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Abstract

Spacecraft formation flying using Coulomb forces is a relatively new technology for spacecraft control, and
may have application for a wide variety of mission objectives including attitude control, collision avoidance,
and orbit perturbation correction. Coulomb-controlled formations appear ideally suited for close formation-
flying in high Earth orbits to perform wide field of view imaging missions using separated spacecraft inter-
ferometry. This paper discusses the challenges and prospects of developing spacecraft formations utilizing
Coulomb forces. Formation flying on the order of tens of meters is very difficult using conventional ion
propulsion methods, because the exhaust plumes will quickly interfere with the delicate on-board sensors.
The Coulomb forces would allow the relative motion of satellites to be controlled without such contanima-
tions. Since the rise time of the spacecraft charging is on the order of milli-seconds, very high bandwidth
control is feasible. Further, the fuel efficiency of the control makes very long duration missions possible. Non-
Keplerian steady-state orbits are discussed which could be used to generate in-plane or three-dimensional
static spacecraft formations. The currently examined static solutions are unstable and require the develop-
ment of a control strategy. Further, the behavior of a two-satellite Coulomb formation with constant equal
or opposite charges is discussed at GEO. A nonlinear, orbit elements based feedback law is then introduced
to control the relative motion within a two-satellite formation by stabilizing the orbit element differences
about desired values. Global stability is analytically shown and illustrated through a numerical example.
Asymptotic stability is proven for a semi-major axis only control about a circular orbit. The lack of general
asymptotic stability with inter-spacecraft Coulomb forces is discussed.

Introduction

The SCATHA satellite1 was launched in January, 1979 with the goal of measuring the build-up
and breakdown of electrostatic charge on various spacecraft components, and to characterize the
natural environment at Geostationary Orbits (GEO) altitudes. Throughout its mission, the satellite
potential was monitored with respect to the space plasma potential. During passive operation, the

∗Assistant Professor, Virginia Tech, Blacksburg, VA 24061.
†Associate Professor, Mechanical Engineering Department, Michigan Technological University, Houghton,

MI 49931.
‡Assistant Professor, Mechanical Engineering Department, Michigan Technological University, Houghton,

MI 49931.

1



2 Schaub, Parker and King

spacecraft potential varied from near ground to many kilovolts negative, a common occurrence for
High Earth Orbit (HEO) satellites. These variations are directly related to the current solar activity
level. An isolated passive body immersed in plasma will attain a negative charge due to a higher
electron mobility, as compared to the mobility of heavier ions. For hot plasma, such as is found
at HEO or GEO, this negative charge is substantial. One goal of the SCATHA mission was to test
the validity of actively controlling the spacecraft potential by emitting charge through an electron
beam. To this end, an electron gun was used to transfer charge from SCATHA to the space plasma
at various current and voltage levels up to 13 mA and 3 kV. The controllability of spacecraft charge
will not depend strongly on local plasma parameters. While the density and temperature will change
dependent upon solar cycles, the ability to charge the craft to a known voltage is dependent upon
the on-board emission system. Thus, a 3 keV e-beam would be sufficient to charge SCATHA to 3
keV during solar max or solar min.

Due to the plasma environment, spacecraft routinely charge to negative voltages. However, a
very important result, as reported by Gussenhoven,1 et al., was that, “the electron beam can achieve
large, steady-state changes in the vehicle potential and the returning ambient plasma.” In fact,
they found that when a 3 kV electron beam was operated, “the satellite became positively charged
to . . . a value approaching beam energy for 0.10 mA emission current.” Similarly, Cohen, et al.
report that “spacecraft frame and surfaces on the spacecraft went positive with respect to points 50
meters from the satellite when the gun was operated. Depending upon ejected electron currents and
energies, spacecraft frame-to-ambient-plasma potential differences between several volts and 3 kV
were generated.”

For rough calculations, the SCATHA spacecraft can be approximated as a 1.7 meter diameter
sphere. If an identical SCATHA spacecraft had been in orbit simultaneously, the satellite electrical
potential control demonstrated in the 1979 mission would have been sufficient to actively generate
attractive and repulsive forces between the vehicles with magnitudes up to 10 mN over 10 meters,
consuming 3 Watts of power. In addition to the SCATHA data, during a separate flight-experiment,
the ATS-6 spacecraft demonstrated charging as high as 19 kV.2–4 Thus, generating hundreds of mN
control forces would be possible with a spacecraft 1 meter in diameter.

In 2001 a NASA NIAC study5 investigated the practicality of modulating spacecraft charge, the
charging time constants and propulsion system sizing.6 Further, this study researched equilibrium
points of such Coulomb satellite formations, their local stability, as well as the charge requirements
for a variety of geostationary orbit formations. Their conclusion provided some exciting results for
formation flying control. It was found that the spacecraft charging is nearly propellantless. It is
possible to achieve specific impulses values ranging from107 seconds to values as large as1013

seconds with time constants less than 100 milliseconds consuming under 1 Watt of power. Tradi-
tionally, to change a spacecraft orbit, some type of thrusting is required. Due to the conservation
of linear momentum, by expelling a small mass at a high velocity, the relatively heavy spacecraft
is made to move at a small velocity in the opposite direction. To correct the relative orbit between
satellites, the satellites will have to expel fuel to push themselves through space. Small relative
orbit adjustments are routinely required of formation flying control systems to correct for external
perturbations. Depending on how near-natural (i.e., control-free) the desired relative orbit is, and
depending on the relative position tolerance requirements, such corrective thrusts can be required
very often. In fact, the life time of a formation flying mission is often limited by how much fuel
can be carried on board to perform such relative orbit corrections. However, using electrostatic
attractions between spacecraft (i.e., Coulomb forces), it is possible to directly control the relative
motion of the satellites, without influencing the overall orbital motion of the entire formation. Since
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the Coulomb forces are internal forces, they will have zero effect on the formation center of mass
motion. The relative motion is controlled through the electric fields generated by the spacecraft.
Since it requires a minuscule amount of fuel mass to generate these electric fields (mass required to
operate the electron or ion gun), it is possible to achieve the high specific impulse values to control
relative motion. Further, conventional propulsive devices rely on discrete impulse bits to control
fine positioning. Factors limiting the positioning accuracy within a swarm include repeatability of
impulse bits, random off-axis thrust components, and resolution of impulse control. The Coulomb
concept allows for continuous, fine-resolution maneuverability, which will greatly improve forma-
tion tolerances due to the high bandwidth at which the Coulomb forces can be continuously varied.

The generation of electrostatic Coulomb forces is only possible in the higher Earth altitudes be-
cause of the plasma space environment. At lower altitudes, the Debye shielding effect screens
electric fields over short distances.6 Further, since the electric field decreases with the radial sepa-
ration of the spacecraft, the relative orbit size is limited to 10–100 meters in size to avoid excessive
electric charges of the craft. While traditional spacecraft formations typically investigate relative
orbits of the size of 1–100 kilometers, the application of Coulomb forces enables an entirely dif-
ferent class of spacecraft formation. Close formation flying of the order of a few dozen meters is
a very difficult and dangerous operation using conventional ion thrusters. Operating in such close
quarters, the thruster exhaust plumes are likely to damage the delicate on-board sensing equipment
of the spacecraft. Micro-thrusters currently envisioned for swarm formation-flying emit propellant
such as Teflon or cesium. Many science missions, benefiting from formation flying concepts, will
carry sensitive diagnostic equipment. In close proximity operations, propellant exhaust from micro-
thrusters has a high likelihood of adversely impinging upon neighboring craft, and hence disabling
diagnostics.

Reconciling the capabilities and limitations of Coulomb control with the benefits of Separated
Spacecraft Interferometry (SSI), a class of interesting missions that would be uniquely enabled with
the proposed concept becomes evident: large field-of-view planetary imaging with unprecedented
resolution. Consider, for instance, space-based Earth imaging. Using classical monolithic optics, the
minimum achievable image resolution is inversely related to the size of the collecting optic. Since
the size of a single space-based collecting optic is limited by launch vehicle fairing constraints,
Earth-imaging spacecraft with meter-level surface resolution have been limited to altitudes below a
few hundred kilometers. In such low orbits, the spacecraft field-of-view is limited to a small portion
of the Earth’s surface and the target dwell time is short due to the fast orbit. Using an SSI system, it
would be possible to provide visible Earth imaging from GEO with meter-level surface resolution.
Such a distributed space system would have a field-of-view of nearly an entire hemisphere with
an unlimited target dwell time. The benefits to the scientific community would be truly global
monitoring capabilities of weather systems, ocean currents, etc.

The Coulomb concept is uniquely suited to such large field-of-view imaging systems. It can be
shown that meter-level surface resolution from GEO with realistically sized individual spacecraft
operating in an SSI requires formation spacing on the order of tens of meters.,5,7 Although a struc-
turally connected set of distributed apertures could provide the required imaging baselines, the use
of SSI enables dynamic reconfiguring of the imaging formation in order to optimize parameters
whose priorities may change during the mission. The requirements for high-orbit imaging of other
solar system planets are similar. For such missions, electric micro-thrusters are not feasible. Even
if electric thrusters could provide the required formation position tolerances, the caustic propellant
efflux arising from continuous thruster firings in close proximity would produce intolerable contam-
ination environments. Furthermore, the potential for inter-vehicle collision would be unsettling.
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This paper discusses various fundamental aspects of achieving Coulomb spacecraft formations
(CSF). The first section presents the basic Coulomb force modeling in an Earth orbit environment
and discusses at what altitudes these forces become useful for spacecraft control. The second section
reviews some static equilibrium configurations that have been found and discusses the controllability
thereof. The last chapter discusses the basic relative motion of a two-satellite system which is using
Coulomb forces to establish a bounded relative motion and attempts to drive the orbit element
differences to desired values.

Generating Coulomb Forces

Physics of Producing Coulomb Forces in Space

Let us examine in detail how electric potential fields are generated about a spacecraft in orbit.
Consider the space plasma environment to consist of negatively charged electrons and positively
charged ions. The smaller plasma electrons are generally much faster than the heavy ions. Thus, in
a given unit of time more plasma electrons than ions could reach the spacecraft, which would result
in an unacceptable net current (charging rate) to the vehicle. However, assuming that the spacecraft
has no initial potential, then these electrons will accumulate and cause the vehicle potential to creep
to some negative value. This generates a negative electric field around the vehicle, causing more
electrons to be repelled and more positively charged ions to be attracted. This in effect reverses the
previous tendency to have more electrons hit the craft than ions. Once an equilibrium is established,
the spacecraft negative electric field steady-state strength will be such that an equal amount of faster
electrons and slower ions will hit the craft and the resulting the net current to the craft is zero.
Depending upon the local plasma density of electrons/ions and the local temperature (energy) of
electrons/ions, the spacecraft will respond with different distributions of voltages to balance the
currents from space. Thus, without applying any control, the spacecraft will naturally assume some
negative charge in this space plasma environment. References 5 and 6 investigated the resulting
force between two spacecraft due to this natural charging and found it to be surprisingly large.
During the worst case plasma conditions at GEO (resulting in the worst spacecraft charging), the
net inter-spacecraft force could grow as large as 1 mN with a separation distance of 10 meters.
The term “worst case plasma conditions at GEO” refers to those plasma conditions during which
the most severe passive spacecraft charging can be expected. These conditions have commonly
been called “worst case” since they are used to predict possible disruptive charging to conventional
spacecraft. Thus, these conditions imply that, in the absence of a charge emission system, the highest
absolute and differential charging can be expected, usually to some large negative potential due to
high-energy electrons. This does not necessarily mean that the largest power expenditures would
be required to control the vehicle charge. For instance, if it is desired to drive the vehicle charge
negative, less power is required because the “worst case” electrons already drive the system in that
direction naturally. These conditions do not affect the range of spacecraft forces achievable.

An isolated spacecraft will assume an equilibrium potential (voltage) such that the net environ-
mental current due to plasma and photoelectron emission is zero. It is possible to change this passive
equilibrium potential by actively emitting an electrical charge from the spacecraft as illustrated in
Figure 1. For example, if it is desired to drive the spacecraft potential lower than equilibrium (more
negative), the emission of positive ions from the vehicle will cause a net surplus of on-board elec-
trons and a lowering of the potential. Emission of electrons has the opposite effect. In order to emit
such a current, the charges must be ejected from the vehicle with sufficient kinetic energy to escape
the spacecraft potential well. Thus, if the vehicle is at a (negative) potential−VSC , then ions must
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Figure 1: Simple Illustration of the Spacecraft Charging in a Plasma Environment

be emitted from a source operating at a power supply voltage,VPS , greater than| − VSC |. Note
that to maintain a non-equilibrium spacecraft charge a continuous stream of electrical charge must
be emitted from the spacecraft. If this outflow of charge is stopped, then the natural space plasma
environment will rebalance the spacecraft charge to the equilibrium levels.

Differential spacecraft charging occurs when portions of the satellite assume different potentials
(voltages). The exposed vehicle surfaces will interact with the ambient plasma differently depend-
ing on the material composition of the surface, whether the surface is in sunlight or shadow, and
the flux of plasma particles to this surface. Another crucial source of differential charging are solar
panels. These devices will inherently generate a voltage differential across their surface which is
used to power the craft. If the electrical breakdown threshold is exceeded between two components,
electrostatic discharge (ESD) can occur. Such a discharge could result in logic switch failures, or
even a complete break-down of the electrical sub-systems. Catastrophic ESD’s can occur from po-
tential differences of only a few hundred volts between sensitive components. Thus, great design
effort needs to be placed in the elimination of spacecraft differential charging. In particular, increas-
ing the overall negative voltage on the spacecraft could increase the incidence of discharge arcing
on the solar arrays, due to large potential differences between the arrays and the spacecraft bus.
The NASA Space Environment Effects (SEE) Interactive Spacecraft Charging Handbook8 provides
guidelines to model the plasma environment and spacecraft charging. With the spectre of ESD
looming, it seems foolhardy to propose intentional charging of spacecraft to potentials of tens of kV
(in the current study, potentials are limited to 40 kV over a 1-m-radius spacecraft, or equivalently a
charge of 4 micro-Coulombs). It must be noted that the Coulomb control concept proposes uniform
absolute charging of the entire spacecraft. While such absolute charging, by itself, has no risk for
the vehicle, current spacecraft are typically not designed to be able to handle such large voltages. A
CSF satellite would need to be designed to be able to handle these larger charges and voltages by
limiting differential charging across its components.

Besides potentially causing ESD, differential spacecraft charging can also affect the motion of the
spacecraft. Figure 2 illustrates two spacecraft with non-uniform electrical charging (shown through
different satellite shading). Each charged component of a spacecraft will attract or repel other
charged components of the spacecraft. Summing up these forces and torques about the craft mass
center, they will naturally cancel each other since they are internal forces of the spacecraft body.
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Figure 2: Illustration of Exploiting the Net-Torques due to Non-Uniform
Spacecraft Charging to Perform Attitude Maneuvers

Only if the spacecraft is flexible will these distributed charge forces cause motion (in the form of
bending and flexing) of a single spacecraft. However, consider the case where a second spacecraft
is in close proximity and also contains a distributed charge electric field. Now summing up the
attracting and repulsive forces between the two spacecraft components, we find that the distributed
charges can result in a net torque being applied to each spacecraft. To conserve the total angular
momentum of the system, these torques will be equal in magnitude, but in opposite directions. Thus,
if two satellites in a CSF are in close proximity, then the distributed charge electric fieldmustbe
taken into account. The simpler point charge model will still dictate the motion of the craft center
of masses, but the distributed charge model will determine the attitude changes of the vehicles. In
Reference 6 it was found that the natural distributed charge that would occur during worst case
plasma conditions (i.e. causing the worst space craft charging) at GEO could result in torques as
large as 0.1µNm at 10 meter separation distance.

The distributed spacecraft charging phenomena results in two types of scenarios. Either these
external torques will need to be compensated for by the satellite attitude control system (reaction
wheels, control moment gyroscopes, etc.), or they can be taken advantage of to performdesired
attitude maneuvers. For example, the spacecraft could be designed to allow for predictable and
controlled distributed charging of the craft, which could then be taken advantage of to perform
attitude maneuvers. If one vehicle has a conventional momentum based attitude control system, then
it would be able to perform an attitude change and reorient a second spacecraft in close proximity
at the same time. Naturally, the primary spacecraft’s momentum wheels would be working twice as
hard here to rotate its own spacecraft and compensate for the external Coulomb-based torque applied
by the second spacecraft. An inherent limit of this concept of exploiting distributed spacecraft
charging to perform attitude maneuvers is that the spacecraft must be in very close proximity to
each other (typically 10-30 meters apart). As the separation distance increases, any distributed
charge electric field will begin to resemble that of a simple point charge.

Another type of CSF that merits mention is a dumbbell shaped spacecraft illustrated in Figure 3
whereq1 = q2. Here no ESD is possible since there is no charge gradient across the craft. However,
the end mass which is closer to the second craftm0 will experience a stronger electrical field, and
thus a stronger Coulomb force, then the second end mass. This effect is similar to having a gravity
gradient stabilize the attitude of a spacecraft. Contrary to the previous attitude maneuver example
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Figure 3: Illustration of Dumbbell-Type Spacecraft Performing Attitude Ma-
neuvers using Coulomb Forces Relative to a Single-Charge Craft

using differential spacecraft charging, note that here no momentum based attitude control system
is required. Total momentum, on the other hand, will always be conserved during these Coulomb
force based attitude maneuvers, which will require that relative motion and attitude maneuvers are
performed in a collaborative manner.

Basic concepts can be used to calculate the power required to maintain the spacecraft at some
steady state potential. To maintain the spacecraft at a voltage of|VSC |, current must be emitted in
the amount of|Ie| = 4πd2|Jp|, whereJp is the current density to the vehicle from the local space
plasma andd is the vehicle radius, using a power supply having voltage of at least|VPS | = |VSC |.
Quantitatively, we find that the powerP is given by

P = |VSCIe| (1)

For a two-spacecraft formation with each vehicle using powerP , the total system power is just the
sum of the individual powers of each vehicle. Assuming spherical spacecraft and using Gauss Law
to relate the surface potential to the encircled point charge, it is possible to relate the Coulomb force
(thrust) on a vehicle to the emission current and the required power through

Fc =
1
kc

e
− r12

λd
d1d2

r2
12

P 2

Ie1Ie2

(2)

wheredi andIei are the radius and emission current of spacecraft 1 or 2,r12 is the vehicle separation,
λd is the Debye length,9,10 andkc = 8.99 · 109 Nm2/C2 is Coulomb’s constant. Assumingd1 =
d2 = dsc, andIe1 = Ie2 = Ie, the fuel efficiency of a CSF is6

Isp = kce
− r12

λd
qiond

2
scP

2

g0mionr2
12I

3
e

(3)

Note that this specific impulse estimation only makes sense when two or more spacecraft are present,
because the Coulomb force can only influence the relative motion between craft.

While the Coulomb spacecraft formation flying concept envisions ejecting positive ions from the
craft, the thrusting phenomena is inherently different from that of a traditional ion thruster. For
Coulomb “thrusting,” the charge transport of the ions is exploited, wherein an ion thruster is used to
transport linear momentum. Coulomb forces of tens to hundreds of micro-Newtons can be generated
(at spacecraft separations of tens of meters) with as little as a few milli-Watts of spacecraft power,
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producing propulsion system specific impulse values with an expected range of 1010–1013 seconds
with only 10 Watts of power or less.6 Hence, the Coulomb control concept is nearly propellantless.
Furthermore, the Coulomb control forces can be rapidly dithered over a continuous range on a time
scale of milliseconds using spacecraft power much less than 1 Watt. For example, in Reference 5 a
1 meter spacecraft was found to be able to charge to 6 kV in as little as 8 ms using only 200 mW
of power. As a comparison, the European FEEP thruster hasIsp values between 3,000 and 10,000
seconds with thrust ranging 1-100µN.11 The USAF is now working on a micro pulsed plasma
thruster (micro-PPT) with thrust from 20-80µN and power from 2-10 W, withIsp values of a few
hundred (maybe 500) seconds.12

The Coulomb propulsion concept development requires no inherently new devices or technology.
In fact, vehicle charge control such as that proposed in this study has been demonstrated in the 1970s
on spacecraft such as SCATHA.1 The technological revolutionary nature of the CSF concept relies
on an innovative integration of existing technologies and simple physical principles to provide an
extremely fuel efficient method to control therelative motionof close-proximity spacecraft. Since
the Coulomb forces are internal forces of the spacecraft formation, note that theinertial orbital
motionof the formation center of mass is not directly influenced by this control concept. However,
considerable challenges remain in how to control such CSFs while considering the natural orbital
dynamics. The last section will illustrate some results in controlling simple two-body CSFs.

Computing the Electrostatic Forces

Due to the nature of the plasma fields encountered in Earth orbit, the Coulomb force interaction
between separation is limited to regimes where the separation distance is less than the plasma Debye
lengthλd. The Coulomb force magnitude between two point chargesq1 andq2 in such a plasma
field is given by

|F | = kc
q1q2

r2
12

e
− r12

λd (4)

The smaller the Debye length is, the shorter the effective range is of a given electrical charge. In
Low-Earth Orbit (LEO), this length is of the order of centimeters. Thus, using Coulomb forces at
such low altitude orbits is impractical. The analysis of CSFs is limited to High-Earth Orbits (HEO)
or Geostationary Orbits (GEO), where the Debye length is much larger and allows for CSF dimen-
sions of several dozens of meters. If orbiting other planets or moons, depending on the local plasma
environment, it would be possible to establish CSFs at lower altitudes. At GEO altitudes there is
a wealth of plasma-physical data available. In particular, the particle detectors on the ATS2–4 and
SCATHA1 spacecraft measured the plasma variations from 1969 to 1980 with a temporal resolution
of 1 to 10 minutes. Calculations based on this data show that the Debye length at GEO ranges from
about 140 meters to greater than 1400 meters. This parameter can vary due to the geomagnetic ac-
tivities, as well as plasma injection events (i.e., a sudden appearance of dense, relatively high energy
plasma at GEO occurring at local midnight).

If N satellites are present in a CSF, then the electric fieldEi that satellitei will experience due
to the other satellites is given by

Ei = kc

N∑
j=1

qj
rji

|rji|3
e
−

|rji|
λd (5)

wherei 6= j andrji = ri − rj is the relative position vector. Note that we have not assigned any
coordinate frame to this potential field expression. As such, the given expression is valid for both
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an inertial and Hill frame specific equations of motion description. Assuming theith spacecraft has
a chargeqi, then the electrostatic Coulomb forceFi is

Fi = qiEi (6)

The external acceleration experienced by theith spacecraft due to the other spacecraft electrical
charges is

ai =
1

mi
Fi (7)

Assuming a maximum spacecraft charge of 4µC (about 40 kV for a 1 meter radius vehicle),
Figure 4 illustrates the Coulomb force strength for separation distances between 10 and 100 meters.
The force magnitudes are shown for both a Debye length of 140 meters (worst case) and 1400
meters. At 10 meter separation, the force magnitude grows as large as 1.3 mN and drops off with
increasing separation distances. Note that at 50–60 meter separations, the force magnitude is still
around 50µN. The traditional high-efficiency ion thrusters have thrust levels of about 50µN .
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Figure 4: Inter-Spacecraft Coulomb Force Illustration for a 4 µC charge be-
tween Two GEO Satellites.

As a comparison, the approximate force magnitude levels of theJ2 gravitational attraction and
the solar radiation pressure at GEO are shown as well. Here a spacecraft of 100 kg mass and a
radiation surface area of 10 m2 are assumed. Note that these are the absolute force magnitudes of
these two perturbation effects, not the differential force magnitude between the two spacecraft. The
latter is mission specific and depends on the relative formation geometry and spacecraft attitudes.
However, to illustrate approximate forces needed to compensate for these effects, the differential
J2 force will be at least two orders of magnitude smaller than the absolute force shown, while the
differential solar radiation force can conservatively be assumed to be 1 order of magnitude smaller.
This illustrates that the Coulomb force magnitudes at GEO are large enough to potentially be able
to compensate for these two orbit perturbation effects. Future research will investigate how such
formations would be controlled and how the optimal formation geometry would be setup.
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Hill’s Formulation and Equilibrium Formations

The Hill’s equations forN charged spacecraft were derived by Chong et al.6,13 and are summa-
rized in this section. The motivation was to examine several specific non-Keplerian formations, and
to investigate the possibility of using the Coulomb forces to balance the gravitational forces. Three
of these formations will be considered below to illustrate some challenges associated with their
closed-loop control. It should be noted that these problems have not yet been solved, but if certain
limitations can be overcome, then charged spacecraft control may yield the ability to produce tightly
spaced, non-Keplerian formations.

Charged Spacecraft Dynamics

Figure 5 illustrates the notation used in theN charged spacecraft dynamic equations. Specifically,
the rotating Local-Vertical-Local-Horizontal (LVLH) frame, sometimes also called the Hill frame,
is in a circular orbit about the Earth with constant mean angular raten. The distance from the center
of the Earth to the origin of the orbiting frame,r, is assumed to be much larger than the distance
from the center of the orbiting frame to any of the spacecraft,|r0i|.

1

2

0
m0,q0

Earth
Center

i

m1, q1

m2, q2

r01

r02

r0i

mi, qi

x̂c

ŷc

r

Figure 5: Coordinate Frames and Notation Used for Deriving Hill’s Equations
for Charged Spacecraft.

Two sets of dynamic equations will be considered, but both are embodied by Eq. 8, where the
indices for the equations of motion are alwaysi = 1, . . . , N andi 6= j. The first case,j0 = 0,
assumes that the center of the reference frame is coincident with the ‘0’ spacecraft and that it has its
own station-keeping propulsion system, and the ability to take on a controlled charge. Therefore,
the mass of ‘0’ is not relevant as its motion is prescribed. Furthermore, the origin of the reference
frame is not, in general, at the center of mass of the formation. In the second case, there is no ‘0’
spacecraft and consequentlyj0 = 1 andq0 is undefined. It may be convenient, though not necessary,
to place the origin of the reference frame at the formation’s center of mass.

ẍi − 2nẏi − 3n2xi =
kc

mi

n∑
j=j0

xi − xj

|rji|3
qiqj (8a)

ÿi + 2nẋi =
kc

mi

n∑
j=j0

yi − yj

|rji|3
qiqj (8b)

z̈i + n2zi =
kc

mi

n∑
j=j0

zi − zj

|rji|3
qiqj (8c)
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The left side of Eq. 8 are the standard Hill’s equations. The right side contains the Coulomb interac-
tion forces between spacecraft whereqi is the charge of theith satellite. The nonlinear gravitational
terms are ignored at this point of the investigation because we are studying a circular chief orbit
case with a very small relative orbit radius of less than 100 meters.

In the remainder of this section the results of Chong will be summarized with particular attention
towards the goal of controlling the formation using the spacecraft charges. An alternate approach
will then be described and its own challenges discussed.

Equilibrium Formations with a Station-Keeping Chief

The first analysis of Eq. 8 was to determine if formations existed, and corresponding constant
spacecraft charges, that would maintain a static equilibrium of the spacecraft relative to the moving
reference frame. For the case where the ‘0’ spacecraft has its own station-keeping capability, this
condition is

−3n2xi =
kc

mi

n∑
j=0

xi − xj

|rji|3
qiqj (9a)

0 =
kc

mi

n∑
j=0

yi − yj

|rji|3
qiqj (9b)

n2zi =
kc

mi

n∑
j=0

zi − zj

|rji|3
qiqj (9c)

Several formations have been found that satisfy Eq. 9. However, they have all been determined to be
unstable equilibrium points. Two interesting cases involve three satellites and seven satellites. The
three satellite case is helpful as a starting point for examining equilibrium, stability, and control,
because formations in the(xc, yc) plane reduce the dimensionality of the analysis as thez axis
motion is decoupled. The 7 satellite case is interesting since it uses a crystal-like structure to create
a 3-D equilibrium formation.

Three Satellite Equilibrium Formation

The right triangular, non-Keplerian formation shown in Fig. 6 satisfies Eq. 9. In fact, this shape
constitutes a family of equilibrium formations by rotating ther01 andr02 equally about thezc axis.
As long as the legs of the triangle do not lie on eitherxc or yc, then constant chargesq0, q1, andq2

exist such that the formation will remain fixed. It should be noted that the station-keeping propulsion
system of satellite ‘0’ must work continuously to maintain this non-Keplerian formation.

After finding equilibrium formations and assessing stability, Chong proceeded to examine the
controllability of the linearized dynamics for small perturbations in satellite position and charge.
The three satellite formation was found to be controllable, in the(xc, yc) LVLH plane. Presumably,
if the linearized system is controllable, then a linear control law could be constructed. The major
drawback of this approach is that the radius of convergence could be impractically small. A better,
and more global approach, would be to design feedback controllers for the nonlinear Hill’s dynamics
where stability could be proved using Lyapunov’s direct method. Unfortunately, this leads to another
type of difficulty for formations of three or more spacecraft.

The nonlinear Hill’s equations of Eq. 8 can be rewritten by replacing quadratic charge terms by
single inputs. For example the input productsq0q1, q0q2 and q1q2 can be considered as simply
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Figure 6: Three Satellite equilibrium Formation where Spacecraft ‘0’ can have
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Propulsion System.
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Figure 7: Seven Satellite Equilibrium Formation where Spacecraft ‘0’ Can
Have a Charge While Maintaining a Circular Orbit Using its Own Station-
Keeping Propulsion System.

the combined inputsu01, u02 andu12. In this form a standard Lyapunov stable control law can
be constructed based on, for example, maintaining the desired lengths of the triangular formation.
Unfortunately, not all sets ofu01, u02 andu12 can be realized by the chargesq0, q1 andq2. For
instance, it is impossible to realize a set ofu’s where one is negative and the other two are positive,
that is, the following relationship must hold.

q2
0 =

u01u02

u12
(10)

Seven Satellite Equilibrium Formation

Although the planar three satellite formation is convenient for exploring fundamental aspects of
Coulomb spacecraft control, it has the limitation that any out-of-plane perturbation will result in
unbounded motion. Chong investigated a crystal-like seven satellite formation shown in Fig. 7.

Again, constant charges can be found that maintain equilibrium. However, the equilibrium is
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Triangle, where All Spacecraft are Free-Flying using Only Coulomb Forces
and No Station Keeping Propulsion Systems.

unstable, and 10 states (out of 36) of the linearized system are uncontrollable. The challenge with
crystal-like formations is to find equilibrium conditions where all the states are controllable. The
previous development of three-dimensional equilibrium conditions had not taken this into account.

Equilibrium of a Free-Flying Formation

As pointed out in the previous section, the work by Chong focused on equilibrium formations
where the ‘0’ spacecraft had its own station keeping propulsion system. Potentially, it would need
to exert substantial fuel to maintain the non-Keplerian formation. In this section a new three satellite
formation is presented where the reference frame is at the formation center of mass. Although non-
Keplerian, the formation requires no traditional station keeping propulsion system to maintain the
equilibrium formation.

The equilateral triangle formation, shown in Fig. 8 permits constant equilibrium charges of

q1 = n

√
2mL3

kc
q2 = q3 = −n

√
mL3

2kc
(11)

These are derived from solving the equilibrium equations of Eq. 9 assuming that all spacecraft have
equal massm1 = m2 = m3 = m. This is an attractive alternative to Chong’s formations, since
it is truly a free-flying, non-Keplerian formation. However, it still suffers from the difficulty of
closed-loop control due to the quadratic nature of the input. Although this example illustrates the
ability to form an equilibrium configuration in a plane, to fully realize the benefits of Coulomb
controlled spacecraft, several areas need further exploration. Specifically, the existence of 3D free-
flying formations should be ascertained, including the possibility of producing stable equilibrium
configurations.

Dynamic Two-Satellite Formation

Static Charge Study

Before developing a Coulomb control law for a dynamic two-satellite formation, let us investigate
how the in-plane relative orbit of two satellites will evolve under the influence of static electrical
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fields. In particular, relative orbit motion is of interest at GEO altitudes. With the CSF concept,
one potential application is to have the fields be used to cause the satellites to repel each other and
avoid collisions. However, with the rotational orbital motion of the satellites, this task can become
non-trivial.

At GEO altitudes, the orbital path curvature is relatively small compared to those of Low-Earth
Orbits (LEO) altitudes. At first glance it might seem that with the relatively tight CSF relative or-
bits (nominal minimal separation distances of 10–100 meters) and the high GEO altitude that an
equal charge on both satellites would cause them to move further apart. This would be true if the
formation were operating in space removed from local gravity fields (on a heliocentric orbit, for ex-
ample), where the only influence on the satellite motions would be the electric attraction/repulsion.
However, it was found that even with these short separation distance the orbital motion cannot be
ignored.

The following simulations numerically solves for the relative motion between two identical satel-
lites with a mass ofm = 150 kg. The nonlinear inertial equations of motion solved are

r̈i +
µ

r3
i

ri = ai (12)

where the external accelerationai is given by Eq. (7). Satellite 1 has an initial semi-major axisa
of 42241.09516 km, an eccentricitye of 0, an inclinationi of 48o, an ascending nodeΩ of 20o, an
argument of perigeeω of 0o, and an initial mean anomalyM0 of 20.0o. The period for this GEO
orbit is 24 hours. Satellite 2 has the identical orbit elements, initially, except for an initial mean
anomaly beingM0 = 20.0001 degrees. This puts the two satellites in a classical leader-follower
formation with the second satellite being about 70 meters ahead of the first satellite. Note that
the complete nonlinear differential equations were solved here, but no non-Keplerian perturbations
were included except for the Coulomb force. A constant Debye length of 140 meters is assumed.

Figure 9(a) shows the resulting in-plane motion as seen by a LVLH frame attached to the forma-
tion mass center for up to 5 orbit periods. In this coordinate system,x is radially outward andy is
along the orbit velocity vector as illustrated in Figure 5. Both satellites have the same small charge
of 0.1µC. Without the orbital dynamics present, this would cause the two satellites to push apart.
At first glance it appears like the two satellites immediately begin to pull together, despite both craft
having a positive electrical charge. However, closely examining the initial motion does reveal that
the two craft first start to separate, as expected. However, because both satellites are pushing off
from each other in a leader-follower formation, this causes the lagging satellite 1 to inertially slow
down, while the leading satellite 2 is sped up slightly. This results in satellite 1 having a faster orbit
period (smaller semi-major axis, as shown in Figure 9(b)) and to pull ahead, while satellite 2 has a
slower orbit period (larger semi-major axis) and falls behind. Thus, despite the intention of repuls-
ing both spacecraft with an equal charge, even the diminished orbital dynamics at GEO can cause
the opposite effect. Note that this particular motion shown did not recover. With longer simulations
the craft quickly separated since their semi-major axes settled down at unequal values, as illustrated
in Figure 9(b).

The second simulation has satellite 1 charged to +0.1µC and satellite 2 charged to -0.1µC. The
simulation results are shown in Figure 10. Here the two craft initially pull together, which in return
slows down the lagging craft and speeds up the leading craft. Since the semi-major axis of each
satellite settle at unequal values as shown in Figure 10(b), this formation too will grow unbounded.
These simulations illustrate that even at GEO and with the small separation distances considered for
CSFs, the classical orbit rendezvous dynamics must be taken into account.
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Figure 9: Numerical Simulation with Both Satellites having a +0.1 µC Con-
stant Electric Charge.

Nonlinear Stabilizing Feedback Control

Using only the Coulomb force between two spacecraft, a nonlinear feedback control law is de-
veloped for the spacecraft charge which will stabilize the relative motion between the two craft.
Note that no particular relative orbit geometry is enforced at this stage. For unperturbed Keplerian
motion, the exact condition for bounded relative motion is that all satellites must have the same
semi-major axisa. Let u = (ar, aθ, ah)T be a control vector containing the external accelera-
tions imposed on a craft. The vector components are taken in the rotating LVLH frame. Lete be
a 6-dimensional vector of orbit elements. These orbit elements are invariants of the unperturbed
orbit motion. From Gauss’ variational equations, given an external acceleration vectoru, the orbit
element vectore will vary according to14,15

ė = [B(e)]u (13)

where[B(e)] is a 6 × 3 dimensional control influence matrix. Note that this matrix will be time
varying and dependent on the true anomalyf . The center LVLH frame is attached to the mass
center of the CSF. Since the Coulomb forces are internal forces of the CSF, the mass center motion
will be unaffected by these Coulomb forces. Lete be the orbit elements of the center motion, while
ε is aM -dimensional subset ofe containing the orbit elements that are to be controlled. Because the
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Figure 10: Numerical Simulation with a Satellite 1 having +0.1 µC and Satel-
lite 2 having a -0.1 µC Constant Electric Charge.

CSF dimensions are no larger than a few hundred meters in size, we can approximatee ≈ e1 ≈ e2

and express the differential equations forεi through

ε̇1 ≈ [B(e)]u1 (14a)

ε̇2 ≈ [B(e)]u2 (14b)

where theM × 3 dimensional matrix[B(e)] is a submatrix of[B(e)]. To simplify notation from
here on, the matrix[B(e)] is referred to as[B] and the dependency one is implied.

The desired set of orbit element differences are expressed through the vector∆ε. To achieve
bounded relative motion, for example, we would set∆a = 0. The tracking errorδε between the
spacecraft 1 and 2 orbit elements and the desired orbit element difference is expressed as

δε = ε1 − ε2 −∆ε (15)

Because the desired orbit element difference vector is constant and∆ε̇ = 0, the differential equation
of the orbit element tracking error vector is

δε̇ = ε̇1 − ε̇2 = [B](u1 − u2) (16)
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Due to the Coulomb forces being internal forces of the CSF, Newton’s third law specifies that
these two spacecraft forces must be equal in magnitude and opposite in direction. Assuming both
spacecraft have the same massm, the control acceleration vectoru satisfies

u = u1 = −u2 (17)

The tracking error differential equation in Eq. (16) is now expressed as

δε̇ = 2[B]u (18)

Let the orbit element error based feedback law be defined as

u = −[B]T [K]δε (19)

where theM ×M dimensional gain matrix[K] is symmetric positive definite. To prove stability of
this control, the positive definite, radially unbounded Lyapunov functionV (δε) is introduced:

V (δε) =
1
4
δεT [K]δε (20)

The Lyapunov ratėV is found to be

V̇ =
1
2
δεT [K]δε̇ = δεT [K][B]u = −δεT [K][B][B]T [K]δε ≤ 0 (21)

SinceV̇ is negative semi-definite, this control is globally stabilizing, but not necessarily asymptot-
ically stabilizing. This type of orbit element based feedback control has been used previously in
References 15–18 to control both inertial and relative orbits. If the complete control acceleration
vectoru is realizable, then it has been shown in these references that this control is also asymp-
totically stabilizing. Being based on orbit elements, this control is valid for circular and elliptic
orbits.

However, with the inter-spacecraft Coulomb force it is not possible to generate arbitrary in-plane
forces. Letũ be the projection of the desired control vectoru onto the unit relative position vector
r̂21 = r21/r21. Assuming again thatm1 = m2 = m, we find

ũ = u · r̂21 = uT r̂21 = −δεT [K][B]r̂21 (22)

If ũ ≥ 0, then the controlu is attempting to push the spacecraft apart andq1q2 should be positive
(both craft have same sign charge). Ifũ < 0, then the craft should be pulled together and the
two craft need to have charges with the opposite sign. Thus, the spacecraft control charges are
determined through

q1 = r21

√
m

kc
|ũ| (23a)

q2 =

{
+q1 ũ ≥ 0
−q1 ũ < 0

(23b)

With this charging control law,q1 will always be positive andq2 can assume either charge sign. Note
that a continuous charging control law is assumed here. This assumption is justified since the time to
reach a maximum spacecraft charge is on the order of milli-seconds,5 while the continuous control
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variations are on the order of orbit periods (several hours). Thus, for all practical purposes, we can
assume here that the desired spacecraft charge will be achieved instantaneously. The spacecraft 1
and 2 charges will cause craft 1 to have a true accelerationα1 of

α1 =
kc

m

r2
21

(
m
kc

ũ
)

r2
21

r̂21 = ũr̂21 (24)

Again, note thatα = α1 = −α2 if both spacecraft have equal mass. Sinceα is the true acceler-
ation vector being applied to spacecraft 1 (versus the ideal control accelerationu), the differential
equation for the tracking error vectorδε becomes

δε̇1 = 2[B]α (25)

where the vector components ofα have implicitly been taken in the rotating center LVLH frame.
Substituting this expression into the Lyapunov rate expression in Eq. (21), we find

V̇ =
1
2
δεT [K]δε̇ = δεT [K][B]α

= δεT [K][B]r̂21ũ

= δεT [K][B]r̂21(uT r̂21)

= δεT [K][B]r̂21(−δεT [K][B]r̂21)

= −
(
r̂T

21[B]T [K]δε
)2 ≤ 0

(26)

SinceV̇ is negative semi-definite, the spacecraft charging control law will be globally stabilizing,
while asymptotic stability is not guaranteed at this point. In practice, however, global stability is
not provided since the Debye length limits the effectiveness of the Coulomb forces. While it has
been shown in References 15–18 that the vector[B]T [K]δε cannot be zero for all time unlessδε
is zero, the scalar term̂rT

21[B]T [K]δε can easily be zero for a non-zero tracking errorδε. For
example, assume that the satellites have no out-of-plane relative motion (relative to center LVLH
frame). If a non-zero inclination angle difference is desired to achieve out-of-plane relative motion,
it is impossible that the spacecraft Coulomb forces could achieve this, because they are only able
to produce in-plane accelerations. Further, if multiple orbit elements are to be controlled with this
charging control law, then the controls required to reduce the various tracking errors will compete
against each other and it is simple to reach a local minima whereV̇ is zero for a non-zeroδε. Thus,
this general charging control law does guarantee Lyapunov stability, but not convergence.

Next, let us investigate what occurs, stability wise, if the charges are only allowed to reach an
upper limit ofqmax. If charge saturation occurs, then the spacecraft charges are determined through

q1 = qmax (27)

q2 =

{
+qmax ũ ≥ 0
−qmax ũ < 0

(28)

Becauseq1q2 = q2
maxsgn(ũ) during saturation, the acceleration of spacecraft 1 due to this limited

charge is then given by

α1 = −α2 = α =
kc

m

q2
max

r2
21

r̂21sgn(ũ) (29)
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The Lyapunov rate of Eq. (21) is now expressed as

V̇ = δεT [K]δε̇T = δεT [K][B]
kc

m

q2
max

r2
21

r̂21sgn(ũ)

=
kc

m

q2
max

r2
21

δεT [K][B]r̂21sgn
(
−δεT [K][B]r̂21

)
= −kc

m

q2
max

r2
21

∣∣r̂T
21[B]T [K]δε

∣∣ ≤ 0

(30)

SinceV̇ is negative semi-definite, we are guaranteed global stability of this saturated control law.
However, due to the limited effectiveness of the Coulomb force due to the Debye length, in prac-
tice this saturated control will have a limited domain of stability. Further, since the scalar term
r̂T

21[B]T [K]δε can be zero for non-zero tracking errorδε, this saturated charging control cannot
guarantee asymptotic convergence.

Let us examine the convergence of a special case of this charging control law. Assume that the
only goal is to achieve bounded relative motion. This requires that∆ε = (∆a) = 0. The control
influence matrix[B] for the semi-major axis is given by14,15

ȧ =
2a2

h

[
e sin f

p

r
0
]
u = [B]u (31)

whereh is the orbit momentum magnitude,p is the semilatus rectum, andr is the current center
LVLH frame orbit radius. For this case the control vectoru simplifies to

u = −[B]T Kδa (32)

with the gainK > 0 being a scalar parameter. The Lyapunov rate expression in Eq. (30) is reduced
to

V̇ = −δa2K2([B]r̂21)2 ≤ 0 (33)

To prove that the semi-major axis tracking errorδa will asymptotically go to zero, we need to show
that the scalar term[B]r̂21 cannot remain zero. Defininĝr21 = (ρ1, ρ2, ρ3)T /r21, the term[B]r̂21

is expressed as

[B]r̂21 =
2a2

hr21

(
ρ1e sin f + ρ2

p

r

)
(34)

Assuming a near-circular nominal CSF orbit (which is common for most GEO applications), the
above condition can be simplified to

[B]r̂21 =
2a2

hr21
ρ2 (35)

This means that we need to demonstrate thatρ2 cannot be zero for all time ifδa is non-zero. The
relative orbit coordinateρ2(f) can be approximated as19

ρ2(f) = a(δω + δM(f) + cos i δΩ) + 2a sinf δe (36)
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The linearized mean anomaly driftδM(f) is expressed as20

δM(f) = δM0 −
3
2
f

δa

a
(37)

Using Eqs. (36) and (37), the term[B]r̂21 can be written as

[B]r̂21 =
2a2

hr21

(
δω + δM0 + cos i δΩ− 3

2
f

δa

a
+ 2a sinf δe

)
(38)

For Eq. (38) to be zero for all time, the static term(δω+δM0+cos i δΩ), the secular term
(
−3

2f δa
a

)
,

and the trigonometric term(2a sin f δe) must vanish independently. This leads to the conditions
that δω + δM0 + cos i δΩ = 0, δa = 0, andδe = 0 for [B]r̂21 to be zero for all time. Thus,
since[B]r̂21 cannot remain zero for a non-zeroδa, the semi-major axis control in Eq. (32) is indeed
asymptotically stabilizing inδa.

For the saturated version of the semi-major axis Coulomb control, the Lyapunov rate expression
in Eq. (30) reduces to

V̇ = −kc

m

q2
max

r2
21

K|δa| |[B]r̂21| (39)

Since[B]r̂21 cannot remain zero for non-zeroδa, the saturated version of this control is also asymp-
totically stabilizing.

Numerical Simulation of Stabilizing Control

The performance of the spacecraft charging control law in Eq. (23) is illustrated through a numer-
ical simulation. For satellite 1, the simulation setup of the static charge simulation is repeated here
with the inertial nonlinear equations of motion in Eq. (12) being numerically solved. The satellite
2 orbit elements are equal to those of satellite 1 except for the semi-major axis, which is 20 meters
larger, and the eccentricity, which is 0.000001. If left uncontrolled, the two satellites would drift
apart at about 190 meters per orbit. Let the vector of controlled orbit elements be

ε =
(

a
ω + M0

)
(40)

The desired orbit element differences are given by

∆ε =
(

0 km
0o

)
(41)

This will attempt to establish a bounded relative motion (i.e. cancel the difference in semi-major
axes) and avoid having the point about which each satellite is orbiting (as seen by the center LVLH
frame) wander from the center LVLH frame origin. For this particular set of elements, the matrix
[B] is given by14

[B] =

[
2a2

h e sinf 2a2

h
p
r 0

− ae
h(a+b)p cosf − 2br

ah
(p+r) sinfae

h(a+b) − r sin θ cosi
h sini

]
(42)

Note that because this simulation setup involves exclusively in-plane relative motion, only in-
plane motion will result with the Coulomb control. The nonlinear Cartesian equations of motion in
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Eq. (12) are solved in the numerical simulation. The spacecraft charge is limited toqmax = 1µC.
The gain matrix used is[K] = diag(5 · 10−12, a · 10−8). The simulation results are illustrated in
Figure 11. With the chosen gains and this particular set of initial orbit element errors, the tracking
errors are reduced to near zero within less than 0.5 orbits. Note, however, that the closed-loop
dynamics were found to be sufficiently nonlinear to make it very sensitive to the chosen control
gains. While the current simulation shows nearly no overshoot in the tracking error dynamics,
if other initial tracking errors are used with the same gains then the control might take several
orbits to converge. In these cases the semi-major axis typically still converged within an orbit or
two to the desired values, but the initial latitude angleω + M0 took many more orbits periods to
converge. For all numerical simulations runs performed with this particularε vector in Eq. (40), the
tracking errors always appeared to converge to zero. However, no analytical proof of asymptotic
convergence of this∆ε is provided in this paper. If other elements such as the eccentricity or the
inclination angle were controlled (the later only with initial out-of-plane relative motion present),
then these particular orbit elements only approached the desired values for particular sets of gains
and initial tracking errors. As was discussed in the control analysis, for general sets of controlled
orbit elements we are only guaranteed stability and not asymptotic convergence.

The charges required by either spacecraft are shown in Figure 11(d). As the control theory pre-
dicted, despite charge saturation occurring, the control is still able to stabilize the tracking errors.
The small chatter like behavior shown near zero charge is due to numerical limitations. Since the
simulation is performed in inertial Cartesian space and the relative motion is very small, small differ-
ences of large numbers are computed. Even using double precision variables, the standard nonlinear
mapping between Cartesian coordinates and orbit elements results in some numerical degradation.
A simulation setup in the rotating LVLH frame would avoid this issue. However, performing the
simulation in another coordinate space than the one used for the control development allowed for
various checks to be performed that the simulation and theory were working properly.

The presented nonlinear feedback law illustrates that it is possible to use the Coulomb force to
bound and control the relative motion of a dynamic two-satellite formation of equal mass. Future
research will look into extending this control theory to satellites of different mass and to CSFs con-
taining more than two satellites. Of particular interest is also applying impulsive feedback laws to
the CSF control problem. With the presented continuous control, convergence of tracking errors
is often hampered by competing control goals with limited feasible acceleration vectors. With the
large bandwidth of the Coulomb charging process, it should be possible to implement an impul-
sive control scheme that would selectively correct particular elements without influencing others.
Further, the use of optimal control techniques looks promising to establish efficient tracking for
arbitrary tracking errors.

Conclusion

Spacecraft formation flying control using Coulomb Forces in Earth orbit is only viable in high-
altitude (HEO-GEO) due the electrical shielding properties of the space plasma. The benefits of
exploiting inter-spacecraft Coulomb forces are a virtually propellantless method to perform relative
orbit corrections with the capability of operating at very high bandwidths. For small spacecraft
separation distances of the order of tens of meters, the magnitude of the Coulomb force is as good
or better than many high efficiency ion propulsion methods at a fraction of the power requirement.
Static equilibrium conditions have been found that allow the satellites to remain in fixed positions
relative to each other. These static crystal-like formations are impossible with conventional satellite
formations where the crafts tend to orbit about each other. The control challenges of such static for-
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mations are discussed. Further, the dynamic motion and control of a two-satellite CSF is explored.
A nonlinear control is presented which is able to bound the relative motion between two close
satellites by asymptotically equalizing the two satellite semi-major axes. The continuous charging
feedback control can also be used to control general orbit element difference with guaranteed stabil-
ity, but not necessarily asymptotic convergence. These early results illustrate the exciting potential
of CSF, while outlining many dynamic and control challenges that need to be solved to make this
tight formation flying control concept a viable solution.
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