-nonsingular
element differences.

Using Eqs. (31) and (21), the following is obtained:

[𝑃𝒙]−1
(

[𝐴𝒙][𝑃𝒙] − [𝑃̇𝒙]
)

=

[𝐺(𝑡0)][𝑃𝛿𝐨𝐞]−1
(

[𝐴𝛿𝐨𝐞][𝑃𝛿𝐨𝐞] − [𝑃̇𝛿𝐨𝐞]
)

[𝐺(𝑡0)]−1
(32)

Substituting Eq. (27) and expanding yields

[𝑃𝒙]−1[𝐺][𝐴𝛿𝐨𝐞][𝐺]−1[𝑃𝒙]

+ [𝑃𝒙]−1[𝐺̇][𝐺]−1[𝑃𝒙] − [𝑃𝒙]−1[𝑃̇𝒙]

= [𝐺(𝑡0)][𝑃𝛿𝐨𝐞]−1[𝐴𝛿𝐨𝐞][𝑃𝛿𝐨𝐞][𝐺(𝑡0)]−1

− [𝐺(𝑡0)][𝑃𝛿𝐨𝐞]−1[𝑃̇𝛿𝐨𝐞][𝐺(𝑡0)]−1

(33)

This equation is used to show the following relationship between the
LF transformations for the two coordinates:

[𝑃𝒙(𝑡)] = [𝐺(𝑡)][𝑃𝛿𝐨𝐞(𝑡)][𝐺(𝑡0)]−1 (34)

The LF transformation and LTI form in any set of coordinates can
thus be obtained using the corresponding information in another set
of coordinates along with the transformation between coordinates via
Eqs. (31) and (34). These relationships hold for linearization about any
closed orbit, regardless of whether or not the dynamics are Keplerian.

Via the LF transformation, the modal decomposition of relative
motion can be performed in any set of relative state coordinates for
any closed orbit:

𝒙(𝑡) =
6
∑

𝑖=1
𝑐𝑖[𝑃𝒙(𝑡)]𝒗𝑖𝑒𝜆𝑖(𝑡−𝑡0) (35)

where the 𝜆𝑖 and 𝒗𝑖 are eigenvalues and eigenvectors of the LTI matrix
[𝛬𝒙], and the 𝑐𝑖 are elements of 𝒄, computed below, noting [𝑉 ] is
constructed column-wise from the 𝒗𝑖:

−1
52

𝒄 = [𝑉 ] 𝒙(𝑡0) (36)
Eq. (35) is of fundamental importance to this paper. Identifying the
LF-transformed modal solutions as a desirable set of fundamental solu-
tions, writing 𝝃𝑖(𝑡) = [𝑃𝒙(𝑡)]𝒗𝑖𝑒𝜆𝑖(𝑡−𝑡0) relates Eq. (35) back to Eq. (6).

he modal solutions and the LF transformation do not need to be
nalytically simple, and for general periodic orbits they will not be.
t is only desired that they be geometrically as convenient as possible
o facilitate relative motion exploration, planning and design. All of the
evelopments in this section can be implemented numerically without
ny great difficulty. Numerical analysis would be the preferred imple-
entation of this approach for perturbed orbits due to the analytical

hallenges involved.
Through the modal decomposition using the mapped LF transforma-

ion, the astrodynamicist is freed to explore the choice of coordinates
hat is most desirable for a given application without having to do

prohibitive amount of work when switching coordinates. The only
ecurring analytic burden is in deriving the necessary linear mapping
𝐺(𝑡)] for any new coordinate representation of interest.

.4. The modal constants under perturbations and control

It is important to illustrate how the modal methodology can incor-
orate the effects of perturbations and control. While this paper focuses
n geometric solutions to Keplerian motion, this section demonstrates
hat this theory can be applied to perturbed motion as well. The
pplication and study of such perturbed solutions is a large body of
ork that is beyond the scope of this paper.

Let the general modal solution be written in the following compact
orm from Eq. (35), noting [𝛬] = [𝑉 ][𝐽 ][𝑉 ]−1:

(𝑡) = [𝑃𝒙(𝑡)][𝑉 ]𝑒𝐽 (𝑡−𝑡0)𝒄 = [𝛹 (𝑡)]𝒄 (37)

or the nominal system, the rate of change of the modal solution
atisfies the dynamics based on a linearization about a nominal chief
rbit with orbit element history 𝐨𝐞∗:

̇ (𝑡) = [𝛹̇ (𝑡)]𝒄 = [𝐴(𝐨𝐞∗, 𝑡)]𝒙 (38)

To model the effect of perturbations, the constants 𝒄 are allowed
o vary such that the state rate of the modal solution matches the
erturbed dynamics, which are given below:

̇ = 𝒇 (𝒙, 𝒖, 𝑡) (39)

For the perturbed problem, the formerly constant quantities in 𝒄
re made to vary in a way such that Eq. (37) still accurately describes
he motion of 𝒙(𝑡), where [𝑉 ], [𝐽 ], and [𝑃𝒙(𝑡)] still track the nominal
hief orbit from which they were computed. Differentiating Eq. (37),
his requirement is written mathematically:

𝒙̇(𝑡) = d
d𝑡

(

[𝑃𝒙(𝑡)][𝑉 ]𝑒𝐽 (𝑡−𝑡0)𝒄(𝑡)
)

= 𝜕𝒙
𝜕𝑡

+ 𝜕𝒙
𝜕𝒄

𝒄̇ = 𝒇 (𝒙, 𝒖, 𝑡)
(40)

In consistency with Eq. (38), the following osculating condition needs
to be achieved at all times:
𝜕𝒙
𝜕𝑡

= [𝐴(𝐨𝐞∗, 𝑡)]𝒙 (41)

The following dynamics satisfy the osculating condition:

𝒄̇ =
( 𝜕𝒙
𝜕𝒄

)−1
(

𝒇 (𝒙, 𝒖, 𝑡) − [𝐴(𝐨𝐞∗, 𝑡)]𝒙
)

= [𝛹 (𝑡)]−1
(

𝒇 (𝒙, 𝒖, 𝑡) − [𝐴(𝐨𝐞∗, 𝑡)]𝒙
)

(42)

From Eq. (42), the effects of perturbations, nonlinearities, and
control on 𝒄 can be easily explored. In the case that the linearization
about the nominal chief orbit used to compute the modes is accurate,
the controlled linearized dynamics of 𝒄 reduce to the following:

𝒄̇ = [𝛹 (𝑡)]−1[𝐵𝒙]𝒖 (43)

where [𝐵 ] = [0 𝐼 ]⊤ if 𝒙 is in Cartesian coordinates.
𝒙 3×3 3×3
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3. Application to the Keplerian relative motion problem

In this section, the LF transformation is obtained for Keplerian
dynamics of any eccentricity in QNS element differences, and this
is analytically transformed to LF transformations in Cartesian and
spherical coordinates. It is shown that the modal solutions in Cartesian
and spherical coordinates are different. This is an interesting result
that illustrates how the choice of working coordinates can affect the
complexity of the modal solutions.

3.1. Orbit element differences

For two-body dynamics, the relative motion dynamics in QNS ele-
ments can be shown to take the following simplified form by transform-
ing the independent variable from 𝑡 to 𝜃:

𝛿𝐨𝐞′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
− 3

2𝑎
2(𝑞2c𝜃−𝑞1s𝜃)

𝜅 0 3𝑞1
𝜂2

+ 2c𝜃
𝜅

3𝑞2
𝜂2

+ 2s𝜃
𝜅 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝛿𝐨𝐞 (44)

here s = sin ( ), c = cos ( ) and the shorthand quantities 𝜂, 𝜅 and 𝜅0
re defined below.

=
√

1 − 𝑞21 − 𝑞22 (45)

𝜅 = 1 + 𝑞1 cos 𝜃 + 𝑞2 sin 𝜃 (46)

𝜅0 = 1 + 𝑞1 cos 𝜃0 + 𝑞2 sin 𝜃0 (47)

The dynamics are 𝛿𝐨𝐞′ = d
d𝜃 (𝛿𝐨𝐞) = 1

𝜃̇
𝛿𝐨̇𝐞, so the plant matrix in Eq. (44)

is [𝐴̃(𝜃)] = 1
𝜃̇ [𝐴(𝜃)].

A Lyapunov–Floquet transformation of Eq. (44) is sought, because
[𝐴̃(𝜃)] = [𝐴̃(𝜃+2𝜋)]. To differentiate the LTI system for this new choice
f independent variable, let the LTI coordinates 𝝌 be used instead of 𝒛
hen 𝜃 is the independent variable, with associated LTI plant matrix
𝑅] instead of [𝛬], and LF transformation [𝑃 (𝜃)]:

𝛿𝐨𝐞 = [𝑃 (𝜃)]𝝌 (48)

𝝌 ′ = [𝑅]𝝌 (49)

The LF transformation [𝑃 (𝜃)] solves an equivalent of Eq. (21):

[𝑃 (𝜃)]−1
(

[𝐴̃(𝜃)][𝑃 (𝜃)] − [𝑃 ′(𝜃)]
)

= [𝑅] (50)

The LF transformation sought is determined to have the following
simple form:

[𝑃 (𝜃)] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
𝑃21(𝜃) 𝑃22(𝜃) 0 𝑃24(𝜃) 𝑃25(𝜃) 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(51)

This reduces the number of scalar differential equations in Eq. (50) to
four:

𝐴̃21 + 𝐴̃22(𝜃)𝑃21 − 𝑃 ′
21 = 𝑅21𝑃22(𝜃) (52a)

𝐴̃22(𝜃)𝑃22 − 𝑃 ′
22 = 𝑅22𝑃22(𝜃) (52b)

𝐴̃24(𝜃) + 𝐴̃22(𝜃)𝑃24 − 𝑃 ′
24 = 𝑅24𝑃22(𝜃) (52c)

𝐴̃25(𝜃) + 𝐴̃22(𝜃)𝑃25 − 𝑃 ′
25 = 𝑅25𝑃22(𝜃) (52d)
53
These equations are solved, starting with 𝑃22(𝜃), and enforcing a period-
icity condition for each solution. This is demonstrated only for 𝑃22(𝜃),
whose general solution is given below:

𝑃22(𝜃) = 𝑐1
(

1 + 𝑞1 cos 𝜃 + 𝑞2 sin 𝜃
)2 𝑒−𝑅22𝜃 (53)

where 𝑐1 is an integration constant. The periodicity condition 𝑃22(𝜃) =
𝑃22(𝜃+2𝜋) yields 𝑅22 = 0, and the resulting form for 𝑃22(𝜃) is substituted
into the other differential equations, which are solved for their own
periodic solutions. An additional constraint is that [𝑃 (𝜃0)] = [𝐼] to
obtain the desired LF transformation discussed in Section 2.3. The
finalized nonzero components of the LF transformation are given below,
along with the LTI matrix:

𝑃21(𝜃) =
𝜅2

2𝑎
(

F21(𝜃0) − F21(𝜃)
)

(54a)

F21(𝜃) =
6
𝜂3

⎛

⎜

⎜

⎜

⎝

tan−1
⎛

⎜

⎜

⎜

⎝

𝑞2 + (1 − 𝑞1) tan
(

𝜃
2

)

√

1 − 𝑞21 − 𝑞22

⎞

⎟

⎟

⎟

⎠

− 𝜃
2

⎞

⎟

⎟

⎟

⎠

+
3
(

𝑞2 + (𝑞21 + 𝑞22 ) sin 𝜃
)

𝑞1(𝑞21 + 𝑞22 − 1)𝜅
(54b)

𝑃22(𝜃) =
𝜅2

𝜅2
0

(54c)

𝑃24(𝜃) =
𝜅2

4
(

𝑞21 + 𝑞22 − 1
)

(

F24(𝜃0) − F24(𝜃)
)

(54d)

24(𝜃) =
4(𝑞2 + sin 𝜃)

𝜅2
+ 4 sin 𝜃

𝜅
(54e)

𝑃25(𝜃) =
𝜅2

4
(

𝑞21 + 𝑞22 − 1
)

(

F25(𝜃0) − F25(𝜃)
)

(54f)

25(𝜃) =
4(1 − 𝑞21 + 𝑞2 sin 𝜃)

𝑞1𝜅2
+

4𝑞2 sin 𝜃
𝑞1𝜅

(54g)

[𝑅] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
− 3𝑎𝜂

2𝑟20
0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(55)

Note that there is a singularity in Eq. (54) for 𝑃25 for the case of 𝑞1 = 0.
The Lyapunov–Floquet transformation and LTI form for the case

that 𝑡 is the independent variable instead of 𝜃 is now discussed. Due
to the explicit appearance of the intermediate variable 𝜃, this alternate
form offers no computational advantages. It is however slightly simpler.
First, the nonzero element of the new LTI matrix [𝛬𝛿𝐨𝐞] is 𝑛𝑅21:

𝛬21 = −
3𝑎𝜂
2𝑟20

𝑛 (56)

where 𝑛 =
√

𝜇∕𝑎3 is the mean motion. In this case, the Lyapunov–
Floquet transformation takes on a slightly simpler form, with the 𝑃21(𝜃)
term in Eq. (51) reducing to zero, and all other components unaffected.
With this modified transformation, the equation for 𝛿𝜃 reduces to a
familiar form:

𝛿𝜃 = 𝑃22(𝜃)𝑅21𝑛(𝑡 − 𝑡0)𝛿𝑎 + 𝑃22(𝜃)𝛿𝜃0 + 𝑃24(𝜃)𝛿𝑞1 + 𝑃25(𝜃)𝛿𝑞2 (57)

This expression is analytically equivalent to its counterpart in Eq.
(14.129) of Ref. [7], though derived by quite a different process.
Exploiting the equivalence of Eq. (57) to Eq. (14.129) in Ref. [7],
alternate expressions can be obtained for 𝑃24(𝜃) and 𝑃25(𝜃) from Eq.
(14.130). The alternate expression for 𝑃25(𝜃) is notably nonsingular for
𝑞1 = 0.

The mapping of LF transformations is to be applied for two alternate
sets of relative motion coordinates. For this, Eqs. (31) and (34) are
repeated with 𝜃 instead of 𝑡:

−1
[𝑅𝒙] = [𝐺(𝜃0)][𝑅𝛿𝐨𝐞][𝐺(𝜃0)] (58)
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[𝑃𝒙(𝜃)] = [𝐺(𝜃)][𝑃𝛿𝐨𝐞(𝜃)][𝐺(𝜃0)]−1 (59)

where [𝑅𝛿𝐨𝐞] is given by Eq. (55) and [𝑃𝛿𝐨𝐞(𝜃)] is given by Eqs. (51) and
(54).

3.2. Cartesian coordinates

Let 𝒙𝑐 = (𝑥, 𝑦, 𝑧, 𝑥̇, 𝑦̇, 𝑧̇)⊤ denote the state in local Cartesian coor-
dinates. For these coordinates, the linearized coordinate transformation
[𝐺(𝜃)] from QNS orbit element differences is reproduced below [7]:

[𝐺𝒙𝑐 ] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑟
𝑎

𝑣𝑟
𝑣𝑡
𝑟 0

0 𝑟 0
0 0 𝑟s𝜃

− 𝑣𝑟
2𝑎

(

1
𝑟 −

1
𝑝

)

ℎ 0

− 3𝑣𝑡
2𝑎 −𝑣𝑟 0
0 0 (𝑣𝑡c𝜃 + 𝑣𝑟s𝜃)

− 𝑟
𝑝 (2𝑎𝑞1 + 𝑟c𝜃) − 𝑟

𝑝 (2𝑎𝑞2 + 𝑟s𝜃) 0
0 0 𝑟c𝑖
0 0 −𝑟c𝜃s𝑖

1
𝑝 (𝑣𝑟𝑎𝑞1 + ℎs𝜃) 1

𝑝 (𝑣𝑟𝑎𝑞2 − ℎc𝜃) 0
1
𝑝 (3𝑣𝑡𝑎𝑞1 + 2ℎc𝜃) 1

𝑝 (3𝑣𝑡𝑎𝑞2 + 2ℎs𝜃) 𝑣𝑟c𝑖
0 0 (𝑣𝑡s𝜃 − 𝑣𝑟c𝜃)s𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(60)

where 𝑣𝑟 = 𝑟̇ and 𝑣𝑡 = 𝑟𝜃̇, and the shorthand s and c are sine and cosine.
For the inverse of Eq. (60), see Ref. [7].

Solving Eq. (58), the Cartesian LTI matrix [𝑅𝒙𝑐 ] is obtained, which
can be expressed in a highly compact form:

[𝑅𝒙𝑐 ] =
2𝑅21𝑎

𝛾

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴(𝐵 + 2) 𝐴2 0
−(𝐵 + 1)(𝐵 + 2) −𝐴(𝐵 + 1) 0

0 0 0
𝐵(𝐵 + 2)∕𝐶 𝐴𝐵∕𝐶 0
𝐴(𝐵 + 2)∕𝐶 𝐴2∕𝐶 0

0 0 0

𝐴2𝐶 −𝐴(𝐵 + 1)𝐶 0
−𝐴(𝐵 + 1)𝐶 (𝐵 + 1)2𝐶 0

0 0 0
𝐴𝐵 −𝐵(𝐵 + 1) 0
𝐴2 −𝐴(𝐵 + 1) 0
0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(61)

where 𝑅21 is the nonzero (2, 1) element of [𝑅𝛿𝐨𝐞] in Eq. (55) and the
shorthand quantities 𝛾, 𝐴, 𝐵, 𝐶 are defined below:

𝛾 = 𝑞21 + 𝑞22 − 1 = 𝐴2 + 𝐵2 − 1 (62)

𝐴 = −
𝑣𝑟,0𝑝
𝑣𝑡,0𝑟0

= 𝑞2 cos 𝜃0 − 𝑞1 sin 𝜃0 (63)

𝐵 =
𝑝
𝑟0

− 1 = 𝑞1 cos 𝜃0 + 𝑞2 sin 𝜃0 (64)

𝐶 =
ℎ𝑟20
𝑎𝜇𝛾

(65)

The true and generalized eigenvectors of [𝑅𝒙𝑐 ] are given as the columns
of [𝑉𝑅𝒙𝑐

] below. The matrix [𝑅𝒙𝑐 ] has six zero eigenvalues, with geo-
etric multiplicity 5.

𝑉𝑅𝒙𝑐
] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

0 0 0 0 − 2𝑅21𝑎
𝛾 𝐴(𝐵 + 1)𝐶 0

1 0 0 0 2𝑅21𝑎
𝛾 (𝐵 + 1)2𝐶 0

0 1 0 0 0 0
− 1

𝐶 0 1 0 − 2𝑅21𝑎
𝛾 𝐵(𝐵 + 1) 0

0 0 𝐴
𝐵+1 0 − 2𝑅21𝑎

𝛾 𝐴(𝐵 + 1) 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

(66)
54

⎣ 0 0 0 1 0 0⎦
Note that both 𝐶 and the scaling term on the fifth column of [𝑉𝑅𝒙
]

can be expressed in terms of 𝐴 and 𝐵:

𝐶 = −
(1 − 𝐴2 − 𝐵2)3∕2

(𝐵 + 1)2𝑛
(67)

2𝑅21𝑎
𝛾

=
3(𝐵 + 1)2

(1 − 𝐴2 − 𝐵2)5∕2
(68)

ecause typically |𝐶| ≫ 1, the scaling of the fifth column of [𝑉𝑅𝒙
] can

e much larger than the others.
The general solution of the LTI form for the Cartesian coordinates

s given below in terms of the columns of [𝑉𝑅𝒙𝑐
] and the solution

onstants, to be defined shortly:

𝒙𝑐 (𝜃) =
5
∑

𝑖=1
𝑐𝑖𝒗𝑖 + 𝑐6

(

𝒗5(𝜃 − 𝜃0) + 𝒗6
)

(69)

The LF transformation for Cartesian coordinates maps the solution
iven by Eq. (69) back to Cartesian coordinates via 𝒙𝑐 = [𝑃𝒙𝑐 ]𝝌𝒙𝑐 . It is
omputed using the mapping from Eq. (54) given by Eq. (59), making
se of Eq. (60). This is significantly easier than solving differential
quations for its elements. The resulting LF transformation is a product
f analytic matrices, and can be evaluated efficiently.

Using the inverse of Eq. (66), the constant vector
= (𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6)⊤ is given by 𝒄 = [𝑉𝑅𝒙𝑐

]−1𝝌𝒙𝑐 (𝜃0):

1 = −
𝑣𝑡,0
𝑣𝑟,0

𝑥0 + 𝑦0 (70a)

𝑐2 = 𝑧0 (70b)

𝑐3 =
1
𝐶

(

−
𝑣𝑡,0𝑟0
𝑣𝑟,0𝑝

𝑥0 + 𝑦0 + 𝐶𝑥̇0

)

(70c)

𝑐4 = 𝑧̇0 (70d)

𝑐5 = −
(1 − 𝑒2)𝑣𝑡,0

3𝑣𝑟,0
𝑛
(

𝑟0
𝑝

)2
𝑥0 (70e)

6 =

(

𝑝
𝑟0

+ 1
)

𝑝
𝑟0
𝑛

(1 − 𝑒2)3∕2
𝑥0 +

1
𝐶

𝑣𝑟,0
𝑣𝑡,0

𝑦0 +
𝑣𝑟,0
𝑣𝑡,0

𝑥̇0 + 𝑦̇0 (70f)

he expression for 𝑐6 reduces to the Clohessy–Wiltshire no-drift con-
straint 𝑐6 = 2𝑛𝑥0 + 𝑦̇0 when 𝑒 = 0, so 𝑐6 captures the degree of drift.
It is better understood as a linearized measure of 𝛿𝑎. In particular, if
𝛿𝑎 = 0, this quantity should be zero as well. The terms 𝑐1, 𝑐3, and 𝑐5
are affiliated with the in-plane modes, and 𝑐2 and 𝑐4 are associated with
the two out-of-plane oscillatory modes.

The analytic perspective offered by Eq. (70) is very useful. First, the
out-of-plane motion is decoupled from the in-plane motion. Addition-
ally, none of the in-plane constants except 𝑐6 are functions of 𝑦̇0. In
the case that the degree of drift is specified via a fixed value of 𝑐6, a
select initial in-plane component of the position (𝑥0, 𝑦0) forms a point of
intersection of all possible in-plane relative motions in a one-parameter
variation, based on the value of 𝑥̇0. The constants 𝑐1 and 𝑐5 are fixed by
the choice of initial position, and only the value of 𝑐3 varies as the value
of 𝑥̇0 is varied. Additionally, only two of the in-plane mode constants, 𝑐3
and 𝑐6, can be changed with a single impulsive maneuver. The constants
𝑐1 and 𝑐5 can only be changed with a two-burn sequence.

On the topic of maneuvers and the drift constant, an additional
result can be determined from the constant 𝑐6. For single-maneuver
changes to bounded relative motion, for which 𝑐6 = 0, the in-plane
component of the thruster direction is constrained to a line:

𝛥𝑣𝑦 = −
𝑣𝑟,0
𝑣𝑡,0

𝛥𝑣𝑥 (71)

Any maneuver not satisfying this constraint will introduce drift to the
relative motion. For two-burn maneuvers, the orbit must be parame-
terized in terms of two sets of constants 𝒄 and 𝒄′ at the two distinct
maneuver points in the orbit. Note that the following equation can be
used to map constants 𝒄 for a choice of epoch anomaly 𝜃 to a new
0
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epoch angle 𝜃′0:

𝒄(𝜃′0) = [𝑉 (𝜃′0)]
−1[𝛷𝒙𝑐 (𝜃

′
0, 𝜃0)][𝑉 (𝜃0)]𝒄(𝜃0) (72)

The inverse of Eq. (66) becomes singular when 𝐴 = 0. This is
equivalent to whenever 𝑒 sin 𝑓0 = 0, or whenever 𝑒 and/or 𝑓0 is equal to
zero. However, the issue can be remedied by evaluating the expression
with the offending terms set to a small number 𝜖 instead of exactly zero.
For orbits of nonzero eccentricity, the singularity issue can also always
be avoided by selecting 𝑓0 ≠ 𝑘𝜋 for integers 𝑘.

For Keplerian orbits, the general linear relative motion problem in
Cartesian coordinates are studied in terms of individual modes via the
following:

𝒙𝑐 (𝜃) =
5
∑

𝑖=1
𝑐𝑖[𝑃𝒙𝑐 (𝜃)]𝒗𝑖 + 𝑐6[𝑃𝒙𝑐 (𝜃)]

(

𝒗5(𝜃 − 𝜃0) + 𝒗6
)

(73)

where the transformation [𝑃𝒙𝑐 ] given by Eqs. (59) and (60) is required
to evaluate this expression and the 𝒗𝑖 are the columns of Eq. (66).
Compare Eq. (73) to Eqs. (6) and (35). The individual modal solutions
for the Cartesian modal decomposition are plotted and studied in
Section 3.4.

3.3. Spherical coordinates

The local spherical coordinate representation is given by 𝒙𝑠 =
(

𝛿𝑟, 𝜃𝑟, 𝜙𝑟, 𝛿𝑟̇, 𝜃̇𝑟, 𝜙̇𝑟
)⊤. It has the advantage over the local Cartesian

coordinate representation of better capturing the curvature characteris-
tic of large along-track separations and large out-of-plane motion. This
makes it a more accurate representation for relative motion problems
with large along-track separations.

The relative state in local spherical coordinates is obtained from
local Cartesian coordinates as below:

𝛿𝑟 =
√

(𝑟𝑐 + 𝑥)2 + 𝑦2 + 𝑧2 − 𝑟𝑐 (74a)

𝜃𝑟 = tan−1
(

𝑦
𝑟𝑐 + 𝑥

)

(74b)

𝑟 = sin−1
(

𝑧
√

(𝑟𝑐 + 𝑥)2 + 𝑦2 + 𝑧2

)

(74c)

𝛿𝑟̇ =
(𝑟𝑐 + 𝑥)(𝑟̇𝑐 + 𝑥̇) + 𝑦𝑦̇ + 𝑧𝑧̇
√

(𝑟𝑐 + 𝑥)2 + 𝑦2 + 𝑧2
− 𝑟̇𝑐 (74d)

𝜃̇𝑟 =
(𝑟𝑐 + 𝑥)𝑦̇ − 𝑦(𝑟̇𝑐 + 𝑥̇)

(𝑟𝑐 + 𝑥)2 + 𝑦2
(74e)

𝜙̇𝑟 =
(𝑟𝑐 + 𝛿𝑟)𝑧̇ − (𝑟̇𝑐 + 𝛿𝑟̇)𝑧

(𝑟𝑐 + 𝛿𝑟)2
√

1 − 𝑧2
(𝑟𝑐+𝛿𝑟)2

(74f)

The position components of the inverse transformation are given
elow, for which the corresponding velocities can be obtained by
ifferentiation:

= (𝑟𝑐 + 𝛿𝑟) cos 𝜃𝑟 cos𝜙𝑟 − 𝑟𝑐 (75a)

𝑦 = (𝑟𝑐 + 𝛿𝑟) sin 𝜃𝑟 cos𝜙𝑟 (75b)

𝑧 = (𝑟𝑐 + 𝛿𝑟) sin𝜙𝑟 (75c)

he linearized transformation between the local spherical and Cartesian
oordinate representations is given below:

𝛿𝑟 ≈ 𝑥 (76a)

𝜃𝑟 ≈ 𝑦∕𝑟𝑐 (76b)

𝑟 ≈ 𝑧∕𝑟𝑐 (76c)

𝛿𝑟̇ ≈ 𝑥̇ (76d)

𝜃̇𝑟 ≈ 𝑦̇∕𝑟𝑐 − (𝑟̇𝑐∕𝑟2𝑐 )𝑦 (76e)
̇ 𝑟 ≈ 𝑧̇∕𝑟𝑐 − (𝑟̇𝑐∕𝑟2𝑐 )𝑧 (76f)
55
The nonlinear transformation from orbit element differences to local
spherical coordinates is discussed in Ref. [23]. For this work, the
linearized transformation is derived for small angles 𝜃𝑟 and 𝜙𝑟. The
result is given below:

[𝐺𝒙𝑠 ] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑟
𝑎

𝑣𝑟
𝑣𝑡
𝑟 0

0 1 0
0 0 s𝜃

− 𝑣𝑟
2𝑎

(

1
𝑟 −

1
𝑝

)

ℎ 0

− 3𝜃̇
2𝑎 −2 𝑣𝑟

𝑟 0
0 0 𝜃̇c𝜃

− 𝑟
𝑝 (2𝑎𝑞1 + 𝑟c𝜃) − 𝑟

𝑝 (2𝑎𝑞2 + 𝑟s𝜃) 0
0 0 c𝑖
0 0 −c𝜃s𝑖

1
𝑝 (𝑣𝑟𝑎𝑞1 + ℎs𝜃) 1

𝑝 (𝑣𝑟𝑎𝑞2 − ℎc𝜃) 0
𝜃̇
𝑝 (3𝑎𝑞1 + 2𝑟c𝜃) 𝜃̇

𝑝 (3𝑎𝑞2 + 2𝑟s𝜃) 0
0 0 𝜃̇s𝜃s𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(77)

ote the similarity of Eqs. (60) and (77). The first and fourth rows are
dentical.

Solving Eq. (58), the spherical coordinate LTI matrix [𝑅𝒙𝑠 ] is ob-
ained, expressed below in a form similar to Eq. (61):

𝑅𝒙𝑠 ] =
2𝑅21𝑎

𝛾

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴(𝐵 + 2) 0 0
(𝐵+1)2(𝐵+2)

𝛾𝑎 0 0
0 0 0

𝐵(𝐵+2)
𝐶 0 0

− 2𝐴(𝐵+1)(𝐵+2)
𝛾𝑎𝐶 0 0
0 0 0

𝐴2𝐶 𝛾𝑎𝐴𝐶 0
𝐴𝐶(𝐵+1)2

𝛾𝑎 (𝐵 + 1)2𝐶 0
0 0 0
𝐴𝐵 𝛾𝑎𝐵 0

− 2𝐴2(𝐵+1)
𝛾𝑎 −2𝐴(𝐵 + 1) 0
0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(78)

he true and generalized eigenvectors of [𝑅𝒙𝑠 ] are given as the columns
f [𝑉𝑅𝒙𝑠

] below. Like the LTI matrix for QNS element differences and
artesian coordinates, the matrix [𝑅𝒙𝑠 ] has six zero eigenvalues, with
eometric multiplicity 5.

𝑉𝑅𝒙𝑠
] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 2𝑅21𝑎
𝛾 𝐴𝐶𝛾𝑎 0

1 0 0 0 2𝑅21𝑎
𝛾 (𝐵 + 1)2𝐶 0

0 1 0 0 0 0
0 0 1 0 2𝑅21𝑎

𝛾 𝐵𝛾𝑎 0

0 0 − 𝐴
𝛾𝑎 0 − 4𝑅21𝑎

𝛾 𝐴(𝐵 + 1) 1
0 0 0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(79)

Analogously as for Cartesian coordinates, the general solution of the
LTI form for the spherical coordinates is given below in terms of the
columns of [𝑉𝑅𝒙𝑠

]. The constant vector 𝒄 = (𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6)⊤ is
given by 𝒄 = [𝑉𝑅𝒙𝑠

]−1𝝌𝒙𝑠 (𝜃0):

𝑐1 = −
𝑣𝑡,0
𝑣𝑟,0𝑟

𝛿𝑟0 + 𝜃𝑟,0 (80a)

2 = 𝜙𝑟,0 (80b)

3 =
1
𝐶

⎛

⎜

⎜

⎜

⎝

(

1 − 𝑟0
𝑝

)

𝑣𝑡,0
𝑣𝑟,0

𝛿𝑟0 + 𝐶𝛿𝑟̇0

⎞

⎟

⎟

⎟

⎠

(80c)

𝑐4 = 𝜙̇𝑟,0 (80d)

𝑐5 = −
𝑣𝑡,0 𝑛

(

𝑟0
)

𝛿𝑟0 (80e)

3𝑣𝑟,0𝑎 𝑝
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𝑐6 =
𝜇
ℎ𝑟20

(

1 +
𝑝
𝑟0

)

𝛿𝑟0 +
𝑣𝑟,0
𝑣𝑡,0𝑟0

𝛿𝑟̇0 + 𝜃̇𝑟,0 (80f)

Note that the equation for 𝑐6 in Eq. (80) is zero when 𝛿𝑎 = 0. It
epresents a more concise local coordinate no-drift condition than its
ounterpart in Eq. (70).

For Keplerian orbits, the general linear relative motion problem in
pherical coordinates are studied in terms of individual modes via the
ollowing:

𝑠(𝜃) =
5
∑

𝑖=1
𝑐𝑖[𝑃𝒙𝑠 (𝜃)]𝒗𝑖 + 𝑐6[𝑃𝒙𝑠 (𝜃)]

(

𝒗5(𝜃 − 𝜃0) + 𝒗6
)

(81)

here the transformation [𝑃𝒙𝑠 ] given by Eq. (59) is required to evaluate
his expression and the 𝒗𝑖 are the columns of Eq. (79). Note that
he singularity properties of the Cartesian and spherical coordinate
epresentations are the same.

To project the spherical coordinate results into Cartesian coordi-
ates, there are two options. The nonlinear transformation given by
q. (75) and its first derivative can be used, or the inverse of the
inearized transformation given by Eq. (76) can be used. The former is
more accurate transformation that will capture the curvature of the

elative motion missed by the Cartesian representation, while the latter
ransformation has the benefit of being linear, but lacks the additional
ccuracy offered by the nonlinear transformation. The results of the
inearized Cartesian and spherical coordinate representations can be
ade completely equivalent via the linearized transformation Eq. (76)

nd its inverse. This coordinate equivalence has been discussed in past
orks [24–26]. As a result of the linear equivalence, the relative motion
roblem can be explored from the linearized Cartesian perspective, if
esired, then a linearized transformation to spherical coordinates fol-
owed by a nonlinear transformation back to Cartesian coordinates will
eproduce the curvature correction offered by the spherical coordinate
epresentation. However, the different modal representation in local
pherical coordinates might offer benefits in some applications over
he Cartesian representation. This is one of the topics explored in the
umerical analysis in Section 3.4.

One interesting result from the preceding analysis is that the LTI
orm for spherical coordinates has a comprehensible physical interpre-
ation with very simple dynamics. The LTI form for spherical coordi-
ates is reproduced below, where 𝝌𝒙𝑠 = [𝑃𝒙𝑠 (𝜃)]

−1𝒙𝑠 is the transformed
tate.
′
𝒙𝑠

= [𝑅𝒙𝑠 ]𝝌𝒙𝑠 (82)

xamining the plant matrix, which is given by Eq. (78), a simple inter-
retation of the dynamics in the spherical LTI coordinates is possible,
ecause the three nonzero columns of [𝑅𝒙𝑠 ] are linearly dependent.
actoring out 𝛼 = 2𝑅21𝑎∕𝛾, the following common column vector is
efined:

𝑓 = 𝛼

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐴𝐶
𝐶(𝐵+1)2

𝛾𝑎
0
𝐵

− 2𝐴(𝐵+1)
𝛾𝑎
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(83)

The common column vector is related to all nonzero columns of [𝑅𝒙𝑠 ]
as below:

𝑹1 =
𝐵 + 2
𝐶

𝑹𝑓 , 𝑹4 = 𝐴𝑹𝑓 , 𝑹5 = 𝛾𝑎𝑹𝑓 (84)

The relative motion state is resolved in the spherical LTI coordinates
as the 6 component state vector 𝝌𝒙𝑠 . The coordinates 𝜒3 and 𝜒6 are
stationary — see the zero 3rd and 6th rows of the plant matrix in
Eq. (78). Defining 𝝆 = (𝜒1, 𝜒4, 𝜒5)⊤, the nonzero natural dynamics
of the LTI coordinates are given below:

𝝆′ = 𝛼 𝝆 ⋅ 𝒏 𝜻 (85)
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( )
𝜒 ′
2 = 𝛼

𝐶(𝐵 + 1)2

𝛾𝐴
(𝝆 ⋅ 𝒏) (86)

=
⎛

⎜

⎜

⎝

𝐵+2
𝐶
𝐴
𝛾𝑎

⎞

⎟

⎟

⎠

(87)

𝜻 =

⎛

⎜

⎜

⎜

⎝

𝐴𝐶
𝐵

− 2𝐴(𝐵+1)
𝛾𝑎

⎞

⎟

⎟

⎟

⎠

(88)

here 𝜻 ⋅𝒏 = 0 and 𝑑
𝑑𝜃 (𝝆 ⋅ 𝒏) = 0. From Eqs. (85) and (86), it is clear that

he dynamics of 𝜒2 are influenced by 𝝆, but the coordinate 𝜒2 does not
influence 𝝆. The 3D space in which 𝝆 is embedded is by far the most
important space for the transformed relative motion problem. When
𝝆 ⋅ 𝒏 = 0, the dynamics are stationary. This is an equation of a plane
passing through 𝝆 = 𝟎. This plane is called the stationary plane. The
vector field of the dynamics of 𝝆 is parallel to the stationary plane,
pointing along 𝜻 above the plane and along −𝜻 below it. The magnitude
of the vector field at any point is proportional to the distance off the
plane, 𝝆 ⋅ 𝒏.

The coordinates 𝜒3 and 𝜒6 are related to the out-of-plane motion,
and they are decoupled from the in-plane motion and stationary.
Any periodic in-plane motion of interest can be parameterized by a
unique choice of four constant state values 𝜒1, 𝜒2, 𝜒4, 𝜒5, where
𝝆 = (𝜒1, 𝜒4, 𝜒5)⊤ is constrained to the stationary plane to prevent
movement of the 𝜒2 coordinate. The dynamics of 𝝆 and 𝜒2 are easily
described and visualized, as discussed above. By the LF transformation
to the spherical LTI coordinates, the dimensionality of the Keplerian
satellite relative motion problem is reduced to 3 active coordinates with
very simple dynamics. The other coordinates are a steered coordinate
𝜒2 and the stationary out-of-plane coordinates.

Given the simplicity of the dynamics in the spherical LTI coordi-
nates, a natural question is to explore control design in the context
of this formulation. For example, low-thrust strategies for relative
orbit reconfiguration will naturally maintain close proximity to the
stationary plane, to minimize the degree to which the natural dynamics
need to be countered by control. By contrast, impulsive maneuver-
based strategies will push 𝝆 further from the stationary plane and
will make greater use of the natural dynamics to achieve control
objectives. Examining existing control strategies from the perspective
of this special coordinate representation might provide new insights.

3.4. Numerical simulations for the Keplerian problem

In this section, the developments in this paper are tested on unper-
turbed Earth orbits with 𝑎 = 26600 km, 𝛺 = 0◦, 𝑖 = 63.4◦, and 𝜔 = 270◦,
and the eccentricity is varied. In the case that 𝑒 ∼ 0.74, the resulting
orbit is of the same type as the Molniya orbits used by the Soviets.

3.4.1. Modal decomposition in local Cartesian coordinates
The modal decomposition concept discussed in this paper enables

any close-proximity relative motion to be expressed as the unique
weighted combination of 6 or fewer modal motions. To introduce this
concept, the 6 relative motion modes are computed for the Molniya
orbit with 𝑒 = 0.74. There are four in-plane modes (modes 1, 3, 5, 6),
and two purely out-of-plane modes (2 and 4). These are normalized and
plotted for three chief orbits in Figs. 3 and 4, where the mode numbers
correspond with the numbering of the constants in Eq. (70).

The modes are numerically validated by comparing to propagation
of their initial conditions with the Tschauner–Hempel equations and
ensuring a match [2]. All modes are periodic except the drift mode,
mode 6. This mode is a composition of the motion of mode 5, but grows
and drifts over time in the along-track direction. The 5th mode is an
offset circle that is similar to a combination of fundamental solutions

to the Tschauner–Hempel equations discussed in Ref. [18].
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Fig. 3. In-plane normalized relative motion modes, 𝑒 = 0.74, 𝑓0 = 90◦.

Fig. 4. Out-of-plane normalized relative motion modes, 𝑒 = 0.74, 𝑓0 = 90◦.

Fig. 5. Example relative orbit, 𝑒 = 0.74, 𝑓0 = 90◦, 𝛿𝑒 = 0.002, 𝛿𝑖 = 0.2◦, 𝛿𝑓0 = 0◦.

To demonstrate how these relative motion modes combine to con-
struct any close-proximity relative motion, consider an example of
bounded relative motion with 𝛿𝑎 = 0, 𝛿𝑒 = 0.002, and 𝛿𝑖 = 0.2◦. The
esulting relative motion is depicted in Fig. 5. This is distorted from the
raditional 2:1 relative orbit ellipse of the Clohessy–Wiltshire solution,
ue to the very high chief eccentricity. Because the motion starts out in
he 𝑥-𝑦 plane, the out-of-plane motion is constructed entirely of mode 4.
he in-plane motion is composed of three of the in-plane modes. Fig. 6
hows the three modes that combine to construct the planar component
f the relative motion, which is given in black. The modes are scaled
uch that their linear combination produces the relative orbit, and this
esult is numerically confirmed. Note the absence of any contribution
f the drift mode, as expected. The initial position is marked with an
57

t

Fig. 6. Example modal decomposition (Planar), 𝑒 = 0.74, 𝑓0 = 90◦, 𝛿𝑒 = 0.002, 𝛿𝑖 = 0.2◦.

x, and the point after a true anomaly change of 𝛥𝑓 = 𝜋 is marked
ith a filled circle. Using these points, it is possible for the reader to
raphically verify that the sum of the individual modes reproduces the
ndicated motion. Note from Fig. 6 that 𝑐3 < 0, because mode 3 is

flipped in comparison to its normalized form in Fig. 3.
The analysis in this work enables analytic modal decomposition

using Eqs. (59), (66), and (70). Furthermore, only Eq. (70) needs to be
re-evaluated for each possible relative motion case — the eigenvectors
of the LTI plant matrix and the periodic transformation only change
with the chief orbit. In addition, Eq. (70) is simple enough to facilitate
some interesting analysis that leverages the computational efficiency
of this formulation. For example, recall that if the degree of drift is
specified via a fixed value of 𝑐6, a select initial in-plane component of
the position (𝑥0, 𝑦0) forms a point of intersection of all possible in-plane
relative motions in a one-parameter variation, based on the value of 𝑥̇0.

o demonstrate this for the Molniya orbit, consider an initial planar
elative position of (𝑥0, 𝑦0) = (0.08, 0.09) km, and the drift constant is
et to 𝑐6 = 0 to explore only bounded relative motion solutions. The
ariation of 𝑥̇0 yields the family of possible planar motions originating
t the specified point (𝑥0, 𝑦0). The modes only need to be computed
nce using Eqs. (59) and (66), while repeated evaluation of expressions
erived from Eq. (70) facilitates the computation of the families of
elative orbits intersecting the point of interest. A subset of the possible
elative orbits is computed and given in Fig. 7, with the initial point
ndicated by an x.

In Fig. 8, the eccentricity is varied to show the evolution of the
elative motion modes. The drift modes are plotted for three chief
rbit periods. Because the model is linear, the scale of the modes is
nimportant. All modes have been normalized in the figures so the
aximum relative distance is unit magnitude. Starting with 𝑒 = 0.01,

he four planar modes are two relative motion ellipses, a drift mode,
nd a small circular motion in the along-track direction. While the
ormulation explored in this paper becomes singular for 𝑒 = 0, it
s still well-defined for small but nonzero values of eccentricity. The
:1 centered relative motion ellipse from the classical relative motion
roblem with near-circular orbits would be constructed from modes 1,
, and 5. Increasing the eccentricity to 0.1, the circular mode becomes
arger, and as a result, the loops in the drift mode also grow more
oticeably over time. Increasing the eccentricity to 𝑒 = 0.5, the first and
hird modes have become distorted. The nature of this distortion varies
ith the choice of epoch true anomaly 𝑓0. For 𝑒 = 0.5, mode 5 falls in

he range 1∕3 ≤ 𝑥 ≤ 1, with the center at 𝑥 = 2∕3. It is determined
hat mode 5 is a circle centered in the along-track direction, for which
he eccentricity determines the ratio of the circle radius to the distance
f its center from the origin. When the eccentricity is increased to that
f the Molniya orbits, modes 1 and 3 become distorted significantly at
heir greatest along-track extent.

.4.2. Analysis using local spherical coordinates
Using the same Molniya orbit from the previous example, the epoch

rue anomaly is shifted to 𝑓0 = 145◦. The normalized planar modes from
ecompositions in Cartesian and spherical coordinates are provided in
ig. 9. The Cartesian modes 1 and 3 are distorted differently from

◦
he 𝑓0 = 90 case, but modes 5 and 6 are still similar to before. In
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Fig. 7. Bounded planar motion with (𝑥0 , 𝑦0) specified, 𝑒 = 0.74, 𝑓0 = 90◦.
Fig. 8. Normalized relative motion modes vs. eccentricity, Cartesian Coordinates.
Fig. 9. Normalized relative motion modes, 𝑒 = 0.74, 𝑓0 = 145◦.
spherical coordinates, plotting 𝛿𝑟∕𝑟 enables a visualization of the rela-
tive motion with the non-dimensional 𝜃𝑟 coordinate. Because 𝑟 varies
greatly over time for sufficiently eccentric orbits, the motion plotted
in the figure is not representative of the modal motion in Cartesian
coordinates. For this reason, linearly mapping the spherical coordi-
nate modes to Cartesian coordinates may be preferable for visualiza-
tion. However, when plotted in these normalized spherical coordinates,
the first mode becomes just a single point, which could be a useful
simplification.
58
A new relative motion example is parameterized by the initial orbit
element differences 𝛿𝑒 = 0.002, 𝛿𝑖 = 𝛿𝑓0 = 0.2◦. The planar component
of the resulting relative orbit is expressed in terms of the Cartesian
relative motion modes in Fig. 10. The out-of-plane components of the
motion are omitted from this analysis because they are comparatively
uninteresting. In the same manner as the previous example, the initial
point is marked with a x and the point after half an orbit at 𝛥𝑓0 = 180◦

is marked with a solid circle. In Fig. 11, the same motion is plotted
as a sum of the spherical coordinate modes expressed in Cartesian



Acta Astronautica 190 (2022) 48–61E.R. Burnett and H. Schaub

𝛿

c
F
i
t
r

r
t
s
W
l
v
2

t
c
b
i
t
o
n
h
K
i
e
i
m
m
r
c
L
c

4

d
c
a
a
a
s

4

𝐽
m

E
p
i
e
t
m
t
s
o
R

d
c
T
p

4

t
c
p
p
t
o

Fig. 10. Example modal decomposition, Cartesian, 𝑒 = 0.74, 𝑓0 = 145◦, 𝛿𝑒 = 0.002,
𝑖 = 𝛿𝑓0 = 0.2◦.

oordinates. As a result of this mapping, the stationary mode 1 in
ig. 9 becomes an oscillatory motion in the along-track direction. By
nspection of the linear transformation in Eq. (76), it is determined that
he oscillatory along-track motion is due to rescaling by the chief orbit
adius.

Comparing Figs. 10 and 11, the mapped spherical coordinate pa-
ameterization of the relative motion offers some simplifications over
he Cartesian coordinate parameterization. While modes 3 and 5 are
imilar, mode 1 has been reduced to a simpler one-dimensional motion.
ith this parameterization, the manner in which modes 1, 3, and 5

inearly combine to produce the example relative motion is easier to
isualize than using the Cartesian representation. There are only two
D motions, and mode 1 shifts their sum in the along-track direction.

Through the application of the modal decomposition technique and
he convenient mapping of the LF transform and LTI solutions across
oordinates to the Keplerian relative motion problem, a few things have
een demonstrated. First, it is shown that the choice of coordinates
nfluences the geometric complexity of the modal solutions. From the
echnique of deriving new LF transformations from old, the exploration
f relative motion modal decompositions derived from different coordi-
ate representations is highly feasible. Additionally, simple conclusions
ave been obtained about the nature of relative motion in any bounded
eplerian orbit. Using the spherical coordinate modal decomposition,

t is determined that any close-proximity natural relative motion can be
xpressed as the weighted sum of two purely out-of-plane modes, one
n-plane drift mode, an offset circle mode, a 1D along-track oscillatory
ode, and a ‘‘teardrop’’ shaped mode. This simple basis of relative
otion solutions facilitates straightforward design of close-proximity

elative motion in Keplerian orbits of any eccentricity. The six modal
onstants parameterize all possible motions, similarly to how the six
ROEs for the CW solutions [10] can be used to explore all possible
lose-proximity relative motion for near-circular orbits.

. Application of the theory to perturbed orbits

In the case that the orbital dynamics are not Keplerian, the modal
ecomposition theory can still be applied if the chief orbits are suffi-
iently close to periodic. This section briefly discusses the procedure for
nalytic application, while also summarizing more advanced numerical
pplication to a highly non-Keplerian environment in the vicinity of an
steroid. A complete derivation for a perturbed example is beyond the
cope of this paper.

.1. Analytic application

In the case of a sub-dominant non-Keplerian perturbation (such as
2), the LTI matrix [𝛬], LF transformation [𝑃 ], and geometric transfor-
ation [𝐺] are all perturbed from their Keplerian forms [𝛬 ], [𝑃 ], and
59

0 0
Fig. 11. Example modal decomposition, spherical, 𝑒 = 0.74, 𝑓0 = 145◦, 𝛿𝑒 = 0.002,
𝛿𝑖 = 𝛿𝑓0 = 0.2◦.

[𝐺0]:

[𝛬] = [𝛬0] + [𝛿𝛬] (89a)

[𝑃 ] = [𝑃0] + [𝛿𝑃 ] (89b)

[𝐺] = [𝐺0] + [𝛿𝐺] (89c)

Solving for a first-order correction in the LF transformation [𝛿𝑃 ] from
the deviation in the plant matrix [𝛿𝐴], the following differential equa-
tion for these quantities is obtained:

[𝛿𝑃̇ ] = −[𝛿𝑃 ][𝛬0] + [𝐴0][𝛿𝑃 ] − [𝑃0][𝛿𝛬] + [𝛿𝐴][𝑃0] (90)

q. (90) is solved analytically using a specific [𝛿𝐴] for the desired
erturbative effects, analogously to how Eq. (21) is solved. For this,
t is easiest to solve for the LF transformation in the space of orbit
lement differences, because [𝛿𝐴] will be much simpler in this space
han it is in local coordinates. Additionally, as is done in Ref. [15], it
ay be convenient to examine only the secular variations induced by

he perturbations, ignoring short-period effects. This will significantly
implify [𝛿𝐴]. Lastly, the deviation [𝛿𝐺] in the geometric mapping from
rbit element differences to local coordinates must also be obtained.
ef. [20] discusses how this is obtained for the 𝐽2 perturbation.

Once the above analysis has been performed, a modified modal
ecomposition will be obtained, with a modified vector of modal
onstants 𝒄 that is still a function of relative state initial conditions.
he same modal analysis as performed in this paper for the Keplerian
roblem can then be explored for the perturbed problem of interest.

.2. Numerical application

Numerical application of the relative motion modal decomposi-
ion theory is easier to implement than analytic application. Explicit
omputation of the perturbed LF transformation and perturbed LTI
lant matrix can be quite challenging, especially in the case of many
erturbations. This sub-section summarizes a numerical application of
he theory to examine motion in the vicinity of perturbed terminator
rbits about the asteroid Ryugu.

Numerical application of the theory is as follows:

1. Numerically or symbolically linearize about the chief orbit in the
desired coordinates to obtain [𝐴(𝑡)].

2. If the chief orbit is periodic, skip to step 4. Otherwise, find the
𝑇 for which [𝐴(𝑡0)] ≈ [𝐴(𝑡0 + 𝑇 )].

3. Compute the periodic part of [𝐴(𝑡)], [𝐴(𝑡)], by Fourier series fit
of the components of [𝐴(𝑡)]. The resulting [𝛿𝐴(𝑡)] = [𝐴(𝑡)]− [𝐴(𝑡)]
needs to be sub-dominant.

4. Numerically integrate an STM using [𝐴], obtain the monodromy
matrix, then compute the resulting LTI matrix and LF transfor-
mation using Eqs. (24) and (22).

5. The fundamental modal solutions can be evaluated numerically
using the procedure discussed in this paper.
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Fig. 12. Perturbed terminator orbits about Ryugu.

For non-periodic chief orbits, the accuracy of the modal solutions for
describing all admissible close-proximity relative motion will depend
on the relative scale of [𝛿𝐴] and, relatedly, on the choice of 𝑇 [21].

The above numerical procedure has been applied to perturbed
terminator orbits about the asteroid Ryugu (see Fig. 12). The results
are summarized here. These terminator orbits are found using the
Augmented Normalized Hill Three-Body problem [27] to compute the
nominal initial conditions, and the resulting orbits are then perturbed
from being exactly periodic by higher-order gravitational perturbations
from the body, nonlinear solar gravity, and the effects of the asteroid’s
orbital eccentricity. However, the plant matrices [𝐴(𝑡)] for the orbits are
still almost periodic. To maximize periodicity of [𝐴(𝑡)], a terminator
orbit at an altitude yielding 𝛤 = 𝑇 ∕𝑇𝑟 = 3 is selected, for which the
asteroid completes three rotations for every orbital revolution.

The modal decomposition is computed, and the eigenvalues of the
resulting LTI matrix are given in Fig. 13 for three subsequent orbits.
Note that because [𝐴(𝑡)] is not periodic, there is some drift over time in
one of the computed modes — indicated by the imaginary eigenvalue
pair shifting over time. The other four eigenvalues are largely station-
ary, and those modes change only very slowly with each subsequent
orbit. Fig. 14 gives the modal motion associated with the pair of
eigenvalues with Re(𝜆𝑖,𝑗 ) > 0. Simulations performed with and without
the higher-order gravitational disturbances yield highly similar modes,
indicating that those disturbances are sub-dominant for terminator
orbits at this altitude, and do not greatly affect the characteristics of
relative motion. Additionally, simulations show that the motion in the
vicinity of the terminator orbits is largely oscillatory, with the modes
exhibiting complex shapes. The numerical application of the modal
decomposition enables an approximate basis for admissible relative
motions to be computed fairly efficiently for this highly complicated
case.

As a test of the arguments in Section 4.1, the numerical modal
decomposition procedure is applied to the 𝐽2 problem in the space
of QNS orbit element differences. In this case, numerical results show
that the numerically computed LF transformation is a perturbed form
of the Keplerian case (Eq. (57)), with smaller additional time-varying
oscillations about zero in many components, represented by [𝑃𝜖(𝑡)]:
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+ [𝑃𝜖(𝑡)]𝒛
Fig. 13. Eigenvalues of the LTI Matrix — Three intervals, 𝛤 = 3 Terminator orbit.

Fig. 14. Select modal motion (12 orbits).

The bottom row of [𝑃𝜖(𝑡)] is determined to be zero, thus 𝛿𝛺 = 𝑧6,
and furthermore the mode associated with the 𝑧6 coordinate has a
zero eigenvalue, recovering the invariance of relative motion in the
𝐽2 problem with respect to 𝛿𝛺. This result highlights the possibility
of future analytic work for computing the modal decompositions.

Because the plant matrix is not exactly periodic for the aster-
oid and 𝐽2 numerical examples, the computed LF transformation and
the resulting modal decomposition will form an approximate basis of
possible close-proximity relative motion, and not an exact one as in
the Keplerian case. However, if the discarded component [𝛿𝐴(𝑡)] is
sufficiently small, the errors will be quite small. In some cases, the
plant matrix [𝐴(𝑡)] will be quasi-periodic, and it could be worthwhile to
explore computing the quasi-periodic Lyapunov–Perron (LP) transfor-
mation [28] that reduces the linearized dynamics to an LTI form. There
are practical challenges to reducing the linearized dynamic equations
with quasi-periodic coefficients. The decomposition based on the LF
transformation, however, is numerically straightforward, analytically
promising, and provides insights into the types of relative motion for a
large range of potential applications.

5. Conclusion

This paper explores the modal decomposition concept for efficient
and convenient parameterization of the spacecraft relative motion
problem in the vicinity of any closed orbit. This approach is facil-
itated by Lyapunov–Floquet theory, enabling the LTV dynamics to
be transformed into an LTI system. This paper introduces a means
for computing the LF transformation for the decomposition in any
set of coordinates using the LF transformation from another set of
coordinates and the linearized mapping between coordinates. The
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procedure is applied to the Keplerian relative motion problem to obtain
modal decompositions in local Cartesian and spherical coordinates
using the LF transformation in orbit element differences. The resulting
decompositions are analyzed for relative motion near a Molniya orbit.
A numerical example with terminator orbits shows that the modal
concept extends beyond the Keplerian case.

This work connects strongly to concepts from literature. First, it
demonstrates the connection between the relative motion solution in
orbit element differences explored by Ref. [7] and the concept of
the LF transformation applied to those coordinates. Additionally, it
makes use of a similar geometric method concept to what was used
to great effect in Ref. [20]. Finally, some of the modal solutions ob-
tained are equivalent to previously explored special combinations of the
Tschauner–Hempel fundamental solutions [18]. New results include the
spherical coordinate modal decomposition, the numerically efficient
exploration of bounded relative motion using the modal solutions, and
the extension of the theory for perturbed settings.

The benefits of the modal relative motion perspective discussed
by this paper are numerous. First, the modal solution constants 𝒄
offer a simple state representation for relative motion that has clear
geometric meaning through the associated modes, and allows for com-
putationally efficient exploration of possible relative motion types. The
dynamics of the modal solution constants are functions only of control
and perturbations. In the case of nominal dynamics without control,
they are integral quantities, similar to the stationary ROE quantities
explored elsewhere in literature. However, unlike traditional ROEs,
modal constants can be computed beyond the Keplerian problem. For
example, in periodic orbits in three-body environments, it would still
be possible to compute a modal decomposition with associated modal
constants that are stationary in the absence of additional perturbations
or control. Thus, the modal decomposition perspective is a unified view
that extends from the simple Clohessy–Wiltshire case to periodic orbits
in exotic environments, with practical application extending even to
the case of almost-periodic orbits encountered in real-world scenarios.
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