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Abstract
This paper explores the problem of analytically approximating the orbital state for a subset
of orbits in a rotating potential with oblateness and ellipticity perturbations. This is done
by isolating approximate differential equations for the orbit radius and other elements. The
conservation of the Jacobi integral is used to make the problem solvable to first order in
the perturbations. The solutions are characterized as small deviations from an unperturbed
circular orbit. The approximations are developed for near-circular orbits with initial mean
motion n0 around a body with rotation rate c. The approximations are shown to be valid
for values of angular rate ratio Γ = c/n0 > 1, with accuracy decreasing as Γ → 1, and
singularities at and near Γ = 1. Extensions of the methodology to eccentric orbits are
discussed, with commentary on the challenges of obtaining generally valid solutions for both
near-circular and eccentric orbits.

Keywords Orbit perturbations · Spherical harmonics · Approximation · Jacobi integral ·
Asteroids · Nonlinear oscillations

1 Introduction

Orbital motion in uniformly rotating irregular gravity fields is generally non-integrable,
greatly complicating the task of characterizing and studying the system behavior without
relying on numerical simulation. Because orbits about large asteroids are often approximated
(or at least qualitatively studied) by considering the dominant effects of the C20 = −J2 and
C22 gravitational perturbations (Scheeres 2012b), studying motion in this particular trun-
cated gravitational potential is a topic of significant interest for astrodynamicists and other
scientists who research such bodies. Analytical developments in this problem lend useful
insight for the study of orbital mechanics in the complex gravity fields of asteroids and other
small bodies, which are growing targets for scientific exploration.

By ignoring the effect of sectoral harmonics such as C22 and only considering the zonal
perturbations (valid for axisymmetric bodies in a stable minimum-energy spin state), the
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time-varying aspect of the gravity field is removed. This sub-problem is far simpler and more
relevant to planetary orbiters and Earth satellites. As a result, there has been a lot of work
in analyzing orbital motion in the axisymmetric potential of an oblate planet. Particularly
noteworthy are the influential works of Brouwer (1959) and Kozai (1959), as well as Vinti
(1960), who approximates the effects of the axisymmetric gravity field using his intermediary
potential. Some more recent work is also relevant to this discussion, including work by
Martinusi et al. (2015) and Martinusi and Gurfil (2011) using an averaging technique and
Brouwer–Lyddane theory to approximate the motion of low-Earth orbiting satellites, and
exploiting the superintegrability of equatorial orbital dynamics under the influence of even
zonal harmonics to obtain analytic expressions in terms of elliptic integrals.

Plenty of analysis has been dedicated to the problemofmotion in a second degree and order
gravity field in the primary body-fixed rotating frame (Hu and Scheeres 2008). Work has also
been done to analyze this complex problem from the perspective of the perturbed osculating
orbit in a non-rotating frame (Scheeres 2012b; Scheeres et al. 1996), and numerical studies
have investigated the problem in the inertial frame (Hu and Scheeres 2004). Lastly, Mahajan
et al. (2018) produce a Delaunay normalization of the perturbed Keplerian Hamiltonian with
tesseral and sectoral harmonics. This powerful semi-analytic approach gives the variations
in the equinoctial orbit elements, making use of either series expansions, iterative methods,
or numerical quadrature methods to achieve the Delaunay normalization.

Explicit analytic approximations of the oblateness and ellipticity-perturbed orbit can be
quite useful in some applications. For example, depending on the technique and the choice
of coordinates, the process of generating time-explicit state transition matrix (STM) models
for close-proximity perturbed satellite relative motion can rely heavily on finding sufficiently
accurate analytic approximations of the perturbed orbit. In Burnett et al. (2018), an analytic
time-explicit STM for J2-perturbed close-proximity satellite relative motion in near-circular
orbits is obtained, leveraging an empirical approximation of the J2-perturbed orbit radius
for all inclinations. A rigorous analytic approximation is more desirable, and such a result is
obtained in this paper as an exercise before the primary developments. Additionally, analytic
approximations of perturbed orbit evolution can also provide some dynamical insights.

This work is organized as follows. First, the problem of orbital motion about a rotating
bodywith oblateness and ellipticity perturbations is reviewed. The paper considers the case of
near-circular orbits about a body in a uniformminimum-energy stable spin state and does not
consider more complex cases of body spin axis precession or tumbling. The state elements
considered to parameterize the orbit include polar coordinates in the osculating orbit plane.
This bypasses the difficulty of using an osculating ellipse to describe a perturbed near-circular
orbit (Izsak 1961). Next, an analytic approximation for the orbit radius is developed using
conservation of orbit energy for theC20-only problem and conservation of the Jacobi integral
for the C20 and C22 problem. This allows analytic solutions for the C20 and C22 problem to
be explored to fully characterize the orbit state. The challenges of extending the presented
method to orbits of arbitrary eccentricity are also considered. Applications of the model
are then discussed. Finally, numerical simulations study how well the approximate solution
compares to the full nonlinear trajectories.

2 Orbits in a rotating gravity field

The dynamics problem of interest in this paper is orbital motion about a uniformly rotating
body with nonzero ellipticity captured by the C22 coefficient, and oblateness captured by the
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Fig. 1 Problem geometry. The primary body rotates with angleψ and constant angular rate c, while the orbiter
revolves on an osculating orbit with argument of latitude θ

C20 coefficient. The problem geometry is given, followed by a discussion of the analytical
challenges of obtaining analytic approximations of orbital motion in this potential.

2.1 Problem geometry

The relevant geometry for this dynamics problem is illustrated in Fig. 1. The orbit and the
rotation of the primary body-fixed frame are measured from the inertially fixed direction
γ . The primary body rotates with angle ψ and constant angular rate c, while the orbiter
revolves with argument of latitude θ and time-varying orbit-normal angular rate ωn , with
perturbation-induced variation inΩ and i as well. The main orbit equation of interest for this
work is the motion of a spacecraft in orbit in a rotating primary body-fixed second degree
and order gravity field (Scheeres 2012b):

r̈ = aC00 + aC20 + aC22 , (1)

aC00 = −μ
r
r3

, (2)

aC20 = 3μC20R2

2r4

[(
1 − 5

(
êr · â3

)2) êr + 2
(
êr · â3

)
â3

]
, (3)

aC22 = 3μC22R2

r4

[
−5

((
êr · â1

)2 − (
êr · â2

)2) êr + 2
(
êr · â1

)
â1 − 2

(
êr · â2

)
â2

]
,

(4)
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where r is the radial vector to the orbiting satellite and â1 and â2 are alignedwith theminimum
and intermediate principal axes of inertia for a body in a stable spin state. This analysis does
not consider more complicated spin states. Ci j are coefficients from a spherical harmonics
series expansion of the gravitational potential, and C20 = −J2 is due to the oblateness of the
body while C22 is due to the ellipticity. These two second degree and order coefficients can
be up to O(10−2) for some celestial bodies. For asteroids, they are typically the dominant
secondary values in the gravitational potential after the bulk mass C00 ≡ 1 contribution.

Instead of describing the state of the orbit using the orbit position r and velocity ṙ , the
orbit can be described with the set of classical orbit elements, a, e, i, ω,Ω, f (semi-major
axis, eccentricity, inclination, argument of periapsis, right ascension of the ascending node,
true anomaly), where θ = ω + f is the argument of latitude. For unperturbed circular orbits,
this orbit angle varies with the mean motion n = √

μ/a3. Of course, under the presence of
orbit perturbations, all of the orbit elements are generally time-varying.

2.2 Analytic challenges

This paper is focused on two major challenges of approximating the orbital behavior in
the given situation. The first challenge is the general increase in complexity from the zonal
problem introduced by the rotating gravity field. The time-varying nature of the potential
U results in the classical orbit energy term E = 1

2v
2 − U not being conserved. Only the

more complex Jacobi integral is conserved. Furthermore, the disparate behaviors of the
perturbed orbit and the uniform rotation of the body also lead to analytical difficulty. Namely,
the problem dynamics are determined by the orbit plane configuration, the primary body
orientation angle ψ (which is linear in time in this analysis), and by an orbit latitude or
anomaly which is generally quite nonlinear in time for eccentric orbits, and is itself affected
by perturbations of the rotating body. To analytically describe solution behavior in terms of
initial conditions and a single independent variable, the different angular behaviors must be
reconciled.

For cases with a consistently near-circular orbit, additional challenges are introduced.
In such cases, the behavior of the argument of latitude is approximately linear in time,
θ ≈ θ0 + nt , but the classical orbit description in terms of an osculating ellipse becomes
less useful. In particular, the classical elements of eccentricity, argument of periapsis, and
true anomaly oscillate rapidly in a manner that cannot be approximated by considering small
variations about a mean or initial value. The eccentricity also appears as a small divisor in the
formulas for the argument of periapsis and true or mean anomalies. These difficulties can be
removed by considering alternate element formulations in terms of the troublesome classical
elements, such as the equinoctial elements (Broucke and Cefola 1972) or Poincaré canonical
elements. By the same manner, these alternate elements are not subject to large and rapid
variations due to perturbations and are thus potentiallymore suitable as a choice of coordinates
in these situations than the classical elements. However, the variational equations for the
equinoctial elements must typically be numerically integrated using Kepler’s equation at
each integration step (Broucke and Cefola 1972), an unfortunate property of the independent
variable for the purposes of this work. For the perturbed near-circular orbit problem, one
would expect more mathematical simplicity instead of complexity (Izsak 1961). A concise
analytic approximation demands a simpler choice of coordinates. The approach in this paper
uses the classical elementsΩ and i to describe the orientation of the perturbed orbit plane, and
polar coordinates (r , θ , ṙ , ωn) to parameterize the remaining state elements. This treatment
avoids any direct use of the eccentricity, argument of periapsis, or true anomaly, and any
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associated difficulties of using elements explicitly derived from these. It also remains well
defined for equatorial orbits simply by redefining θ as the rotation from γ̂ instead of the
undefined ascending node. While particularly well suited for the small eccentricity problem,
this approach could also inspire extensions to solutions for more eccentric orbits.

3 Expressions for the perturbed orbit radius

In this paper, let ωn denote the angular rate around the orbit, ωn = ωO/N · ên . This is related
to the argument of latitude rate by θ̇ = ωn − Ω̇ cos i , where the second term is due to the
deviation and regression of the node fromwhich θ is measured (Prussing and Conway 2013).
The angular rateωn is one of the six chosen state quantities, while the argument of latitude rate
θ̇ is not. Note that the velocity of the orbiter in the orbit plane is defined as v = √

ṙ2 + r2ω2
n ,

because the êr component of ωO does not contribute to the orbital velocity.
Using Eqs. (3)–(4), the angular rates Ω̇ and i̇ can be computed and then shown to be of

the following scale or smaller, assuming |C20| ≥ |C22|:

Ω̇, i̇ = O
(
C20

(
R

r

)2 (
1

ρ3

)
n2

ωn

)
, (5)

where ρ = r/a, ωn = O(n), and it is assumed |C20(R/r)2| � 1. In orbits for which this
assumption holds, if the eccentricity is reasonably small, then |ωn | � |Ω̇|, |i̇ | also holds.

The orbit radius approximation approach begins by expressing the radial part of Newton’s
second law in spherical coordinates:

r̈ − ω2
nr = − μ

r2
+ RC20 + RC22 , (6)

where RCi j = aCi j · êr . The following time-varying differential equation is obtained for the
orbit radius by substituting the radial components of the disturbance accelerations:

r̈ − ω2
nr = − μ

r2
+ μ

r4

(
3

2
C20R

2 (
1 − 3 sin2 i sin2 θ

)

+ 3C22R
2
(
3 sin (2 (Ω − ψ)) cos i sin 2θ

− 3

4
cos (2 (Ω − ψ))

(
1 + 3 cos 2θ − 2 cos 2i sin2 θ

) ))
.

(7)

To isolate the dynamics of the orbit radius, the currently unknown ωn term in Eq. (7) must
be rewritten. This is done by isolating the ωn terms in an integral of motion and re-arranging
to obtain an expression for ωn that is a function of only r , ṙ , θ , Ω , i , ψ , and the conserved
value of that integral of motion. In the expression for ωn , functions of quantities Ω and i
primarily appear pre-multiplied by small parameters that are functions ofC20 andC22. Then,
the assumption that Ω̇ and i̇ are “small" equivalently results in using the initial valuesΩ0 and
i0 in these terms. In the following sections, this equation will be solved using conservation
of energy for the case C22 = 0 for all inclinations, and it will be solved for an expression
accurate for inclinations below a critical value for C22 �= 0 using conservation of the Jacobi
integral.
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3.1 Approximate solution using conservation of energy for near-circular orbits

To introduce the perturbative procedure for approximating the orbit radius, the simpler C20-
only zonal problem is first solved. For the case of negligible influence by C22, using the orbit
energy and the substitutions r(t) ≈ r0(1 + ξ(t)) where ξ ∼ O(1/r0) and ṙ ≈ r0ξ̇ , it is
possible to approximate the behavior of Eq. (7) with a simpler differential equation that is an
explicit function of time. Below, the total orbit energy (only conserved when either C22 or c
are zero) is given, where U (r, t) is the gravitational potential:

E = 1

2
v2 −U (r, t), (8)

U (r, t) = μ

r
+ μ

r3

[
C20R

2
(
3

4
sin2 i (1 − cos 2θ) − 1

2

)

+ 3C22R
2
(
1

2
sin2 i cos (2(Ω − ψ)) + cos4

(
i

2

)
cos (2(Ω + θ − ψ))

+ sin4
(
i

2

)
cos (2(Ω − θ − ψ))

)]
. (9)

The orbit energy is written in terms of ωn :

E = 1

2

(
r2ω2

n + ṙ2
) −U (r, t). (10)

When C22 = 0, E = E0 ∀t and the following may be written:

ω2
n =

2
(
E0 + Ũ (r)

)
− ṙ2

r2
, (11)

where Ũ (r) contains only the C00 and C20 components of the gravitational potential.
Using the substitution r(t) = r0(1 + ξ(t)), and substituting ω2

n using Eqs. (9) - (11),
Eq. (7) is expanded about ξ = 0, retaining terms linear in ξ :

ξ̈ +
(
2

(
μ

r30
+ E0

r20

)
− 4

μ

r30
f

)
ξ −

(
μ

r30
+ 2

E0

r20
− μ

r30
f

)
= 0, (12)

where f is a function associated with the C20 component of the gravitational potential:

f (t) = C20
R2

r20

(
3

4
sin2 i0 (1 − cos 2θ) − 1

2

)
, (13)

Thus, the problem has been transformed to a study of (assumed small) variations about
the initial value r(0) = r0, an approximation which significantly simplifies the problem.
The following change of time variables enables the subsequent non-dimensionalization of
Eq. (12):

τ =
(

μ

r30

)1/2

t,
d

dt
=

(
μ

r30

)1/2
d

dτ
, (14)

ξ ′′ +
(
2

(
1 + E0r0

μ

)
− 4 f

)
ξ −

((
1 + 2

E0r0
μ

)
− f

)
= 0. (15)

Note that here we redefine ( )′ = d/dτ ( ). The change of time variables renders ξ(τ ), ξ ′(τ ),
and ξ ′′(τ ) to all be of the same order. In this derivation, it is assumed that ξ and f are both
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similarly small (e.g., 10−2), denotedO(ε). This derivation could bemodified to accommodate
different relative scales. The smallness of ξ depends on the orbit not deviating drastically
from the unperturbed geometry, and the scale of f depends on the altitude and the size of
C20.

This system can be initiated (without loss of generality) with θ0 = 0, then substitution of

θ ≈ n0t , n0 =
√

μ/a30 , renders the function f as an explicit function of time t . Note that non-
circular orbit angular frequency variations would appear pre-multiplied by other small terms

(i.e., terms involving C20), and are thus neglected. Finally, the substitution t = (
μ/r30

)−1/2
τ

renders everything a function of the dimensionless time: θ = (
r30/a30

)1/2
τ .

Identifying the small parameters ξ and f as O(ε), the O(ε) part of Eq. (15) is given
below:

ξ ′′ + 2

(
1 + E0r0

μ

)
ξ =

(
1 + 2

E0r0
μ

)
− f . (16)

To first order, ξ obeys simple sinusoidal dynamics with an oscillatory forcing term due to
the negative of the C20 component of the potential. This first-order equation can be solved
using the method of undetermined coefficients, noting that the harmonic forcing term has
different frequencies from the homogeneous solution. The solution of Eq. (16) is the sum of
the homogeneous and particular solutions given below:

ξh(τ ) = D cos (ωhτ) + E sin (ωhτ), (17)

ξp(τ ) = A cos
(
ωpτ

) + B sin
(
ωpτ

) + C, (18)

where the quantities η1, ωh ωp are given:

η1 = 1 + E0r0
μ

(19a)

ωh = √
2η1 (19b)

ωp = 2n0

(
μ

r30

)−1/2

= 2ρ3/2
0 . (19c)

Note it can be shown ωh ≈ 1 and ωp ≈ 2. Substituting the particular solution into Eq. (16),
the following equations are obtained in terms of the undetermined coefficients A, B, and C :

A
(
2η1 − ω2

p

)
= 3

4
C20

R2

r20
sin2 i

B = 0

2η1C = 1 + 2
E0r0
μ

+ 1

2
C20

R2

r20

(
1 − 3

2
sin2 i

)
.

(20)

Letting α = C20(R/r0)2 ∼ O(ε), the following values are obtained for the coefficients
A, B,C :

A = 3

4
α

(
sin2 i

2η1 − ω2
p

)
, B = 0, C = 1

4
α

(
1 − 3

2 sin
2 i

η1

)
+ 1

2η1

(
1 + 2

E0r0
μ

)
. (21)
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The first initial condition is r(0) = r0 (1 + ξ(0)) = r0. The next initial condition on ξ is
given from the following expression:

r ′(0) =
(

μ

r30

)−1/2

ṙ(0) =
(

μ

r30

)−1/2

r0ξ̇ (0) = r0ξ
′(0), (22)

ξ ′(0) =
(

μ

r30

)−1/2
ṙ0
r0

= E
√
2η1. (23)

Thus, D and E are obtained from the initial conditions:

D = −A − C, E =
(

μ

r30

)−1/2
ṙ0
r0

(
1√
2η1

)
. (24)

The approximate solution for ξ(τ ) is given by the sum of Eqs. (17) and (18) with the coeffi-
cients given in Eqs. (21) and (24), thus approximating r(τ ) = r0 (1 + ξ(τ )) to first order:

ξ(τ ) = A cos
(
ωpτ

) + C + D cos (ωhτ) + E sin (ωhτ). (25)

This simple approximation is accurate for sufficiently small initial eccentricity (e0 ∼ 10−3)
and for all inclinations. Accuracy is less dependent on the osculating eccentricity, which can
generally grow to larger values (10−2) at some points in the orbit. The accuracy for small
eccentricity is captured in the terms C , D, and E . For example, setting ω = f0 = 0 and
α = 0, the equation for ξ reduces to:

ξ(τ ) = C (1 − cos (ωhτ)) , (26)

where only the second term inC is retained becauseα = 0. Then, r(τ ) = a(1−e) (1 + ξ(τ )).
Making the necessary substitutions, then expanding to first order in eccentricity, the classical
first-order expansion (Battin 1987) is recovered:

r(t) ≈ a (1 − e cos (n0t)) . (27)

When C22 �= 0, the procedure discussed in this subsection can still be applied for cases
where the primary body is sufficiently slowly rotating (ψ̇ = c � n). With the slow gravity
field rotation, the orbit energy will be nearly conserved on the time scale of a single orbit, and
this analysis can be extended to approximate variations in r(t) for several orbits. However,
this scenario is somewhat rare in nature, and a less restricted solution is sought.

3.2 Approximate solution using Jacobi integral for near-circular orbits

With the introduction of the time-varying potential terms due to C22, energy is no longer
conserved in the inertial frame for this system. However, there is still a conserved quantity
that can be used, existing for general uniformly rotating gravitational potentials (Binney and
Tremaine 2008). Given a general smooth and continuous orbit potentialU (r), the Lagrangian
is given below, along with the conjugate momenta:

L = 1

2
‖r ′ + ωB/N × r‖2 +U (r), (28)

p = ∂L
∂ r ′ = r ′ + ωB/N × r. (29)
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where ωB/N is the angular velocity of the primary body-fixed rotating frame and r ′ is the
velocity seen in that frame. The Hamiltonian is given below:

HJ = p · r ′ − L = p · ( p − ωB/N × r) − 1

2
p2 −U . (30)

This may be written in the following form in terms of the angular momentum L, and it is
noted that HJ has no explicit time dependence. Thus the derivative along any orbit dHJ /dt
vanishes and HJ is thus an integral, called the Jacobi integral (Binney and Tremaine 2008):

HJ = 1

2
p2 −U − ωB/N · (r × p) = H − ωB/N · L. (31)

Using the celestial mechanics convention p = v and L = h, Eq. (31) is adapted to the
notation in this paper by writing ωB/N = câ3. Then the Jacobi integral is recognized in
the following form for the second degree and order gravitational potential (Scheeres 2012b,
1999):

J = 1

2
v2 − μ

r
− hc cos i −U2(r) = J0, (32)

where U2(r) isolates the C20 and C22 components of the gravitational potential given in
Eq. (9), h = r2ωn is the angular momentum, and c is the primary body rotation rate. Because
it has been shown that this integral exists for any uniformly rotating potential, the procedure
used in this paper can in principal be extended to more complex gravitational fields.

Below, the Jacobi integral is written in terms of ωn :

J = 1

2

(
r2ω2

n + ṙ2
) − μ

r
− cr2ωn cos i −U2(r) = J0. (33)

Re-arranging equation (33), an equation for ωn is found in terms of r and ṙ :

ωn = c cos i ±
√
c2 cos2 i −

(
ṙ2

r2
− 2

r2

(μ

r
+U2(r) + J0

))
, (34)

where the sign is negative for prograde orbits and positive for retrograde orbits. The equations
are subsequently developed for prograde orbits. Equation (34) highlights the close relation-
ship between ωn and c. Note that as c → 0, the Jacobi integral simply becomes the orbit
energy, aligning with the expectation that the conservation of energy derivation in the pre-
vious section would also be valid for very slowly-rotating bodies with C22 �= 0. There is
one additional complication for this more general case: the small variations in the inclination
must be accounted for in any term that is larger than O(ε). In this paper, that turns out to
mean any term not linear in C20 or C22. In particular, these are the c cos i terms in Eq. (34).

To obtain an expression of sufficient accuracy for the O(ε) derivation in this paper, one
may integrate the Gauss planetary equation for inclination with the following first-order
approximation:

i(t∗) ≈ i0 + 3μR2

h0r30

∫ t f

0

(
2C22 sin (2(Ω0 − ψ)) cos2 θ sin i0

+ 1

4
(C20 + 2C22 cos (2(Ω0 − ψ))) sin 2θ sin 2i0

)
dt,

(35)
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whereψ = ct , by construction, from the freedom of choice in defining the arbitrary reference
direction γ̂ . In the case of near-circular orbits, θ ≈ θ0 + n0t , and the result is given below:

i(t) ≈ i0 + 3μR2

4n0h0r30
C20 (sin (θ − θ0) sin (θ + θ0)) sin 2i0

+ 3μR2

h0r30
C22

(
1

8c(c − n0)(c + n0)

(
− 2

[
2(c − n0)(c + n0) cos 2Ω0

+ c(c − n0) cos (2(Ω0 − θ0)) + (c + n0)
(
c cos (2(Ω0 + θ0))

+ 2(n0 − c) cos (2(Ω0 − ψ)) − c cos (2(Ω0 + θ − ψ))
)

+ c(n0 − c) cos (2(Ω0 − θ − ψ))
]
sin i0

+ c
[
(c − n0) cos (2(Ω0 − θ0)) − (c + n0) cos (2(Ω0 + θ0))

+ (c + n0) cos (2(Ω0 + θ − ψ)) + (n0 − c) cos (2(Ω0 − θ − ψ))
]
sin 2i0

))
.

(36)

Writing this as i(t) ≈ i0 + δi(t), for which δi(t) is the small time-varying deviation in
inclination due to the gravity field, δi2 is assumed negligible in this derivation, and the cos i
term in Eq. (34) becomes cos i0 − sin i0δi(t).

Substituting Eq. (34) and reusing the change of variables r(t) = r0(1 + ξ(t)) and non-

dimensionalization of time τ = (
μ/r30

)1/2
t , the following dimensionless equations are

obtained from Eq. (7):

ξ ′′ − r30
μ

(
ω2
nr

r0

)
= − 1

(1 + ξ)2
− 3

(1 + ξ)4
f (t), (37)

r30
μ

(
ω2
nr

r0

)
= 2c2

(
r30
μ

) (
cos2 i0 − 2 cos i0 sin i0δi

)
(1 + ξ)

− c

(
r30
μ

)1/2

(cos i0 − sin i0δi)

[
4c2

(
r30
μ

)(
cos2 i0 − 2 cos i0 sin i0δi

)
(1 + ξ)2

− 4

(
ξ ′2 − 2

(
1

1 + ξ
+ 1

(1 + ξ)3
f + J0r0

μ

)) ]1/2

−
[

ξ ′2

1 + ξ
− 2

1 + ξ

(
1

1 + ξ
+ 1

(1 + ξ)3
f + J0r0

μ

) ]
, (38)

where f is a function associated with the second degree and order components of the gravi-
tational potential, now including C22:

f (t) = C20
R2

r20

(
3

4
sin2 i0 (1 − cos 2θ) − 1

2

)
+ 3C22

R2

r20

(
1

2
sin2 i0 cos (2(Ω0 − ψ))

+ cos4
(
i0
2

)
cos (2(Ω0 + θ − ψ)) + sin4

(
i0
2

)
cos (2(Ω0 − θ − ψ))

)
.

(39)

Noting that ξ and f are O(ε), Eq. (38) is reduced to an expression that is linear in ξ and
f . This is done by factoring and binomial expanding the square root term and the (1 + ξ)k
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terms. The final result for this term is reproduced below:

r30
μ

(
ω2
nr

r0

)
≈ 2

(
γ1 −

√
γ1(γ1 − 1)

(γ1 + 2γ2)1/2
− J0r0

μ
− 2

)
ξ

+ 2

(
1 + f + J0r0

μ
+ (

(γ1 + 2γ2)
1/2γ4 − 2γ3

)
δi

)

+
(
2γ1 − 2

√
γ1

(
(γ1 + 2γ2)

1/2

(
1 + f − γ3δi

γ1 + 2γ2

)))
,

(40)

where the γi terms are defined below:

γ1 = c2
(
r30
μ

)
cos2 i, γ2 = 1 + J0r0

μ
, γ3 = c2

(
r30
μ

)
cos i0 sin i0, γ4 = γ3/

√
γ1. (41)

The remaining terms in Eq. (37) are more easily simplified. The O(ε) part of Eq. (37) is
linear in ξ , and the final expression for the linear ODE is reproduced below:

ξ ′′ + 2η2ξ = 2η3 − ϕ f + ϑδi, (42)

η2 = γ2 + √
γ1

(
γ1 − 1

(γ1 + 2γ2)1/2

)
− γ1, (43)

η3 = γ2 − 1

2
− √

γ1(γ1 + 2γ2) + γ1, (44)

ϕ = 1 + 2
√

γ1

(
1

(γ1 + 2γ2)1/2

)
, (45)

ϑ = 2

((√
γ1

γ1 + 2γ2
− 2

)
γ3 + (γ1 + 2γ2)

1/2γ4

)
. (46)

Thus, Eq. (7) is approximated by a linear constant-coefficient ODE in terms of the small
parameter ξ(τ ), where r0ξ(t) represents the time-varying deviation from the orbit radius at
epoch.

Equation (42) bears some structural resemblance to Eq. (16) from the previous section.
Both equations are linear oscillators with forcing terms due to the perturbations. In this case,
Jacobi integral-dependent terms appear instead of energy, along with the addition of the γi
terms. This ODE is solved in the same way as the previous section, but the new f must
first be defined succinctly in terms of τ . Without loss of generality, the epoch time t = 0
can be defined at an instant when the first body principal axis aligns with the current line
of nodes, â1 · Ω̂ = 1. One may define γ̂ to point in this initial direction for all time, so
Ω0 = 0 by construction. Thenψ = ct and θ ≈ θ0+n0t render f and δi as explicit functions
of time t . Other initializations are possible, but this is convenient because all initial system
configurations may be captured by just two initial angles: i0 and θ0. Note that the resulting
equations using this convention may be simplified further for equatorial orbits, so for the
special case of i0 = 0, there is no need for repeating the general derivation that follows.

The substitution t = (
μ/r30

)−1/2
τ renders f and δi as functions of the dimensionless

time, where θ = θ0 + (
r30/a30

)1/2
τ and ψ = c

(
μ/r30

)−1/2
τ . The simplified expressions are

given below, where α = C20 (R/r0)2 and β = C22 (R/r0)2:

f (τ ) = α

[
−1

2
+ 3

4
sin2 i0(1 − cos 2θ0 cosω4τ + sin 2θ0 sinω4τ)

]
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+ 3β

[
cos4

(
i0
2

)
(cos 2θ0 cosω1τ − sin 2θ0 sinω1τ)

+ sin4
(
i0
2

)
(cos 2θ0 cosω2τ − sin 2θ0 sinω2τ) + 1

2
sin2 i0 cosω3τ

]
, (47)

δi(τ ) = 3

8
α

μ

n0h0r0

[
sin 2i0 (cos 2θ0 (1 − cosω4τ) + sin 2θ0 sinω4τ)

]

+ 3

4
β

μ

ch0r0

(
1

c2 − n20

) [
− cn0 sin 2i0 cos 2θ0 − 2

(
c2 cos 2θ0 + (c2 − n20)

)
sin i0

+ 1

2
c(c + n0) (sin 2i0 + 2 sin i0) (cos 2θ0 cosω1τ − sin 2θ0 sinω1τ)

− 1

2
c(c − n0) (sin 2i0 − 2 sin i0) (cos 2θ0 cosω2τ − sin 2θ0 sinω2τ)

+ 2(c2 − n20) sin i0 cosω3τ

]
, (48)

ω1 = 2(n0 − c)

√
r30
μ

, ω2 = 2(n0 + c)

√
r30
μ

, ω3 = 2c

√
r30
μ

, ω4 = 2n0

√
r30
μ

. (49)

Equation (49) shows that the differential equation for ξ is forced by four distinct frequencies
if n0 �= c. The solution to Eq. (42) is obtained in exactly the same way as in the previous
section, with the final result given below, in terms of these four forcing frequencies and the
oscillator natural frequency:

ξ(τ ) =
4∑

i=1

Ai cosωiτ +
4∑

i=1, i �=3

Bi sinωiτ + C + D cos
√
2η2τ + E sin

√
2η2τ ,

(50)

A1 = −3β cos 2θ0

⎛
⎝cos4

(
i0
2

)
ϕ − μ

8(c−n0)h0r0
(sin 2i0 + 2 sin i0) ϑ

2η2 − ω2
1

⎞
⎠ , (51)

A2 = −3β cos 2θ0

⎛
⎝ sin4

(
i0
2

)
ϕ + μ

8(c+n0)h0r0
(sin 2i0 − 2 sin i0) ϑ

2η2 − ω2
2

⎞
⎠ , (52)

A3 = −3

2
β

(
sin2 i0ϕ − μ

ch0r0
sin i0ϑ

2η2 − ω2
3

)
, (53)

A4 = 3

4
α cos 2θ0

(
sin2 i0ϕ − μ

2n0h0r0
sin 2i0ϑ

2η2 − ω2
4

)
, (54)

Bi = −
(
sin 2θ0
cos 2θ0

)
Ai , i = 1, 2, 4, (55)

C = α

4η2

(
1 − 3

2
sin2 i

)
ϕ + η3

η2
+ 3α

16

(
μ sin 2i0 cos 2θ0

n0h0r0η2

)
ϑ, (56)

D = −
4∑

i=1

Ai − C, E = 1√
2η2

⎛
⎝

√
r30
μ

ṙ0
r0

−
4∑

i=1, i �=3

Biωi

⎞
⎠ . (57)
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Note the resonance condition ω2
h = 2η2 = ω2

i captured by the denominators of Ai and Bi
for i = 1, 2, 3, 4. Interestingly, these results also imply periodicity of ξ(τ ), δi(τ ), and f (τ )

if the resonance condition is avoided and ωi/ω j ∈ Q ∀i, j and ωi/ωh ∈ Q ∀i , where Q

denotes the set of rational numbers.
The behavior of the orbit radiusmaybe approximated as r(τ ) = r0(1+ξ(τ ))usingEq. (50)

with the constants and frequencies defined above, and the transformation τ =
√

μ/r30 t
may be used to yield r(t) explicitly. This and the previous constant-coefficient time-explicit
expressions are analyzed and tested later in the paper with nonlinear truth model data.

4 Expressions for remaining orbit parameters

With the inclination and orbit radius both approximated to O(ε) by Eqs. (36) and (50),
respectively, the approximations of variations in the other elements are nowdeveloped. Recall
that in this paper, the orbit is parameterized by Ω, i, θ, r , ωn, ṙ .

Some of the variations are direct results or analogs of the previous analysis. In particular,
note that ṙ is simply approximated by r0ξ̇ , where ξ̇ is given below:

ξ̇ (τ ) =
√

μ

r30

(
−

4∑
i=1

Aiωi sinωiτ +
4∑

i=1, i �=3

Biωi cosωiτ − D
√
2η2 sin

√
2η2τ

+ E
√
2η2 cos

√
2η2τ

)
.

(58)

The angular rate ωn is already given in Eq. (34) and can be explicitly obtained by substi-
tution of the approximations for i , r , and ṙ into Eq. (34), while using θ ≈ θ0 + n0t inU2(r).
Only O(ε) terms should be kept for consistency with the other approximate variations. The
result is given below:

ωn = c cos i0 − Υ +
(
c2 cos i0 sin i0

Υ
− c sin i0

)
δi(t) + 3μ + 2J0r0

r30Υ
ξ(t) − μ

r30Υ
f (t),

(59)

where Υ is a function of initial conditions:

Υ =
√
2 (μ + J0r0)

r30
+ c2 cos2 i0. (60)

The variation in Ω is captured to O(ε) in the same manner as the inclination:

Ω(t∗) ≈ Ω0 + 3μR2

h0r30

∫ t∗

0

(
C22 sin (2(Ω0 − ψ)) sin 2θ

+ (C20 + 2C22 cos (2(Ω0 − ψ))) cos i0 sin
2 θ

)
dt .

(61)
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Reusing the free constraint Ω0 = 0 from the approximation of the orbit radius, the equation
for the variation in Ω is given below for near-circular orbits:

Ω(t) ≈ 3μR2

h0r30

(
C20

cos i0
2n0

(θ − θ0 − cos θ sin θ + cos θ0 sin θ0)

− C22
1

2c(c − n0)(c + n0)

(
c (n0 cos 2θ sin 2ψ − c (cos 2ψ sin 2θ − sin 2θ0)))

+ cos i0
((

n20 − c2(1 − cos 2θ)
)
sin 2ψ − cn0 (cos 2ψ sin 2θ − sin 2θ0)

) ))
.

(62)

This equation is evaluated by applying θ ≈ θ0 + n0t and ψ = ct .
The argument of latitude θ is the final coordinate needed for parameterizing the orbit.

Recall that the argument of latitude rate is given as θ̇ = ωn − Ω̇ cos i , where the second term
is due to the deviation and regression of the node from which θ is measured (Prussing and
Conway 2013). The approximation for θ(t) is given by integrating the following equation,
substituting Eq. (34) and the Gauss planetary equation for Ω and retaining only terms up to
O(ε):

θ(t∗) = θ0 +
∫ t∗

0

(
ωn(t) − Ω̇(t) cos i0

)
dt . (63)

Substituting preceding results into Eq. (63) and simplifying:

θ(t∗) ≈ θ0 + (c cos i0 − Υ ) t∗ +
(
c2 cos i0 sin i0

Υ
− c sin i0

) ∫ t∗

0
δi(t) dt

+ 3μ + 2J0r0
r30Υ

∫ t∗

0
ξ(t) dt − μ

r30Υ

∫ t∗

0
f (t) dt − Ω(t) cos i0,

(64)

where each integral expression is given below:

∫ t∗

0
δi(t) dt =

√
r30
μ

(
3

8
α

μ

n0h0r0

[
sin 2i0

(
cos 2θ0

(
τ − sinω4τ

ω4

)
− sin 2θ0

cosω4τ

ω4

) ]

+ 3

4
β

μ

ch0r0
(
c2 − n20

)
[

− cn0 sin 2i0 cos 2θ0τ − 2
(
c2 cos 2θ0 + (c2 − n20)

)
sin i0τ

+ 1

2
c(c + n0) (sin 2i0 + 2 sin i0)

(
cos 2θ0

sinω1τ

ω1
+ sin 2θ0

cosω1τ

ω1

)

− 1

2
c(c − n0) (sin 2i0 − 2 sin i0)

(
cos 2θ0

sinω2τ

ω2
+ sin 2θ0

cosω2τ

ω2

)

+ 2(c2 − n20) sin i0
sinω3τ

ω3

])
, (65)

∫ t∗

0
ξ(t) dt =

√
r30
μ

( 4∑
i=1

Ai

ωi
sinωi τ −

4∑
i=1, i �=3

Bi
ωi

cosωi τ + Cτ + D√
2η2

sin
√
2η2τ

− E√
2η2

cos
√
2η2τ

)
, (66)

∫ t∗

0
f (t) dt =

√
r30
μ

(
α

[
−1

2
τ + 3

4
sin2 i0(1 − cos 2θ0

sinω4τ

ω4
− sin 2θ0

cosω4τ)

ω4

]

+ 3β

[
cos4

(
i0
2

) (
cos 2θ0

sinω1τ

ω1
+ sin 2θ0

cosω1τ

ω1

)
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+ sin4
(
i0
2

) (
cos 2θ0

sinω2τ

ω2
+ sin 2θ0

cosω2τ

ω2

)
+ 1

2
sin2 i0

sinω3τ

ω3

])
. (67)

At this point, the approximate behaviors of all 6 state elements Ω, i, θ, r , ωn, ṙ are
fully developed. The necessary information for the first 5 elements is given, respectively,
in Eqs. (62), (48), (64), (50), and (59). To use these equations, the reader is reminded of

the definitions i(τ ) = i0 + δi(τ ), r(τ ) = r0(1 + ξ(τ )), and ṙ = r0ξ̇ (τ ) = r0
√

μ/r30 ξ ′(τ ),

where τ is given by Eq. (14). Differentiation of Eq. (50) is straightforward so ξ ′(τ ) is not
explicitly given. These results enable near-circular orbits in the rotating gravity field to be
analytically approximated. The elements Ω, i, θ, r capture the position, and the elements
ṙ and ωn capture the velocity. The approximations for Ω and i are easy to obtain, so they
might exist elsewhere in literature. To the knowledge of the authors, the other expressions
in this paper appear here for the first time. All elements are tested numerically in this paper,
but most of the focus is on studying the accuracy of the approximation of the orbit radius,
whose accuracy will generally reflect the accuracy of approximations of θ and ωn due to the
coupling of these quantities.

4.1 Periodicity of the perturbed elements

Recall the periodicity condition on ξ , δi , and f is given as any admissible choice of angular
frequencies ωh , ωi such that the resonance condition ω2

h = 2η2 = ω2
i is avoided and

ωi/ω j ∈ Q ∀i, j and ωi/ωh ∈ Q ∀i . When this condition is satisfied, the analytic solutions
predict that the elements r , ṙ , ωn , and i will be periodic. The variation ofΩ has the following

secular rate Ω̇:

Ω̇ = 3μR2

2n0h0r30
C20 cos i0. (68)

Common periodicity of the remaining elements θ and Ω could only be achieved by a choice
of initial conditions satisfying the periodicity condition of ξ , δi , and f , resulting in a common
period T ∗ for which the elements r , ṙ , ωn , and i are periodic, with the additional constraint
that this T ∗ must satisfy θ(t0 + T ∗) = θ(t0) + 2πk. In addition, the secular right ascension
driftΔΩ over k orbitsmust be accounted for, i.e., 2πk = ψ+|ΔΩ|, resulting in the following
final constraint for bodies with C20 < 0:

kn0 −
(
c − 3μR2

2n0h0r30
C20 cos i0

) (
k − 1

l

)
= 0, (69)

where the perturbed element common period is represented as T ∗ = (
k − 1

l

)
T0 for integers

k and l satisfying k ≥ 1, |l| > 1. Inspection of Eq. (69) implies that for Γ > 1 and C20 < 0,
the negative drift in Ω cannot be accounted for by prograde orbits, and conditions for full
periodicity of the elements cannot be found. However, using the analytic results in this paper,
prograde orbits that are periodic except for their precession can be found with relative ease.
Such orbits could have useful applications for asteroid mission planning.

5 Limitations and extensions

The derivation in this paper assumes the orbit is near-circular, and terms due to the potential
(captured by f (t)) and the deviations δi and ξ(t) manifest at the same order in the dimen-
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sionless equations. This is not always the case, and the current treatment is inappropriate
in particular for very high inclination orbits. Furthermore, the method for approximating
the solution to Eq. (7) assumes that the variations in the perturbed orbit radius remain rela-
tively small. This assumption results in poor solution accuracy as the critical value Γ = 1 is
approached, as well as the appearance of singularities in the coefficients for ξ(τ ) for when
Γ is unity. Additionally, Eq. (43) breaks down somewhere before Γ = 1, when η2 becomes
imaginary, so the frequency

√
2η2 of the homogeneous solution to Eq. (42) also fails. Exam-

ination of Eq. (43) reveals the critical condition γ1 + 2γ2 = 0, which can be approximated
as Γ 2 cos2 i − 2Γ cos i ≈ −1. Thus, failure occurs near when Γ = 1/ cos i .

For similar reasons, high inclination can drive solution failure at higher levels of Γ . By
investigating the offending term η2, one can obtain the following approximate inclination
limit for accurately modeling prograde orbits:

i0 � cos−1
(
1

Γ

)
. (70)

Solution accuracy will start to degrade as the inclination approaches this value from below.
For high values of Γ , this inclination limit is relatively high. For example, when Γ = 4, the
solution is valid for inclinations in the range |i | < 75◦.

Because this work only examined linearized oscillations in the perturbed orbit, a logical
extension would be to consider the case of nonlinear oscillations. The solutions in this paper
neglect the nonlinearities in ξ , which become important for larger values of ξ . For example,
Eq. (37) could be expanded to quadratic order in ξ . There are well-established techniques for
examining weakly nonlinear oscillators, discussed extensively in Nayfeh and Mook (2008).

Thework in this paper is focused on approximating perturbed orbits that are nearly circular
as r ≈ r0(1+ ξ(t)), where time is used as the independent variable to take advantage of the
near-constant angular rate ωn . An attractive analog of this approach for the eccentric orbit
problem would be to let ξ accommodate the deviations in the perturbed eccentric radius from
the unperturbed case:

r(θ) = a0(1 − e20)

1 + e0 cos (θ − ω0)
(1 + ξ(θ)) . (71)

For this analysis, the independent variable of Eq. (7) is transformed from t to θ through the
following substitution:

d

dt
( ) = θ̇

d

dθ
( ) = (

ωn − Ω̇ cos i
) d

dθ
( ) . (72)

For this eccentric case, one would expect that the only feasible orbit approximations in terms
of time t (instead of an anomaly) would be lengthy and inconvenient series expressions,
similar in spirit to expansions that can be found for the Keplerian problem in Battin (1987).
By switching the independent variable to θ , far fewer frequencies are needed to approxi-
mate the solution to a desired level of accuracy, resulting in simpler solutions. However,
the transformation given by Eq. (72) introduces the additional inconvenience of having to
express the time dependence for the angle ψ = ψ0 + ct as a function of θ . Additionally,
for a solution ξ(θ) to be valid for a range of eccentricities 0 ≤ e0 < 1, it must perform
different characteristic roles depending on the scale of e0. For e0 = 0, it should behave like
the original solution in this paper. For low values of e0, the perturbed argument of periapsis
oscillates quickly through a wide range of angles (Izsak 1961), so the leading term in Eq.
(71) is inaccurate and must essentially be compensated for by ξ(θ). For higher values of e0,
the variations in the argument of periapsis are greatly reduced, and the variations of r with θ
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will behave more like the leading term in Eq. (71). In this final case, an admissible universal
solution ξ(θ) should account for the small perturbation-induced deviations in orbit radius.

6 Applications

Even with the limitations discussed in Sect. 4, this new model is applicable to a large number
of cases in nature. For asteroids, theC20 andC22 coefficients are often dynamically important
(Scheeres 2012b), and can be the dominant disturbances if the asteroid is large enough for its
gravity to overpower solar radiation pressure and solar gravity disturbances for close orbits.
Past studies have demonstrated that if the semi-major axis is above a 1.5 resonance radii
limit and below a corresponding upper limit characterized by solar radiation pressure (SRP)
perturbations, the orbit will be more likely to persist for long time spans (Hu and Scheeres
2004; Scheeres 2012a; Scheeres and Marzari 2002):

3

2

(
T 2
r μ

4π2

)1/3

< a <
1

4

√
μB

G1
d. (73)

Here Tr is the rotation period of the asteroid, μ is its gravitational parameter, B is the
spacecraft mass-to-area ratio in kg/m2, G1 ≈ 108kg · km3/s2m2 is the solar constant, and d
is the distance from the asteroid to the sun in km. Note also that the semi-major axis can be
expressed as a function of the parameter Γ = c/n0:

a = Γ 2/3
(
T 2
r μ

4π2

)1/3

. (74)

Thus, the inequality to guard against the effects of the rotating gravity field isΓ > (3/2)3/2 ≈
1.8. A fully analytic model for the C20 and C22 problem developed for Γ significantly
below this value would have limited applicability due to the influences of other gravitational
harmonics.Also, the complicated dynamics in that region are notwell suited to approximation
by modeling a small deviation from nominal behavior.

It can be shown that in the solar system’s vast population of asteroids, a large number of
them have regions above their surfaces that can fit orbits satisfying the stability condition
given by Eq. (73)—that is, regions that are well approximated by the newmodel in this paper.
To begin, consider the limiting case that the upper and lower limits in Eq. (73) are equal. In
that case, the critical value of the asteroid gravitational parameter is given as a function of
body rotation period:

μ∗ = 66

d6
G3

1

B3

(
T 2
r

4π2

)2

. (75)

The mean diameter of the asteroid D is given as a function of μ, the body density ρ, and the
gravitational constant G:

D∗ = 2

(
3μ∗

4πρG

)1/3

. (76)

In a figure of asteroid spin rates vs. diameters, Eq. (76) gives a curve of the lower theoretical
limit for an asteroid to have a stable region with orbits above 1.5 times the resonance radius
and below the SRP disturbance limit. This curve is given in blue in Fig. 2, along with spin-
diameter data for a sample of 9400 asteroids obtained from the JPL small body database,

123



    5 Page 18 of 24 E. R. Burnett, H. Schaub

10−2 10−1 100 101 102 103

diameter (km)

10−1

100

101

102

103

Sp
in

ra
te

(1
/d

)

Stable orbit theor. cutoff
Stable orbits, δ = 1 km
Stable orbits, δ = 10 km
Rubble pile spin barrier

Fig. 2 Orbital stability cutoffs for a selection of catalogued asteroids. This figure includes theoretical cutoffs
for orbital stability for a large sample of asteroids from the Main Belt and Atira, Aten, Apollo, and Amor
families

mainly from the asteroid belt. This is done by assuming ρ ∼ 2 g/cm3, specifying d = 2.7
AU, and choosing B = 20 kg/m2, which is a representative mass-to-area ratio for spacecraft
that have visited asteroids (Broschart et al. 2014). However, orbital stability is much more
likely if there exists a significant nonzero δ = rmax − rmin, where rmax and rmin are the
upper and lower limits in Eq. (73). Cutoff curves are given in Fig. 2 for δ = 1 km and for
δ = 10 km. From these curves, it is seen that most asteroids with diameters above 1 km have
at least 10 km of altitude difference between their upper and lower orbital stability limits.
The region to the right of the cutoff curves corresponds to environments with stable orbital
environments above 1.5 resonance radii (Γ = 1.8), so it is clear that the newly developed
analytical solution (developed for Γ > 1) could find application at a large number of solar
system bodies, including many of the main belt asteroids.

Because the model does not consider the solar gravitational or radiation pressure distur-
bances, it will be most applicable for satellite orbits with a � rmax to minimize unmodeled
SRP effects, and a � rH to minimize unmodeled solar gravitational disturbances, where rH
is the Hill radius:

rH = d

(
μ

3μs

)1/3

, (77)

and μs is the solar gravitational parameter. The minimum diameter to achieve a given Hill
radius is given below:

D >

(
18μs

πρG

)1/3 (rH
d

)
. (78)

Using this equation, it is shown that a Hill radius of 150 km can be achieved by main belt
asteroids with ρ = 2.0 g/cm3 and D > 663 m. Note lastly that the ratio rH/D depends on
ρ and d , but not on D. It turns out that except for very dull spacecraft, the solar radiation
pressure will often be more important than the solar gravitational disturbance. Overall, this
analysis shows that there are many possibilities to design a near-circular orbit above the lower
stability limit, below the SRP limit, and well below the Hill sphere radius. If these conditions
are satisfied, and if the inclination is below the polar limits, the motion will be governed by
dynamics that are well approximated by this new model.
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Table 1 Primary body parameters

Parameter Value

Size and mass data R = 6.0 km, ρ = 2.6 g/cm3, m = 4.9009 × 1014 kg

Gravity field data μ = 3.2709 × 10−5 km3s−2, C00 = 1.0, C20 = −0.0903, C22 = 0.0375

Rotation data 10.0 < Tr < 50.0 h, constant variable. ψ0 = 0.0

The model can be applied to the case of orbiters in near-circular orbits about sufficiently
large asteroids. It can additionally be applied to the case of small moons in binary asteroid
systems (i.e., in cases where m � M). Many times, these orbits are near-circular. Consider
an object like the trinary asteroid (136617) 1994 CC. The primary body has a diameter of
650-700 m, and the ∼ 50 m moon “Beta" orbits with an eccentricity of just e ≈ 0.002.
With the primary body rotating with Tr = 2.39 hrs and the moon orbiting with a period of
1.24 days, the rotation rate ratio is Γ ≈ 12.5. The orbit of this tiny moon would also be
well approximated by the model developed here. There are many other possible examples,
because binary asteroids are quite common in the solar system, constituting up to 15% of
near-Earth asteroids over 200m.

7 Numerical simulations

7.1 Validating the orbit approximations

Simulations confirm that the approximations of the orbit work as expected, and this section
presents representative examples to demonstrate this. For all cases in this section, the hypo-
thetical asteroid described in Table 1 is used. It is a fairly representative example of main
belt asteroids.

For the first simulation, C22 = 0, and the J2-only approximation of the orbit radius is
tested. The initial nonzero orbital elements are a0 = 40 km, e0 = 0.002, i0 = 50.0◦. The
resulting approximation of the orbit radius is compared to truth model data in Fig. 3. The
results show that the approximation obtained with energy conservation works as expected
with small initial eccentricity.

Simulation 2 uses a0 = 40 km, e0 = 0, and i0 = 2.0◦, θ0 = 0◦. Simulation 3 uses
a0 = 40 km, e0 = 0.0022, i0 = 40.0◦, f0 = θ0 = 50.0◦. In all cases, the unperturbed orbit
period is 77.2 h. In the first case, the asteroid rotation period is set to 24.12 h, resulting in the
angular rate ratio Γ = c/n = 3.2. For this first case, the approximation of the orbit radius is
compared to truth model data in Fig. 4. In the second case, the asteroid rotation period is set
to 36.76 h, so Γ = 2.1. The results are given in Fig. 5.

In general, for lower values of Γ , the effects on variations in the orbit radius are more
severe. In these cases of near-resonance, the fluctuations can be so large as to result in
orbit ejection or impact with the primary body in the long term. Such cases are not well
represented by any approximation assuming small deviations from the initial orbit radius.
The third simulation with Γ = 2.1 is near the limit of efficacy of the current approach at this
time of writing. The fluctuations are larger than in other cases, and the approximation is less
accurate, while still predicting the general behavior. Overall, this approximation accuracy is
limited to inclinations below 70◦, as discussed earlier.
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Fig. 3 Orbit radius versus time for Simulation 1,C20 only. Time is in unperturbed orbit periods. The variations
in r are induced by nonzero initial eccentricity and by the gravitational perturbation from oblateness. For the
C20-only problem, only equatorial orbits can be purely circular
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Fig. 4 Orbit radius vs. time for Simulation 2, C20 + C22, Γ = 3.2, with time in unperturbed orbit periods.
With this high value of Γ , there are small rapid variations in r induced by the rotating gravity field. These are
well captured by the analytic model

With the accuracy of the approximation of the orbit radius demonstrated for several
examples, some representative results are shown todemonstrate that the other analytic approx-
imations work. Figures 6, 7 and 8 show that the approximations of the right ascension,
inclination, and ωn are reasonably accurate for the case of Simulation 3, with a0 = 40 km,
e0 = 0.0022, i0 = 40.0◦, θ0 = 50.0◦. These are the same initial conditions as are used to
generate Fig. 5. It would be somewhat redundant to show simulation results of ṙ and θ , so
these results are omitted.

One final simulation demonstrates the efficacy of the approximation for long time spans
for cases with highly regular motion. In this simulation, a0 = 40 km, e0 = 0.001, i0 =
50.0◦, ω0 = 25.0◦, f0 = 50.0◦. Furthermore, Γ = 4.0. The resulting motion is simulated
for 16 orbits with the nonlinear dynamics and with the approximation, and the results agree to
high accuracy for the full timespan simulated. Only the radius data are shown for brevity, and
these results are given in Fig. 9. Note that the approximation captures the interesting feature
of long-term variations in the brief sharp oscillations appearing 3/4 of the way through
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Fig. 5 Orbit radius vs. time for simulation 3, C20 + C22, Γ = 2.1, with time in unperturbed orbit periods.
With this lower value of Γ , the perturbation-induced variations in r are larger, but are still characteristically
well approximated by the analytic model
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Fig. 6 Right ascension vs. time for simulation 3, C20 +C22, Γ = 2.1. Using Eq. (62), the secular drift in Ω

and the short-period oscillations are well captured
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Fig. 7 Inclination vs. time for Simulation 3, C20 + C22, Γ = 2.1. Using Eq. (36), the beating phenomenon
in inclination variation is well approximated over 8 unperturbed orbit periods
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Fig. 8 Orbit-normal angular velocity vs. time for simulation 3, C20 + C22, Γ = 2.1. The accuracy in the
angular rate approximation is comparable to the accuracy of the approximation of the radius given in Fig. 5
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Fig. 9 Orbit Radius vs. time for Simulation 4, C20 +C22, Γ = 4.0. This result shows that the analytic model
is able to capture the small variations in orbit radius for 16 unperturbed orbit periods to a high degree of
accuracy. This result generally holds for large values of Γ

each orbit, as well as the persistent larger orbit-periodic variations due to the initial nonzero
eccentricity.

8 Conclusions

In this paper, the variations in the orbit radius in a rotating gravity field with C20 and C22

are described for near-circular orbits with the angular rate ratio Γ = c/n > 1. The scalar
differential equation for the orbit radius r is rendered as a time-varying differential equation
in r alone using the Jacobi integral to remove unknown terms to first order in small variational
terms, O(ε). Once the approximation for the orbit radius is obtained, approximations for all
other components of the orbit state are found. The approximations in this paper are all explicit
functions of time.Most time-dependent terms areweighted sums of sin ( ) and cos ( ), with the
weights determined by system initial conditions, and 5 fundamental frequencies constructed
from the initial mean motion n0 and the primary body angular rotation rate c. Solution
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accuracy generally increases as Γ is increased further above the critical value Γ = 1, with
generally good accuracy, especially for Γ > 2. This makes these solutions especially well
suited for approximating near-circular orbits around quickly rotating bodies with significant
C20 and C22 coefficients. An analysis shows that this model applies to the dynamics in the
vicinity of many asteroids, particularly those on the km scale.

The potential for additional analytical work is extensive. First, it would be useful to obtain
an equivalent solution to the one derived in this work for retrograde instead of prograde
orbits. The relative scale of variations in the derivation could be treated more formally. This
would help in identifying which issues in the approximate solution are fundamental to this
approach and which can be amended. Furthermore, a rigorous accounting of the relative
scale of small terms would enable higher-order analytic series approximations of the orbit
behavior to be obtained. The approximation of variations in the orbit radius can be extended
to more eccentric orbits by a change of independent variable in Eq. (7). The assumption that
|ωn | � |Ω̇|, |i̇ | should also be relaxed for highly eccentric orbits.

For the problem of finding approximate solutions to the orbit problem perturbed by oblate-
ness and ellipticity, any given approximate solution will only apply to limited regions of the
parameter space of all possible orbits. For example, the solutions in this paper are applicable
only to orbits that remain near-circular. The assumptions used to generate an approxima-
tion necessarily constrain its applicability to the space in which these assumptions are valid.
The parametric variation of behavior of orbital motion in rotating asymmetric gravity fields
has been extensively studied numerically (Hu and Scheeres 2008; Scheeres 2012b; Scheeres
et al. 1996). Numerical studies reveal that depending on the value of the parameter Γ = c/n,
the orbits in the C20 and C22-perturbed problem can behave quite differently, with highly
irregular behavior possible, including resonances. For such cases, analytic approximations
assuming small deviations are certain to fail. However, analytic approximation techniques
could be successful in revealing the boundaries of such irregular regions in the parameter
space.

Data availability Data will be made available on reasonable request.
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