
Constrained Attitude Maneuvering via Modified-Rodrigues-
Parameter-Based Motion Planning Algorithms

Riccardo Calaon∗ and Hanspeter Schaub†

University of Colorado Boulder, Boulder, Colorado 80303

https://doi.org/10.2514/1.A35294

The attitude dynamics and control of a spacecraft becomes complex in the presence of constraints in its orientation.

Such constraints consist in not pointing sensitive payload toward bright objects in space or, vice versa, keeping the

same bright objects within some instrument’s field of view. This paper investigates the applicability of nonsingular

attitude motion planning algorithms to navigate a three-dimensional grid in the Modified Rodrigues Parameter

configuration space. The aim is to compute a constraint-compliant reference trajectory in Modified Rodrigues

Parameter space that can be tracked to reorient a spacecraft from an initial attitude to a final attitude while also

attempting at minimizing the required control effort. Nonzero initial and final angular rates are considered to yield a

general solution. The path is constructed with B-spline curves that pass through each attitude waypoint. Further, a

constant angular maneuver rate is imposed, which influences the speed at which the reference attitude traverses the

B-spline solution. Simulations illustrate that constraint-compliant, control-torque-minimizing paths are found if

the grid spacing is chosen to be fine enough.

I. Introduction

S PACECRAFT reorientation and maneuvering is a task that
becomes nontrivial when combined with constraints in the

spacecraft’s orientation. Such constraints might be represented by

the necessity of not pointing sensitive payload like a telescope or a
star tracker toward bright objects like the sun, the moon, or Earth’s
albedo: these are identified as keep-out constraints. Furthermore,
the spacecraft might be required to maneuver such that a certain
celestial object remains within the field of view of a body-mounted
instrument: this means, for example, to keep the sun direction
within a certain angular distance from the boresight direction of
sun sensor, or keep the incidence angle of sunlight on solar panels
to a minimum to ensure continuous and sufficient power gen-
eration. This second type of constraints is classified as keep-in
constraints.
The constrained attitude maneuvering problem has been investi-

gated in the past, but an exhaustive solution has yet to be provided.
Some authors proposed a solution that is based on Lyapunov func-
tions coupled with barrier potential functions that can repel the
spacecraft from the obstacles [1–5]. These implementations have a
low computational load and provide smooth, differentiable trajecto-
ries. However, they can fail in the presence of nonconvex obstacles
that can lure the trajectory into localminima, causing the spacecraft to
remain stuck in the wrong configuration [6]. Moreover, these
approaches do not attempt to minimize the required control effort
or angular rates, which might in certain cases exceed admissible
bounds. Other approaches found in literature are based on path-
planning algorithms: these approaches do not suffer the problem of

local minima. Frazzoli et al. [7] provide a solution based on prob-
abilistic roadmaps, which build incremental trees based on a ran-
domized search of the workspace. This approach provides smooth
trajectories to the target and guarantees probabilistic completeness.
However, the random nature of the algorithm does not guarantee to

always converge to a uniquely optimal trajectory. Kjellberg and
Lightsey [8,9], Tanygin [10], and Tan et al. [11] propose instead
path-planning algorithms that are based on discretizations of the
workspace, which eliminate the random component in the planner.
Tanygin’s approach aims at achieving boresight alignment with a
target, regardless of the twist component of the attitude around the
boresight direction, reducing the problem to a two-dimensional (2D)
path-planning query. In this 2D space, he computes a solution based
on shortest angular displacement along the path. Kjellberg and Light-
sey propose a solution to the full three-dimensional (3D) orientation
of the spacecraft where the final path also aims atminimizing the total
angular displacement and, at the same time, penalizing deviations of
the spacecraft from a direction of motion. The trajectories that they
compute are not smooth, but rather piecewise continuous as they
connect waypoints in the attitude space. Ultimately, while an attempt
is made at reducing the required control effort by discouraging
deviations in the trajectory, no guarantee is provided that the com-
puted trajectory is effort-optimal. A novel approach among the path-
planning-based solution is the one proposed by Tan et al., where
emphasis is given to the smoothing of the path obtained as a sequence
of waypoints outputted by the path-planning routine. The smoothing
technique is obtained by means of a smooth and differentiable
interpolating function in theSO�3� space, which provides a reference
trajectory that can be tracked by the spacecraft.
The problem addressed by this paper is the reorientation of a

spacecraft from an initial attitude and angular rate to a final attitude
and angular rate. The objective is computing a reference frame
trajectory that is also constraint-compliant in all of its parts. This is
done navigating a graph consisting of a large number of nodes in 3D
Modified Rodrigues Parameter (MRP) space, which represents the
discrete space of admissible, constraint-compliant attitudes. The
MRP shadow set properties are exploited to yield a globally non-
singular attitude path solution. Using MRPs is interesting for this
application as the dual set of original and shadowMRP sets allows for
a nondimensional attitude description using a minimal three-param-
eter coordinate set. As a result the search algorithm can traverse a
regular 3D space but must account for the discontinuity where the
MRP norm exceeds unity. The A* algorithm is applied to compute a
valid trajectory that is optimal with respect to a cost function that is
representative of the total control effort required to perform the slew
maneuver. However, note that the general attitude path-planning
methodology developed here is not tied to the A* method, and other
search methods could be applied. Given a set of MRP waypoints, the
novel aspect of this work is that a smooth attitude path is sought
which minimizes the control effort required to connect two arbitrary
orientations with arbitrary initial and final angular rates. The use of
B-spline curves is explored to yield a twice differentiable MRP
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trajectory where the control effort can be evaluated. The guidance
goal is to have the spacecraft rotate at a nominally fixed angular rate to
have a predictable velocity bound. This research explores how to
modify the MRP B-spline solutions to yield such rotations that
comply with the stated initial and final conditions while satisfying
the conic inclusion and exclusion constraints. In this study, the
assumption is made that the constraints’ positions remain fixed with
respect to the spacecraft’s orbital frame. This assumption is accept-
able in the context where the maneuver time is small enough com-
pared to other time scales involved. The challenge posed by time-
varying constraints will be addressed in future related work.
The paper is structured as follows: The first section describes

MRPs as an attitude representation set, as well as all the related
kinematic equations that are used in the paper, together with the
discretization of the attitude space and obstacle representation in
MRP configuration space. The A* algorithm is described as a graph
search algorithm in its simplest form. The second section starts from a
simple, distance-based implementation of the A* algorithm as a
proof-of-concept, and proceeds describing an interpolation technique
to navigate the space between thewaypoints. Subsequently, amethod
is described to navigate the interpolated trajectory with a constant
angular velocity magnitude. Lastly, the interpolated, constant-rate
trajectory is incorporated to the A* algorithm to provide a technique
to search the graph for the lowest-effort trajectory. The final section
shows a variety of case scenarios and the optimal trajectories
computed for them, with different sets of keep-out and keep-in
constraints.

II. MRP Workspace Discretization

A. Modified Rodrigues Parameters

MRPs are a minimal, 3D set of parameters that represent the
attitude of a rigid body rotating in the SO�3� space. A single MRP
set σ is obtained from a stereographic projection of the four-dimen-
sional (4D) Euler parameter (quaternion) set β onto a 3D hyperplane
[12]. Defining �ê;Φ� as the principal rotation vector and angle in a
rigid body rotation, the MRP set is obtained as

σ � 1

1� cos

�
Φ
2

�

8>>>>>>>><
>>>>>>>>:

e1 sin

�
Φ
2

�

e2 sin

�
Φ
2

�

e3 sin

�
Φ
2

�

9>>>>>>>>=
>>>>>>>>;

� ê tan

�
Φ
4

�
(1)

The advantage of using MRPs over EPs is that the first are a 3D,

constraint-free set, which means that any point in R3 represents a
valid attitude. In contrast, EPs only represent a valid attitude when β
lies on the surface of the 4D hypersphere kβk � 1. On the other hand,
reducing the dimension of the parameterization set from four to three
causes a singularity to appear in the MRP formulation when the set
describes a 360 deg rotation. However, the singularity in the MRP
formulation can be avoided by choosing the appropriate MRP set for
attitude representation. For every principal rotation set �e;Φ� there
exists a shadow set �e;Φ 0� with Φ 0 � Φ − 2π that represents the
same attitude with respect to the origin. Such shadow set is mapped
into the shadow-set MRP:

σSi �
ei sin

�
Φ 0

2

�

1� cos

�
Φ 0

2

� �
ei sin

�
Φ
2
− π

�

1� cos

�
Φ
2
− π

� � −σi
σ2

for i � 1; 2; 3 (2)

where σ2 � kσk2. Therefore, any two MRP sets for which Eq. (2)
holds true are indeed different MRP sets, which, however, represent
the same attitude. Another interesting property that can be inferred
from Eq. (2) is that anyMRP set whose norm is higher than 1 (σ > 1)

has a corresponding shadow set whose norm is smaller than one

(σS < 1): this means that for any MRP set represented by a point
outside a unit 3D sphere centered in the origin, there exists a shadow
MRP setwithin the same unit sphere that represents the same attitude.
For points on the boundary of the unit sphere, such that σ � 1, it is

σS � −σ. For all the above, the operational domain for the represen-
tation of the attitude of a rigid body can be restricted, without loss of

generality, to the points in R3 contained in a sphere of radius 1,
including boundary points.
The restriction of theworkspace to the unitMRP sphere is advanta-

geous for several reasons. First of all, althoughMRPs are a nonunique
set, this choice de facto removes the nonuniqueness by always
choosing to refer the short rotation set described by Eq. (1) with
jΦj ≤ π. This way, the issue of attitude unwinding, which arises with
naive control laws based on nonsingular attitude representations
[5,13], is bypassed. Moreover, the versatility of the MRPs relies on
the fact that they do not have to satisfy any constraint, such as norm
unity for EPs or matrix orthogonality for pure SO(3) representations.
This property becomes useful in path-planning-based approaches,
because any continuous curve that connects any two waypoints in
MRP space represents a valid, continuous reference trajectory,
allowing for easy interpolation between waypoints. The same cannot
be said for EP-based [9] and SO(3)-based [11] attitude discretization
strategies, where the corresponding constraints must be enforced
between waypoints.
The following differential kinematic equations are used to switch

between the time derivatives of theMRP sets _σ and �σ, and the angular
rates and accelerations BωBN and B _ωBN of the body-fixed framewith
respect to the origin frame, in B-frame components. The differential
kinematic equations for the angular rates are

_σ � 1

4
�B�σ��Bω (3)

Bω � 4

�1� σ2�2 �B�σ��
T _σ (4)

where the �B�σ�� matrix is defined as

�B�σ�� � �1 − σ2��I3×3� � 2� ~σ� � 2σσT (5)

with �I3×3� being the identity matrix and � ~σ� the skew-symmetric
matrix cross-product operator computed from σ. To obtain the rela-
tion between �σ and angular acceleration, Eqs. (3) and (4) must be
differentiated, for which purpose it is useful to define the derivative of
�B�σ��:

� _B�σ; _σ�� � �−2σT _σ��I3×3� � 2� _~σ� � 2�σ _σT � _σσT� (6)

The differential kinematic equations for the angular accelerations are

�σ � 1

4
��B�σ��B _ω� � _B�σ; _σ��Bω� (7)

B _ω � 4

�1� σ2�2 �B�σ��
T
�
�σ −

1

�1� σ2�2 �
_B�σ; _σ���B�σ��T _σ

�
(8)

For amore detailed derivation ofMRPs and the related equations, the
reader is redirected to Ref. [14].

B. Workspace Discretization

The workspace for the present analysis can be reduced, without
loss of generality, to the points contained in a unit sphere centered in
the origin. Such workspace is discretized using a 3D Cartesian grid
consisting of equally spaced nodes. The fineness levelN of the grid is
defined as the number of equally spaced nodes contained along each
principal Cartesian semi-axis. A visual representation of the Carte-
sian grid, with a fineness level N � 6, is reported in Fig. 1: such
representation is 2D, for ease of visualization, and describes an
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obstacle-free workspace. As shown in Fig. 1, nonequally spaced
nodes are added on the surface of the unit sphere, in substitution of
the neighboring nodes that exceed the limit distance σ � 1 from the
origin, and are therefore excluded. The gray lines connect each node
with its immediate neighbors: the definition of neighboring nodes is
vital for the pathfinding algorithm, as it defines the directions in
which it is allowed to explore the workspace from the current
location. In absence of obstacles, all internal nodes (i.e., far enough
from the surface of the sphere) have 26 neighboring nodes. A scheme
of an internal, 26-connected node is reported in Fig. 2: in purple is the
internal node, in red are the neighboring nodes located at a distance of

1∕�N − 1�, in orange the neighbors at a distance of ���
2

p
∕�N − 1�, and

in yellow the neighbors at a distance of
���
3

p
∕�N − 1�. Additionally,

each node on the σ � 1 boundary surface is linked to its own shadow
set node, i.e. the node on the opposite side of the sphere with respect
to the origin. This allows the pathfinding algorithm to automatically
switch to the shadow set when necessary, avoiding principal rotations
larger than 180 deg.
This discretization is uniform in MRP space, but it is not uniform

when the MRP sets are mapped to the respective principal rotation
sets. Equation (1) shows the nonlinear relation between MRP and
principal rotation set, for which any two pairs of nodes separated by
the same distance in MRP space are not necessarily characterized by
the same principal rotation angleΦ. However, since theworkspace is
bounded to the unit sphere, the principal rotation angle is also
bounded in the domain−π ≤ Φ ≤ π, for which Eq. (1) is fairly linear.
The nonlinearity can be further reduced by using higher-order
Rodrigues parameters [15], or higher-order map projections for
attitude representation [16,17], at the expenses of having to perform
multiple set switching to avoid the singularities introduced by more
complex formulations. Tanygin [16] shows that MRPs have better
linearity properties than other popular attitude representation sets.
Strides have been made to sample the special orthogonal group
SO�3� of rigid-body rotations with grid structures that have a high

degree of uniformity and coverage of the space [18]. The following
work accepts the small deviation from linearity introduced byMRPs.
Such nonlinearity introduced by Eqs. (1) and (3) is handled later in
this paper, where a constant-angular-rate magnitude kωk is imposed.
This allows to track the reference trajectory with a constant rate of
variation of attitude over time.

C. Obstacle Representation

To perform the path-planning query it is essential to map the
constraints into the workspace. The constraints are known in terms
of the direction of the celestial object N ŝi, the body-fixed direction of

the instrument
B
b̂i, and the minimum/maximum angle between the

two βi, according to

B
b̂i ⋅ �BN �N ŝi ⋚ cos βi (9)

where the < sign is used for keep-out constraints, whereas the ≥ for
keep-in constraints. Each of these constraints, in their simplest form,
can be visualized as a conical region in the unit sphere. For keep-out
constraints, the boresight vector of the sensitive instrument must
avoid such conical regions as the spacecraft executes the maneuver.
On the contrary, for keep-in constraints, the boresight should remain
within the conical region during maneuvering.
For every node in the grid, compliance is verifiedwith respect to all

the constraints. The nodes that do not satisfy Eq. (9) aremarked as not
collision-free and removed from the grid. As a consequence, the path-
finding algorithm is blocked from exploring nodes that are not
constraint-compliant. It should be noted that, with this approach,
the segment that connects two constraint-compliant nodes that are
very close to an obstacle may itself not be constraint-compliant in all
its parts. However, this paper only aims at analyzing simple, convex
geometric constraints, for which this phenomenon can be avoided
choosing a fineness level N that is sufficiently high.
It is interesting to show how such convex geometric constraints are

mapped into obstacles in MRP space. Figure 3a shows the B frame

aligned with the inertial frameN , i.e., with the principal axes aligned
with the inertial directions x, y, and z. The x body axis is shown in red,
as it coincideswith the boresight of the sensitive instrumentwith a field
of view β � 20 deg. The directions of the three keep-out cones are
contained in the �y; z� plane, at an angle of 120 deg from one another.
Figure 3b shows the keep out cones mapped inMRP space, where the
dot in the origin represents the current attitude σ � �0; 0; 0�. Since the
attitude is constraint-compliant, with the boresight vector outside of all
the keep-out cones, so is the dot representing the initial configuration
collision-free. It can be observed, for example, that the red keep-out

cone blocks negative rotations around the body axis
Bb̂y � �0; 1; 0�: in

MRP space, this causes the appearance of an obstacle along the
negative σ2 direction. Similar considerations can bemade for the other
two keep-out cones. General keep-out cones almost always generate
tubular structures as those in Fig. 3b: such structures are thicker or
thinner according to the half-angle of the respective cone, and always
go from one side of the unit sphere to the opposite, because opposite
ends of the unit surface represent the same attitudes.
Somequalitatively different obstacles are reported inFig. 4,where the

keep-out cones are 0 deg (yellow) and 180 deg (blue) apart from the
boresight direction. It can be observed, first of all, that the boresight
vector is inside the yellow cone: as a consequence, the black dot
representing the initial attitude in MRP space falls inside the yellow
obstacle in Fig. 4b. Since any rotation about

B
b̂x � �1; 0; 0� maintains

the boresight within the cone, the corresponding obstacle inMRP space
encompasses thewhole σ1 Cartesian axis.As for the blue keep-out cone,
any rotation of Φ ≥ 160 deg about any body axis perpendicular to
B
b̂x � �1; 0; 0� causes a constraint violation; for this reason the blue

obstacle in MRP space takes the shape of a ring distributed around the
intersection between the unit sphere and the �σ2; σ3� plane.
The results in Figs. 3 and 4 can be generalized to a problem with

multiple sensitive instruments and/or sensors characterized by a keep-
in constraint. For multiple sensitive instruments, there are multiple
boresight vectors: this causes each keep-out cone to generate an

Fig. 1 MRP grid with two minimum-distance paths: i) green: no MRP
switching; ii) purple: MRP switching.

Fig. 2 Neighboring nodes.
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obstacle in MRP space for every sensitive instrument. Such obstacles
can have different orientations and sizes, especially if the different
instruments have different fields of view, andmayoverlap inpoints that
represent attitudes forwhichmultiple instruments are facing a keep-out
direction. For keep-in constraints, the only difference is the sign in
Eq. (9). For this reason, the results are analogous to those of Figs. 3b
and 4b; only in this case the colored regions represent constraint-
compliant zones, whereas empty regions are not constraint-compliant.
Obviously, in the presence of combined keep-out and keep-in con-
straints, the compliant regions are those where both the constraints are
satisfied simultaneously.

III. Graph Search: The A* Algorithm

A. Algorithm Review

The primary purpose of this paper is tomaneuver a spacecraft from
an initial orientation to a final, user-specified orientation. Given the
grid discretization and the obstacle representation in MRP space
described in the previous section, the maneuvering problem is now
transformed into a path-finding query. The aim is to find a path in
MRP space that connects the starting point, representing the initial
attitude, with the final point, representing the target attitude, avoiding
the obstacles that represent the geometric constraints. Such pathmust
be searched in the directed graph that has the grid nodes as graph
nodes, and the segments connecting each nodes to its neighbors as
graph edges. While this paper uses the A* method to develop a set
of discrete attitude path points, the paper’s methodology of using

discrete MRP waypoints to develop a smooth, effort-optimized sol-
ution is not tied to the A* method generating these points.
First of all, start andgoal nodesnS andnGmustbe added to thegraph.

Thegraph is searched for the twonodeswhoseCartesian distances from
nS andnG, respectively, are the lowest. To avoid redundancies, such two
nodes are replaced by nS and nG, which are immediately connected to
the neighbors of the nodes they replaced.
Different algorithms exist that can construct a tree (acyclic graph)

rooted in nS, which explores the neighboring nodes until reaching the
leaf node nG. There are two broad categories of such algorithms:
breadth-first and depth-first. Breadth-first algorithms proceed explor-
ing, at every iteration, all the nodes located at the same link length
from the root [19]. Depth-first algorithms, on the contrary, start from
the root node and explore nodes at increasing link lengths at every
iteration until a leaf node is found [20]. Breadth-first algorithms have
the advantage of exploring larger regions of the graph while running
the query; therefore they can find the best path to goal in terms of the
smallest link length. Depth-first algorithms, on the contrary, explore
much less of the graph, but can find a suboptimal path to goal in less
computational time.
Another class of algorithms exists, called greedy algorithms,

which at every iteration explore the graph in the direction that appears
to be the closest to the goal: an algorithm that belongs to this class is
A*. The explored node is chosen as the node having the smallest total
cost f�n� � g�n� � h�n�, where g�n� is the cost of the path from nS
to n and h�n� is a heuristic estimate of the distance between n and nG
[21]. A* is guaranteed to find the optimal solution in terms of the
metric used to define the cost of a path.Moreover, A* is also efficient,

a) Keep-out cones in inertial space b) Obstacles in MRP space,  N = 15

Fig. 3 Three general keep-out constraints, β � 20 deg.

a) Keep-out cones in inertial space b) Obstacles in MRP space, N = 15

Fig. 4 Two constraints, 0 and 180 deg apart from boresight, β � 20 deg.
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in the sense that its priority-driven nature allows to solve the query

exploring the minimum number of graph nodes. For A* to be

successful and efficient, the chosen heuristic h�n� should be less

than or equal to the actual cost of the path from n to nG [22]. Two lists

are used by the algorithm as it explores the graph: a closed list C
containing the nodes that have already been processed, and an open

listO containing the nodes that are yet to be processed. The algorithm

receives the graph as input, and the open list initially contains onlynS.
The pseudo-algorithm for A* is provided in Algorithm 1.
Two aspects should be noted about A* implementation:
i) The algorithm does not stop when nG is encountered, but only

when nG is encountered as the node with the smallest total cost.
ii)When a node is encountered that is already in the open list with a

higher total cost, it means that the algorithm found a more cost-
efficient path to that node; therefore that node and its cost should be
updated.
For a more comprehensive discussion about A* and other graph

search algorithms, the reader is redirected to Refs. [22,23].

B. Nonsingular MRP-Based A* Implementation

A first, simple implementation of the pathfinding algorithm can be

based on A*, as described in the previous section. In this implemen-

tation, the cost of paths, edges, and heuristics are based on the

distance between nodes in MRP space. Specifically, defining

d�σ1; σ2� the Cartesian distance between nodes, the distance metric

implemented in the algorithm is the following:

d̂�σ1; σ2� � minfd�σ1; σ2�; d�σS1 ; σ2�; d�σ1; σS2�; d�σS1 ; σS2�g (10)

This metric allows to explore the entire discrete domain while avoid-

ing the singularity introduced byMRPs, by automatically performing

MRP switching. According to this metric, nodes on the σ � 1

boundary have a distance d̂ � 0 with their respective shadow set,

therefore allowing to recognize a path that exits the unit sphere and

reenters it from the opposite side as, potentially, the minimum-cost

path. In Fig. 1, the green and purple paths are bothminimum-distance

paths, although the first one is entirely contained in the unit sphere,

whereas the latter one is obtained via MRP switching. The cost of a

path p � �σS; σ1; : : : ; σn� is defined, in the following implementa-

tion, as

g�p� �
Xn−1
i�0

d̂�σi; σi�1� (11)

and the heuristic

h�σi� � d̂�σi; σG� (12)

The following test scenario features a spacecraft with a sensitive

instrument mounted along the x body axis Bb̂ � �1; 0; 0�, which has a
field of view of 20 deg. Three bright objects are present, whose inertial

directions are N ŝ1 � �0;−0.981;−0.196�, N ŝ2 � �−1;−0; 0�, and
N ŝ3 � �0.958; 0; 0.287�. Initial and final attitude, with respect to the
inertial frameN , areσS � �0; 0; 0.25� andσG � �0; 0;−0.75�. Figure 5
shows the computed path in inertial space (a) and inMRP space (b). For
ease of visualization, the inertial space is projected onto a 2D plane in
terms of longitude and latitude with respect to the inertial frameN .
The computed path is constraint compliant. However, it is only

provided in terms of a sequence of waypoints, or attitudes, but it does
not give any information on how to navigate between such way-
points. Angular rates and accelerations during the maneuver are
unknown. One idea could be to treat every segment in the path as a
rest-to-rest rigid body rotation. This approach would ensure con-
straint compliance, but would likely require a long time to repeatedly
accelerate and slow down the spacecraft. Moreover, the computed
path is only optimal with respect to the metric used, but it is agnostic
to the dynamic properties of the spacecraft: the same path might, in
fact, not be equally desirable for spacecraft with different inertia
tensors, or different initial angular rates and/or target angular rates.
The two-point boundary value problem could be solved to provide
guidance between the intermediate points, provided that the angular
rates are specified at each waypoint. However, this solution would
present discontinuities in the required torque between one segment
and the following one, and for a reaction wheel-controlled spacecraft
this is not ideal, as an infinite acceleration would technically be
required for an immediate change in thewheel angular speed. Ideally,
the path should be transformed into a trajectory that interpolates
between the waypoints: such trajectory should be differentiable and
sufficiently smooth, and should match the required kinematic con-
straints (angular rates) at both the starting attitude and the target
attitude. Such trajectory would allow to provide not just attitude as a
function of time, but also rates and accelerations, from which,
knowing the inertia properties of the spacecraft, the required torque
can be computed.

IV. Path Smoothing: B-Spline Interpolation

A. Global Interpolation Through MRPWaypoints

In robot navigation it is quite common to have to deal with paths
that present sharp turns that are not suitable for the robot’s motion. A
strategy that is often used to smooth such paths consists waypoint
interpolation. For this implementation, such interpolating function
should yield a trajectory that is parametric continuous, i.e., the sup-
port of the curve in MRP space should be continuous, and each
component σi of the MRP set should also be continuous with respect
to the parameter of the curve, namely, the time t [24]. A technique that
satisfies all the requirements for the interpolation of attitude way-
points is B-spline interpolation. B-spline functions are parametric,
piecewise-polynomial functions in the intervals between waypoints.
This makes them particularly suitable for this application, as they do
not suffer from Runge’s phenomenon of oscillation between data
points when trying to fit too many data with a single high-order
polynomial [25,26]. B-spline functions have the form

σ�u� �
Xn
i�0

Ni;p�u�Pi (13)

where u is a parameter in the range u ∈ �0; 1�, Pi are called control
points, and Ni;p�u� are the p th-degree spline basis functions, which

are linearly combined to construe the polynomial arcs between way-
points. The degreep of such polynomials is defined by the user, and it
can be higher the more waypoints are to be interpolated. The basis
functions are defined over the knot vector U containing the m� 1
scalar knots:

U �
�
0; : : : ; 0|��{z��}

p�1

; up�1; : : : ; um−p−1; 1; : : : ; 1|��{z��}
p�1

	
(14)

Algorithm 1: A*

Result: Path nS to nG
Pick nbest such that f�nbest� ≤ f�n�∀ n inO

while nbest ≠ nG do

Move nbest from O to C

for m in Neighbors �n� do
if m ∈= O then

Add m to O

Else
if g�nbest� � cos t�nbest; m� < g�m� then
Change backpointer of m to point to nbest

End
End

End
Pick nbest such that f�nbest� ≤ f�n�∀ n inO

End

Backtrack path from nG to nS
return Path
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from which the basis functions are computed with the De Boor

recursive algorithm [27]:

Ni;0�u� �
�
1 if ui ≤ u < ui�1

0 otherwise

Ni;p�u� �
u − ui

ui�p − ui
Ni;p−1�u� �

ui�p�1 − u

ui�p�1 − ui�1

Ni�1;p−1�u� (15)

For a global interpolation problem with n� 1 waypoints and no

constraints on the endpoint derivatives, it is possible to build a linear

system of n� 1 equations based on Eq. (13):

σ� �uk� �
Xn
i�0

Ni;p� �uk�Pi for k � 0; : : : ; n (16)

where the �uk’s represent the parametric time atwhich the curve passes

through the kth waypoint σ� �uk�. The �uk’s can be defined from the

total path length in MRP space:

S �
Xn
i�1

d̂�σi; σi−1� (17)

from which

�u0 � 0

�uk � �uk−1 �
d̂�σk; σk−1�

S
(18)

The knot vector U used to compute the basis function has size

m� 1, where m � n� p� 1. The intermediate knots ui can be

computed averaging the �uk’s:

u0 � : : : � up � 0 um−p � : : : � um � 1

up�j�1 �
1

p

Xj�p

i�j�1

�ui for j � 0; : : : ; m − 2p − 2 (19)

B. Global Interpolation with Specified Endpoint Derivatives

Solving Eq. (16) allows to find the n� 1 control points Pi that

generate a pth-order B-spline curve that passes through the n� 1
waypoints σk. However, it is desirable to interpolate the curve while
also imposing endpoint derivatives: this allows to account for the

dynamic conditions of the spacecraft, i.e., initial angular speed and

desired angular speed upon arrival at target attitude. This problem is

solved in a similar way, although imposing both endpoint derivatives

requires to increase the dimension of the linear system by two.

Specifically, two additional control points P are required to produce

the B-spline that interpolates the waypoints and also matches the

endpoint derivatives. The linear system takes the form

σ� �uk� �
Xn�2

i�0

Ni;p� �uk�Pi for k � 0; : : : ; n (20)

whereas Eqs. (18) and (19) remain valid. In this case, the size of the

knot vector becomes m� 1 with m � n� p� 3. Equation (20)

provides n� 1 equations for n� 3 control points Pi; therefore two

more equations are required to univocally solve the linear system.

Such two conditions are obtained from the general rule for the

derivative of a B-spline curve:

σ�k��u� �
Xn−k
i�0

Ni;p−k�u�P�k�
i

P�k�
i �

8<
:
Pi k � 0

p − k� 1

ui�p�1 − ui�k

�
P�k−1�
i�1 − P�k−1�

i

�
k > 0

(21)

from which one obtains

−P0 � P1 �
up�1

p

dσ�0�
du

−Pn�1 � Pn�2 �
1 − um−p−1

p

dσ�1�
du

(22)

Equations (20) and (22) combined provide all the necessary

conditions to univocally solve for the n� 3 control points Pi.

Equation (13) can then be used to compute the interpolated

trajectory for any parametric time in the interval u ∈ �0; 1�. More-

over, the derivatives of the interpolated trajectory can easily be

computed using Eq. (21). The B-spline interpolation allows to

specify also the second-order derivative at the endpoints, and/or

to specify the derivatives at every waypoint instead of just the

endpoints. In each case, the dimension of the linear system would

increase by one equation for each specified condition, thus

becoming computationally more demanding. A detailed analysis

on B-spline functions and their properties can be found in

Refs. [25,28].
It is important to notice that the derivatives that appear on the right-

hand side of Eq. (22) are computed with respect to the parameter u
and not the maneuver time. The time derivatives _σS and _σG are

computed from the initial and final angular rates using Eq. (3), and

they relate to the u derivatives according to

dσ
du

� dσ
dt

dt

du
� _σ

dt

du
(23)

a) Path in inertial space b) Path in MRP space, N = 13

Fig. 5 Metric-based A* solution to the path-planning query; “o” is starting point and “x” is target point.
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As a first approximation, it can be assumed that the total maneuver

time t ∈ �0; T� is linearly mapped to the parametric time u ∈ �0; 1�.
This way, it is simply

dt

du
� T ⇒

dσ
du

� _σ ⋅ T (24)

T, however, is not known a priori. An estimate ofT, to use in Eq. (24),
can be obtained using a user-defined value �ω that represents the

desired average angular rate magnitude during the maneuver. Com-
bining Eqs. (3) and (17) yields

T ≈
4S

�ω
(25)

The path computed with the basic A* implementation in the

previous subsection is interpolated with the fourth-order B-spline

curve, with endpoint derivatives BωS � BωG � �0; 0; 0�, and an

average angular rate �ω � 0.03 rad∕s. The angular rates and accel-

erations are obtained from _σ and �σ applying Eqs. (4) and (8). Given

the inertia tensor �I� of the spacecraft, it is possible to compute the
required control torque L as

L � B�I�B _ωBN � BωBN × �B�I�BωBN � (26)

The interpolated path is shown in Fig. 6. Figure 7 shows the

evolution of attitude, rates, accelerations, and torque, along the

maneuver, which is performed in about 150 s. The order p � 4 is

chosen to ensure that the second-order derivative �σ is at least C1 [28],
which allows to achieve a smooth torque profile. The inertia tensor

used to compute the torques corresponds to a three-unit CubeSat with

a uniformly distributed mass m � 4.2 kg, expressed with respect to
the principal body frame

B�I� �

2
664
6.67 0 0

0 41.87 0

0 0 41.87

3
775 ⋅ 10−3 kg ⋅m2 (27)

The angular rate plot shows also the norm of the angular rate vector,
whichmaintains itself fairly close to the desired �ω � 0.03 rad∕s. The
largest accelerations, and torques, are required at the endpoints,
where the spacecraft needs to be accelerated/decelerated from/to
the rest condition.
A challenge is presented for the interpolating spline when the

sequence of waypoints involves MRP switching, because the inter-
polating σ�t� function would have to present a discontinuity. The B-
spline routine described above cannot handle such case directly.
However, σ ≤ 1 is a soft constraint: it is therefore possible to exploit
the shadow sets of a subset of the waypoints, which lie outside of the
unit sphere, to interpolate the function in a continuous domain. Once
the continuous spline is interpolated, the part of the function that lies
outside of the σ ≤ 1 constraint can bemapped back to the unit sphere.

The angular rates and accelerations BωBN and B _ωBN can be com-
puted using _σ and �σ from either set. An example of this is reported in
Fig. 8: the black curve in part (b) represents the interpolated path
within the unit sphere, whereas the gray curve represents the inter-
polated curve using the shadow sets outside the unit sphere, where the

gray “X” represents the shadow set of the target attitude σSG. When

exploiting the points outside the unit sphere, it is particularly impor-
tant to use the metric described in Eq. (10) to compute the values of
parametric time �uk in Eq. (18). Nodes outside the unit sphere are

a) Path in inertial space b) Path in MRP space, N = 13

Fig. 6 Interpolated metric-based A* solution to the path-planning query.

Fig. 7 Attitude, rates, acceleration, and torque over time for the trajectory in Fig. 6.
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a) Path in inertial space b) Path in MRP space, N = 13

Fig. 8 Interpolated metric-based A* solution involving MRP switching.

farther apart than their corresponding shadow sets. The metric

d̂�σ1; σ2� returns the Cartesian distance between the two correspond-
ing sets of MRPs inside the unit sphere: this maintains the interpolat-
ing spline stable and the spacing between waypoints coherent across
the function.
The method described above consists in a global interpolation,

where the B-spline curve passes through all the n� 1 points pre-
cisely. However, a path consisting of a high number of very dense
waypoints might still cause the interpolated curve to wiggle between
thewaypoints. Such oscillatory motion is not ideal for the spacecraft,
for which a smooth trajectory is desired. To address this issue, it is
possible to use B-spline curves to provide a hybrid interpolating–
approximating curve. Such curve can be made pass through the
endpoints precisely, whereas it tracks all the other waypoints through
a least-squares fit, with higher weights given to nodes that are located
closer to obstacles. Such approach will be the object of future studies,
whereas for the present paper a globally interpolating spline is used.

V. Constant Nominal Angular Rate Maneuvering

The results plotted in Fig. 7 show that the interpolated trajectory
does maintain an angular speed magnitude close to the desired one

throughout the maneuver. However, such angular speed does not
remain constant, but rather it floats around the desired value. When

performing a slewmaneuver, the desire is usually to execute it as fast

as possible. On the other hand, spacecraft often present upper bounds
on the maximum angular rate that can be tolerated by the payload.

This causes two antithetic requirements to appear, for the maneuver
to happen in the lowest time possible, but also for the spacecraft to

remain within the bounds of admissible speeds [29]. This subsection
aims to elaborate on the results of the previous subsection by ensuring

a constant-angular-rate magnitude ω� as the spacecraft follows the
interpolated trajectory, withoutmodifying the trajectory itself. Fixing

ω� to a value that is below the speed limit, automatically bounds all

the components ωi to be within such limit.
The aim of this subsection is to obtain an angular rate ω�θ� such

that

ω�θ� � ω�t� dt
dθ

(28)

where θ�t� is a “warped” time that allows to navigate the trajectory

σ�θ� at the desired angular rate. The first condition thatmust bemet to

ensure that the same trajectory is tracked is that the first integral of the

trajectory remains unaltered:

Ω �
Z

T

0

kω�t�k dt �
Z

Θ

0

kω�θ�k dθ (29)

where Ω is computed by numerical integration of kω�t�k coming

from the interpolated trajectory.
Clearly, a constant kω�θ�k over the entire domain θ ∈ �0;Θ�

cannot match the required conditions at the endpoints. For this

reason, the profile of kω�θ�k is defined as a piecewise function that

is a fourth-order polynomial around the endpoints and constant in the

central part of the trajectory. Such piecewise function is defined as

kω�θ�k �

8>><
>>:
a0 � a1θ� a2θ

2 � a3θ
3 � a4θ

4 for 0 ≤ θ < θa

ω� for θa ≤ θ ≤ θb

b0 � b1�θ − Θ� � b2�θ − Θ�2 � b3�θ − Θ�3 � b4�θ − Θ�4 for θb < θ ≤ Θ

(30)

with

Z
θa

0

kω�θ�k dθ � 1

10
Ω

Z
θb

θa

kω�θ�k dθ � 4

5
Ω

Z
Θ

θb

kω�θ�k dθ � 1

10
Ω (31)

The problem now is to determine the coefficients of the polynomials

ai and bi. The first four are obtained from the endpoint values and

first endpoint derivatives of kω�t�k, in order to ensure the same

behavior around the endpoints:

a0 � kω�0�k a1 �
dkω�0�k

dt
(32)

b0 � kω�T�k b1 �
dkω�T�k

dt
(33)
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The other six coefficients are obtained imposing continuity
(kω�θa�k � kω�θb�k � ω�), together with first- and second-order
derivatives equal to 0 for θ � θa and θ � θb. The fourth-order

polynomials, together with these constraints on first- and second-
order derivatives in θa and θb, ensure the continuity and differenti-
ability of both kω�θ�k and k _ω�θ�k. After some cumbersome algebra,
this yields

a2 �
6�ω� − a0�

θ2a
−
3a1
θa

b2 �
6�ω� − b0�

θ2b
−
3b1
θb

(34)

a3 �
8�a0 − ω��

θ3a
� 3a1

θ2a
b3 �

8�b0 − ω��
θ3b

� 3b1
θ2b

(35)

a4 �
3�ω� − a0�

θ4a
−
a1
θ3a

b4 �
3�ω� − b0�

θ4b
−
b1
θ3b

(36)

At this point, knowing the expressions for all the coefficients, it is
possible to analytically integrate Eq. (31), which yields a system of

three equations in the variables θa, θb, and Θ, whose solution is

θa � −6ω� − 4a0 �
����������������������������������������������
�4a0 � 6ω��2 � 2a1Ω

p
a1

(37)

θb � θa �
4Ω
5ω� (38)

Θ � θb �
6ω� � 4b0 −

���������������������������������������������
�4b0 � 6ω��2 − 2b1Ω

p
b1

(39)

Now that the expression for kω�θ�k is complete, the relation θ�t� is
found solving the nonlinear equation

Z
θ

0

kω�θ�k dθ �
Z

t

0

kω�t�k dt (40)

for every t. The integral on the left-hand side of Eq. (40) is computed

analytically, since the expression in the integral is a polynomial. The
integral on the right-hand side, however, is computed numerically
from the kω�t�k that is the output of the B-spline interpolation.
Carrying out both integrals leads, for 0 ≤ θ < θa and θb < θ ≤ Θ,
to a fifth-order equation in the variable θ, which can be solved
numerically with Newton–Rhapson’s method.
The constant-angular-rate constraint is applied to the basic-A*

trajectory described in the previous subsections. Since the geometry
of the trajectory is unaltered, Fig. 6 remains a valid representation of

the trajectory, whereas the evolution of rates, accelerations, and
torque with respect to the new time variable θ are reported in Fig. 9.

The magnitude of the angular rate vector ramps up and down from
zero at the endpoints, and it remains constant at kωk � 0.03 rad∕s
throughout most of the maneuver. With this correction, the total
maneuver time is reduced to 140 s, instead of 150 s as shown in Fig. 7.

VI. Effort-Based A* Graph Search

The previous subsections allowed to compute a proper trajec-
tory from a path composed by a sequence of waypoints. Until this
stage, all the paths were foundminimizing the total path length S in
terms of cumulative distance between nodes in MRP space
[Eq. (17)]. Within the limits of the nonlinearity introduced by
Eq. (1), the minimum-S path also minimizes the total cumulative
angular displacement of the spacecraft while performing the slew
maneuver. From a dynamic perspective, however, this approach is
not significant, as it does not account for the dynamic state of the
spacecraft or for its inertia distribution. For example, if the initial
angular velocity of the spacecraft were directed in the opposite
direction with respect to the minimum-S path, tracking that tra-
jectory would potentially require a large initial torque to steer the
spacecraft. Moreover, more than one path can exist with the same
length S, but they might not be equally feasible to track, depending
on the required control torque, which itself depends on the inertia

tensor B�I�. For all the above, this section aims to implement a
modified version of A* that searches the graph for a path that is
optimal in terms of required control effort. This presents some
challenges, since the “optimality” of such path, or cost, must be
computed in terms of a scalar quantity that can be compared with
the cost of other paths. Such cost can be defined as the integral of
the torque magnitude over the slew maneuver:

cost�p� �
Z

T

0

kL�t�k dt (41)

The cost function described in Eq. (41) is meant to be reasonable
for a general application, but is not tied to any specific set of
actuators. In a more refined analysis, the actuators’ equations of
motion can be integrated based on the interpolated trajectory to
yield the required reaction wheel control torques as functions of
time. The cost function can therefore be modeled to minimize the
reaction wheel torque or, alternatively, the power required to
actuate them. A study on different types of actuator-based cost
functions will be the subject of future related work.
As described previously in the paper, the A* algorithm chooses

which nodes to expand based on the sum of the traveled path to
current node (g�n�) and a heuristic cost from current node to goal
(h�n�). Moreover, A* is efficient at finding the best path when the
heuristic is optimistic, meaning that h�n� should be less than or equal
to the actual cost of the path from node n to goal.
Using the cost function described in Eq. (41) makes it challenging

to compute g�n� and h�n�. One option could be to interpolate two

Fig. 9 Attitude, rates, acceleration, and torque with constant kωk for the trajectory in Fig. 6.
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paths, one going from the start node to n, p�S;n� � �σS; : : : ; σn�, and
the other one from node n to the goal node, p�n;G� � �σn; σG�. How-
ever, the required _σn at the intermediate node n is not known; there-
fore the two interpolated trajectories would have mismatching
derivatives at σn. This phenomenon could give an incorrect repre-
sentation of the total path cost that would otherwise be obtained
interpolating a full path from σS to σG with a single, smooth trajec-
tory. To overcome this problem, the total cost of a node f�n� �
g�n� � h�n� is computed in one single step, applying Eq. (41) to the
path

p�S;n;G� � �σS; : : : ; σn; σG� (42)

For such path, the integral between σS and σn corresponds to g�n�,
whereas the integral between σn and σG corresponds to the heuristic
h�n�:

g�n� �
Z

t�σn�

t�σS�
kL�t�k dt (43)

h�n� �
Z

t�σG�

t�σn�
kL�t�k dt (44)

cost�p�S;n;G�� � f�n� � g�n� � h�n� �
Z

t�σG�

t�σS�
kL�t�k dt (45)

Such heuristic is optimistic (or admissible [21]) in the sense that it
assumes that it is possible to go directly fromnoden to nG, neglecting
the presence of obstacles along the way. Two arguments can be
provided to support that the heuristic is admissible. The first one is

that, in the presence of an obstacle, the spacecraft would have to steer

around it, whichwould require additional torquing effort. Secondly, it

should be noted that the grid is an artificial construct. Therefore,

forcing the trajectory to hit precisely all the waypoints of a path also

requires additional torquing effort. The h�n� defined above is based

on the idea of “taking a shortcut” between the current node and goal

node, thus avoiding unnecessary steering. Calaon et al. [30] show

how the resulting control torque integral is reduced when the require-

ment of hitting all the waypoints precisely is lifted. Furthermore, the

same paper shows evidence that the effort-optimal trajectory com-

puted with the cost function described above yields a smaller control

torque integral than a minimum-S-based path-planning query that

also applies the spline interpolation. Lastly, Eq. (42) ensures that the

cost is computed from a trajectory that matches the requisites of

continuity and differentiability described in the previous subsections.

When computing the cost of such path, unless node n and goal

node are neighbors, the distance d̂�σn; σG� is higher than the average
distance between neighboring nodes. When this mismatch in the

spacing between nodes is significant, it can generate instabilities in

the interpolating function, causing the spacecraft to overshoot the

target. To circumvent this problem, when d̂�σn; σgoal� > � ���
3

p
∕�N−

1��, a number of equally spaced “guidance nodes” with mutual

distance ≈�1∕�N − 1�� are artificially added between nodes n and

nG to stabilize the interpolation.

The effort-based A* algorithm is run in the same scenario

described in the previous subsections, with zero endpoint angular

rates. The resulting interpolated path is reported in Figs. 10 and 11.

As intuition suggests, the path computed by the regular A* in Fig. 5 is

not the preferred one in terms of smallest effort. The effort-optimal

path steers the spacecraft around the yellowobstacle in the first part of

a) Path in inertial space b) Path in MRP space, N = 13

Fig. 10 Interpolated effort-based A* solution.

Fig. 11 Attitude, rates, acceleration, and torque over time for the trajectory in Fig. 10.
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the trajectory, to put the spacecraft onto a coasting arc between t ≈
50 s and t ≈ 110 s, where the torques remain close to zero. Finally,

after the quasi-coasting arc, the spacecraft is steered toward the target

node. The total cost of the effort-optimal path is cost�peffort−optimal��
5.53⋅10−3N⋅m⋅s, as opposed to the S-optimal path cost�pS−optimal�
�8.72⋅10−3N⋅m⋅s.

VII. Numerical Performance Study

A. Long Rotation and MRP Switching Scenario

An interesting case is obtained when, from the test scenario

analyzed in the previous sections, the blue obstacle is removed.

Doing so frees a path from initial to target attitude that consists of a

simple eigenaxis rotation about b̂z. Intuitively, such path should be

the most cost-efficient for a rest-to-rest maneuver, since it could

entirely avoid the obstacles and the insurgence of gyroscopic terms

in the required torque. The effort-optimal trajectory is reported in

Figs. 12 and 13. For a rest-to-rest case with a constant angular rate

kωk � 0.03 rad∕s, the trajectory describes a bang-bang type of

actuation along the bz axis only, where the spacecraft is accelerated
to the desired speed and decelerated before reaching the target, while

it coasts effortlessly during most of the trajectory. The attitude plot

showsMRP switching in correspondence of σ � �0; 0; 1� and follows
from the shadow-set σS � �0; 0;−1�. The same behavior is mirrored

in Fig. 12b, where the trajectory exits the unit MRP sphere and

reenters from the opposite side. The total cost of the path

is cost�peffort−optimal� � 2.50 ⋅ 10−3 N ⋅m ⋅ s.

B. Non-Rest-to-Rest Scenario

The previous sections have shown the development of the effort-
based A* algorithm and ultimately applied it to find the most
cost-efficient rest-to-rest trajectory given σS � �0; 0; 0.25� and
σG � �0; 0;−0.75� and a set of three keep-out constraints. One of
the advantages of an effort-based approach for pathfinding is that it
optimizes not only according to the spacecraft’s inertia, but
also according to its initial (and final) conditions. This scenario
aims to show the optimal trajectory for the same workspace,

but with the spacecraft having an initial angular velocity BωS �
�0; 0; 0.03� rad∕s ( _σS � �0; 0; 0.063�) and a target angular velocity
BωG � �0; 0; 0� rad∕s ( _σG � �0; 0; 0�). The resulting trajectory
and the relative attitude, rates, accelerations, and torques are
reported in Figs. 14 and 15. The total cost of the path is

cost�peffort−optimal� � 5.45 ⋅ 10−3 N ⋅m ⋅ s. Clearly, the path takes

advantage of the initial angular velocity of the spacecraft, letting it
coast along the velocity direction until it starts being deflected
when it gets close to the blue obstacle.

C. Varying MRP Grid Step Sizes

All the previous results have been obtained with an MRP grid
fineness level N � 13. Increasing the fineness level provides a more
accurate description of the obstacles in MRP space and reduces the
risk of obtaining a path that violates the constraints in the arc between

waypoints. However, the total number of nodes grows with N3,
making the graph search slower as N increases. Specifically, the
rest-to-rest case described in Fig. 10 requires processing 632 nodes
before finding the optimal trajectory, whereas the non-rest-to-rest

Fig. 13 Attitude, rates, acceleration, and torque over time for the trajectory in Fig. 12.

a) Path in inertial space b) Path in MRP space, N = 13

Fig. 12 Interpolated effort-based A* solution, eigenaxis rotation, and MRP switching scenario.
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case in Fig. 14 requires to process 580 nodes. Moreover, for every

processed node, the algorithm must interpolate a trajectory, warp

such trajectory to obtain a constant-angular-rate profile, and numeri-

cally integrate the torque to provide the cost of the trajectory.All these

computations sensibly slow down the algorithm. It is interesting to

analyze the same problem with a different fineness level, to see how

this impacts the computed solution. Figure 16 shows the trajectory

computed with a fineness level N � 7. The trajectory is still con-

straint-compliant, and still takes advantage of the natural motion of

the spacecraft in the beginning. However, Fig. 17 shows that the

angular rates start changing from the very beginning, as compared to

Fig. 15 where they remained approximately constant for about 20 s.

Comparing the torque profiles, it looks like the coarser grid also

allows for smoother, less oscillating torques. This finds justification

a) Path in inertial space b) Path in MRP space, N = 13

Fig. 14 Interpolated effort-based A* solution for non-rest-to-rest case.

Fig. 15 Attitude, rates, acceleration, and torque over time for the trajectory in Fig. 14.

a) Path in inertial space b) Path in MRP space, N = 7

Fig. 16 Interpolated effort-based A* solution for coarse grid with N � 7.
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in the fact that, with a denser grid, the interpolated trajectory is more

heavily constrained in the waypoints that it needs to pass through,

causing the spacecraft to have to continuously deflect its trajectory.

With a coarser grid, the transition between waypoints is smoother.

Interestingly enough, the cost of the path computed with the coarse

grid is cost�peffort−optimal� � 4.21 ⋅ 10−3 N ⋅m ⋅ s, less than the fine-
grid path, and it is obtained after processing only 61 nodes.

D. Keep-In and Keep-Out Constraints

Lastly, one example is provided as a proof-of-concept to show the

versatility of the algorithm in solving the path-planning query not

only for keep-out constraints, but also for keep-in constraints and,

even more, combinations of the two. This final example aims at

simulating the spacecraft with a sensitive instrument mounted along

the b̂x axis with a field of view of 20 deg, as in the previous scenarios,

Fig. 17 Attitude, rates, acceleration, and torque over time for the trajectory in Fig. 16.

a) Path in inertial space b) Path in MRP space, N = 9

Fig. 18 Interpolated effort-based A* solution with both keep-in and keep-out constraints.

Fig. 19 Attitude, rates, acceleration, and torque over time for the trajectory in Fig. 18.
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togetherwith two sun sensorsmounted along the b̂y and b̂z axes. Both
sun sensors have a field of view of 70 deg, and the keep-in constraint
is modeled such that constraint compliance is achieved when at least
one of the two sensors can see the sun within its field of view. This
scenario, in its simple conceptual formulation, describes a complex
problem: assuming that the sun is the only celestial body present, the

aim is to maneuver the spacecraft while keeping one body axis (b̂x)
away from the direction of the sun, whereas one or both the
other body axes must remain fairly close to the same direction
of the sun.A rest-to-rest maneuver is simulated, between the attitudes
σS��0;−0.25;−0.25� and σG � �0.4; 0.4; 0.3�. The inertial direction
of the sun is N s � �1; 0; 0�. Figure 18 shows the effort-optimal

trajectory, which has a cost�peffort−optimal� � 4.47 ⋅ 10−3 N ⋅m ⋅ s.
In particular, Fig. 18a shows not only the boresight path, but also
the paths of the two sun sensors in inertial space: the red area is the
keep-out zone for the boresight, whereas the green area represents the
keep-in zone for the sensors. Interestingly, the keep-in constraints are
satisfied by sensor #1 in the first arc of the trajectory, and by sensor
#2 in the second arc, but not always by both simultaneously.
Figure 18b shows the attitude path in MRP space, where the trajec-
tory navigates in the green space and avoids the red space. The
visualization is made difficult by the large keep-in constraint, which
produces two tubular structures in MRP space as there are two sun
sensors, making the available space for maneuver larger. The evolu-
tion over time of the trajectory is plotted in Fig. 19.

VIII. Conclusions

This paper presents a solution to the constrained attitude maneu-
vering problem. A spacecraft is reoriented following a constraint-
compliant trajectory andmaintaining a constant angular speed during
the maneuver. Such trajectory is obtained as a sequence of waypoints
in a discretized 3D space of possible attitudes by means of B-spline
interpolating curves, which turn the set of waypoints into a smooth
trajectory that matches the desired endpoint derivatives. The discrete
attitude space is searched exploiting a nonsingularMRP-based varia-
tion of the A* algorithm, which uses the integral of the control torque
over the trajectory as a cost function to determine the optimality of
each trajectory.
The main achievement of this paper is that this approach provides

not just a sequence of constraint compliant waypoints, but a smooth
and differentiable trajectory with smooth derivatives, which allow for
smooth torque profiles that can easily be tracked by a reaction wheel-
based control subsystem. Moreover, the trajectory provided is the
optimal in terms of total effort required by the control subsystem,
since it accounts for the spacecraft’s mass distribution and its initial
and final conditions (angular rates) at the endpoints.
Computational effort can be reduced by lowering the discretization

level N of the grid, although this comes at the expenses of a poorer
representation of the obstacles in MRP space. Nonetheless, the
trajectory computed with a lower N can be more cost-efficient, as it
suffers less from the wobbling between waypoints.
In conclusion, the solution provided is cost-efficient with respect

to the discretization of the attitude space that is used, i.e., the shape
and the fineness of the grid that is used to map the attitude space.
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