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A novel algorithm for attitude control of a spacecraft subjected to conically constrained inclusion and exclusion

regions using a kinematic steering law and a rate-based attitude servo system is presented. The tracking errors are

definedusing switchedmodifiedRodriguesparameters to yield, leveraging the nonuniqueness of the parametrization,

a nonsingular description. Lyapunov theory and logarithmic barrier potential functions are used to derive a

kinematic steering law suitable for both attitude regulation and tracking scenarios. Conditions for constraint

enforcement under limited-control-torque capability are studied. Numerical examples of a regulation and a tracking

problemare shown.AMonteCarlo simulation is performed to show constraint avoidancewith a variety ofworst-case

initial conditions under bounded-torque control capabilities.

I. Introduction

U NCONSTRAINED autonomous attitude control has been
extensively addressed in the literature. However, spacecraft

reorientation may have several design-specific pointing restrictions.
These attitude constraints can be in the form of undesirable pointing
regions. An example is any spacecraft carrying heat- or light-
sensitive instruments, such as telescopes or cameras, that cannot be
exposed to direct sunlight. Bright celestial objects may thus impose
constraints to a maneuver. On the other hand, pointing restrictions
can also manifest themselves as inclusive heading regions. For
example, a change in attitude could be performed while keeping
certain instruments, for example, antennas or solar panels, pointing
into a definite region in space. Ultimately, attitude constraints can be
viewed as either exclusion or inclusion zones, usually defined by
cones in space around either a forbidden or a mandatory nominal
direction.
The existing techniques for studying the constrained attitude

control problem may be classified into six different groups [1]. One
approach uses geometric relations to precompute trajectories that
avoid the constraint manifolds [2,3]. These techniques are relatively
simple but do not scalewell when the number of constraints grow [1].
A reactive geometric approach has been used in the SAMPEX
mission to avoid its Heavy Ion Large Telescope (HILT) aligning with
the velocity vector [4]. Another different geometric approach using
an optimal boundary value problem and an iterative process has been
recently developed [5]. Constraint monitor algorithms (CMT) use a
predictor-corrector approach to change the trajectory in real time
when approaching a constraint [1]. This method has been
successfully tested in real missions, such as Cassini [6,7] and
Deep-Space-1 [8]. Randomized algorithms use graphs and random
search to go from an initial to a final attitude, avoiding all constraints
[9]. The approach has mainly two drawbacks: convergence can be
guaranteed only in a probabilistic sense and computational time
grows dramatically with the size of the graph. The set of optimization
techniques known as semi-definite programming (SDP) and
quadratically constrained quadratic programming (QCQP) [10] can

be used to compute an optimal control solution while avoiding all
constraints [1,11,12]. A recently developed new framework divides
the attitude space into discrete cells and uses searching algorithms
likeA� to find an optimal solution to the constrained problem [13,14].
Finally, potential function-based algorithms use Lyapunov theory to
design control laws that converge to the target while evading
constraints. This approach has been proposed with singular Euler
angles [15] and the unit-constrained quaternions [16,17] to solve the
constrained regulation problem. In Ref. [18], another method using
quaternions and aHamiltonian formulation is proposed to handle one
exclusion constraint using Lyapunov functions based on geometric
considerations. However, it cannot be shown to converge, and may
not even be feasible with several exclusion constraints.
In contrast to Euler angles and quaternions, the modified

Rodrigues parameters (MRPs) constitute a singular, nonunique, and
minimal attitude representation [19]. However, the nonuniqueness
can be used to switch the parameters at the unit sphere in order to
avoid their only singularity while naturally overcoming the
unwinding [20] phenomenon, making a control scheme to always
follow the shortest path [21].
Kinematic steering laws permit dividing the attitude and angular

velocity control strategies into two completely separate loops,
simplifying the synthesis of control laws [21,22]. Using this scheme,
an angular velocity loop, usually known as servo subsystem, is
controlled by a kinematic loop. The benefit of such attitude steering
laws is that the angular velocity vector is treated as the control vector,
and the rate response due to a tracking can be shaped in very general
ways. In particular, the implementation discussed in Ref. [22] uses a
smoothly saturated rate behavior. Thus, even with very large attitude
tracking errors, the spacecraft closed-loop response reaches a
predicable upper rate limit.
In spite of the fact that most mission requirements include

constraints on slew maneuvers, the autonomous constrained attitude
control literature is still sparse and many spacecraft perform
constraint avoidance nonautonomously through open-loop attitude
way point navigation solutions. Nonlinear control methods using
Lyapunov theory have the advantage that they allow synthesizing
relatively simple control laws, that is, control laws given by closed-
form, usually analytic, functions. This fact makes these algorithms
specially suitable for on-board implementation. Lyapunov theory has
been applied before to the constrained attitude control regulation
problem usingEuler angles [15] and quaternions [16,17]. However, it
has not yet been applied to solve the attitude tracking problem with
constraints. Furthermore, the novel use of a kinematic steering law
allows the use of rate saturating functions to control the maximum
angular velocity. Additionally, no previous work has analyzed how
constraint avoidance and reaction wheel (RW) torque saturation are
related. Finally, the use of MRPs in this problem formulation is also
novel in that the solution provides a minimal attitude parameter-
ization that yields globally nonsingular behavior.
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In this work, a kinematic steering law using MRPs that permits
autonomous attitude control and static constraint enforcement at the
same time is proposed. Constraint geometry is discussed and
Lyapunov direct method is used in order to synthesize the kinematic
steering law. RWs are used as attitude actuators in the numerical
simulation illustration. The problem of wheel torque saturation is
addressed by investigating solutions to guarantee the constraint
compliance even if the control torque actuation is limited.
The paper is organized as follows.After a brief introduction of the

kinematics (MRPs), the kinetics (rigid body spacecraft with RW),
and a review of the unconstrained steering law used, conic static
constraints are presented, showing a novel description as a function
of MRPs. The regulation and tracking problem with conic
constraints are then developed with heuristic algorithms for
asymptotic stability. The effect of RW torque saturation is studied.
Finally, numerical simulation results are shown to demonstrate the
autonomous constraint compliance.

II. Spacecraft Kinematic and Kinetic Equations
of Motion

A. Modified Rodrigues Parameters

The MRPs are a minimal parametrization set of the rotation group
SO(3). The MRP vector σ is defined in terms of the quaternion

β � � β0 β1 β2 β3 �T or the principal rotation vector representa-
tion �ê;Φ� as [19,21,23,24]

σ � 1

1� β0
� β1 β2 β3 �T � tan

�
Φ
4

�
ê (1)

where β0 represents the scalar part of the quaternion. The
representation is singular whenever β0 � −1, where the rotation
angle Φ � 	360°.
The quaternion representation is not unique. In fact, because β and

−β represent the same attitude, σ and σs, known as the shadow set,
also represent the same orientation, where [21,25]

σs � −
1

1 − β0
� β1 β2 β3 �T � −

σ
σTσ

(2)

Equation (1) shows that short rotations (Φ ≤ 180°) have kσk2 ≤ 1.
Using this fact and the shadow set given in Eq. (2), the general
approach is to switch betweenMRP representations at the unit sphere
in order to avoid the singularity while always describing short
rotations [21]. In otherwords, by leveraging the nonuniqueness of the
parametrization, a minimal singularity-free attitude description can
be obtained, using Eq. (2) to compute the MRPs whenever the
attitude trajectory crosses the sphere given by kσk2 � 1.
The rotation matrix �C�σ�� that describes the orientation of a frame

P relative to a frame Q, also represented as �PQ�, can be computed
from the MRP σ (or σP∕Q) as [21]

�C�σ�� � �I3×3� �
8� ~σ�2 − 4�1 − σTσ�� ~σ�

�1� σTσ�2 (3)

where � ~σ� is the associated skew-symmetric matrix [21]

� ~σ� �
"

0 −σ3 σ2
σ3 0 −σ1
−σ2 σ1 0

#
(4)

The MRP kinematic differential equation is given by [21]

_σ � 1

4
��1 − σTσ��I3×3� � 2� ~σ� � σσT �ω � 1

4
�B�σ��ω (5)

If σ represents the attitude of frameP relative toQ (noted as σP∕Q),
then ω is the angular velocity of frame P relative to Q written in
P-frame components (also noted as PωP∕Q, where the left superscript

notes the frame with respect to which the vector components
are taken).

B. Rigid-Body Dynamics with Reaction Wheels

The rotational equations of motion of a rigid spacecraft with NRW

perfectly symmetric and balanced RWs are given by [21]

�IRW� _ω � −� ~ω�
�
�IRW�ω� �Gs�hs

�
− �Gs�us � L (6)

where

�IRW� � �Is� �
XNRW

i�1

�
Jti ĝti ĝ

T
ti � Jgi ĝgi ĝ

T
gi

�
(7)

�Gs� �
h
ĝs1 : : : ĝsi : : : ĝsNRW

i
(8)

hs�
h
Js1�ĝTs1ω�Ω1� ::: Jsi�ĝTsiω�Ωi� ::: JsN �ĝTsNRW

ω�ΩNRW
�
i
T

(9)

�Is� is the inertia tensor of the system with the wheels considered as
point masses. A principal-axis frameWi:fĝsi ; ĝti ; ĝgig is attached to
each RW, where ĝsi is the direction of the spin axis. �Iwi

� �
diag�Jsi ; Jti ; Jgi� is the inertia matrix of each wheel written in theW
frame relative to its center of mass. Ωi is the angular velocity of the
RW i relative to the spacecraft. The vector us contains the torques
applied to each RW axis. The RW torque may saturate, with a
maximum torque usmax

. L is the resultant external torque applied to

the spacecraft.
The vectorω is a shorthand notation for the angular velocity of the

body frame relative to the inertial frame ωB∕N , where B is a body-

fixed frame and N is an inertial frame. The over-dot symbol (_•)
represents an inertial derivative, and the prime symbol (• 0) represents
a derivative relative to the rotating body frame. Although the
equations of motion can be solved in any frame, it is assumed that
every vector and tensor are written in the body-fixed frame B.

III. Review of the Unconstrained MRP Steering Law

The goal of the unconstrained attitude control problem is to steer
the body frame B to the reference frame R. In other words, the
relative attitude σB∕R and angular velocity ωB∕R are to be driven to
zero. This problem can be solved using Lyapunov’s direct method
and two separate feedback loops for the attitude and the rate tracking
[22], in a rather similar way as the backstepping control method
[26,27] provides a cascaded control design that guarantees
simultaneous stability of the kinematic and kinetic loops. However,
the backstepping control technique imposes limitations on how the
outer steering law is developed. Instead, this paper investigates a
classic servo implementation where the outer loop and inner loop are
individually stable, and the joint stability is ensured by letting the
inner loop have a control bandwidth that is at least an order of
magnitude faster. The benefit of this approach is that the outer
kinematic steering loop can be more generally developed, as in this
paper,whereas the limitation is that the rate trackingmust be achieved
with a tighter inner control loop.
A high-level block diagram is shown in Fig. 1. The block dynamics

is given in Eq. (6). The block kinematics represents the kinematic
differential equation given in Eq. (5). An inner servo subsystem loop
controls angular velocity. An outer, slower loop, or kinematic

steering law, controls attitude, taking angular velocity as a control
force. Using two different loops for attitude and angular velocity has
the following advantages. First, the kinematic model given by Eq. (5)
is exact. Second, the synthesis of control laws is simplified. Third, as
this paper demonstrates, the angular velocity servo loop does not
need to be changed when static constraints are added.
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Consider the following Lyapunov candidate function [21]

V�σB∕R� � 2 ln
�
1� σTB∕RσB∕R

�
(10)

Using Eq. (5) it can be immediately shown that

_V�σB∕R� � σTB∕RωB∕R (11)

Let B� be the desired body orientation and ωB�∕R the desired
angular velocity vector at which the spacecraft body should be
rotating relative to the reference orientation. In other words,ωB�∕N is
the set-point of the servo subsystem. Because the servo subsystem is
supposed to be much faster than the outer loop, it is assumed, for the
purpose of designing the outer loop, that B� � B. In the following
steering law, ωB�∕R is treated as a control variable, assuming that an
inner rate servo loop exists that implements these speeds. The
kinematic steering command is expressed as

ωB�∕R � −f�σB∕R� (12)

where f�σB∕R� is an odd function such that

σTB∕Rf�σB∕R� > 0 (13)

The Lyapunov rate will, thus, be negative definite:

_V�σB∕R� � −σTB∕Rf�σB∕R� < 0 ∀ σB∕R ≠ 0 (14)

In this paper, the smoothly saturated function given by [22]

f�xi� �
2ωmax

π
arctan

�
π

2ωmax

�K1xi � K3x
3
i �
�

i � 1; 2; 3 (15)

is used, where f�σB∕R� � � f�σ1� f�σ2� f�σ3� �T .
A servo subsystem is used to produce the required torques tomake

the body rates track the desired body rates commanded by the
steering law. Equivalently, the goal of the servo subsystem is to drive
B to B�. The tracking error is defined as

ωB∕B� � ωB∕N − ωB�∕N � ωB∕N − ωB�∕R − ωR∕N (16)

where the fact thatωB�∕N � ωB�∕R � ωR∕N has been used.ωB�∕R is
the kinematic steering rate command and ωR∕N is an input coming
from the attitude navigation solution that generates a reference
trajectory. To create a rate-servo that is robust to unmodeled torques
[21], the integral term z is defined as

z �
Z

t

t0

ωB∕B� dτ (17)

Consider the Lyapunov candidate function [22]

Vω�ωB∕B� ; z� � 1

2
ωT

B∕B� �IRW�ωB∕B� � 1

2
zT �KI�z (18)

where �KI� is a positive definite matrix. Thus

_Vω�ωB∕B� ;z� � ωT
B∕B�

�
�IRW�ω 0

B∕B� � �KI�z
�

(19)

Using the identities ω 0
B∕N � _ωB∕N and ω 0

R∕N � _ωR∕N−
ωB∕N × ωR∕N , and Eq. (16)

ω 0
B∕B� � _ωB∕N − ω 0

B�∕R − _ωR∕N � ωB∕N × ωR∕N (20)

Thus, using the spacecraft dynamics with RWs from Eq. (6)

_Vω�ωB∕B� ;z� � ωT
B∕B�

h
−� ~ωB∕N �

�
�IRW�ωB∕N � �Gs�hs

�
− �Gs�us

�L� �KI�z − �IRW�
�
ω 0

B�∕R � _ωR∕N − ωB∕N × ωR∕N

�i
(21)

Forcing _Vω � −ωT
B∕B� �P�ωB∕B� , with �P� being a positive definite

matrix, it is possible to write

�Gs�us � Lr (22)

where

Lr � �P�ωB∕B� � �KI�z − � ~ωB∕N �
�
�IRW�ωB∕N � �Gs�hs

�
− �IRW�

�
ω 0

B�∕R � _ωR∕N − ωB∕N ×ωR∕N

�
(23)

In this paper, the RW torques are computed using the minimum

norm inverse [21]

us � �Gs�T
�
�Gs��Gs�T

�−1
Lr (24)

Equations (12) and (24) can be used to control a spacecraft’s

attitude using RWs without constraints. As with any kinematic

steering law, the rate-servo subsystem needs to be faster than the

outer loop to ensure both overall stability and that the assumption

B� � B holds.
Because the algorithm requires the numerical computation of the

integral z � ∫ t
t0
ωB∕B� dτ and the body frame derivative ω 0

B�∕R, a

word is necessary on the numerical computation of these two

magnitudes.
The integral term is numerically computed using the very simple

trapezoidal rule [28], which consists on interpolating the integrand

with a linear function.
The numerical derivative, however, is much more delicate. In fact,

depending on the frequency of the servo subsystem loop and the

frequency content ofωB�∕R, significant noise can be injected into the

control loop, requiring some kind of filtering on the torque command

signals of the RW. The approach taken here is to compute the

numerical derivative using the noise-prone backward difference [28]:

ω 0
B�∕R�ti� ≈ fouter

�
ωB�∕R�ti� − ωB�∕R�ti−1�

�
(25)

where fouter is the frequency of the outer loop.
However, the derivative is smoothed using a simple moving

average [29]. The width of the window can be adjusted as a function

of fouter.
Because ω 0

B�∕R is a feed-forward term, its accuracy is not crucial.

Indeed, it has been seen that, even in the case of overfiltering with a

very wide window, the algorithm works well.

Fig. 1 Control system block diagram using a steering law.
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IV. Attitude Pointing Constraint Geometry
Formulation

Orientation constraints can be classified as inclusion or exclusion

constraints. In the first group, a given body-fixed direction has to be

maintained pointing inside a definite region in space while a

maneuver is being performed. On the other hand, exclusion

constraints are classified into four different types [1]. In type I (static

hard) constraints, there is “strict nonexposure constraints on the

on-board sensitive instruments with respect to celestial objects” [1].

Conic constraints are a subtype, defined by a forbidden direction in

space and a safety cone around it given by a constant angle. Type II

(static soft constraints) is a relaxation of type I constraints in which

violations of the forbidden zone are allowed, but for a limited amount

of time. In other words, static soft constraints depend on attitude

history. In type III (dynamic constraints), the forbidden region

changes with time. A dynamic conic constraint is one in which the

axis is not inertially fixed. Dynamic constraints can also be hard or

soft. Finally, type IV (mixed constraints) includes any possible

combination of the last three.
Henceforth, only conic constraints are considered. This particular

static hard constraint is illustrated in Fig. 2, where an inertially fixed

unit vector n̂ defines an exclusion or inclusion cone around it.
For an exclusion constraint, the goal is to slew a spacecraft

avoiding a constant body-fixed unit vector b̂ entering the cone. The

safety angle is given by θmin, while θ is the instantaneous angle

between both vectors. In a typical application n̂ can be a unit vector

pointing toward the Sun (approximately inertially fixed) and b̂ is the

boresight vector of a camera (body-fixed). Mathematically, the

condition is described as [7]

n̂ ⋅ b̂ � cos�θ� < cos�θmin� (26)

Conic constraints are thus written introducing the rotation matrix

�BN� as

C�BN���BN�� � cos�θ� − cos�θmin� � n̂ ⋅ b̂ − cos�θmin�
� N n̂T �BN�TBb̂ − cos�θmin� < 0 (27)

where the notation C�BN� indicates that the constraint is written as a

function of the DCM.
Similarly, it might be desirable to maneuver while keeping a

certain boresight vector b̂ inside a cone defined by n̂ and θmin. For

example, consider a maneuver that has to keep an antenna’s main

communication lobe inside a cone defined by a ground station, or

maximize the area of the solar panels exposed to the Sun. The

mathematical condition is

n̂ ⋅ b̂ � cos�θ� > cos�θmin� (28)

Thus, the constraint can be written as a function of the DCM as

C�BN���BN�� � cos�θ� − cos�θmin� � n̂ ⋅ b̂ − cos�θmin�
� N n̂T �BN�TBb̂ − cos�θmin� > 0 (29)

It is important to note that exclusion and inclusion zones are
defined using the same constraint formulation, namely, through a
function C�BN���BN��. From the conic constraint definition, given

the fact that C�BN���BN�� is the difference between two cosines, the

following inequality constraint must be true:

−2 ≤ C�BN���BN�� ≤ 2 (30)

An expression for _C�BN���BN�� is readily computed using the

transport theorem [21] and the circular shift property of the triple
product. If the derivatives are taken in the inertial frame under the

hypothesis that n̂ is inertially constant and b̂ is body-fixed, then

_C�BN���BN�� �
N dn̂

dt
⋅ b̂� n̂ ⋅

N db̂

dt
� n̂ ⋅

�
ωB∕N × b̂

�
� �b̂ × n̂� ⋅ ωB∕N �

�h
B ~b

i
�BN�N n̂

�
TBωB∕N (31)

Using Eq. (3) the constraint and constraint rate expressions are
rewritten as

C�BN��BN�σB∕N �� � Cσ�σB∕N � � N n̂T �BN�σB∕N ��TBb̂ − cos�θmin�
(32)

_C�BN��BN�σB∕N �� � _Cσ�σB∕N � �
�
�B ~b��BN�σB∕N ��N n̂

�
TBωB∕N

(33)

V. Autonomous Constrained Attitude Control

A. Constraint Overview

Let there be NE exclusion zones defined by continuous functions
CE
i : SO�3� → R and NI inclusion zones defined by continous

functionsCI
j: SO�3� → R, which can be theC�BN� or theCσ described

in the previous section. Let D be such that

D �
n
x ∈ SO�3�∕CE

i �x� < 0 ∧ CI
j�x� > 0

o
(34)

The goal is to drive σB∕R and ωB∕R to zero while maneuvering
inside D. The first necessary condition is that �BN� ∈ D for all
possible time.
Barrier functions have been used to design control laws avoiding

constraints [15,16,30]. In this paper, logarithm barrier functions
[16,17,30] are used to designLyapunov functions that converge to the
reference while avoiding the static constraints.

a) Conic exclusion constraint. The spacecraft has
to slew keeping its sensitive optical instrument out
of the sun-definecone

b) Conic inclusion constraint. The spacecraft has
to slew keeping the solar panels pointing
somewhere inside the sun-define cone

Fig. 2 Conic constraint geometry.
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B. Constrained Regulation Problem

In the regulation problem, the goal is to steer σB∕N and ωB∕N to

zero. The problem is split into two parts: a steering law and servo

subsystem controlling angular velocity. Relative to the uncon-

strained laws, the latter remains the same. The steering law has to be

changed.
Consider the following Lyapunov candidate function V:D → R�

V�σB∕N � � 2 ln �1� σTB∕N σB∕N �
�
−

1

NE

XNE

i�1

ln
�
−
CE
i �σB∕N �
αi

�

−
1

NI

XNI

j�1

ln
�
CI
j�σB∕N �
βj

��
(35)

The parameters αi > 0 and βj > 0 may be chosen in several

different ways with the only condition −CE
i �σB∕N � < αi and

CI
j�σB∕N � < βj, ∀σB∕N ∈ D. From Eq. (30), it can be seen that, for

this condition to hold, αi > 2, βi > 2. One valid choice is

αi � βi � 2e, such that the logarithm constraint terms are between 1

and �∞. Another possibility for αi is discussed later. These

parameters also control the repelling force of the constraints. The

larger αi and βi are, the steeper the barriers will be.
The function has the following characteristics:
1.V�σB∕N � is continuous if theMRP switching is performed at the

unit sphere.
2. V�0� � 0.
3. V�σB∕N � > 0 ∀σB∕N ∈ fD − f0gg. Because −CE

i �σB∕N � < αi,
CI
j�σB∕N � < βj, and − ln �x� is a strictly decreasing function

�
−

1

NE

XNE

i�1

ln
�
−
CE
i �σB∕N �
αi

�
−

1

NI

XNI

j�1

ln
�
CI
j�σB∕N �
βj

��

> −NE ln �1� − NI ln �1� � 0 (36)

Given the fact that ln �1� σTB∕N σB∕N � > 0 ∀ σB∕N ∈ fD − f0gg,
thus V�σB∕N � > 0 ∀ σB∕N ∈ fD − f0gg.
4. V�σB∕N � → �∞ when CE

i �σB∕N � → 0 or CI
i �σB∕N � → 0.

Thus,V�σB∕N � is a proper Lyapunov function candidate. To derive
a control law, the time derivative of V is computed:

_V�σB∕N � �
4σTB∕N _σB∕N

�1� σTB∕N σB∕N �
�
−

1

NE

XNE

i�1

ln
�
−
CE
i �σB∕N �
αi

�

−
1

NI

XNI

j�1

ln
�
CI
j�σB∕N �
βj

��
� 2 ln �1� σTB∕N σB∕N �

×
�
−

1

NE

XNE

i�1

_CE
i �σB∕N �

CE
i �σB∕N � −

1

NI

XNI

j�1

_CI
j�σB∕N �

CI
j�σB∕N �

�
(37)

Using Eqs. (5) and (31)

_V�σB∕N � �
�
σTB∕N

�
−

1

NE

XNE

i�1

ln
�
−
CE
i �σB∕N �
αi

�

−
1

NI

XNI

j�1

ln
�
CI
j�σB∕N �
βj

��
� 2 ln �1� σTB∕N σB∕N �

×
�
−

1

NE

XNE

i�1

��B ~b��BN�N n̂�T
CE
j �σB∕N � −

1

NI

XNI

j�1

��B ~b��BN�N n̂�T
CI
j�σB∕N �

��
BωB∕N

(38)

Letting vR be

vR �
�
σB∕N

�
−

1

NE

XNE

i�1

ln
�
−
CE
i �σB∕N �
αi

�
−

1

NI

XNI

j�1

ln
�
CI
j�σB∕N �
βj

��

� 2 ln �1� σTB∕N σB∕N �
�
−

1

NE

XNE

i�1

��B ~b��BN�N n̂�
CE
i �σB∕N �

−
1

NI

XNI

j�1

��B ~b��BN�N n̂�
CI
j�σB∕N �

��
(39)

it is possible to write

_V�σB∕N � � vTR
BωB∕N (40)

Whenever σB∕N � 0, vR � 0. However vR can be zero for values

other than σB∕N � 0. This situation is studied in a later section.
Choosing

BωB�∕N � −f�vR� (41)

where f is given by Eq. (15)

_V�σB∕N � � −vTRf�vR� ≤ 0 (42)

According to Lyapunov’s direct method [26], because _V is

negative semidefinite, the steering law given by Eq. (41) is stable, but

not necessarily asymptotically stable (vR � 0 with σB∕N ≠ 0).

C. Constrained Tracking Problem

In the tracking problem, the goal is to steer σB∕R andωB∕R to zero.

The problem is, again, split into two parts: a steering law and a servo

subsystem controlling angular velocity. The servo is the same as used

in the unconstrained problem.
Consider the following Lyapunov candidate function V:D → R�:

V�σB∕R� � 2 ln �1� σTB∕RσB∕R�
�
−

1

NE

XNE

i�1

ln
�
−
CE
i �σB∕N �
αi

�

−
1

NI

XNI

j�1

ln
�
CI
j�σB∕N �
βj

��
(43)

The parameters αi > 0 and βj > 0 can be chosen as in the last

section. V is a proper Lyapunov candidate function for the same

reasons stated in the last section. Using Eqs. (5) and (31), and the fact

that ωB∕N � ωB∕R � ωR∕N , its time derivative is given by

_V�σB∕R� �
�
σTB∕R

�
1

NE

XNE

i�1

− ln
�
−
CE
i �σB∕N �
αi

�

−
1

NI

XNI

j�1

ln
�
CI
j�σB∕N �
βj

��
� 2 ln �1� σTB∕RσB∕R�

×
�
−

1

NE

XNE

i�1

��B ~b��BN�N n̂�T
CE
j �σB∕N � −

1

NI

XNI

j�1

��B ~b��BN�N n̂�T
CI
j�σB∕N �

��
BωB∕R

� 2 ln �1� σTB∕RσB∕R�
�
−

1

NE

XNE

i�1

��B ~b��BN�N n̂�T
CE
j �σB∕N �

−
1

NI

XNI

j�1

��B ~b��BN�N n̂�T
CI
j�σB∕N �

�
BωR∕N (44)
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Defining vT and uT such that

uT � 2 ln �1� σTB∕RσB∕R�
�
−

1

NE

XNE

i�1

��B ~b��BN�N n̂�
CE
j �σB∕N �

−
1

NI

XNI

j�1

��B ~b��BN�N n̂�
CI
j�σB∕N �

�
(45)

vT � σB∕R

�
1

NE

XNE

i�1

− ln
�
−
CE
i �σB∕N �
αi

�
−

1

NI

XNI

j�1

ln
�
CI
j�σB∕N �
βj

��

� uT (46)

then

_V�σB∕R� � vTT
BωB∕R � uTT

BωR∕N (47)

Choosing

BωB�∕R � −f�vT� −
vTu

T
T

vTTvT
BωR∕N (48)

where f is given by Eq. (15)

_V�σB∕R� � −vTTf�vT� ≤ 0 (49)

Because σB∕R � 0 implies vT � uT � 0, the second term in
Eq. (48) contains a 0∕0 indetermination. However,
ln �1� σTB∕RσB∕R� → σTB∕RσB∕R when σB∕R → 0. Thus it is possible
to write

uT →
σB∕R→0

σTB∕RσB∕Ra (50)

vT →
σB∕R→0

ρσB∕R � σTB∕RσB∕Ra (51)

The vector a and the scalar ρ do not depend on the attitude error.
Therefore

vTTvT →
σB∕R→0

σTB∕RσB∕Rρ
2�

�
σTB∕RσB∕R

�
2
aTa�2ρσTB∕RσB∕Rσ

T
B∕Ra

(52)

vTu
T
T
BωR∕N →

σB∕R→0
ρσB∕RσTB∕RσB∕Ra

TBωR∕N

�
�
σTB∕RσB∕R

�
2
aaTBωR∕N (53)

When σB∕R → 0, the expressions can be further approximated by
dropping higher order terms

vTTvT →
σB∕R→0

σTB∕RσB∕Rρ
2 (54)

vTu
T
T
BωR∕N →

σB∕R→0
ρσB∕RσTB∕RσB∕Ra

TBωR∕N (55)

Hence

vTu
T
T

vTTvT
BωR∕N →

σB∕R→0

ρσB∕RσTB∕RσB∕Ra
TBωR∕N

σTB∕RσB∕Rρ
2

� σB∕RaTBωR∕N

ρ
→

σB∕R→0
0 (56)

This derivation solves the 0∕0 indetermination and shows that the
second term can be modeled either by a linear function of the attitude
error or by 0 when σB∕R is small.

The vector vT can also be zero for other values of σB∕R. This
situation is studied in the following section.

VI. Convergence Analysis

It has been shown that the laws given by Eqs. (41) and (48) are
Lyapunov stable but not necessarily asymptotically stable. Consider,
for example, the special case in which vT � 0 and σB∕R ≠ 0.
Fortunately, it turns out that this occurs only with very specific
symmetry conditions.
To understand the geometric conditions that lead to this situation,

consider the following regulation problem (σR∕N � 0), depicted in

Fig. 3. Let there only be one exclusion condition, given by n̂ � ŷN.

The boresight vector is in the body x̂ direction: b̂ � x̂B. In this
qualitative description, the angle θmin is not relevant. The initial
attitude is a rotation of 180° about ẑN . Thus σB∕N � tan�180°∕4�ẑN .
The vector vR will be

vR � −σB∕N ln
�
−
CE
1 �σB∕N �
α1

�

− 2 ln �1� σTB∕N σB∕N � ��
B ~b��BN�N n̂�
CE
1 �σB∕N � (57)

A necessary (but not sufficient) condition for vR to be zero with a

nonzero σB∕N is σB∕N and �B ~b��BN�N n̂ to be antiparallel. The latter is

simply the vector b̂ × n̂ written in the body frame. In this particular
case, that situation is possible because the attitude is a rotation about

the ẑN axis and b̂ × n̂ is in the same direction. These saddle points can
occur whenever the problem has one of these perfect symmetries. If
the conic constraint is slightly tilted, the symmetry is broken, and no
saddle point is reached for that attitude initial condition.
In practice, due to perturbations and numerical noise, saddle points

occur very rarely. However, vR (or vT) can become arbitrarily small.
A heuristic solution to avoid these saddle points is to detect

whenever vR (or vT) is small while σB∕R is not and apply a very small
push to the spacecraft in any direction orthogonal to σB∕R in order to
break the symmetry. The heuristic algorithm is shown asAlgorithm1.
σ⊥B∕R is any orthogonal vector to σB∕R. The scalar algorithm
parameter γ is a small number to be chosen.

VII. Constraint Avoidance with Finite Control Torque

Even though the regulation control law given in Eq. (41) is
bounded in angular velocity, it might require infinite angular

Fig. 3 With perfect symmetry vR can be 0.

Algorithm 1: Saddle-point avoidance

1: if kvTk2 (or kvRk2) < 0.01 && kσB∕Rk2 > 0.01 then
2: vT (or vR)� γσ⊥B∕R
3: end if
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acceleration when close to a constraint. To study how the control

performs with limited torque capacity, Fig. 4 considers a very simple

planar scenario. The boresight vector is rotating on a plane, moving

forward toward a constraint cone. The inertia of the system about the

fixed rotation axis is Imax, the angular velocity is ω, and a constant

available torque is given by umax. The angle at time t0 is θ0 and the

initial angular velocity is ω0. The problem can be stated as follows:

with an inertia Imax, constant control torque umax, and initial velocity

ω0 � ωmax given, what is the initial angle θ0 to exactly stop the

rotation at the safety cone given by the angle θmin?
Because ω � −_θ, it is possible to write

_θf � 0 � umax

Imax

�tf − t0� − ωmax (58)

θf � θmin �
1

2

umax

Imax

�tf − t0�2 − ωmax�tf − t0� � θ0 (59)

Solving for �tf − t0� in the first equation and replacing into the

second

θ0 �
1

2

Imax

umax

ω2
max � θmin (60)

For a given spacecraft, Imax should be themaximum axis of inertia,

ωmax is themaximumvelocity used in the steering law in Eq. (15) and

umax should be, at most, the maximum torque available in the poorest

controllable direction. Given amaximum torque for eachwheel usmax
,

theminimum torque capacity for an RWarray can be computed using

torque envelopes. The algorithm for computing this minimum torque

capacity is given in Ref. [31]. The maximum control torque

magnitude that can be exerted by the RW array in the poorest

controllable direction (ucap) can be computed as follows:

ucap � min
n
ui;jmin; i; j � 1; : : : ; NRW

o
(61)

ui;jmin � usmax

XNRW

k�1;k≠i;j
jĝsk ⋅ p̂ijj (62)

p̂ij �
ĝsi × ĝsj
kĝsi × ĝsjk

(63)

umax used in Eq. (60) can be a fraction of the torque capacity in
Eq. (61).

umax � δucap; 0 < δ ≤ 1 (64)

Thus, for each exclusion constraint there is an angle θmin that
defines the exclusion cone (inner cone) and an angle θ0 that defines an
outer cone. Using θmin in the constraint functions in Eqs. (41) and
(48), the finite-torque control will not break through any exclusion
constraint as long as the initial attitude is outside any outer cone and
the angular velocity is not greater than ωmax.

VIII. Switching Between the Constrained
and Unconstrained Laws

An additional use of the result of the last section enables switching
between the constrained and unconstrained laws.When “far” from an
exclusion constraint, it is possible to dismiss its inclusion in the
control laws given by Eqs. (41) and (48). The angle θ0 in Eq. (60) is
used to evaluate this condition. The algorithm is shown as
Algorithm2. To avoid chattering, two different thresholds are defined
using a hysteresis or Schmitt trigger [32] approach with a gap ψ .
This algorithm is repeated for every single exclusion constraint.

Therefore, at a given instant of time, some constraints will be
considered while others will not. That means eliminating those
constraints that are not taken into account from Eqs. (39), (45),
and (46).
To reduce (but not eliminate) the discontinuitywhile switching, the

parameter αi in Eq. (46) can be chosen such that CE
i �σB∕N � � αi

when θi � θ0i. From Eq. (29), CE
i �σB∕N � � cos�θi� − cos�θmin i�.

Thus, picking αi as

αi �
���� cos

�
1

2

Imax

umax

ω2
max � θmin i

�
− cos�θmin i�

����e (66)

would make the logarithm in Eq. (65) switch continuously when
turning off the constraint algorithm.

IX. Numerical Simulation Results

To better show the behavior of the control algorithms introduced in
this paper, three different simulations are performed. First, a
regulation problem with spatial symmetry conditions aims at
showing the saddle-point avoidance algorithm and how symmetry is
related to the appearance of saddle points. A second numerical
simulation illustrates the tracking problem with inclusion and
exclusion constraints. Finally, a Monte Carlo simulation shows
constraint avoidance under worst-case torque-limited conditions.
Parameters are indicated in Table 1. Four identical RWs in a

pyramid configuration with an angle of 55° are used. The initial
attitude is a simple rotation of −135° about the x axis. The initial
angular velocity is full speed (ωmax � 2°∕s) in the same direction.
The four RWs are spinning at nominal speed (500 rpm).
Four exclusion constraints are used with an optical payload in the

y-body direction. One inclusion constraint (not used neither in the
regulation example nor in the Monte Carlo run), with an antenna in
the x-body direction is also setup.

Fig. 4 Worst-case scenario. The spacecraft is rotating in a fixed plane at

maximum angular velocity straight into a constraint. umax is the

maximum torque capacity in that direction.

Algorithm 2: Constrained-Unconstrained control switching

1: Compute �BN� from σB∕N using Eq. (3)

2: Compute θi � arccos�N n̂T
i �BN�TBb̂i�

3: if θi < θ0i �
1

2

Imax

umax

ω2
max � θmin i then

4: Use constrained control given in Eq. (48)
5: else if θi > θ0i � ψ then

6:

− ln
�
−
CE
i �σB∕N �
αi

�
→ 1

��B ~b��BN�N n̂�
CE
j �σB∕N � → 0 (65)

7: end if
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The servo subsystem given in Eq. (24) requires the computation of

the body-frame derivative ω 0
B�∕R. This derivative is numerically

computed using backward difference [28] and a 0.5-s-window

moving average in order to smooth the signal and avoid

unnecessary noise

A. Regulation Problem

In this subsection, a regulation problem is simulated, with spatial

symmetry relative to the initial conditions. The symmetric condition

is achievedwith four exclusion and no inclusion constraints. Because

the problem is completely symmetric relative to the initial conditions,

a saddle point is reached and Algorithm 1 is used with γ � 0.01 and

σ⊥B∕N � �−σ3 0 σ1 � if σ1 ≠ 0 or σ3 ≠ 0 and σ⊥B∕N � � σ2 0 0 �
in other case. Algorithm 2 is not used in order to show how the

constrained control works on its own. αi � βi � 2e are used.
Figure 5 shows the results. As can be seen in Fig. 5b, the steering

law generates a command of almost full speed in the opposite

direction (ω1d,ω2d,ω3d indicate the steering law commands) in order

to brake the spacecraft. This angular velocity damping is associated

to the existence of a saddle point. The situation is depicted in the

cylindrical projection [16] in Fig. 5c. In this figure, the tip of the

boresight vector in inertial space and the exclusion constraints (blobs)

are projected into a right ascension-declination 2-D space. The dotted

line indicates the path the unconstrained lawwould follow. The initial

condition is such that the boresight vector is rotating straight into the

near-south-pole constraint. The controller stops the rotation, reaches

a saddle point, and, after using Algorithm 1 to getting out of it, rotates

the spacecraft smoothly to the target.
For comparison, in Fig. 5d the fourth constraint is removed and the

symmetry is broken. Thus, no saddle point is reached and the control

is smoother. Furthermore, the spacecraft’s angular velocity is not

damped anymore because the symmetry is broken and the control

is actually applying a torque with a large component perpendicular

to the angular velocity. The vector vR is never zero except when

σB∕N � 0.
Finally, Fig. 5e shows the vector’s norm kvRk2 for the symmetric

case depicted in Fig. 5c. As can be seen, a saddle point is reached

when vR ≈ 0. Fig. 5f, on the other side, shows the vector’s norm

kvRk2 for the asymmetric case depicted in Fig. 5d. No saddle point is

ever reached in this case.

B. Tracking Problem

In this example, the four exclusion and one inclusion constraints

given in Table 1 are used. Algorithm 2 is used for switching between

the constrained and unconstrained laws using a gap of ψ � 5°.

In Eq. (60), umax is chosen to be 40%of theminimum torque capacity
computed with Eq. (61). With this parameters, the angular difference
between the inner and the outer cone is about 15°. αi is picked
according to Eq. (66) and βi � 2e.
The reference frameR is constructed as follows. In a circular orbit

around a perfectly spherical Earth, the direction r̂1 is the nadir

direction. r̂3 is the angular momentum direction, normal to the orbit,

and r̂2 � r̂3 × r̂1. Thus, �RN� � �N r̂1
N r̂2

N r̂3 �T . The orbital

parameters are shown in Table 2.
The results can be seen in Fig. 6. The cylindrical projections of the

exclusion and inclusion zones in Figs. 6c and 6d show that the
reference is tracked without violating any constraint.
The effect of using Algorithm 2 is shown in Fig. 7, where the four

exclusion constraint angles, θ1, θ2, θ3, θ4, and the constraint
minimum (θmin) and threshold (θ0) angles are plotted. The third and
fourth exclusion constraints in Table 1 are so far from the trajectory
that are not even considered by the control algorithm. The algorithm
switches on and off constraints 1 and 2 using the threshold given in
Eq. (60) and the hysteresis gap given byψ � 5°. After approximately
70 s, no constraint is used anymore and the purely unconstrained law
is used instead.

C. Monte Carlo Simulation

A 50-run Monte Carlo simulation is shown in Fig. 8. A regulation
problem is simulated 50 times for different initial conditions. The
goal of the simulation is to statistically test the condition given by
Eq. (60). To that end, different initial attitudes are generated such that
the boresight vector of the camera is always rotating straight into the
first exclusion constraint (see Table 1) at maximum angular velocity.
The first two exclusion zones in Table 1 are used. The initial

attitude is random. The boresight vector of a camera is also randomly
picked at some point on the outer cone of the first exclusion zone,
computed using Eq. (60). The initial angular velocity is then
calculated such that the boresight vector is rotating straight into the
constraint with magnitude ωmax.
In the cylindrical projection in Fig. 8d, every single trajectory starts

at the outer cone of the first exclusion constrained defined by the
angle θ0 in Eq. (60). The outer cone in Fig. 8d is represented by a
lighter blob around the exclusion zone numbered as 1. This is shown
in Fig. 8c, where the angle θ1 at the start of every run corresponds to
θ0. As can be seen, the constraints are avoided with bounded angular
velocity and limited torque (the maximum torque of each RW is
15 mN ⋅m, see Fig. 8b), as long as the initial attitude is outside the
outer cone. In Fig. 8c, the angle θ1 is never below θmin. This is a key
result, because it shows that it is possible to avoid piercing an
exclusion conic constraint, even with limited torque, if the initial

Table 1 Simulation parameters

Description Variable Value

Spacecraft �IS� [kg ⋅m2] diag�� 4.415 4.415 3.83 ��
RW �Iw� [kg ⋅m2] diag�� 0.03 0.001 0.001 ��

�Gs� 2
4 0.819 0 −0.819 0

0 0.819 0 −0.819
0.5736 0.5736 0.5736 0.5736

3
5

usmax
15 mN ⋅m

Initial conditions σB∕N 0
, ωB∕N 0

�−0.67 0 0 �T , �ωmax 0 0 �T
�Ω1 Ω2 Ω3 Ω4 �T0 � 500 −500 500 −500 �T rpm

Control constants �P� 10�I3×3�
�KI � 0.01�I3×3�

K1, K3 0.1

Exclusion constraints N n̂1,
Bb̂1, θmin 1 � 0 −0.34 −0.96 �T , � 0 1 0 �T , 10°

N n̂2,
Bb̂2, θmin 2 � 0 −1 0 �T , � 0 1 0 �T , 30°

N n̂3,
B
b̂3, θmin 3 � 1 1 0 �T , � 0 1 0 �T , 20°

N n̂4,
B
b̂4, θmin 4 �−1 1 0 �T , � 0 1 0 �T , 20°

Inclusion constraints N n̂5,
B
b̂5, θmin 5 � 1 0 0 �T , � 1 0 0 �T , 60°
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condition is outside an outer cone. The minimum angle defining this

outer cone is related to the torque capacity of the RW configuration.

It can be seen in Fig. 8a that the transient closed-loop rates may

temporarily exceed the maximum rate ωmax (this is seen as a small

peak in one run). Because a worst-case scenario with maximum

rates is shown, this occurs very rarely and only for very small

periods, and for small amounts. Moreover, it can be eliminated by
tuning the control constants.

X. Future Work

There are several questions that can be addressed in future work.
First, the algorithm for escaping from saddle points has been
explained heuristically, but not mathematically. Second, the
algorithm switching between constrained and unconstrained laws
still present some discontinuities. Future work might address further
smoothing techniques for switching between both. Third, the
tracking law is not necessarily bounded in angular velocity because
Eq. (48) has an additional not-necessarily-bounded term. However, it
has been seen in the simulations that the angular velocity remains
bounded. This condition needs further study and could be addressed
in the future. Fourth, this work deals only with static hard conic
constraints. Extending the results to dynamic hard conic constraints,
where the axis of the cone is not inertially fixed, might be possible.

a) Attitude   B/Nσ

c) Cylindrical projection of the 3-D unit ball
with symmetric conditions

e) Norm ||vR||2 with symmetric conditions f) Norm ||vR||2 with asymmetric conditions

d) Cylindrical projection of the 3-D unit ball
with asymmetric conditions

b) Angular velocity    B/Nω

Fig. 5 Regulation control performance illustration.

Table 2 Reference frame parameters

Description Value

Earth’s radius 6378.0 km
Earth’s gravitational parameter 398600.0 km∕s2
Right ascension of ascending node 0°
Inclination −90°
Orbit altitude 400 km
Initial argument of latitude 180°
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a) Attitude

c) Cylindrical projection of the exclusion zones d) Cylindrical projection of the inclusion zones

σ b) Angular velocity ωB/N B/N

Fig. 6 Tracking control performance illustration.

a) Angle between b1 and n1
ˆ ˆ ˆˆ

ˆ ˆ d) Angle between b4 and n4
ˆ ˆ

b) Angle between b2 and n2

Fig. 7 Tracking control performance illustration. Exclusion constraint angles. Exclusion zones 3 and 4 are not considered by Algorithm 2 because they

are “far” from the trajectory.
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Fifth, the repelling effect in the vicinity of a constraint given byαi and
βi has not been addressed and might be studied in the future. In other
words, these two sets of parameters can be used to change the
repelling force in the vicinity of the cones.

XI. Conclusions

Orientation-constrained attitude control is not a mature
technology. In fact, it is a lively active research topic with several
different proposed solutions. The strength of Lyapunov-derived
methods is that they have low complexity from an algorithmic point
of view. Indeed, few closed-form function evaluations are usually
required. Unfortunately, the current available Lyapunov-derived
techniques do not limit angular rate and control torque, which makes
them hardly applicable to real attitude constrained control problems.
Furthermore, they do not solve the tracking problem either. This
paper extends the benefits of using Lyapunov-derived methods
to rate-and-torque-bounded problems. Furthermore, the tracking
problem with orientation constraints is also solved.
Bounded angular velocity is achieved in the regulation problem

using a kinematic steering law to control the attitude of a spacecraft
with RWs under static hard conic constraints. The algorithm works
well with any number of constraints, even in highly symmetric
conditions. Bounded control torque can be achieved by extending the
exclusion cones to take into account the limited control torque
capacity of the spacecraft. The extended cones are not much larger
than the original exclusion cones, being a function of the minimum
torque capability of theRWarray of the spacecraft. As a corollary, this
result makes it possible, if desired, to switch from the constrained
steering law to the unconstrained steering law when sufficiently far
from the constraint cones.
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