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A B S T R A C T

The deployment dynamics of a spin stabilized electric sail (E-sail) with a hub-mounted control actuator are
investigated. Both radial and tangential deployment mechanisms are considered to take the electric sail from a
post-launch stowed configuration to a fully deployed configuration. The tangential configuration assumes the
multi-kilometer tethers are wound up on the exterior of the spacecraft hub, similar to yo-yo despinner configu-
rations. The deployment speed is controlled through the hub rate. The radial deployment configuration assumes
each tether is on its own spool. Here both the hub and spool rate are control variables. The sensitivity of the
deployment behavior to E-sail length, maximum rate and tension parameters is investigated. A constant hub rate
deployment is compared to a time varying hub rate that maintains a constant tether tension condition. The
deployment time can be reduced by a factor of 2 or more by using a tension controlled deployment configuration.
1. Introduction

The E-sail is a novel propellantless in-space propulsion concept with
great potential for fast interplanetary and near interstellar missions,
invented and proposed by Pekka Janhunen [1] at the Finnish Meteoro-
logical Institute. In this concept, a system of radially configured, thin,
charged tethers generate an electric field that interacts with solar wind
protons to harvest acceleration for spacecraft propulsion, demonstrated
in Fig. 1. This provides infinite specific impulse and eliminates the need
for traditional chemical propellants [2]. Only an electron gun is required
to maintain a positive electrostatic charge on the tethers. The positive
solar wind ions deflect of the results E-sail tether force field, causing a net
force onto the spacecraft. This solar wind propulsion concept is advan-
tageous in comparison to the solar radiation pressure (SRP) based solar
sail due to the effective area of the electrostatic forces and improved solar
radius dependence [3]. A single charged wire, microns thick, will create a
meters-wide effective area, expanding the area of influence of a minimal
structure. In comparison, SRP is directly dependent on the physical area
of the solar sail, providing many challenges in manufacturing, packaging,
and deploying large membranes [4]. The solar radius dependence of the
E-sail has been shown to decay the acceleration at 1=r7=6, slower than
that of the solar sail at 1=r2. This is encouraging for long distance mis-
sions to the outer planets and beyond. However, the E-sail is not operable
within a planet's magnetosphere, where the solar wind protons are
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deflected, whereas a solar sail still accelerates on the photons in this
region.

Multiple missions have been designed using the E-sail as the primary
propulsion systemwith encouraging results. A fast entry probe mission to
Uranus could be achieved in less than 6 years [5], the interstellar medium
reached in as little as 10 years, and a near Earth asteroid rendezvous
could be completed within a year [6]. Additionally, missions to the inner
planets, such as Venus andMars, could also be achieved in less than 1 and
2 years, respectively [7]. This provides adequate motivation to pursue
further development of the E-sail system. The electrostatic propulsion
theory enabling these missions has been studied in detail [3,8]. Addi-
tionally, work has been done concerning the sail shape under thrust [9]
and for solving secular drift in the operating sail spin rate using only
voltage modulation [10]. However, the coupled deployment dynamics of
the spacecraft and charged tether system is not well understood. Typi-
cally, the E-sail systems considered are composed of 20–100 tethers, up
to 20 km in length, with payload masses of 100–2000 kg. These tethers
are constructed using multiple micron-thick conductive tethers with
auxiliary loops, known as a Hoytether [11], to provide redundancy and
protect against micrometers. Construction of such tethers at the desired
length has been investigated with encouraging results [12]. One such
tether, 10m in length, was flown on the EstCube-1 [13] but was not
deployed [14]. Despite this, evidence supporting the feasibility of the
E-sail is continuing to develop, and steps should now be taken towards
er 2017
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Fig. 1. The electric sail is charged by a spin axis-pointed electron beam and deflects solar
wind protons to generate thrust. Artist concept image by A. Szames.
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understanding the deployment requirements for such a structure.
During flight, the tethers are spin-stabilized to maintain tensioned,

radial, straight line configurations. Therefore, at the end of the deploy-
ment phase, the spacecraft and each tether component must be rotating
at equal rates. This can be achieved through either a centrifugal
deployment or by actuating the tethers from rest using tether-mounted
thrust and spinning up the tethers and spacecraft after the tethers are
fully extended. In this paper, only a centrifugal deployment is considered.
Due to conservation of momentum, a centrifugally deployed tether sys-
tem modeled with a spherical pendulum (such as a yo-yo despinner)
asymptotically approaches the negative initial rate when left in free spin.
This fact can be leveraged for deployment by adjusting the tether length
or initial rate such that the final desired rate is reached, however for cases
where the tether length and system inertia is exceedingly large and pre-
determined, such as the E-sail, the initial rate required is not practical.
For those cases, energy and momentum must be continually input to the
system as the tethers are deploying to maintain desired body rates. The
primary challenge for a centrifugal E-sail deployment is providing the
momentum required to spin-stabilize the deployed structure while
minimizing risk and fuel consumption, presenting a non-trivial task.

Review of the literature reveals that many tethered space system
concepts have been presented and studied in the past, however none
quite resemble the structure proposed here. Kilometers-long space
tethers that have flown as of 2016 were single tether missions, such as in
the TSS, SEDS, and TiPS missions [15]. These single tether systems used
gravity gradients to actuate deployment and hosted much larger pay-
loads, making them poor analogs for the E-sail deployment dynamics.
Spin stabilized, multiple-tether systems have been proposed and studied,
such as the Terrestrial Planet Finder (TPF) and Submillimeter Probe of
the Evolution of Cosmic Structure (SPECS) concepts, however the
deployment requirements of these concepts are not necessarily compa-
rable to the E-sail. The SPECS mission, for example, proposes to leverage
conservation of momentum during deployment of the 3 tethers by
pre-spinning the system to 90 rpm in order to approach 0.01 rpm at full
deployment [16]. A quick calculation shows that a pre-spin method will
not be feasible for the E-sail deployment. Where an E-sail accelerating a
spacecraft at 1 mm/s2 could easily have an inertia of 108 kg m2, and the
rotation rate is limited by the tension capability of the tether and end
mass size, the required pre-spin rate could be on the order of 105 rpm.
Another space structure that somewhat relates to the E-sail is that of wire
booms for science payloads, as flown on THEMIS, RBSP, and MMS.
However deployment here is also not directly comparable, where the
wire lengths are on the order of tens of meters, and therefore do not
present the same momentum challenges as the E-sail. These systems also
use a spin-up strategy to take advantage of conservation of momentum
during deployment [17,18], and therefore offer little additional insight
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for E-sail deployment solutions.
In this paper novel deployment schemes are studied where the

spacecraft body rate is controlled using body-mounted devices. A body-
mounted strategy will be simpler than coordinating and commanding
individual tether-mounted devices to actuate deployment. Furthermore,
applying torque through the hub may be possible using commercially
available products, whereas tether end point thruster units are currently
under development. Two deployment schemes that use a body-mounted
energy source are considered. The first is a tangentially aligned deploy-
ment, where all tethers are mounted on a central hub oriented with the
spacecraft spin axis, taking advantage of the rotational dynamics to
deploy the tethers simultaneously. The second deployment scheme uses a
radially oriented deployment configuration. Such a configuration has
each tether housed on a separate spool and motor device. This paper
compares the dynamic deployment behavior of these two methods. In
previous work by the authors [19], the coupled rotational dynamics of
the spacecraft and E-sail system was modeled during the deployment
phase and initial control of these dynamics was investigated. This paper
continues and expands this work through parameter sensitivity analysis
and additional control schemes.

A proposed scheme for the E-sail mounts the tethers at a radial
orientation [20], where each tether is housed with an individual hub and
motor subsystem to conduct the tether reeling. An auxiliary tether would
line the periphery of the sail, and thruster units would interface between
the tether end points and auxiliary tether to control position and mo-
mentum. These components significantly increase the mass budget of the
E-sail and introduce a highly complex dynamics problem. In this paper,
an auxiliary tether is not included such that only a stand alone end mass
is accounted for. Additionally, the deployment is assumed to occur in a
single plane, reducing the problem to rotational degrees of freedoms
about the deployment normal axis and ignoring out of plane dynamics. It
is also assumed that the spacecraft has reached deep space conditions
before initiating deployment, the sail is not charged during deployment,
and the tethers do not adhere to each other as they deploy. Of interest is
the nominal performance for each deployment type, as well as the
sensitivity of this performance with respect to the body rate and spool
reel rate. Numerical simulations demonstrate the expected performance.

2. E-sail dynamics modeling

2.1. Spacecraft and E-Sail mass model

The mass budget of the E-sail and spacecraft system is selected such
that the characteristic acceleration of the E-sail at 1 Au from the Sun is
between a� ¼ 0:1� 1 mm s�2. At a� ¼ 1 mm s�2, significantly faster
missions to the outer planets and beyond are feasible [5]. The charac-
teristic acceleration is given by [20]:

a� ¼ fNL
m

(1)

where N is the number of tethers, L is the length of the tethers, m is the
total mass of the spacecraft, and f is the thrust per unit tether length at 1
AU from the Sun. Using the physical reference data for the E-sail [20],
this is known to be f ¼ 579:84 nN m�1 for an E-sail operating at 25 kV
nominal tether voltage. The total system mass is set to m ¼ 500 kg, a
smaller but feasible mass for an interplanetary science mission, to facil-
itate greater focus on the other free parameters of the system. It is
assumed that the maximum number of tethers is 100 and the maximum
length of a tether is restricted to 20 km [20]. However, this only slightly
restricts the range of E-sail sizes that will yield the desired characteristic
acceleration in Eq. (1). For a scenario where there is minimal end mass,
no remote devices, and minimal number of tethers with maximum
length, the tethers themselves are the largest contribution to the space-
craft system momentum. Therefore, accurate modeling of the E-sail
deployment requires that the tether inertia is not treated as negligible.



Fig. 2. Concept diagram for the tangential deployment scheme.
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Here, the tether is modeled as a length-varying slender rod with mass
equal to the current tether mass. The tether mass is described as a
function of the deployment length, where the mass per unit length per
tether is assumed to be λ ¼ 1:155� 10�5 kg/m [20]. Where ρ is the mass
per unit length for N number of tethers, ρ ¼ Nλ for a given sail size. The
mass of all deploying tethers is then described as:

mT ¼ ρl ¼ ρRϕ (2)

where l is the length as a function of time, which can be described in
terms of the unwrap angle ϕ and the spacecraft hub radius R for a
tangential deployment. The derived tether inertia for each case is
included in later sections. The end of each tether is mounted with an end
mass, also referred to as a payload mass, to enable centrifugal accelera-
tion. The spacecraft is modeled with the additional mass of the stowed
portion of the tethers placed along the circumference of the spacecraft.
Combining the time varying stowed tether contribution of the inertia to
the spacecraft, the inertia of the hub is expressed in the tether fixed S
frame, where only the third axis term will be of a contributor to the
planar deployment. This third axis term expressed in the tether frame is
the same for all deployment models, where mH is the hub mass.

Is33 ¼
1
2
mHR2 þ R2ðmT ;0 � mT Þ (3)

2.2. Equations of motion via Lagrange's equation

The equations of motion for each deployment concept are efficiently
determined using the Lagrange energy based approach. The kinetic en-
ergy of the system is

T ¼ TH þ
XN
i¼1

TT ;i þ
XN
i¼1

TE;i ¼ TH þ TT þ TE (4)

where subscript H refers to the spacecraft hub, T refers to the tethers, E
refers to the tether end mass, and i indicates an individual tether or end
mass. Assuming that all N tethers are deployed symmetrically at equal
rates and have identical construction, these summation terms can be
reduced to single lumped terms, where the energy contribution of the
tether system is equivalent to a single tether of equivalent mass. Simi-
larly, the energy contribution of the end masses is condensed. The kinetic
energy of each component is then written as follows:

TH ¼ 1
2
ω⊺

B =N ½Is�ωB =N (5a)

TT ¼ 1
2
ω⊺

S =N ½IT �ωS =N þ 1
2
mT

_RT ;C ⋅ _RT ;C (5b)

TE ¼ 1
2
mE

_RE⋅ _RE (5c)

where the expressions of the inertias, velocities, and rotation rates are
defined uniquely for the two cases in subsequent sections. The equations
of motion are then derived using Lagrange's Equation, and are validated
by checking for conservation of energy and angular momentum. Where
there are no potential energy sources, this is simplified to

d
dt

 
∂T
∂ _qj

!
�
 
∂T
∂qj

!
¼ Qncj (6)

where the non-conservative force is the torque applied on the spacecraft
hub. The contribution of this torque to each general coordinate equation
is determined as follows.

Qncj ¼ us⋅
∂ωB =N

∂ _qj
(7)
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3. Tangential deployment method and parameter analysis

In this concept, the tethers are deployed tangentially using a free
deployment, where the acceleration of the end mass advances the tether,
much like with a yo-yo despinner. This concept is illustrated in Fig. 2,
where the applied torque is represented with thrusters but could be
achieved in other manners. Each of the tethers are wrapped about a
central hub and are unreeled from the hub simultaneously. This method
takes advantage of the spin stabilized system dynamics to actuate the
deployment and relies only on the spacecraft spin rate. Therefore, control
of the spacecraft spin rate will couple with the deployment rate, creating
a more complex dynamical system but providing a free deployment
scheme. Additionally, transitioning the fully deployed tangential tethers
to a radial configuration must also be modeled. Therefore, the deploy-
ment is operated in two phases, an unwrap phase that releases the tether
length, and a hinging phase that transitions the tethers from the
tangential to radial configurations.

3.1. Equations of motion for tangential deployment

A dynamical model of the deployment is developed based on a
spacecraft hub based control scheme. This model is primarily concerned
with the momentum balance between the spacecraft hub, tethers, and
tether end masses, and therefore makes several simplifying assumptions.
The tethers and tether tip point-masses are assumed to behave in a
symmetrical fashion, and therefore are described using one set of state
parameters. The tether is treated as a time varying, straight slender rod
and tether flexibility is not considered in this first order analysis. The
parameters of this deployment method are defined in Fig. 3, which also
includes the reference frame definitions, where the S frame is a tether-
fixed frame, the E frame is a hub-fixed frame, and the N frame is in-
ertial. Here ϕ is the deployment unwrap angle, measured from the tether
tangent point's original position and ω is the spacecraft rate. Where the
rotation rates with respect to the inertial frame are defined as

ωB =N ¼ ωbs3 (8)

ωS =N ¼ �ωþ _ϕ
�bs3 (9)

The velocity vectors are determined as

_RE ¼ �Rωbs1 þ Rϕ
�
ωþ _ϕ

�bs2 (10)

_RT ;C ¼ �1
2
R
�
2ωþ _ϕ

�bs1 þ 1
2
Rϕ
�
ωþ _ϕ

�bs2 (11)

Treating the inertia of the tether as a slender rod, and applying the
parallel axis theorem, the inertia of the tethers with respect to an origin
located at the spacecraft center of mass is shown in Eq. (12), expressed in
the tether fixed S frame.



Fig. 3. Tangential deployment dynamics parameters.
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½IT � ¼

266666664

R3ρϕ �1
2
R3ρϕ2 0

�1
2
R3ρϕ2 1

3
R3ρϕ3 0

0 0
1
12
R3ρϕ3 þ Rρϕ

�
R2 þ 1

4
R2ϕ2

�

377777775 (12)

These expressions are used to define the kinetic energy expressions of
Eq. (5c). Then, the equations of motion are derived using Lagrange's
Equation to be as follows. The spacecraft rate,ω, the tether unwrap angle,
ϕ, and the unwrap rate, _ϕ, are the state coordinates of this system. The
hub applied torque is expressed as us.

1
24
R2
�� 3

�
4Rρþ 8mEϕþ 7Rρϕ2

�
ω2 þ 3

�
5Rρþ 8mEϕþ 7Rρϕ2

�
_ϕ
�þ

1
12
R2ϕ

�
18Rρþ 12mEϕþ 7Rρϕ2

�
_ωþ 1

12
R2ϕ

�
15Rρþ 12mEϕþ 7Rρϕ2

�
€ϕ ¼ 0

(13)

1
12
R2
�
3
�
4Rρþ 8mEϕþ 7Rρϕ2

�
ω _ϕþ 3

�
6Rρþ 8mEϕþ 7Rρϕ2

�
_ϕ
2�þ

1
12
R2
�
6ð2mE þ mH þ 2mT ;0Þ þ 12Rρϕþ 12mEϕ

2 þ 7Rρϕ3
�
_ωþ

1
12
R2ϕ

�
18Rρþ 12mEϕþ 7Rρϕ2

�
€ϕ ¼ us

(14)

This model only applies to the point where the tethers are fully
unwrapped. Following this point, the tethers must transition to a radial
orientation with respect to the hub, and this transition will be referred to
as the hinging phase. Using similar methods as those described above, the
hinge phase equations of motion are also determined. The parameters of
interest are defined in Fig. 4. The tether has freedom to rotate about the
connection point by angle β, where the desired dynamics will come to
rest at β ¼ 90deg. The deployment angle ϕ is now fixed constant. The
angular rate and velocities of the end mass and the tether center of mass
are now described in the S frame.

ωS =N ¼ �ωþ _β
�bs3 (15)
Fig. 4. Hinging from tangential to radial dynamics parameters.
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_RE;H ¼ Rϕbs1 (16)
_RT ;H ¼ �R cos βωbs1 þ 1
2
R
�ðϕþ 2 sin βÞωþ ϕ _β

�bs2 (17)

The tether inertia for this phase is determined where the hinging
position description is used. Only the third axis inertia is required in the
planar dynamics.

IT ;H33 ¼
1
3
R3ρϕ

�
3þ ϕ2 þ 3ϕ sin β

�
(18)

These expressions define the kinetic energy state of the system
expressed in Eq. (5c), and the Lagrange equations can now be used to
determine the equations of motion for the hinging phase.

1
2
R2ϕcosβ

�� 2ðmE þ RρϕÞω2 þ Rρϕ _β
2�þ

1
12
R2ϕ

�
12mEϕþ Rρ

�
12þ 7ϕ2

�þ 6ð2mE þ 3RρϕÞsin β
�
_ωþ

1
12
R2ϕ

�
12mEϕþ Rρ

�
12þ 7ϕ2

�þ 12Rρϕ sin β
�
€β ¼ 0

(19)

1
12
R2
�
24ϕðmE þ RρϕÞcos βω _β þ 6ϕð2mE þ 3RρϕÞcos β _β2�þ

1
12
R2
�
6mHþ12mT ;0þ12mE

�
1þϕ2

�þRρϕ
�
12þ7ϕ2

�þ24ρðmEþRρϕÞsin β
�
_ωþ

1
12
R2ϕ

�
12mEϕþ Rρ

�
12þ 7ϕ2

�þ 6ð2mE þ 3RρϕÞsin β
�
€β ¼ us

(20)

3.2. Constant spacecraft rate in tangential deployment

The deployment behavior is strongly influenced by the reference rate
maintained by the spacecraft. A constant spacecraft rate is the simplest to
implement and will be analyzed in detail here to provide a baseline case.
The constant rate case is further valuable in that it provides insights into
the deployment parameter relationships and behaviors. Additionally, it
may be desirable in that it provides a predetermined reference trajectory
and enables prediction of system behavior. Alternative objectives, such as
tracking to maintain a constant tether tension, require live self obser-
vations and live updates of the reference trajectory, however in subse-
quent sections it is shown that these time varying cases will improve
deployment time significantly. Looking at the tether tension expression:

T ¼ mEiR
�
ϕ
�
ωþ _ϕ

�2 þ _ω
�bs1 þ mEiR

�
ω2 � _ϕ

2 � ϕ
�
_ωþ €ϕ

��bs2 (21)

where there is no tension in the bsϕ direction, this portion of the expres-
sion can be set equal to zero. For a constant spacecraft rate, assuming the
tether deployment is not accelerating, this expression can be used to
prove that the deployment rate with respect to the spacecraft will be
equal to the spacecraft spin rate

ω ¼ _ϕ (22)

and this is observed in the numerical simulations shown in Fig. 6. Further
applying these assumptions to the tension expression, the tether tension
at a given point in the deployment is determined for an individual tether,
i, from:

T ¼ 4mEiω
2Rϕ (23)

Additionally, assuming perfect tracking and constant rates, the torque
required through the deployment duration is derived from the equations
of motion to be

us ¼ 1
12
R2
�
30Rρþ 48mEϕþ 42Rρϕ2

�
ω2
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It is notable that the tension and torque do not rely on the spacecraft
mass. These relationships can then be used to explore the sensitivity of
the system to E-sail parameter choices. Of particular interest is the effect
of the payload mass size on the rate requirements and deployment time.
Where the maximum allowable tension in the proposed Hoytether is
known to be 0.05 N, the maximum allowable spin rate can be determined

ωmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tmax

4mEiRϕf

s
(24)

where ϕf is the final ϕ after deployment. These expressions show that the
deployment tension and rate restrictions are only a function of the end
mass and tether length, and other parameters, such as the spacecraft mass
and tether mass, are not influential. Maps of these expressions as a
function of the tether length, which can be determined from the
deployment angle, and the payload end mass are displayed in Fig. 5.
These plots quickly demonstrate that for the constant spacecraft rate
case, where the tension increases linearly over time and the maximum
tension will be reached at the end of the deployment, the deployment
requires long deployment times for large end mass payloads. One pri-
mary advantage of the E-sail propulsion in comparison to others is the
relatively fast outer planet trajectory cruise times, which are on the order
of 6–10 years for outer solar system destinations. If the sail requires
nearly a year to deploy it will greatly impact the spacecraft acceleration
and trajectory. Where the acceleration is most effective closer to the Sun,
the E-sail deployment will most likely occur during the most propulsion-
effective period of the trajectory (the exception being a case where the
Fig. 5. Color maps of the maximum allowable spacecraft body rate and the corresponding torqu
interpretation of the references to colour in this figure legend, the reader is referred to the We
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deployment is executed as the spacecraft ballistically approaches an
inner planet flyby). This strongly motivates searching for time minimal
deployment schemes that will reduce the impact on the E-sail effective-
ness. Additionally, for smaller payloads, the torque required to reach the
desired tension is well outside the range of feasible torque capabilities for
modern spacecraft. This strongly motivates investigation of time-varying
reference rate trajectories that will minimize deployment time while not
exceeding torque capabilities.
3.3. Hub rate tracking feedback control analysis

Lyapunov stability theory provides an analytical method to evaluate
and develop controlled nonlinear dynamical systems using stability
definitions and Lyapunov functions [21]. Using this method, a feedback
control is developed that proves the hub-actuated, spacecraft-rate
focused controller will be applicable and stable for this system. A positive
definite Lyapunov function is chosen for this development and is defined
in (25). It is desired that the spacecraft rate is controlled by a hub applied
torque and tracks to a reference trajectory. Therefore, the Lyapunov
function is only a function of the tracking error, δω ¼ ω� ωr .

VðδωÞ ¼ δω2

2
(25)

The time derivative of the Lyapunov function is now taken:

_VðδωÞ ¼ δωδ _ω (26)
e required to maintain that rate and the time to deploy for the constant body rate case. (For
b version of this article.)
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To have asymptotic stability, the time derivative of the Lyapunov
function must be negative definite. To find a control that guarantees this,
(26) is set equal to a negative definite Lyapunov rate expression.

_VðδωÞ ¼ �Pδω2 ¼ δωδ _ω (27)

Simplifying yields:

�Pδω ¼ δ _ω ¼ _ω� _ωr (28)

where P is a positive gain. To determine the control torque, the expres-
sion for _ω as a function of torque, us, is substituted into Eq. (14) and us is
solved for, shown in (29).

us ¼ 1
24
R2
�� 3

�
4Rρþ 8mEϕþ 7Rρϕ2

�
ω2 þ 3

�
5Rρþ 8mEϕþ 7Rρϕ2

�
_ϕ
�þ

þ 1
12
R2ϕ

�
15Rρþ 12mEϕþ 7Rρϕ2

�
€ϕ�P

1
12
R2ϕ

�
18Rρþ 12mEϕþ 7Rρϕ2

�
δω

(29)

3.4. Spacecraft rate trajectory for tension maintenance

Alternatively, the spacecraft rate trajectory can be derived such that
the tension is maintained constant. This allows for a time-minimum
deployment, where the strength of material is treated as the limiting
factor. To determine this reference rate, the time derivative of the tension
expression is set equal to zero:
Fig. 6. Unwrap phase deployment of the tangentially deployed E-sail with a constant referenc
erences to colour in this figure legend, the reader is referred to the Web version of this article
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_T ¼ mEiR
�
_ϕ
�
ωþ _ϕ

�2 þ 2ϕ
�
ωþ _ϕ

��
_ωþ €ϕ

�þ €ω ¼ 0 (30)
Assuming there is no jerk, €ω ¼ 0, the relationship between the
spacecraft rate and the deployment rate is determined as

_ϕ ¼ 2ω (31)

substituting this into Eq. (30), the spacecraft rate required to provide
constant tension as a function of deployment angle is

ω2 ¼ Tmax

mEiR
�
9ϕ� 1

ϕ

� (32)

The expression above cannot be used alone as a reference, where the
expression is not defined for ϕ ¼ 0 and would exceed allowable rates for
small ϕ. Therefore, a maximum allowable rate must be identified for the
spacecraft and applied for the initial trajectory as a part of a piecewise
approach, defined in Eq. (33). For simulation purposes, the maximum
allowable spacecraft spin rate is set to 2.5 deg/s. The behavior for a
deployment case where this is used as the reference speed is now
compared to the constant rate case. Fig. 6 shows the behavior over time
for these two cases, where the E-sail size parameters are chosen such that
the characteristic acceleration is 0.1 mm/s2 and there are 20 tethers,
determining the tether length to be 4.3 km. The payload mass is set to a
modest 50 g to represent a dummy mass or independent sensor device.
These and other relevant parameters are listed in Table 1.
e trajectory (black) and a tension derived trajectory (red). (For interpretation of the ref-
.)



Table 1
Spacecraft and E-sail parameters implemented in example simulations.

a� mm/s2 N L km mEi kg mT kg mH kg

0.1 20 4.3 0.050 0.996 500
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ω ¼
	

ωconst ωnon�lin � ωmax

ωnon�lin ωnon�lin � ωmax
(33)

3.5. Numerical simulations

The tension optimized reference trajectory is shown to decrease the
deployment time from 7.02 days to 3.59 days, or to 51% of the con-
stant rate deployment time. This is somewhat consistent with the ex-
pressions of expected deployment rate, Eq. (22) and Eq. (31), which
predict the tension derived reference will deploy at twice the hub rate.
This is a notable savings and will be instrumental for deployment
design, where the greatest strength of this concept is it's potential for
implementing fast missions to the outer solar system and any time lost
during deployment may detract from that. The tensions achieved at
the end of the deployment are within 0.5% of each other, providing
nearly equivalent end-tension cases. It is notable that the maximum
torque capability needed to achieve the deployment is the same for
1
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����þ
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12R2ρlþ 24Rρ cos βl2 þ 7ρl3 þ 24R cos βlmE þ 12l2mE þ 6R2ð2mE þ mH þ 2mT ;0Þ

�
_ωþ

1
12

�
12R2ρlþ 18Rρ cos βl2 þ 7ρl3 þ 12R cos βlmE þ 12l2mE

�
β€¼ us

(38)
both cases, however the maximum tension case has a higher average
torque over the shorter duration. The hinge phase of both deployments
are shown in Fig. 7, and it's noted that the two cases have nearly
identical hinging behaviors. Although there is a difference in the
spacecraft rates at the start of deployment, at the moment hinging
begins, the tether deployment rates, _ϕ, are transferred to tether
hinging rates, and the net behavior is the same. The applied torque
ramps down as the tethers decelerate and transfer to the desired po-
sition and the hinging is completed smoothly in under 15min. This
shows that controlled hinging can be accomplished using the hub-
mounted control scheme.

4. Radial modeling and parameter analysis

Another method to deploy the E-sail is to use radially deploying
tethers, as seen in Fig. 8. Such a design requires tether reeling modules
to stow and control each of the 20–100 tethers individually, and
therefore requires 20–100 drive mechanisms. This introduces a large
power consumption during the deployment as well as synchronization
challenges. Additionally, the system still experiences significant mo-
mentum exchange and rate changes that couples with the unreeling
process. However, this method enables highly valuable independent
control of the tethers and decouples deployment failure risks of the
tethers from each other. Furthermore, substantial engineering devel-
opment has been done on a reeling mechanism [13]. Energy methods
are used to determine the equations of motion for the radial deploy-
ment case.
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4.1. Radial deployment equations of motion

A dynamics model of this concept is developed using the simplified
schematic illustrated in Fig. 9. Here β is the angle of deviation of the
tether from radial, and _β is the rotation rate of the tether. The tether
rotation with respect to inertial is

ωS =N ¼ �ωþ _β
�bs3 (34)

Then the velocity vectors are described in the S frame as

_RE;H ¼ � _lþ R sin βω
�bs1 þ �l� _β þ ω

�þ R cos βω
�bs2 (35)

_RT ;H ¼
�
1
2
_lþ R sin βω

�bs1 þ �12 l� _β þ ω
�þ R cos βω

�bs2 (36)

The radial tether inertia of the third axis is determined to be:

IT ;H33 ¼
1
12

ρl3 þ ρl

 �
R cos β þ 1

2
l
�2

þ R2 sin β2
!

(37)

Using these definitions for the model components, the energy of the
system is determined using Eq. (4). Using again the Lagrangian dynamics
formulation, the coupled equations of motion for the hub rate ω and
deflection angle β are
1
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(39)

4.2. Radial deployment with constant spacecraft rate case

Similarly to the tangential model analysis, the constant hub rate case
can be further analyzed for the radial model. However unlike the
tangential case, the deployment rate of the radial case is controlled by _l
which is assumed to be controlled by the spool motor and held constant.
Therefore, adjustments in the reference rate will not result in a time
savings. While including the deployment rate as a free variable is
possible, it adds significant complexity to the model and is left for future
work. For a radial orientation, the tether tension is written as

T ¼ mEi

�
R cos βω2 þ l

�
_β þ ω

�2�bsR � mEi

�
R sin βω2 þ 2 _l

�
_β þ ω

�þ l€β
��bsϕ
(40)



Fig. 7. The hinge phase of the tangentially deployed E-sail is shown to be the same for a constant reference trajectory (black) and a tension derived trajectory (red). (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 8. Concept diagram of the radial deployment scheme.

Fig. 9. Radial deployment dynamics parameters.
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where there is no tension in bsϕ, the tether normal direction, the following
are known:
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T ¼ mEi

�
R cos βω2 þ l

�
_β þ ω

�2�
(41)

�mEi

�
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�
_β þ ω

�þ l€β
��

(42)

Assuming the tether's position is not changing or accelerating, _β ¼ 0
and €β ¼ 0, Eq. (42) is used to solve for an expression of β:

β ¼ sin�1�2 _l
Rω

(43)

This result proves that for a radially deploying spin stabilized tether,
there must be some deviation from the radial orientation during
deployment. This is a significant result that implies a trade between the
deployment rate, spacecraft rate, and tether position deviation. Due to
the assumptions made in the derivation, there is some deviation from the
predicted position and the observed position in numerical simulations.
However, the prediction is within 2% accuracy. Furthermore, by this
definition, the quantity including the ratio of the linear deployment rate
to the spacecraft rate must be from 0 to 1 for the tether position to be
defined. This limits the possible rate configuration of the system.

4.3. Lyapunov control stability analysis

Similarly to the tangential case, the Lyapunov function for the radial
deployment is only a function of the tracking error, δω ¼ ω� ωr , and the
same Lyapunov function and derivation methods are applied here. To
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determine the control torque, the expression for _ω as a function of torque,
us, is substituted into Eq. (38) and us is solved for. This derivation as-
sumes a constant reference rate.
us ¼ 1
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(44)
4.4. Spacecraft rate trajectory for tension maintenance

Considering instead the time-minimum approach where the tension
force in the tether is maximized and maintained constant, assuming the
tether's position is not changing or accelerating, and that there is no jerk
on the spacecraft hub, the position of the tether can be predicted as

β ¼ sin�1�3 _l
2Rω

(45)

Which is similar to what is determined for the constant rate case, where
Fig. 10. Behaviors of the radially deployed E-sail with a constant reference trajectory (black) a
figure legend, the reader is referred to the Web version of this article.)

168
there is a factor of 2 in the constant expression and a factor of 3/2 here,
indicating that this reference trajectory maintains a smaller tension de-
viation than the constant case. The spin rate trajectory corresponding
with this is determined as a function of the current tether deployment
length and rate as

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Tmaxð2ρLþ mEi Þ þ ρmEi

_l
2

mEi ð4R2ρþ 23ρl2 þ 16lmEi Þ

s
(46)

4.5. Numerical simulation

The response of the system to this reference trajectory is illustrated in
Fig. 10 along with the constant rate case. The deployment rate, _l, in both
nd a tension derived trajectory (red). (For interpretation of the references to colour in this



Fig. 11. The hinging phases of the radially deployed E-sail deployment with a constant reference trajectory (black) and a tension derived trajectory (red) are slightly different due to the
difference in initial tether angle. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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cases is equivalent and constant, however, so the time to deploy is
equivalent. However, the tether angle in the time varying trajectory is
notably smaller, and the magnitude of the torque effort required is
smaller, despite maintaining a higher tension. This analysis does not
account for the additional spin up phase prior to deployment which is
assumed to be provided by the launch vehicle stages. The discontinuity in
the position angle occurs at the switch of the piecewise reference tra-
jectory, and is attributed to the derived expressions of the tether position
angle for the two cases. Eq. (45) and Eq. (43) show that the predicted
tether position will change, and the numerical simulation reflects this
discontinuity. As in the tangential case, due to the tether position
displacement, a hinging maneuver will need to be executed at the end of
the deployment. Fig. 11 illustrates the hinging for these two cases. The
constant rate case, which has more displacement from radial, is shown to
require a slightly more time and a greater torque effort to complete the
transition, but overall these two cases show similar behavior.

5. Torque feasibility

One important question to address is how feasible the torque re-
quirements are. The deployment torque can be applied to the hub
using a variety of methods, depending on the order of magnitude and
duration of torque needed for the deployment. Electric thrusters may
be ideal candidates for their range of thrust magnitudes and time
varying capabilities. Reaction wheels could also be used if fine control
is needed, however the momentum stored in the wheels would need to
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be actively removed. Chemical thrusters may also be used to achieve
large torques for large E-sails, however the time variations could only
be achieved using pulse width modulation thrust. The effects of such
an approach on the deployment dynamics must be investigated to
ensure stability. The mass of propellant needed for the electric or
chemical thruster options is a primary concern for feasibility. Knowing
the torque required as a function of time, the force provided at a given
radius from the spin axis is easily determined. Using Eq. (47), which
assumes a constant force and relates the propellant mass to the Isp and
force, the mass needed for each instant in time is found and numeri-
cally integrated over time. The constant force expression is used as a
rough estimation, where including full time varying force presents a
greater challenge than required.

_mp ¼ FT

gIsp
(47)

Assuming the thrusters are placed at a 1 m radius on the spacecraft
and an electric thruster Isp ¼ 2000 s, and considering the tangential
case presented earlier, the propellant mass for this example sail is mp ¼
21 kg for either constant rate or constant tension case. The previously
proposed mass budget allocates 1 kg for each tether thruster unit, and
therefore for the 20 tether case, the thruster mass described above is
comparable. Recognizing that the example sail shown here provides
small characteristic acceleration and larger sails will be desired, the
propellant needed to deploy a large sail was investigated and will be
hundreds of kilograms of propellant mass if a 1 m radius is used. This
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is significant mass, however, it can be quickly reduced if larger
moment arms are considered. Where the spacecraft hub might not
exceed 1–2m, the thrusters could possibly be mounted on deployable
booms to increase the moment arm to achieve more efficient torque.
Using 10m booms, the propellant mass would then be on the order of
10's of kilograms, achieving considerable mass savings. A final point to
address is again the idea of placing thrusters on the tether tips to
provide torque. While this configuration does provide the best
moment arm, the mass efficiency of these thrusters depends entirely
on the Isp, and locating the units at the tether tips restricts these to be
independently functioning thrusters, and the design of such units may
not be capable of achieving high Isp. Additionally, the flexible dy-
namics of tether tip-mounted thrust would need to be investigated to
ensure the concept behaves as desired.

6. Conclusions and future work

The two E-sail deployment schemes investigated in this paper
provide feasible means to actuate the deployment of an E-sail structure
using hub mounted torque only. The tangential deployment scheme
provides a simpler deployment for lower torque, however it removes
the ability to control the individual tether spooling. Deployment in a
truly radial configuration, where β � 0, is shown to require much
greater spin rates or much longer deployment duration than the case
where tethers are allowed to drift, and reasonable deployment and
spacecraft rates must have position drift. The advantage of an ideal
radial deployment is that a hinge phase would not be needed, however
in practical application, hinging will greatly reduce the deployment
time or hub spin rate requirements and will be needed. The spacecraft
rate trajectory, deployment rate, characteristic acceleration, and tether
tip mass are large contributors to the deployment dynamics and must
be chosen judiciously. Defining realistic boundaries for these param-
eters based on technology capabilities and mission requirements will
inform future simulations. Additionally, it is noted that E-sails
designed to have a greater number of shorter tethers have smaller
inertia and therefore require less energy and momentum to deploy.
However, these tethers would be in closer proximity to each other and
may present collision risks. State error estimation of the tether posi-
tions must be done to determine the closest allowable proximity of two
adjacent tethers. Future work will model each tether individually with
a unique state and determine the factors influencing variation in po-
sition to do this. An additional concern is that the flexible tethers may
exhibit in-plane bending despite internal tension. Model fidelity will
therefore be further increased by using a lumped-mass method to
incorporate the flexibility of the tethers. While many questions on the
finer behavior of the E-sail deployment remain, the baseline mo-
mentum and torque requirements of the hub actuated deployment are
now defined.
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