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This paper explores expressing the relative state in the close-proximity satellite relativemotion problem in terms of

fundamental modal solution constants. The nominal uncontrolled relative state can be expressed in terms of a

weighted sum of fundamental and geometrically insightful modal motions. These fundamental motions are obtained

using the Lyapunov–Floquet theory. In the case that the dynamics are perturbed by the action of a controller or by

unmodeled dynamics, the weights on each fundamental solution are allowed to vary as in a variation-of-parameters

approach, and in thismanner function as state variables. Thismethodology reveals interesting insights about satellite

relativemotion and enables elegant control approaches. This approach can be applied in any dynamical environment

as longas the chief orbit is periodic, and this is demonstratedwith results for relativemotionanalysis and control in the

eccentricKeplerian problemand in the circular restricted three-body problem. Some commentary on the extension of

the methodology beyond the periodic chief orbit case is also provided. This is a promising and widely applicable new

approach to the close-proximity satellite relative motion problem.

I. Introduction

I N THE close-proximity relative motion control problem, the
choice of coordinate representation greatly influences the ease

of relativemotion planning and design; and it can affect the complex-
ity of feedback control development [1]. The traditional local relative
Cartesian and spherical coordinate representations have proven to be
quite popular [2], but there are other formulations that enable geo-
metric approaches or provide great geometric insight into the influ-
ence of perturbations and control. Orbit element differences [3] and
the related relative orbit element (ROE) formulations are important
examples [4,5], and some missions have already implemented ROE
formulations for relative motion control [6]. As opposed to a local
coordinate formulation, depending on the choice of quantities, most or
all orbit element differences orROEswill be constants for uncontrolled
Keplerian relative motion. In this sense, the unperturbed dynamics of
relative motion are trivial in the orbit element differences, and the
mapping from ROEs to other representations of the relative state can
provide a local geometric interpretation [7]. These formulations also
generally linearize quite well [8], which is a very useful feature.
Another relevant representation of relative motion was discussed

in Ref. [9], which focused on the linearized relative orbit elements
(LROEs) for the Clohessy–Wiltshire (CW) problem [10], and sought
a representationwith a straightforward geometric interpretation. This
was accomplished by representing the CW solution in terms of the
fundamental amplitude, phase, and offset quantities, which are them-
selves nonlinear functions of the initial relative state quantities in
local Cartesian coordinates. These quantities are thus constant in the
unperturbed problem in the absence of control. Given nonzero per-
turbations or control, these quantities vary in time,with their behavior
given by equations obtained using a Lagrange–Bracket variational
methodology [1]. There has also been somework relating integration
constants for the CW problem to the ROE formulation. For example,

Ref. [11] provided a mapping between the CW integration constants
and the general ROEs.
Because the LROEs discussed in Ref. [9] were developed for CW

dynamics, they are only appropriate for near-circular orbits and
would not be appropriate for eccentric orbits. Additionally, the orbit
element difference andROE sets suffer from their own shortcomings.
For example, they are not directly related to system observables [12].
Additionally, the application of any of these integral representations
in highly non-Keplerian settings (such as in the three-body prob-
lem)would be cumbersome because, although they can still be a valid
state representation via the variation of parameters, they are no longer
nearly constant.
Motivated by the many benefits of integral relative state represen-

tations (such as theROEs andLROEs) and by their shortcomings, this
paper discusses an approach to modeling satellite relative motion
dynamics and control that can be applied to the CW problem, the
Keplerian problemwith eccentricities of 0 < e < 1, and beyond to the
restricted three-body problems. This approach is called themethod of
fundamental modal solutions. The main idea of this work is that
satellite relative motion can be represented as a weighted sum of
fundamental solutions, which are chosen for maximal ease of geo-
metric interpretation. This is accomplished by using the modal
solutions previously developed by the authors through an application
of the Lyapunov–Floquet theory [13], as well as more recent exten-
sions. A benefit of this approach is that stable, unstable, oscillatory,
and drift motions are naturally separated. In the absence of perturba-
tion or control effort, the weights on each fundamental solution are
constant. However, in the perturbed or controlled problem, the con-
stants are made to vary through a variation-of-parameters framework
such that the weighted sum of the fundamental solutions still always
instantaneously describes the relative state. The collection of six time-
varying weights serves as the state vector for the problem, and the
benefits of this approach for dynamics, visualization, and control are
discussed in this paper. This procedure is presently developed for
close-proximity relative motion in the vicinity of any closed (peri-
odic) chief orbit, regardless of the governing dynamics. To demon-
strate its breadth of potential uses, the methodology is applied to the
relativemotionproblemforKeplerian orbits of any eccentricity, aswell
as to orbits in the circular restricted three-body problem (CR3BP).
There are a few works that are particularly relevant to this paper

due to their shared methods, mathematical techniques, and perspec-
tives. First, this paper employs theLyapunov–Floquet theory [14], for
which the application to the relative motion problem has seen limited
but noteworthy study. In Ref. [15], a Lyapunov–Floquet (LF) trans-
formation relating the Clohessy–Wiltshire and Tschauner–Hempel
dynamics was exploited for relative motion control design. Addi-
tionally, a simple LF transformation was used in Ref. [16] when
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incorporating the secular effect of the J2 perturbation on orbit element
differences. Recently, Ref. [17] devised a unified ROE–CW frame-
work for close-proximity satellite relative motion control, adapting
work fromRef. [11] and a periodic transformation between ROEs and
local Cartesian coordinates for the CW problem. On the topic of the
CR3BP, other works have previously explored formation flying in
the Earth–moon three-body problem, particularly in the vicinity of the
libration points. Past works, such as Refs. [18,19], are relevant.
The Keplerian modal decomposition discussed in this paper was

first derived analytically in a recently published paper by the authors
[13]. It is worth noting that there has been past exploration of the
satellite relative motion problem using integration constants as state
variables, or otherwise as quantities of interest. Reference [20]
showed the first-order equivalence of the ROEs with the integration
constants of the integrable homogeneous ordinary differential equa-
tion of relative motion for the CW case, and Refs. [21,22] showed
similar equivalence for the Yamanaka–Ankerson case. Reference [5]
showed that integration constants are useful as state variables for
optimal control, and the control formulation explored in that paper is
adopted for this work. Recently, Ref. [23] explored its application
with Yamanaka–Ankersen integration constants to passive safe opti-
mal satellite relative motion control on eccentric orbits.
This paper is organized as follows. First, the concept of the relative

motion modal decomposition is introduced, and there is a brief
review of the Lyapunov–Floquet transformation, which is used
extensively in this work. The modal decomposition for general
Keplerian orbits is introduced, which is applicable to any eccentricity
of 0 < e < 1. Then, the method of the variation of parameters is used
to derive the dynamics of the modal constants for the case in which
the chief orbit is perturbed from its reference periodic motion. After-
ward, the theory is applied to relative motion in the vicinity of
periodic orbits in the CR3BP, and an interesting parallel between
the Keplerian close-proximity relative motion problem and its
CR3BP counterpart is highlighted. Then, applications of the funda-
mental solution constants are discussed for modeling perturbed
relative motion and for efficiently computing relative motion control
policies. Finally, numerical results are shown for cases of both
Keplerian and CR3BP dynamics. For the Keplerian case, the relative
motion modes are computed and used to explore the design space
of relative orbits; and the effect of J2 on the Keplerian modes is
explored. Then, fuel-optimal impulsive relative motion control using
the modal decomposition is explored for both Keplerian relative
motion and relative motion in the CR3BP, applying a state-of-the-
art control approach introduced in Ref. [5]. The paper ends with a
discussion of future work that would generalize this method to
efficient relative motion analysis, modeling, and control in a wide
variety of environments.
In summary, the three main contributions of this paper are as

follows: First, the useful state representation in terms of the modal
constants is introduced for Keplerian dynamics and for the CR3BP.
This allows for an elegant and broadly applicable examination of the
close-proximity satellite relative motion problem: from the CW and
Tschauner–Hempel problems to relative motion in the CR3BP. Sec-
ond, the satellite relative motion is studied via the decomposition in
terms of the insightful fundamental modes. Third, the framework is
applied to challenging dynamics scenarios, including spacecraft
relative motion in eccentric orbits and the CR3BP dynamics.

II. Relative Motion Modal Decomposition

A. Theory and Fundamentals

In this work, close-proximity satellite relative motion is repre-
sented as a weighted sum of fundamental solutions:

x�t� �
X6
i�1

ciψ i�t� (1)

Figure 1 illustrates this conceptually with a depiction of bounded
planar relative motion decomposed into three simpler constituent
modal motions.

The independent fundamental modal solutions ψ i�t� form a com-
plete functional basis for all possible close-proximity relativemotion.
The modal constants c are functions of the initial conditions x0 but,
more generally, they can be treated as state variables. Consider the
trivial example that the fundamental modal solutions are the columns
of the state transition matrix ψ i � ϕi and c � �Φ�t0; t0��−1x0 � x0.
However, the columns of the state transition matrix are an inconven-
ient choice of functional basis, [13], and this paper uses a superior
modal basis.
The modal decomposition is traditionally defined for autono-

mous linear dynamic systems, but all relative motion except the
CW problem is characterized by nonautonomous differential
equations. However, the Lyapunov–Floquet transformation [14]
can be used to equate a linear time-varying (LTV) dynamic system
with a periodic plant matrix of �A�t�� � �A�t� T�� to a linear time-
invariant (LTI) counterpart via a periodic coordinate transforma-
tion:

x � �P�t��z � �P�t� T��z (2)

where z represents the coordinate set for the LTI equivalent of the
system in x with the following simple LTI dynamics:

_z � �Λ�z (3)

The LF transformation and the LTI matrix are any pair of matrices
�P�t�� and �Λ� satisfying the following matrix differential equation:

�P�t��−1��A�t���P�t�� − � _P�t��� � �Λ� (4)

A unique definition of the LF transformation is given in the
following using the monodromy matrix and the state transition
matrix (STM). This transformation conveniently equals the iden-
tity at the epoch time:

�P�t�� � �Φ�t; t0��e−�Λ��t−t0� (5)

�P�t0�� � �P�t0 � kT�� � �I� (6)

�Λ� � 1

T
ln�Φ�t0 � T; t0�� (7)

The fundamental modal solutions in this work will thus be of the
following form, assuming a diagonalizable LTI plant matrix �Λ�
with eigenvectors vi and eigenvalues λi:

x�t� �
X6
i�1

ci�P�t��vieλit (8)

For the special case of purely Keplerian dynamics, �Λ� has a Jordan
form, and so the form of the modal decomposition is slightly
modified from Eq. (8). From the condition where the plant matrix
�A�t�� is periodic, it is observed that this perspective applies for
relative motion in the vicinity of any periodic chief orbit, regard-
less of the governing dynamics (two-body or three-body).
It isworth noting that there exists a simple linearmapping of theLF

transformations and the resulting LTI matrices when two sets of
coordinates are related by a linearized transformation. This relation-
ship is demonstrated in the following for local coordinates x and orbit

Fig. 1 Example satellite relative motion as a sum of individual modes.
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element differences δœ, which are approximately related by the
linearized transformation �G�t��:

x � �G�t��δœ (9)

�Px�t�� � �G�t���Pδœ�t���G�t0��−1 (10)

�Λx� � �G�t0���Λδœ��G�t0��−1 (11)

See Ref. [1] for the linearized transformation �G�t��. For this paper,
δœ is in terms of the differential quasi-nonsingular orbit elements [1]:

δœ � �δa; δθ; δi; δq1; δq2; δΩ�⊤ (12)

whereq1 � e cosω,q2 � e sinω, θ � ω� f, and δœ � œd − œc is
the deputy–chief orbit element difference.
Although there are many possible representations for satellite

relative motion, this work mainly uses the popular local Cartesian
coordinate representation. The relative state is the augmented relative
position and velocity x � �ρ⊤; ρ 0⊤�⊤ resolved in a chief-centered
rotating coordinate frame called the Hill or local vertical/local hori-
zontal (LVLH) frame as follows:

ρ � xêr � yêt � zên (13a)

ρ 0 �
Hd

dt
�ρ� � _xêr � _yêt � _zên (13b)

The vector triad fêr; êt; êng forming the LVLH frame is defined in the
following in terms of the chief inertial position, velocity, and orbit
angular momentum vectors rc, vc, and hc; and � � 0 denotes the time
derivative of quantities as seen in this frame:

êr � rc∕rc (14a)

ên � hc∕hc (14b)

êt � ên × êr (14c)

The general dynamics in local Cartesian coordinates are given in
terms of the chief radial vector r, the angular velocity vector ω, and
their derivatives in Ref. [24].
To facilitate the description of perturbed and controlled relative

motions in terms of theKeplerian relativemotionmodes, theKeplerian
modal decompositions are introduced. There are two of interest. The
first is a straightforward solution to the LTI CW equations, and the
second is a set of solutions to the general eccentric orbit case of
0 < e < 1. Note that the CW problem is very simple and quite well
studied, and similar factorizations of the CW system have previously
appeared in the literature; see, e.g., Refs. [25,20]. Starting with the
CWsystem, the full three-dimensional (3-D)modal decomposition is
computed in the same fashion as its two-dimensional planar counter-
part in Eqs. (11) and (12) in Ref. [13]:

xCW�t� �
X6
i�1

ciψ i;CW�t� (15)

�ΨCW�t�� �

2
6666666664

0 − 2
3n − 1

n cosnt
1
n sinnt 0 0

1 t 2
n sinnt

2
n cosnt 0 0

0 0 0 0 2
n sinnt

2
n cosnt

0 0 sinnt cosnt 0 0

0 1 2 cosnt −2 sinnt 0 0

0 0 0 0 2 cosnt −2 sinnt

3
7777777775

(16)

c �

0
BBBBBBBBB@

y0 − 2
n _x0

−6nx0 − 3_y0

3nx0 � 2 _y0

_x0
_z0
2

n
2
z0

1
CCCCCCCCCA

(17)

where ci is the ith element of c, and ψ i;CW�t� is the ith column of
�ΨCW�t��. Because the CW system is already LTI, the LF transforma-
tion is just identity. Note that the typical modal decomposition of the
CWplant matrix ofA � �V��J��V�−1 would produce complex �V�, and
thus complex c. This has been avoided for the derivation of Eq. (16),
and it can generally always be avoided. Consider a pair of modes
ψm;n � �P�t��eλm;ntvm;n with complex-conjugate eigenvalues λm and
λn as well as eigenvectors vm and vn. Taking the constants associated
with the complex-conjugate modes cm and cn and defining new
purely real constants ~cm � �cm � cn�∕2 and ~cn � �cm − cn�∕2i,
their associated fundamental solutionswill have apurely real form [13].
The preferred decomposition used in this paper for the general

Keplerian case (any eccentricity of 0 < e < 1) is the spherical coor-
dinate modal decomposition, which is linearly mapped to Cartesian
coordinates. This uses the argument of latitude of θ � ω� f as the
independent variable. The fundamental modal solutions consist of an
along-track rectilinear motion, an offset circular mode, and only two
geometrically nontrivial planar modes: a “teardrop”mode (changing
from an initially elliptical shape to a highly pointed shape as eccen-
tricity is increased from zero to one), and a drift mode. The Cartesian
modal decomposition, by contrast, has three nontrivial planar modes.
There are also two one-dimensional decoupled out-of-plane oscilla-
tory modes. The spherical coordinate modal decomposition is given
by the following equations [13], with vi as columns of Eq. (24):

xc�s��θ� �
X5
i�1

ci�F�θ��−1�Pxs�θ��vi

� c6�F�θ��−1�Pxs �θ���v5�θ − θ0� � v6� (18)

�Pxs �θ�� � �Gs�θ���Pδœ�θ���Gs�θ0��−1 (19)

�Pδœ�θ�� �

2
6666664

1 0 0 0 0 0

P21�θ� P22�θ� 0 P24�θ� P25�θ� 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3
7777775

(20)

P21�θ� �
κ2

2a
�F21�θ0� − F21�θ�� (21a)

F21�θ� �
6

η3

�
tan−1

�
q2 � �1 − q1� tan�θ∕2�������������������������

1 − q21 − q22
p

�
−
θ

2

�

� 3�q2 � �q21 � q22� sin θ�
q1�q21 � q22 − 1�κ (21b)

P22�θ� �
κ2

κ20
(21c)

P24�θ� �
κ2

4�q21 � q22 − 1� �F24�θ0� − F24�θ�� (21d)

F24�θ� �
4�q2 � sin θ�

κ2
� 4 sin θ

κ
(21e)
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P25�θ� �
κ2

4�q21 � q22 − 1� �F25�θ0� − F25�θ�� (21f)

F25�θ� �
4�1 − q21 � q2 sin θ�

q1κ
2

� 4q2 sin θ

q1κ
(21g)

�F�θ�� �

2
6666664

1 0 0 0 0 0

0 1∕r 0 0 0 0

0 0 1∕r 0 0 0

0 0 0 1 0 0

0 −_r∕r2 0 0 1∕r 0

0 0 −_r∕r2 0 0 1∕r

3
7777775

(22)

�Gs�θ�� �

2
666666666664

r
a

vr
vt
r 0 − r

p �2aq1 � r cos θ� − r
p �2aq2 � r sin θ� 0

0 1 0 0 0 cos i

0 0 sin θ 0 0 − cos θ sin i

− vr
2a

�
1
r −

1
p

�
h 0 1

p �vraq1 � h sin θ� 1
p �vraq2 − h cos θ� 0

− 3_θ
2a −2 vr

r 0
_θ
p �3aq1 � 2r cos θ� _θ

p �3aq2 � 2r sin θ� 0

0 0 _θ cos θ 0 0 _θ sin θ sin i

3
777777777775

(23)

�VRxs
� �

2
666666666664

0 0 0 0 2R21a
γ ACγa 0

1 0 0 0 2R21a
γ �B� 1�2C 0

0 1 0 0 0 0

0 0 1 0 2R21a
γ Bγa 0

0 0 − A
γa 0 − 4R21a

γ A�B� 1� 1

0 0 0 1 0 0

3
777777777775

(24)

In the preceding equations, vr � _r and vt � r_θ, and q1 � e cosω,
q2 � e sinω. The remaining quantities are defined as follows:

R21 � −
3aη

2r20
(25a)

A � q2 cos θ0 − q1 sin θ0 (25b)

B � q1 cos θ0 � q2 sin θ0 (25c)

C � hr20
aμγ

(25d)

γ � A2 � B2 − 1 (25e)

η �
������������������������
1 − q21 − q22

q
(25f)

κ � 1� q1 cos θ� q2 sin θ (25g)

κ0 � 1� q1 cos θ0 � q2 sin θ0 (25h)

The fundamental solution constants, which are quite important, are
given in terms of initial spherical relative coordinates by Eq. (26):

c1 � −
vt;0
vr;0r

δr0 � θr;0 (26a)

c2 � ϕr;0 (26b)

c3 �
1

C

��1 − �r0∕p��vt;0
vr;0

δr0 � Cδ_r0

�
(26c)

c4 � _ϕr;0 (26d)

c5 � −
vt;0

3vr;0a
n

�
r0
p

�
δr0 (26e)

c6 �
μ

hr20

�
1� p

r0

�
δr0 �

vr;0
vt;0r0

δ_r0 � _θr;0 (26f)

The function �F�θ�� linearly maps the Cartesian coordinates x, y, z,
_x, _y, and _z to the spherical relative state coordinates δr, θr, ϕr, δ_r, _θr,

and _ϕr, and it can be used for getting the spherical coordinate initial
conditions required by Eq. (26). Note that singularities exist with the
givenKeplerianmodal formulation, appearingwhenq1 � e cosω �
0 or when e sin f0 � 0. These can be avoided by selecting nearby
conditions, setting the offending terms to a small number ϵ instead of
exactly zero.
Themodal decompositions can always be normalized tomaximize

ease in geometric interpretation of the relative scales of the ci:

x�t� �
X6
i�1

ciψ i�t� �
X6
i�1

cikψ ikψ̂ i�t� �
X6
i�1

�ciψ̂ i�t� (27)

where the choice of normalization is left to the reader. A simple
choice is to make it so that the maximum relative range of a normal-
ized mode over the course of one orbit is unity. This is the standard
normalization scheme applied for all results in this paper.
The normalized planar (x and y) modes for the linearly mapped

spherical coordinates are produced in Fig. 2 for an example case
with an unperturbed chief orbit about Earth with elements of a �
12;000 km, e � 0.4, i � 25 deg, Ω � 0 deg, ω � 270.001 deg,
and f0 � 90 deg. The initial points for each mode are indicated

Fig. 2 Example in-plane normalized relative motion modes.
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with a dot. The out-of-plane modes, which are simply linearly
independent oscillations in z, are not shown. From Fig. 2, the planar
projection of all close-proximity unperturbed relative motion in this
case is revealed to be a linear sum of geometrically simple independent
motions. The first is an along-track oscillation (mode 1, shown flipped
about y � 0 for convenience), a distorted teardrop mode (mode 3), an
offset circle mode (mode 5), and a drift mode (mode 6). Note that the
chief eccentricity dictates the ratio of the offset circle’s radius to its
distance from the origin, and the along-track oscillation of mode 1 has
the same maximum and minimum y bounds as the offset circle mode.
Note also that the drift mode behaves as a composition of a secularly
expandingmode 5 and a translation along the y axis; see the last term in
Eq. (18). To better illustrate this behavior, the drift mode is shown for
three chief orbit periods in Fig. 3. Although the uncontrolled state
evolves as a sum of themodes, the state can be uniquely parameterized
by the stationary c and the time since epoch t − t0. In this sense, the
modal solution constants function similarly to orbit elements but with
the exact linear mapping of x�t� � �Ψ�t��c to local relative state
coordinates. There are many possible alternate choices of fundamental
solutions ψ i�t�, but the Lyapunov–Floquet theory is typically useful
for identifying geometrically favorable solutions. It isworth noting that
the use of the modal decomposition approach is not limited to Kepler-
ian dynamics. This method can be applied to study motion in the
vicinity of any periodic orbit (andwork is ongoing to extend this to the
more general case of a quasi-periodic chief orbit). This will be shown
with an application of the method to the relativemotion problem in the
circular restricted three-body problem.

B. Modal Constants as State Variables

For theKeplerianproblem, anyuncontrolled close-proximity relative
motion x�t� can be expressed as a constant weighted sum of the
fundamental modal motions. In the event that the orbital dynamics
are perturbed, or control is active, the general behavior can still be
represented by a time-varying weighted sum of the modal motions:

_x � f�x; u; t� (28a)

x�t� � �Ψ�t��c�t� (28b)

where the first equation gives the general true nonlinear dynamics, and
c�t� ismade tovary such that thesedynamics are satisfied. Thevector of
constants is allowed tovary in timeasc�t� such that anymotionx�t� can
be represented. This is enabled by the following osculating condition:

_x�t� � ∂x
∂t

� ∂x
∂c

_c � f�x; u; t� (29a)

∂x
∂t

� �A�œ�; t��x (29b)

where �A�œ�; t�� is the plantmatrix for the original linearized dynamics
used to compute the fundamental modal solutions �Ψ�t��. The new
quantity u is the control signal, which in this paper is composed of the
LVLH components of the thrust acceleration of the deputy spacecraft,

i.e.,u � H�ax; ay; az�⊤. The following dynamics satisfy the osculating
condition:

_c � �Ψ�t��−1�f�x; u; t� − �A�œ�; t��x� (30)

Assuming that x�t� remains in the linear regime, Eq. (30) reduces to
linear dynamics in c:

_c � �Ψ�t��−1
�
�A�t�� − �A��t��

�
�Ψ�t��c� �Ψ�t��−1�Bx�u (31)

where �Bx� � �03×3 I3×3�⊤ if x is in Cartesian coordinates, and �A�t�� is
the plant matrix for linearization about the true (deviated) chief orbit. In
the case that the orbital dynamics are unchanged, Eq. (31) obtains a
form where c is only influenced by control:

_c � �Ψ�t��−1�Bx�u (32)

Because c has no linearized plant matrix, it is possible in this case to
design control to track a desired natural reference trajectory xr�t� using
a regulation controller in c space because the dynamics of the error
δc � c − cr are of the same form as Eq. (32).
In the case that the true orbit is weakly perturbed in comparison to

the orbit used to develop themodal decomposition, onemaywrite the
true plant matrix in terms of the nominal plus a small deviation:

�A�t�� ≈ �A��t�� � ε�δ ~A�t�� (33)

where jεj ≪ 1 is a small parameter. In this case, Eq. (31) is rewritten:

_c � ε�Ψ�t��−1�δ ~A�t���Ψ�t��c� �Ψ�t��−1�Bx�u
≡ ε�Ω�t��c� �Bc�t��u (34)

Equation (34) is interesting because as the relative state is written as
x�t� � �Ψ�t��c�t�, the perturbed close-proximity dynamics of rela-
tive motion can be factored into a traditional slow/fast dynamical
system:

� _Ψ� � �A��t��Ψ (35a)

_c � ε�Ω�t��c� �Bc�t��u (35b)

where fromEq. (34), thematrices �Ω� and �Bc� are also functions of the
modal solutions. The “slowness” of the dynamics in c implies that for
weakly perturbed cases, the state c�t�will change slowly from c�t0�
in comparison to how the ψ i�t� change from ψ i�t0� and how x�t�
changes from x�t0�. This allows interpretation of the evolving relative
motion using the osculating modal constants, which is similar to how
the osculating orbital elements are used to study general perturbed
satellite orbits.

C. Extension to the Circular Restricted Three-Body Problem

Equations (1–8) apply for relative motion in the vicinity of any
periodic orbit, and not just in the Keplerian case. Thus, this paper
explores relative motion in the circular restricted three-body problem
from the same perspective. For this problem, the states and time are
nondimensionalized in the traditional manner [26], with dynamics
resolved in the rotating coordinates inwhich the two primaries appear
fixed. The relative motion in the vicinity of a periodic orbit is studied
in CR3BP rotating coordinates and is given as δx � �P�τ��z (where
the delta differentiates this from the usual LVLH frame relative state)
and _z � �Λ�z.
Due to the Hamiltonian nature of the CR3BP, the monodromy

matrix has a repeated eigenvalue of λm;1 � λm;2 � �1. Furthermore,
it can be shown that the state rate _X�τ0� � _X�τ0 � T� is an eigenvector
corresponding to the unity eigenvalue. There is not a second eigen-
vector; the unity eigenvalue has algebraic multiplicity of two and

Fig. 3 Drift mode: three orbits.
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geometric multiplicity of one. Solving for the generalized eigenvector
v2 is straightforward:

��Φ�τ0 � T; τ0�� − �I6×6��v2 � v1 (36)

Then, the resulting Jordan decomposition of the monodromy matrix
is as follows:

�Φ�τ0 � T; τ0�� � �Vm��Jm��Vm�−1

� �v1v2 : : : v6�

2
6666664

1 1 0 : : :

0 1 0 : : :

0 0 λm;3

..

. ..
. . .

.

3
7777775
�v1v2 : : : v6�−1

(37)

The LTI matrix is given by �Λ� � �1∕T� ln�Φ�τ0 � T; τ0��:

�Λ� � 1

T
�Vm� ln�Jm��Vm�−1

� 1

T
�v1v2 : : : v6�

2
6666664

0 1 0 : : :

0 0 0 : : :

0 0 ln�λm;3�
..
. ..

. . .
.

3
7777775
�v1v2 : : : v6�−1 (38)

The solution to linearized relative motion in the CR3BP has the
following form, with a drift mode as a result of the defectiveness:

δx�τ�� c1�P�τ��v1�c2�P�τ���v1τ�v2�� c3ψ3�τ�� · · · �c6ψ6�τ�
(39)

where the trivial mode is the first listed mode, being periodic in
CR3BP coordinates; and the drift mode is listed second. Then, there
are four other modes (stable, unstable, or center) starting with ψ3.
Recall that the delta notation is adopted for the CR3BP case to
differentiate these differential CR3BP coordinates from the LVLH
coordinates in the Keplerian case.
The defectiveness of the LTI form, its double-zero eigenvalues,

and the resulting secular drift mode might remind the reader of the
Keplerian relativemotionmodal decomposition. The drift mode has a
simple physical interpretation: bounded relative motion must satisfy
a period-matching condition, and so motion on the nearby orbits of
different periods would violate this condition and result in nonzero
projection into a local drift mode in the linearized system. This
relationship also appears in the Keplerian relative motion problem:
bounded purely along-track relative motion is possible (representing
points of a different phase along the orbit); and in the case in which
the no-drift condition is violated, the drift occurs along this same
along-track direction.
The preceding discussion of the defectiveness of the monodromy

matrix (and the underlying LTI form) and the resulting drift mode
enables a fully analytic view of the relative motion modes. First,
consider the case of relative motion in the vicinity of a stable orbit,
where all the relative motion modes are bounded (i.e., all eigenvalues
of �Λ� have zero real parts). In this case, there is one pair of trivial
eigenvalues and there are two nontrivial pairs of eigenvalues:

λ1;2 � 0 (40a)

λ3;4 � 	iω1 (40b)

λ5;6 � 	iω2 (40c)

Let the complex-conjugate eigenvector pairs associated with
the frequencies ω1 and ω2 be written as v3;4 � vR1

	 ivI1 and
v5;6 � vR2

	 ivI2 , respectively. Refactoring, the following form is
obtained for the modal decomposition of the relative motion:

δx�τ� �
X6
i�1

ciψ i�τ� (41a)

ψ i � �P�τ��ηi�τ� (41b)

η1�τ� � v1 (42a)

η2�τ� � v1τ� v2 (42b)

η3�τ� � 2�vR1
cos�ω1τ� − vI1 sin�ω1τ�� (42c)

η4�τ� � −2�vR1
sin�ω1τ� � vI1 cos�ω1τ�� (42d)

η5�τ� � 2�vR2
cos�ω2τ� − vI2 sin�ω2τ�� (42e)

η6�τ� � −2�vR2
sin�ω2τ� � vI2 cos�ω2τ�� (42f)

where the c is given as a function of δx0:

c � � �V�−1δx0 (43)

� �V� �
h
v1; v2; 2vR1

;−2vI1 ; 2vR2
;−2vI2

i
(44)

Becausemodesψ3–ψ6 are generally composed ofmultiple incom-
mensurate frequencies, they trace out complex and unintuitive shapes
on long time spans. The trivialmodes associatedwith the double-zero
eigenvalues of �Λ� are comparatively simple because they are T
periodic. Together, these modes form the basis of all close-proximity
relative motion in the vicinity of the periodic orbit. Another example
is the case of two trivial modes, two center modes, a stable mode, and
an unstable mode. The modal decomposition is given as follows,
where v3;4 � vR1

	 ivI1 :

δx�τ� �
X6
i�1

ciψ i�τ� (45a)

ψ i � �P�τ��ηi�τ� (45b)

η1�τ� � v1 (46a)

η2�τ� � v1τ� v2 (46b)

η3�τ� � 2�vR1
cos�ω1τ� − vI1 sin�ω1τ�� (46c)

η4�τ� � −2�vR1
sin�ω1τ� � vI1 cos�ω1τ�� (46d)

η5�τ� � v5e
λ5τ (46e)

η6�τ� � v5e
λ6τ (46f)

� �V� � � v1; v2; 2vR1
; −2vI1 ; v5; v6 � (47)

In this case, the existence of an unstable mode generally results in
relative motion being unstable if there is any projection of δx into the
unstable subspace. All other dynamic cases can be explored as
needed in the same manner as the preceding two cases.
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III. Applications of the Fundamental Solution
Constants

A. Analytic Benefits as a State Representation

For researchers interested in approximating satellite relative
motion efficiently, it is worth noting that first-order perturbative
expansions [27,28] of the perturbed relative motion in c space are
quite convenient in comparison to the typical investigations in x
space or in δœ coordinates:

_c � ε�Ω�t��c (48)

c�t� ≈ c0 � εc1�t� (49)

_c1 � �Ω�t��c0 (50)

where c0 is the unperturbed (zeroth-order) vector of constants, and
the first-order correction c1�t� induced by the linearized perturbation
�Ω�t�� [see Eq. (34)] is solved simply by integration. Then, x is
expanded in terms of the perturbed c:

c1�t� �
Z

t

0

�Ω�φ�� dφc0 (51)

x�t� ≈ �Ψ�t��
�
�I6×6� � ε

Z
t

0

�Ω�φ�� dφ
�
�Ψ�0��−1x0 (52)

B. Continuous Control Using the Fundamental Solution Constants

In the classical linear quadratic tracking (LQT) problem, the
formulation in terms of local coordinates (such as the Cartesian
representation) is inconvenient. To execute tracking control, the
6 × 6 gain matrix �K�must first be propagated backward via a Riccati
matrix differential equation (requiring simultaneous backpropaga-
tion of the chief orbit and computation of the plantmatrix �A�), and the
six-dimensional costate s�t� must also be backpropagated.
Consider instead that the fundamental solution constants c are used

as the state representation, and the desired trajectory to track is natural,
thus ur � 0 and cr�t� � cr�t0�. The state error is δc � c − cr with
the following simple dynamics, assuming that the chief orbit is
unperturbed:

δ _c � �Bc�t��u (53)

Furthermore, the LQT problem in x space reduces to the linear
quadratic regulator problem in c space, with the cost function, the
optimal control, and simplified Riccati equation as follows:

~JLQR � 1

2
δc�tf�⊤�S�δc�tf� �

1

2

Z
tf

t0

�
δc�t�⊤�Q�δc�t� � u⊤�R�u

�
dt

(54)

u�t� � −�R�−1�Bc�⊤�K�δc�t� (55)

� _K� � �K��Bc�t���R�−1�Bc�t��⊤�K� − �Q�; �K�tf�� � �S� (56)

With this formulation, the controlled x�t� will track natural trajec-
tory xr�t� through control in c space, where there is no need to
backpropagate any costate dynamics; and the Riccati equation is
greatly simplified by the absence of an �A�matrix. A complication is
that the choice of satisfactory gains is not as straightforward in c
space as it is in x space. However, in this paper, the numerical
exploration of control using the modal constants is limited to
impulsive maneuvers.

C. Impulsive Control Using the Fundamental Solution Constants

The relative motion parameterization in terms of fundamental
solution constants is well suited for impulsive maneuver-based con-
trol strategies. Returning to Eq. (35), in the absence of disturbances,

�Ω�t�� � �06×6�; and the solution for c can be expressed in terms of a
series of impulsive maneuvers Δvi � Δv�ti�:

c � c0 �
XN
i�1

�Bc�ti��Δvi (57)

Consider the optimal control problem of minimizing the total delta V
subject to the dynamics in Eq. (64):

J �
XN
i�1

Δvi (58)

where Δvi � kΔv�ti�k. Also, let Δc � c − c0. Some useful results
are borrowed from Ref. [5]. First, consider the sets of control inputs
u�t� ∈ U and the reachable variations Δc ∈ C with costs no greater
than J:

U�J� �
�
u�t�: u�t� �

XN
i�1

Δvi;
XN
i�1

Δvi ≤ J

�
(59)

C�J� �
�
Δc: Δc �

XN
i�1

�Bc�ti��Δvi;
XN
i�1

Δvi ≤ J

�
(60)

Asdiscussed inRef. [5], the setC is compact and convex, and it scales
linearly with J. Furthermore, for a minimum cost Jmin to achieve a
desired variation, the desired difference in constants Δc� � c� − c0
lies on the boundary of the set. The minimum delta V to reach this
goal in N maneuvers can be obtained in terms of the unit vector η̂,
which is normal to the boundary of C at Δc�:

Jmin �
η̂⊤Δc�

maxti∈�t0;tf �kη̂⊤�Bc�ti��k
(61)

For integration constant control formulations, Ref. [5] describes a
means of numerically obtaining η̂ using a convex solver, and then
linearly solving for an optimal sequence ofN ≤ n impulsive maneu-
vers for a dynamic system with n state variables. Their approach,
which is used in this work, was inspired by Ref. [29] (p. 328,
theorem 3), Ref. [30], and Ref. [31] (p. 377, algorithm 1). In general,
for the formation-flying problem, a minimum of two maneuvers is
required. For the unperturbed problem, only control action induces
movement in C: the flow of the integrable dynamics has no effect.
This property, combined with the compactness and convexity of C,
allows for powerful geometric interpretations for the fuel-optimal
impulsive maneuver problem. However, any significant perturba-
tions will play a disruptive role, inducing drifts in Δc that would
need to be compensated for.
The algorithm for solving for an optimal maneuver sequence is

given in the following for the unperturbed problem [5]:
1) Solve the following second-order cone program for the optimal

value η�:

maximize ~J � η⊤Δc�

subject to k�Bc�t��⊤ηk ≤ 1 for t ∈ �t0; : : : ; tj; : : : ; tf� (62)

where �t0; : : : ; tj; : : : ; tf� ∈ Rk
≥0 is a chosen discretization of the

control interval.
2) Determine all times ti ∈ �t0; : : : ; tj; : : : ; tf� for which

jk�Bc�t��⊤η�k − 1j < ϵ for some small numerical precision tolerance
ϵ ≪ 1. This will yield an N-maneuver sequence, with N ≪ k, for
which the ith impulse is directed along the unit vector:

ûi � �Bc�t��⊤η� (63)

3) The set of delta-V maneuver magnitudes fΔvig needs to satisfy
the linear system of equations:
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XN
i�1

�Bc�ti��ûi ⋅ Δvi � Δc� (64)

A traditional relative motion control approach is to use a factori-
zation of the STM to uniquely solve for a two-burn delta-V sequence,
given some specified initial and final times. This could also be used
with the desired target relative orbit efficiently identified in c space.
This c� would then be mapped to x� via the fundamental solutions.
By necessity, a two-burn solution using either approach will obtain
the same answer.

IV. Numerical Results for the Keplerian Case

A. Keplerian Relative Orbit and Its Modes

Consider the example of a bounded relative orbit in the vicinity of
an eccentric chief orbit, given by the data listed in Table 1. The
specified modal constants c are related to local curvilinear relative
states by Eq. (26) using the unity-normalization scheme given by
Eq. (27) and its associated discussion. Note that, although δa � 0,
the drift constant c6 does not exactly equal zero. This is because δa �
0 is the nonlinear no-drift requirement, and it is not perfectly captured
by the linearized no-drift condition. This is a well-known property of
linearized solutions; consider, for example, that the linearized no-
drift condition for the CW system is _y� 2nx � 0, which only
linearly approximates δa � 0. From the data in Table 1, the resulting
Keplerian relative orbit is depicted in 3-D in Fig. 4, and the planar
projection appears as a black closed curve in Figs. 5–7.
Figure 5 shows the modal decomposition of the in-plane compo-

nent of the relative motion using the modes developed in Cartesian
coordinates. Figure 6 shows themodal decomposition of the in-plane
motion using the modes developed in spherical coordinates and
linearly mapped to Cartesian coordinates. For both plots, the initial
point of the orbiter and the initial point in each mode are given by
dots. Because the relative orbit is nondrifting, the drift mode con-
tribution is zero; thus, the mode appears as a nonmoving point at the
origin. For both modal decompositions, the modes shown sum
linearly to reproduce the observed relative motion in black. In other
words, x2D�t� � c1ψ2D;1 � c3ψ2D;3 � c5ψ2D;5. Recall that the out-
of-plane modes (modes 2 and 4) have no in-plane component; they
exist only in z, and they are completely decoupled from the in-
plane modes.
Comparing Figs. 5 and 6, the spherical coordinate-based modal

decomposition reproduces the true relative orbit in a much more
straightforward and intuitive manner than the Cartesian coordinate-
based counterpart. The motion is represented as a sum of a recti-
linear along-track motion (mode 1), a distorted elliptical motion
(mode 3), and the offset circular trajectory (mode 5). This is the
simplest geometric representation possible for Keplerian relative
motion, with two of the three bounded in-plane motions given as
basic shapes.
Because the fundamentalmodalmotions only need to be computed

once, variations in the relative motion due to changes in the modal
constants can be explored with a minimal amount of numerical
computation. For example, exploring a range of variations in c1,
Fig. 7 is produced. The initial (t � t0) andmidorbit (t � t0 � �T∕2�)
points are denoted with dots and with an “x,” respectively; and the
original relative orbit is given in black. The effect of isolated changes
in c1 is to shift themotion further along in the along-track direction as
c1 is increased, with the additional effect of rotating and distorting the
planar component of the relative orbit. Note that the x scale of the
relative orbit is not affected at all. Similar figures can be generated to
isolate the effects of changes in c3 and c5 on the relative orbit shape

and location. However, changing the scales of c3 and c5 also changes
the size of the relative orbit. To display the characteristic changes in
relative orbits with these parameters clearly on individual plots, the
relative orbits are computed across desired ranges for these param-
eters, as was done for Fig. 7; then, the orbits are rescaled such that
kcnewk � kcoldk to preserve the original relative orbit scale. The
resulting plots are given in Fig. 8 for variations in c3 and Fig. 9 for
variations in c5.
In Fig. 8, as c3 is decreased from its original value of 7.07, the

rescaled relative orbit shifts from the original relative orbit (given in
black), to more centered and symmetric relativemotion in the middle
of the range (near c3 � 0), to an essentially reversed version of the
original for c3 < 0. Note that there would also be accompanying
relative orbit scale changes with the changing value of c3, but the
rescaled orbit plot sacrifices this information to better show the
variations in the relative orbit geometry. Figure 9 shows thevariations
in the rescaled relative orbit due to changes in c5, with an original

Table 1 Simulation parameters

Parameter Value

Chief orbit elements œ � �a; e; i;Ω;ω; f0� � �8600 km; 0.2; 25 deg; 0 deg; 270.001 deg; 90 deg�
Deputy relative orbit δœ � œd − œc � �0.0; 0.0002; 0.02 deg; 0 deg; 0 deg; 0.003 deg�
Modal constants c � �4.3; 0.0; 7.07; 3.60; 3.61;−0.014�

Fig. 4 Example relative orbit.

Fig. 5 Cartesian planar modes.

Fig. 6 Spherical planar modes.
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value of c5 � 3.61. The negativevalue is essentially flipped about the
x axis; and as the value is increased, the rescaled relative orbits
gradually circularize as the contribution of circular mode 5 is
increased in relative scale.
Figures 7–9 show that the parameter space for the in-plane com-

ponent of bounded relative orbits is only three-dimensional. The two
out-of-plane modes add an additional two dimensions, completely
decoupled from the in-plane design. From the perspective of the
modal constants, it is conceptually easy and numerically efficient
for the astrodynamicist to explore all possible useful types of relative
motion that can exist. In this manner, the vector of modal constants c
serves as the design space, and it uniquely determines the relative
motion state when combined with a given time since epoch t − t0. As
discussed earlier, it is also possible to compute how the constants vary
under the influence of non-Keplerian dynamics. With such a study,
the influence of perturbations on relative motion can be viewed as an
evolving alteration of the relative scales of the constituent Keplerian
relative motion modes that form the basis for the unperturbed
problem.

B. Effects of Perturbations: Modeling with J2

To demonstrate the behavior of the Keplerian modal constants
under the influence of perturbations, consider the ubiquitous example
of J2-perturbed relative motion, which is highly relevant for Earth
orbits. To compute the perturbed dynamics of the Keplerian modal
constants, Eq. (31) is used, with equations from Ref. [24] providing
the linearized perturbed relative motion dynamics; and it evaluated
using the following equations for the acceleration, differential accel-
eration, and jerk induced by the J2-perturbed Keplerian dynamics:

�r � −
μ

r3
r −

3μJ2R
2

2r4
��1–5�r̂ ⋅ K̂�2�r̂� 2�r̂ ⋅ K̂�K̂� (65)

∇r �r � −
3μJ2R

2

2r5

h
�1–5�K̂ ⋅ r̂�2�I � 2K̂ K̂⊤ � 5�7�K̂ ⋅ r̂�2 − 1�r̂ r̂⊤

− 10�K̂ ⋅ r̂��K̂ r̂⊤ � r̂ K̂⊤�
i

(66)

Fig. 7 Variations of the planar relative motion with c1.

Fig. 8 Variations of the planar relative motion with c3 (rescaled).

Fig. 9 Variations of the planar relative motion with c5 (rescaled).
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r
::: � �∇r �r�_r (67)

where K̂ denotes the polar axis unit vector,R is the equatorial radius, I
is the 3 × 3 identity matrix, and r̂ � r∕r. The dynamics given by
Eq. (31) are integrated in parallel with the J2-perturbed chief orbit.
The same initial chief orbit and deputy relative orbit conditions

fromTable 1 are selected but with Earth’s J2 perturbation active. As a
result of this perturbation, variations are induced in the Keplerian
modal constants. Figure 10 shows the resulting behavior in c for three
unperturbed chief orbit periods. The effect of J2 is limited to small
oscillations in the modal constants, but these oscillations grow over
time, which is an unfortunate but unavoidable property. For the case
of J2, it seems that the modified orbital frequency due to the pertur-
bation requires that the secular drift mode (mode 6) be used to fully
describe the perturbed state. This is because all other modes are
periodic on the interval �0; T�, and variations in their sums would
be unable to describe a relative orbit on the shortened interval

�0; T − ΔTJ2 �. Additionally, the J2 perturbation induces slow long-
term drift in the relative orbit. The drift mode is used to describe the
perturbed solution, and it grows and shifts over time; so, variations in
other modes (primarily mode 5) are induced to compensate for these
variations. This yields the opposing behaviors of c5 and c6 seen in
Fig. 10. Despite these growing oscillations, the long-term drift in c5
and c6, as well as in the other ci parameters, is quite slow. The
averaged dynamics in c could thus be a useful lens for studying
relative motion in the perturbed problem, especially for even zonal
harmonics like J2, but such a study is not explored here. Lastly, the
growing oscillations are not a major problem for modeling because
the fundamental solutions can always be reinitialized as needed.

C. Impulsive Maneuver Control Examples: Keplerian Orbit

To demonstrate unperturbed control using the Keplerian modal
constants, consider the problem of changing from the initial relative
motion dictated by the data in Table 1 to a new planar nondrifting

Fig. 11 Five-burn maneuver: modal constants.

Fig. 10 Variation of modal constants with J2.

Fig. 12 Five-burn maneuver: local Cartesian coordinates.
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relative orbit parameterized by c5 � 3.61. To implement this test, the
previously discussed impulsive maneuver-based control solution
strategy is implemented in Python using cvxpy. For this impulsive
control example with the Keplerian case, time is discretized into 100
points on the interval of ti ∈ �t0 � 1; 590.6 s; t0 � 12; 724.7 s�.
Thus, the number of constraints given by Eq. (62) is 100. This does
not stress the solver, and the optimal maneuver sequence is found

quite quickly. The resulting impulsive control solution consists of
five maneuvers for a combined delta Vof only 2.7 m∕s, as compared
to 7.0 m∕s for a two-burn transfer in the same interval. The changes
in c with each maneuver are plotted in Fig. 11, with vertical lines
indicating each maneuver. The relative position components are
plotted in Fig. 12. The initial, transfer, and final relative motions
are shown in 3-D in Fig. 13. The initial relative orbit is the large blue
closed curve, and the final relative orbit is the small orange planar
circular trajectory. The transfer trajectory is given by the dashed black
line, and the maneuver points are indicated with red dots. The chief
location is indicated by a star.
Control using the modal solution constants is highly convenient

due to both the straightforward geometric interpretation of the ci
parameters and the efficient means by which multimaneuver impul-
sive control schedules can be obtained. This is demonstrated by the
preceding simple examples with Keplerian dynamics. However,
extending this control design to account for the effect of perturbations
on c is necessary for elegant flight implementation: particularly for
long-duration control maneuver sequences. This will be explored in
future work, but mitigating the effects of perturbations in control
design in c space should be straightforward because even in the
perturbed relative motion case, the c parameters do not lose their
geometric meaning. This is highly convenient, and it generally
does not hold for most other perturbed integral representations. For
example, for relative motion parameterizations using orbit element
differences of δœ � œd − œc, the perturbations modify œc; as a
result, the resulting exact local coordinate behavior mapped from a
particular desired δœ changes over time.

V. Numerical Examples for the CR3BP Case

Consider a stable northern L2 halo orbit with an orbit period of
T � 9.504 days. This orbit is given in Fig. 14. For this orbit, there are
four center modes and two trivial modes (ψ1 and ψ2) in its vicinity.
The center modes are composed of incommensurate frequencies, and
so they trace out complex shapes over long time spans. This is
demonstrated with plots of ψ3 and ψ5 propagated with the linearized
dynamics for 240 chief orbits, given by Fig. 15. The scale shown
corresponds to relative motion on the kilometer scale, but it is
plotted in the dimensionless CR3BP length scale. The dimensionless
frequencies are ω1 � 1.2511 and ω2 � 0.7604. Not shown is the
trivial mode, which traces a closed curve with each chief orbit. Note
that the chief location is plotted with a star.
As a demonstration of the impulsive control strategy discussed

earlier, consider the control case summarized in Table 2. The modal
constants c are related to the relative state in nondimensional CR3BP
coordinates via Eqs. (43) and (44) using the unity-normalization
scheme given by Eq. (27) and its associated discussion. The initial
motion is bounded but irregular, and the bounded trivial mode is
targeted. The resulting relative motion is plotted in Fig. 16. The
uncontrolled trajectory is given in blue for two chief orbits; the target
trajectory is in orange; and the controlled trajectory is given by theFig. 14 Stable L2 halo orbit.

Fig. 13 Relative orbit transfer using the modal constants.

a) Mode 3 b) Mode 5

Fig. 15 Center modes: stable L2 northern halo orbit.
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dashed line, with impulsivemaneuver pointsmarked by red dots. The
chief is shown as a star. This figure is plotted in the rotating CR3BP
coordinates, and not the LVLH frame. The figure shows that the
impulsivemaneuver-based control strategy is successful in achieving
the desired relative motion.
Next, consider two cases of control near an unstable L2 halo orbit.

This is a northernL2 halo orbit with a period ofT � 14.676 days. For
this orbit, there are the trivial bounded and driftmodesψ1 andψ2, two
center modesψ3 andψ4, a stablemodeψ5, and an unstable modeψ6.
The center mode ψ3 is propagated for many orbits and given in
Fig. 17. Its dimensionless frequency is ω1 � 0.1288.
For this unstable halo orbit, two relative motion control examples

are briefly highlighted. The first is control from the chief point of
δx � 0 to the target one of the center modes. The second is an
example of regulation from the trivial mode to the chief point.
Starting with the example given by Table 3 and Fig. 18, the initial
point is at δx � 0 and the target motion is in orange. The controlled

trajectory is given by the dashed line, and the control maneuvers are
labeled on the plot with red points. The control successfully targets
the quasi-periodic mode ψ3, but a small residual error projected into
the unstable subspace results in a subsequent need for correction; so,
the trajectory departs from the target mode. This is a fundamental
property of relative motion control in the vicinity of an unstable halo
orbit: corrective maneuvers will always be necessary on some time-
scale, due to the combined effects of nonlinearity and instability.
The second example is given by the data in Table 4 and the

trajectory in Fig. 19. The initial trivial modal motion is given in blue,
the controlled trajectory is given by the dashed line, and the control
maneuvers are labeled with red dots. This example demonstrates

Fig. 16 Relative motion with impulsive control: stable L2 halo orbit.

Table 2 Halo orbit control simulation parameters (stable orbit
example)

Parameter Value

Initial relative motion c0 � �0; 0; 0.2; 0.1; 0.08; 0�α, α � 5.2 × 10−6

Initial state δx0 � �−0.01; 0.309;−0.005; 0.168;−0.002; 0.362�α
Desired relative
motion

c� � �0.2; 0; 0; 0; 0; 0�α

Maneuver interval τ ∈ �1.23; 3.29�
Maneuver times τ1 � 1.37, τ2 � 2.876, τ3 � 3.013

Resulting maneuvers Δv1 � �−0.281; 0.094; 0.161�α
Δv2 � �−0.131;−0.027; 0.085�α
Δv3 � �−0.221;−0.064; 0.121�α

b) Center modea) Halo orbit: example 2(a)

Fig. 17 Unstable L2 northern halo orbit and a center mode.

Fig. 18 Control to center mode: unstable L2 halo orbit.

Table 3 Halo orbit control simulation parameters: example 2(a)

Parameter Value

Initial relative motion c0 � �0; 0; 0; 0; 0; 0�
Initial state δx0 � �0; 0; 0; 0; 0; 0�
Desired relative motion c� � �0; 0; 0.3; 0; 0; 0�α, α � 5.2 × 10−6

Maneuver interval τ ∈ �1.90; 5.08�
Maneuver times τ1 � 1.903, τ2 � 2.538, τ3 � 3.595,

τ4 � 3.807, τ5 � 4.864

Resulting maneuvers Δv1 � �−0.035;−0.007; 0.052�α
Δv2 � �−0.148; 0.278; 0.052�α
Δv3 � �0.028; 0.002;−0.068�α
Δv4 � �0.028;−0.035;−0.101�α
Δv5 � �−0.001; 0; 0.0005�α
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regulation control in this environment, with the chief at δx � 0
successfully targeted to a high degree of numerical precision. A
similar strategy could be used for orbit regulation, keeping the space-
craft on the unstable periodic orbit.

VI. Future work

The possibilities for future work are extensive. The modal decom-
position procedure could be computed in coordinates with superior
linearization, yielding a larger region of validity. Additionally, an
alternate choice of coordinates for relative motion in the CR3BP
could yield greater geometric insight than the standard rotating
coordinates used in this work, particularly for the center modes.
The current methodology is only applicable to motion in the vicinity
of periodic orbits. A perturbative application of the modal decom-
position procedure (explored in early work in Ref. [32]) could extend
themethods and control techniques discussed in this paper tomore a
realistic setting of motion in the vicinity of a satellite orbit that
roughly repeats but is not periodic, e.g., any orbit for which the chief
state X�t� ≈ X�t� T� for some time T. This is achieved by finding
the nearestT-periodic LTV system to a given linearization and using
the modal decomposition from the former to approximately
describe the motion in the latter. Additionally, for motion in the
vicinity of a general quasi-periodic orbit, the periodic Lyapunov–
Floquet reducing transformation is replaced with a quasi-periodic
Lyapunov–Perron transformation, which can be challenging to
compute. Reference [33] is relevant to this. If the reducing trans-
formation for the quasi-periodic case can be computed efficiently,
the modal decomposition methodology will be extended quite
naturally to general orbits in the full zonal problem and quasi-
periodic orbits in the restricted three-body problems.

VII. Conclusions

This paper introduces the method of fundamental modal solutions
for designing, analyzing, and controlling satellite relative motion in
the vicinity of general periodic orbits. The close-proximity satellite
relative motion is given as a linear sum of fundamental modal
solutions weighed by the modal constants. This facilitates highly
simplified geometric exploration of the satellite relative motion
problem. Using a variation-of-parameters approach, the modal con-
stants also serve as a rigorous state representation for the perturbed
and/or controlled satellite relative state. The representation for per-
turbed relative motion is tested with the commonly studied J2 prob-
lem. For the unperturbed problem of satellite relative motion control,
the modal constants have null dynamics but are steered in time-
varying directions by control. This is a highly beneficial property
for control design (especially impulsive control), and this paper
demonstrates the use of modal constants to simplify the control
problem using previously established techniques for general integra-
tion constant formulations for dynamical systems.
The procedure applied analytically to the Keplerian relative

motion problem can also be applied numerically to other dynamical
situations that admit periodic orbits, and this is demonstrated with
application to the classical circular restricted three-body problem.
Highly fuel-efficient impulsive transfer examples are computed
using the same procedure as was used for the Keplerian case in a
manner that is also highly numerically efficient. This has many
applications. First, it lays the groundwork for computationally
efficient onboard close-proximity satellite relative motion transfers
in the cislunar environment. The procedure can also be applied in
another highly relevant problem, known as the augmented normal-
ized Hill three-body problem, to explore efficient satellite relative
motion control in terminator orbits around asteroids.
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