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This work explores single-agent reinforcement learning for the multi-satellite agile Earth-observing scheduling

problem. The objective of the problem is to maximize the weighted sum of imaging targets collected and downlinked

while avoiding resource constraint violations on board the spacecraft. To avoid the computational complexity

associated with multi-agent deep reinforcement learning while creating a robust and scalable solution, a policy is

trained in a single satellite environment. This policy is then deployed on board each satellite in a Walker-delta

constellation. A global set of targets is distributed to each satellite based on target access. The satellites communicate

with one another to determinewhether an imaging target is imaged or downlinked. Free communication, line-of-sight

communication, and no communication are explored to determine how the communication assumptions and

constellation design impact performance. Free communication is shown to produce the best performance, and no

communication is shown to produce the worst performance. Line-of-sight communication performance is shown to

depend heavily on the design of the constellation and how frequently the satellites can communicatewith one another.

To explore how higher-level coordination can impact performance, a centralized mixed-integer programming

optimization approach to global target distribution is explored and compared to a decentralized approach. A

genetic algorithm is also implemented for comparison purposes, and the proposed method is shown to achieve

higher reward on average at a fraction of the computational cost.

Nomenclature

A = action space
ai = action at interval i
B = spacecraft body coordinate frame
b = stored data in buffer
Dk = imaged and passed ground target set for space-

craft k
E = Earth-centered, Earth-fixed coordinate frame
G�si; ai� = generative transition function
g = ground station access indicator
H = Hill coordinate frame
h = data transmitted
i = decision-making interval
J = number of targets in Uk

k = spacecraft indicator
M = global ground target set
m = global target indicator
N = inertial coordinate frame
oi;m;k = binary target access variable

p = ground target priority
Q�si; ai� = state-action value function
R�si; ai; si�1� = reward function
ri = reward at interval i
Er = spacecraft position expressed in Earth-

centered, Earth-fixed coordinate frame
Hrj = ground target position expressed in Hill

S = state space
si = state at interval i
T�si�1jsi; ai� = discrete transition function
Tk = local ground target set for spacecraft k
Uk = upcoming ground target set for spacecraft k
Ev = spacecraft velocity expressed in Earth-

centered, Earth-fixed coordinate frame
xi;m;k = binary target distribution decision variable

z = battery charge
π�si� = policy
σB∕R = modified Rodrigues parameter attitude error

Ω = reaction wheel speeds
BωB∕N

= spacecraft angular velocity expressed in body
frame components

Subscript

θ = neural network approximation

I. Introduction

T HE need for constellation management tools and on board
satellite autonomy is increasing as the number of Earth obser-

vation constellations grows. Planet Labs [1], Spire Global [2], and
Capella Space [3] are just a few examples of companies with current
or upcoming Earth-orbiting constellations. The problem of schedul-
ing the sequence of observation, downlink, and resource manage-
ment tasks performed by a constellation of Earth-orbiting satellites
with three-axis attitude control capabilities is commonly referred to
as the multi-satellite agile Earth-observing (MSAEO) scheduling
problem. The satellites are referred to as agile because of their
three-axis attitude control capabilities that enable attitude maneuvers
about any axis, as opposed to only pitch and roll maneuvers. The
primary challenge associated with the MSAEO scheduling problem
is formulating performant, accurate, and computationally tractable
problems that are flexible and fast enough to modify and solve again
in the inevitable event that replanning is required. The solutions
should also be robust and scalable to support the addition and
removal of satellites, which is a normal part of sustained constellation
operations as new satellites are launched and older satellites are
decommissioned. In the case of performance, problem formulations
and solutions must be optimal with respect to observations collected
and downlinked while respecting the relevant resource constraints.
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Problem formulationsmust also be accurate, representing the real life
problem with sufficient fidelity to minimize the frequency in which
replanning is required due to mismodeling. Finally, problem formu-
lations and corresponding algorithms must be computationally trac-
table enough to solve during nominal operations and also fast enough
to solve again when replanning is required, such as when opportun-
istic science events present themselves.
Traditional approaches toMSAEO scheduling use some heuristic,

metaheuristic, or exact solution method [4]. Commonly used
optimization-based approaches include mixed-integer linear pro-
gramming (MILP) and/or metaheuristic optimization. An optimiza-
tion problem is formulated and solved over some planning horizon.
The solution to this problem is sequenced into commands and
uplinked to the spacecraft for open-loop execution. Metaheuristic
optimization algorithms such as genetic algorithms (GAs) have been
applied to Earth-observing scheduling with some success [5].
Genetic algorithms do not place constraints on the fitness function.
Theoretically, the fitness function could be a high-fidelity spacecraft
simulation that returns the number of collected and downlinked
targets. However, metaheuristic algorithms are sensitive to initializa-
tion, oftentimes do not guarantee global optimality, and can be slow
to converge (especially if a high-fidelity simulator is used). Mixed-
integer linear programming approaches are perhaps the most popular
in the literature due to optimality guarantees and speed of conver-
gence after the relevant data are preprocessed [6–11]. Spire Global
[2] and Planet [1] use mixed-integer linear programming for their
Earth-observing constellations. However, MILP formulations
require linear dynamics for power and data generation and consump-
tion that are a function of the decision variables [6,7,12]. Mixed-
integer nonlinear programming (MINLP) formulations can certainly
address these issues head on, but many MINLP formulations are
difficult to solve, especially if the problem is nonconvex [13]. There-
fore, approximations must be made to adhere to the linear require-
ments of a MILP formulation, but the degradation in model accuracy
may affect performance. Even if these approximations are made,
MILP formulations do not scale well to increasing numbers of
imaging targets and satellites as the number of decision variables
explodes. If replanning is required, the MILP must be solve again.
Even simple MILP formulations for Earth-observing (EO) schedul-
ing can take seconds to solve onmodern computing hardware, never-
mind limited space computing hardware. Valicka et al. [14] address
some of the issues associated with MILP scheduling for an Earth-
observing satellite (EOS) scheduling problem with cloud coverage
uncertainty, formulating a multistage stochastic MILP model for a
constellation of satellites to avoid replanning. The Scheduling Plan-
ning Routing Inter-Satellite Network Tool (SPRINT) addresses the
replanning problem by using a global planner for constellation-level
scheduling and local on board planners for unexpected opportunities
[15,16]. Chien et al. [17–20] use a process known as iterative repair to
modify the current working plan for on board replanning on the Earth
Observing One mission.
Reinforcement learning has emerged as a popular method for

Earth-observing satellite operations [12,21–25]; rendezvous and
proximity operations [26,27]; and small body guidance, naviga-
tion, and control [28,29]. Reinforcement learning (RL) has also
emerged as a potential solution for the MSAEO scheduling prob-
lem. Reinforcement learning agents, or policies, are trained to map
states to actions to maximize a numerical reward function [30]. The
trained policies can be uplinked to a satellite for closed-loop
execution, responding to the real states of the environment, which
means that replanning is inherent to an RL planning and scheduling
paradigm. Furthermore, the trained policies are often optimal or
near optimal with respect to the reward function. Many reinforce-
ment learning algorithms only require a generative model of the
environment, which allows for the use of high-fidelity simulations
to represent the problem. Finally, execution of trained policies is
typically very fast. Neural network approximations of the policy
can be executed in milliseconds on modern computational
hardware. While RL for single satellite EOS scheduling is gaining
traction in the literature, few authors have explored using RL
for MSAEO scheduling. Cui et al. [31] apply double Deep

Q-Networks for communication scheduling of a constellation of
Earth-orbiting satellites and demonstrate that their algorithm is
superior to a genetic algorithm in terms of performance and com-
putation time. Dalin et al. [32] formulate a scheduling problem for
multi-satellite tasking and apply themulti-agent deep deterministic
policy gradient (MADDPG) algorithm to solve the problem. The
performance of the MADDPG algorithm is shown to be compa-
rable to other solvers for the problem. While each of these authors
makes important contributions to RL for MSAEO scheduling, the
handling of resource constraints and their relationship to spacecraft
position, velocity, and attitude is quite limited. The authors do not
fully leverage the blackbox optimization capabilities of reinforce-
ment learning and rely on simple models of the problem. Further-
more, Refs. [31] and [32] do not demonstrate the scalability of their
algorithms to constellation parameters beyond those fixed during
training.
While RL poses many benefits for MSAEO scheduling, the pri-

mary challenge is the computational complexity of the multi-agent
problem, especially if a high-fidelity simulation is used. The most
general formulation of a multi-agent RL problem is a decentralized
partially observable Markov decision process (Dec-POMDP). How-
ever, a Dec-POMDP is nondeterministic exponentially complete
[33]. If free communication is assumed, a Dec-POMDP can be
reduced to a multi-agent Markov decision process (MDP) [34,35].
However, the size of joint action space in both Dec-POMDPs and
Multi-Agent Markov Decision Process (MMDPs) is exponential in
the number of decision-making agents. Past work has demonstrated
that a single agent can be trained in several hours to several days
[36,37]. A multi-agent reinforcement learning problem with compa-
rable simulation fidelity could take much longer to train because of
the exponential increase in computational complexity. To avoid the
increase in computational complexity, this work trains a decision-
making agent in a single-agent environment and deploys that agent
on board each spacecraft in a Walker-delta constellation. While this
problem formulation is suboptimal in terms of global reward because
the decision-making agents are competing for reward, the size of the
constellationmay be readily changedwithout requiring retraining. To
address this issue, this work adds higher-level coordination for the
target distribution so the agents are not competing for reward but are
instead working through their individual local target lists while
managing satellite resources such as power, on board data storage,
and reaction wheel speeds.
This work formulates a multi-satellite agile Earth-observing

scheduling problem where a constellation of spacecraft in a
Walker-delta formulation attempts to maximize the weighted sum
of targets imaged and downlinkedwhile avoiding resource constraint
violations concerning power, on-board data storage, and reaction
wheel speeds.AMarkovdecision process formulation of the problem
is created for the single satellite training process and multi-satellite
deployment. The single- and multi-satellite simulations are also
described in detail. Finally, the methods used to train the decision-
making agents are presented, and the various communication meth-
ods implemented in the multi-satellite scenario are described. The
twomethods of target distribution (i.e., first come, first served and the
mixed-integer programming techniques) are both described. Finally,
the performance of the trained agents is benchmarked for each
communicationmethod, each target distributionmethod, and various
Walker-delta constellation designs. This performance is compared to
that of a genetic algorithm as well.

II. Problem Statement

A. Single Satellite Agile Earth-Observing Scheduling Problem

Asingle satellite agile Earth-observing (SSAEO) scheduling prob-
lem is formulated for the purposes of training the decision-making
agents to avoid the computational challenges associated with multi-
agent reinforcement learning. The problem statement and corre-
sponding MDP formulation is described in detail in Ref. [37] but
will be summarized here for completeness. In the SSAEO scheduling
problem, a single satellite in low-Earth orbit attempts tomaximize the
weighted sum of imaging targets collected and downlinked while
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avoiding resource constraint violations regarding battery charge, on

board data storage, and reaction wheel speeds. The planning horizon,

or the total amount of time considered for planning, is equal to

approximately three orbits. More precisely, the planning horizon is

90 min long. The planning horizon is divided into 45 discrete plan-

ning intervals that last for 6 min each that comprise the set I. The
length of the planning interval is driven by the amount of time it takes

for the attitude control system to converge to the reference. At each

planning interval, the satellite can enter one of the operational modes.

The operational modes include battery charging, downlink, reaction

wheel desaturation, and imaging. A concept figure of the problem is

provided in Fig. 1.
In this formulation of the SSAEO scheduling problem, the satellite

has a set of targets available for imaging, ordered by the time the

spacecraft has access to the targets. This set of targets is referred to as

T. Each target has its own priority pwhere the maximum priority is 1

and the minimum priority is 3. The priorities are generated by

sampling from a uniform probability for each imaging target. A

subset of T that includes the next J upcoming targets is also formu-

lated, and this set is referred to asU. Each individual imaging target is

referred to as cj ∈ U. The setD includes all targets that have already

been passed or imaged by the satellite,

U � fcj ∈ �T −D�j ∀ j ∈ �0; J�g (1)

As the satellite orbits the Earth,U is continually updated such that

the satellite is only considering the next J targets for imaging, which

helps to decrease the size of the action space.

B. Markov Decision Process Formulation

A MDP is a sequential decision-making problem in which a

decision-making agent selects an action, ai ∈ A, in some state,

si ∈ S, following a policy, π∶S → A, which maps states to actions.

The agent receives a reward ri based on some reward function,

R∶S ×A → R. MDPs follow what is known as the Markov

assumption, which states that the probability of transitioning to the

next state is conditionally dependent on the current state and action

only. All information necessary to maintain this assumption should

be included in the state.

1. State

Approximating real-world problems as Markov decision proc-

esses can be challenging, largely due to the fact that real-world

problems have a mix between discrete and continuous states, and

many of the underlying dynamics contain discontinuities and hidden

states. The design of the state should closely adhere to the Markov

assumption, and inmany cases, the process of designing a state that is

Markovian enough is nontrivial. In the SSAEO, the state must

include information relevant to the collection and downlink of imag-

ing targets, as well as information relevant to the management of on

board resources. A description of the state, including information on

the normalization of each state for the purposes of function approxi-

mation, is provided in Table 1.

Geometric information for the purposes of imaging and downlink

is provided with Er, Ev, and Hrj . The left superscript denotes to the

coordinate frame the vector is expressed in. The selection of the Hill

frame,H∶fĥ1; ĥ2; ĥ3g, as the coordinate frame for the expression of

the target positions is made because the decision-making agent only

needs to know the position of the targets relative to itself to make

Fig. 1 SSAEO scheduling problem. A satellite in low-Earth orbit attempts to maximize the number of imaging targets collected and downlinked.

Table 1 State description

State Normalization

Spacecraft position (Earth-centered, Earth-
fixed frame), Er

Radius of Earth

Spacecraft velocity (Earth-centered, Earth-
fixed frame), Ev

Velocity of circular orbit at
Earth’s surface

Ground target j position (Hill frame), Hrj Radius of Earth

Ground target j priority, 1∕pj — —

L2 norm of attitude error, kσB∕Rk — —

L2 norm of angular attitude rate (Spacecraft

body frame), BωB∕N

— —

Reaction wheel speeds, Ω Maximum wheel speeds

Battery charge, z Maximum battery capacity

Stored data, b Maximum storage capacity

Data downlinked, h Maximum storage capacity

Eclipse indicator, q — —
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imaging decisions. The Hill frame origin is at the spacecraft position.

The first direction ĥ1 is in the orbit radius direction, and the third

direction ĥ3 is in the orbit normal direction. The second direction ĥ2

completes the right-hand coordinate system. The priority of each

target 1∕pj is included because it is an important component of the

weighting of the reward function. The priority is transformed to 1∕pj

by dividing it by p2
j. This is done to ensure the priority represented in

the state matches the reward function, which is discussed later.

Information on the current state of the attitude control system is

provided using kσB∕Rk, kBωB∕N
k, and Ω. This information is used

to determine when a desaturation mode is performed. Information

regarding the power system is provided using z and q, and informa-

tion regarding the on board data management system is provided

using b and h.

2. Action Space

An action space A is constructed for the SSAEO scheduling

problem that allows the decision-making agent to collect and down-

link science data as well as manage its resources. A mode-based

planning approach is implemented. At each decision-making inter-

val, the satellite turns on or off certain attitude references, instru-

ments, and transmitters for the duration of the 6min decision-making

interval. The continuous behavior of the satellite system is thus

abstracted using discrete actions, or modes. The action space, as well

as a description for each mode, is provided in the following:
1) Charge: The satellite points its solar panels at the sun, turning

off all instruments and transmitters to recharge the batteries.
2) Desaturate: The satellite points its solar panels at the sun,

turning off all instruments and transmitters. Momentum is mapped
to thrust commands, which the thrusters execute.
3)Downlink: The satellite points the transmitter at the Earth. The

transmitter is turned on, and data is downlinked if and when a ground
station is available.
4) Image target c0 ∈ U

..

.

6) Image target cj ∈ U: The satellite points the instrument at the
target, taking an image of the target when access requirements are
met. The data are stored on board the satellite.

3. Reward Function

A piecewise reward function R�si; ai; si�1� is developed for the

SSAEO scheduling problem to ensure that science data are collected

and downlinked and that resource constraint violations are avoided.

The reward function is provided in Eq. (2). To ensure the problem is

numerically well conditioned, the reward function is normalized to a

range of approximately [-1, 1]:

R�si;ai; si�1� �

−1 if failure

1

jIj
jTj

j

H�dj� if¬ failure ∧ ai isdownlink

0.1

jIj H�wj� if¬ failure ∧ ai is imagecj

0 otherwise

(2)

The failure condition is checked first. Failure occurs if the battery

is drained to zero charge, the data buffer is overfilled, or the reaction

wheel speeds exceed the maximum speed.
If a failure does not occur and the downlink action is taken, the

local target list is looped through to check if a target was downlinked

for the first time or not using the downlink variable associated with

target j, dj. The function that performs this check for imaging and

downlink is provided inEq. (3). This function checks to determine if a

ground targetwas imaged or downlinked for the first time or not. If so,

then 1 divided by the target priority is returned:

H�xj� � �1∕pj�if ¬ xji ∧ xji�1
(3)

A summation over Eq. (3) is performed and normalized by the
maximum number of decision-making intervals jIj to ensure the
reward contribution from downlinking targets does not exceed 1.
If no failure occurs and an imaging action is taken, Eq. (3) is

applied to that ground target using the imaged variable associated
with that image wj. This component of the reward is sized such that
the maximum amount of reward from imaging does not exceed 0.1.
Without the small reward bonus for imaging, the sparsity of the
reward can impede learning. Furthermore, the decision-making agent
needs a reward incentive to image when all downlink windows have
been passed but the end of the planning horizon has not yet arrived.

C. Multi-Satellite Agile Earth-Observing Scheduling Problem

The multi-satellite agile Earth-observing scheduling problem
extends the SSAEO scheduling problem to multiple satellites in a
Walker-delta constellation. Walker-delta constellations contain N
satellites are distributed evenly amongP orbit planes [38]. The orbital
planes are distributed at 360∕P deg intervals of the longitude of
ascending node. A phasing factor between the planes may also be
specified, which determines the offset in true anomaly between
satellites in adjacent planes. In this work, a phasing factor of 0 is
used. The satellites in the constellation have access to a global set of
targetsM. Furthermore, each satellite k has its own set of targets Tk,
but satellites may share targets withinM. In this work, the decision-
making agents attempt to maximize local reward. That is, each
satellite attempts to maximize the weighted sum of targets collected
and downlinked within its local target set Tk. The satellites update
their local target lists through communication with the other satel-
lites. This concept is demonstrated in Fig. 2.
Each satellite in theWalker-delta constellationmaintains an obser-

vation over its local state, ski ∈ Sk. The full state is now si �
fs1i ; : : : ; ski g, and the state space is S � S1× · · · ×Sk. The state

evolves based on the underlying system dynamics and actions taken
by each satellite. The action space is now a joint action space

represented as A � A1× · · · ×Ak. Each decision-making agent

takes actions following its local copy of the policy, aki � πk�ski �.
The generative transition function and the reward function are both
now functions of the complete state and joint actions. The generative

transition function is given by si�1; r
1
i ; : : : ; r

k
i ∼G�si;ai�, and the

joint reward function is given byR�s;a� � �R1�s;a�; : : : ; Rk�s;a��.
The local reward function of each agent is the same as it is for the
SSAEO scheduling problem, but the environment now enumerates
through M instead of Tk to check if a target was imaged or down-
linked for the first time or not. If another satellite has already imaged
or downlinked a target, no new reward is returned.

D. Simulation Architecture

The generative transition function, si�1; r
1
i ; : : : ; r

k
i ∼G�si;ai�,

of the MSAEO scheduling problem is implemented using a
high-fidelity astrodynamics and mission simulation tool called Basi-
lisk§ [39]. The components of the simulation architecture are identi-
cal for both the MSAEO and SSAEO scheduling problems, and a
summary of the simulation is provided in Fig. 3. The Basilisk
simulation and flight software (FSW) code iswritten in C/C++.Users
instantiate and interface with the simulation and FSW code using
Python scripting. This allows for both the speed of C andC++ and the
simplicity of a Python interface. Furthermore, this allows for the use
of reinforcement learning packages like Gym, which are imple-
mented in Python. The Basilisk simulation is wrapped with a Gym
environment,¶ which allows for decision-making agents to interact
with the simulation in a standardized manner. The decision-making
agents pass actions to the Gym environment, which turns dynamics
and FSWmodules and tasks on or off for each spacecraft and runs the
simulation. The Basilisk simulation includes three separate classes

§Data available online at https://hanspeterschaub.info/basilisk.
¶Data available online at https://www.gymlibrary.dev/.
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for 1) environment modules, 2) dynamics modules, and 3) FSW
modules. A single environment class is instantiated for the entire
simulation, but dynamics and FSW classes are instantiated for each
satellite. The architecture allows for the number of spacecraft to
easily scale up and down using only a few lines of code.
The environment class contains modules for gravity (the Earth and

sun), eclipse, each of the seven ground stations available for down-
link, imaging targets, an atmospheric density model, and a random
disturbance torque that helps build up momentum in the reaction
wheels. Basilisk uses a spherical harmonic gravity model expanded
to degree and order 10 for the Earth. The ground stations are selected
from NASA’s Near Space Network such that each satellite will
encounter a ground station at least once over the planning horizon
[36]. The dynamics class of each satellite contains modules for the
power system (i.e., batteries, solar panels, instrument and transmitter
power sinks, etc.), data management system (i.e., data buffer, instru-
ment, and transmitter), and attitude control system (reaction wheels
and thrusters). Furthermore, spacecraft locationmodules are instanti-
ated for each satellite and connected to the other satellites to deter-
mine when line-of-sight access occurs. Finally, the flight software
class of each satellite contains numerous tasks. The sunPoint, nadir-
Point, locationPoint, and trackingError task provide an attitude refer-
ence to the mrpControl task, which uses a Modified Rodrigues
Parameters (MRP)-based feedback control law to compute reaction
wheel torques. Finally, the rwDesat task contains the modules that
map reaction wheel momentum to thruster commands. The source
code for theMSAEOandSSAEOscheduling problemsmaybe found
on the develop branch of the basilisk-gym-interface library** under
the names multiTgtEarthEnvironment and multiSatMultiTgtEar-
thEnvironment. The satellite and simulation parameters are provided
in Ref. [36].

III. Methods

This section provides an overview of how the decision-making
agents are trained and deployed in the constellation. In the first step,

the decision-making agents are trained in the single satellite environ-

ment. The trained policy iswrappedwithin a safety shield that prevents

the decision-making agents from taking unsafe actions. Then, the

policy is deployed on each satellite in a constellation defined using a

set of Walker-delta parameters, imaging targets, and communication

assumptions. After the policy is deployed in the environment, the

performance subject to the Walker-delta parameters, distributed target

set, and selected communication assumption is evaluated. This perfor-

mance is then compared to the performance of a genetic algorithm for a

subset of theWalker-delta parameters explored. The deployment pipe-

line is summarized in Fig. 4. This section details the policy training,

policy deployment, and ground target generation blocks of the pipe-

line. The communication methods, which are contained within the

constellation parameterization block, and the genetic algorithm used

for comparison purposes are also described.

A. Single-Agent Training

The single-agent training process is described in detail in

Refs. [36] and [37] but will be summarized here. A process known

as MCTS-Train is used to generate a neural network approximation

of the state-action value function Qθ�s; a�. The state-action value

function following some policy is provided in Eq. (4), where γ is the
discount factor:

Q��s; a� � Eπ

∞

k�0

γkri�k�1jsi � s; ai � a (4)

The state-action value function is the expected value of the sum of

all future reward while following some policy. Effectively, it is a

measure of howgood a certain state-actionvalue pair is following that

policy. If one has computed the optimal state-action value function,

the optimal policy can be computed as follows:

π��s� � arg max
a

Q��s; a� (5)

MCTS-Train usesMonte Carlo tree search (MCTS), an online tree

search algorithm, to find optimal solutions to the planning problem.

Fig. 2 Multi-satellite agile Earth-observing scheduling problem. A constellation of satellites attempts to maximize the local weighted sum of imaging

targets imaged and downlinked.

**Data available online at https://bitbucket.org/avslab/basilisk-gym-
interface.
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At every step through the environment, MCTS runs a number of

simulations to compute an estimate of the state-action value function.

After all the simulations have been completed, the action that max-

imizes the state-action value function is selected. The environment

transitions to the next state, and the process repeats until the end of the

planning horizon. After the end of the planning horizon is reached,

the state-actionvalue estimates along themain trajectory of the search

tree are collected and added to a data set. This data set is then

regressed over with a feedforward neural network to compute a

neural network approximation of the state-action value function

Qθ�s; a�. The parameterized state action value function is used to

create a parameterized policy πθ�s� using Eq. (5).

B. Multi-Agent Deployment

The decision-making agents, or policies, are trained using the

MCTS-Train pipeline. After training, the policies are deployed on

board each satellite in theWalker-delta constellation. The policy on

board each satellite is wrapped with a safety shield that ensures the

decision-making agent only takes safe actions. For instance, if

decision-making agent attempts to take an image when the data

buffer is one image away from overfilling, the safety shield will

override the decision with a safe action (i.e., downlink). A visual

representation of the shield in action is provided in Fig. 5. Both the

decision-making agent and the safety shield receive an observation

from the environment. The decision-making agent passes an action

to the safety shield, which evaluates the observation and action to

ensure a safe action is passed to the environment. Note that the same

shield is used withinMCTS to guide the decisions during the search

process.

The details regarding the safety shield in this work are provided

in Ref. [36]. Harris et al. [25] demonstrate the first application of

shielded deep reinforcement learning for EOS scheduling. Shielded

deep reinforcement learning uses a linear temporal logic (LTL)

specification to monitor the MDP state and the actions output by

the policy, overriding unsafe actions if they violate the LTL specifi-

cation [40]. The safety shield for this problem is constructed using

a low-dimensional safety MDP that considers the states related to

resources on board the satellite. The state space of the safety MDP is

Ssafe � tumbling × saturated × low power × buffer overflow. Each
state component of the safety MDP can take a value of 0 or 1. A 0

indicates that a safety limit has not been exceeded, and a 1 indicates

that a safety limit has been exceeded. There are 16 possible states,

which are provided in Table 2. Safe states include ssafe � f1; 0; 0; 0g
or f0; 0; 0; 0g. If a safe state occurs, the trained policy’s action is

passed directly through the shield without modification. If an unsafe

Basilisk Simulation

Decision-Making Agent

actions observations, rewards

Environment S/C 0 Dynamics S/C 0 FSW

S/C K Dynamics S/C K FSW

sunPoint Task

nadirPoint Task

locationPoint Task

trackingError Task

mrpControl Task

rwDesat Task

Earth Gravity Body

Eclipse Model

Ground Stations

Sun Gravity Body

Atmospheric 
Density Model

Ground Targets

Disturbance Torque

LOS Model

Battery

Solar Panel

Imager

Transmitter

Data Bu er

Reaction Wheels

Thrusters

Gym Environment

Fig. 3 Multi-satellite Basilisk simulation architecture.
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state occurs, the corresponding safety action, shown in Table 2, is
passed to the environment instead.

C. Communication Methods

Communication between the satellites is used to locally update
which targets have been imaged and downlinked to help ensure that
the duplication of efforts is minimal. At the end of each decision-
making interval, the satellites use the selected communication
method to update their local lists of targets Tk. Four separate
communication methods are implemented: no communication,
single-degree line-of-sight communication, multi-degree line-of-
sight communication, and free communication. These are dis-
played in Fig. 6.

1. No Communication

The no communication model assumes that the satellites do not
update their local target lists. The local target sets Tk are never
updated to include which targets have been imaged or downlinked
by other satellites in the constellation.

2. Single-Degree Line-of-Sight Communication

The single-degree line-of-sight communication assumption is
meant to represent a constellation with limited crosslink communi-
cation capabilities. Line-of-sight connectivity between the satellites
is defined as a straight line connecting two satellites that does not
intersect theEarth plus 100 kmof atmosphere above the surface of the
Earth. Each satellite updates its local list of imaging targets with the
neighbors it is directly connected to using only one iteration of
communication. Imagine a scenario in which spacecraft A has line-
of-sight communication with spacecraft B but spacecraft B has line-
of-sight communication with both spacecraft A and spacecraft C.
Spacecraft Awill not receive information about which targets space-
craft C has imaged and downlinked; it will only receive information
about which targets spacecraft B has imaged and downlinked. This is
demonstrated in Fig. 6b.

3. Multi-Degree Line-of-Sight Communication

The multi-degree line-of-sight communication assumption is
meant to represent a constellation with near unlimited crosslink
communication bandwidth. If the previous example is used again,
spacecraft A will now receive information about which targets both
spacecraft B and C have imaged and downlinked.

4. Free Communication

The free communication case is meant to represent a constellation
with near constant access to communication resources, either ground
or space based. This could include a large network of ground stations
or a dedicated constellation for communication routing. In the free
communication assumption, every satellite has access to which tar-
gets have been imaged and downlinked in the global target setM, and
their local target lists are updated accordingly.

D. Ground Target Distribution

The set of M imaging targets is generated using uniformly
distributed unit vectors projected onto the surface of the Earth. This
work investigates two different methods for distributing the imag-
ing targets between the satellites in the constellation, one central-
ized and one decentralized. The first method distributes the imaging
targets solely based on access time in a first come, first served
manner where imaging targets may be shared between satellites.
The second method optimally distributes the targets using a mixed-
integer program, and no imaging targets are shared between sat-
ellites.

1. Ordered Access Target Distribution

The first method of target distribution creates a set of local targets
for each satellite ordered by the access time to that target. Targetsmay
be shared between satellites using this method. The algorithm for this
target distribution method is provided in Algorithm 1. Initial con-
ditions are first generated for each satellite. Then, each satellite is
looped through to create the list of local targets. The local target set is
initialized, the spacecraft trajectory is propagated for the duration of
the planning horizon, and the access times for each target are com-
puted. Then, for each interval and each target, if the satellite has
access to the target, the target is added to the local list.

Agent Environment

Shield

safe action

action

observation

observation

Fig. 5 Shielded agent deployment.

Table 2 Shield policy

Tumbling Saturated Low power Buffer limit Action

1 1 1 1 Charge
1 1 1 0 Charge
1 1 0 1 Desaturate
1 1 0 0 Desaturate
1 0 1 1 Charge
1 0 1 0 Charge
1 0 0 1 Downlink
1 0 0 0 ——

0 1 1 1 Desaturate
0 1 1 0 Desaturate
0 1 0 1 Desaturate
0 1 0 0 Desaturate
0 0 1 1 Charge
0 0 1 0 Charge
0 0 0 1 Downlink
0 0 0 0 ——

Fig. 4 Policy deployment pipeline.
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2. Mixed-Integer Programming Target Distribution

The second method of target distribution uses a mixed-integer

program to generate an optimal distribution of targets. The purpose

of using this method is to determine the impact that centralized

coordination has on performance. The objective of the integer pro-

gram is to maximize the weighted sum of targets distributed between

the satellites. This objective function is provided in Eq. (6), where I is

the set of decision intervals,M is the set of global targets, andK is the
set of satellites; xi;m;k ∈ f0; 1g is the binary decision variable for

whether or not a target m ∈ M is assigned to spacecraft k ∈ K at
interval i ∈ I, andpm ∈ R� is the priority of targetm; oi;m;k ∈ f0; 1g
is a binary variable representing the access of spacecraft k to targetm
at interval i. The integer program includes several constraints. The
first constraint, provided in Eq. (7), ensures that a ground target is
collected no more than one time over the planning horizon. The
second constraint, provided in Eq. (8), ensures that each satellite
collects at most one target at every decision interval. Finally, the last
constraint, Eq. (9), ensures that imaging targets are only collected
when access is available:

max
i∈I m∈M k∈K

xi;m;k

pm

(6)

such that

i∈I k∈K
xi;m;k ≤ 1 ∀ m ∈ M (7)

m∈M
xi;m;k ≤ 1 ∀ i ∈ I; k ∈ K (8)

xi;m;k ≤ oi;m;k ∀ i ∈ I; m ∈ M; k ∈ K (9)

a) No communication b) Single degree line-of-sight communication

c) Multi-degree line-of-sight communication

Global Data

d) Free communication

Fig. 6 Communication methods.

Algorithm 1 Ordered access target distribution

1: initialize set of initial conditions for K spacecraft.

2: for spacecraft k = 1:K,
3: initialize local target set Tk.

4: propagate spacecraft trajectory.
5: pull access times oi;j;k.

6: for i ∈ I,

7: for m ∈ M,

8: if oi;m;k,

9: Tk ∪ fmg 9:
10: end if

11: end for

12: end for

13: end for

14: assign local target sets to spacecraft initial conditions.
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Note that the target distribution program does not account for

data buffer, reaction wheel speed, and power constraints. While

data buffer and power constraints are straightforward to model

with an integer program if linearity assumptions are made regard-

ing their dynamics, reaction wheel speeds are not because of the

highly nonlinear dynamics involved. With this target distribution

method, the trained decision-making agents are in charge of

resource management, and the mixed-integer program is in charge

of supplying the decision-making agent with the next best target

to image.

The algorithm for theMIP target distributionmethod is provided in

Algorithm 2. Similar to the ordered access distribution, the set of

initial conditions is first generated. Then, the spacecraft trajectory is

propagated, and the access times are computed. The mixed-integer

program is then implemented using the Python-MIP†† optimization

package and solved using the default branch and cut algorithm. After

an optimal solution is generated, the target sets are assigned to each

satellite.

E. Genetic Algorithm

A genetic algorithm is implemented to compare the solution

method presented in this work to a method that optimizes over the

entire action space,A � A1× · · · ×Ak, of theMSAEO scheduling

problem. A genetic algorithm is a metaheuristic optimization

algorithm that searches for an optimal solution to a problem

through the biological processes of evolution and natural selection.

The algorithm begins by initializing a population of individuals,

which are sequences of actions for the MSAEO scheduling prob-

lem. Each individual within the population is then evaluated using

a fitness function. For the MSAEO scheduling problem, each

sequence of actions is simply input into the MSAEO simulator,

and the reward function in Eq. (2) is evaluated. The population of

individuals then mates, or combines their sequences of actions, to

produce a population of offspring, which then mutate to produce a

new population of individuals. The offspring are then evaluated

using the fitness function and added to the overall population. The

selection operator is applied to select the best members of the

population. This entire process then repeats for the specified

number of generations. The pseudocode for the genetic algorithm

is provided in Algorithm 3.

The genetic algorithm is implemented using the Distributed

Evolutionary Algorithms in Python (DEAP) evolutionary compu-

tational framework.‡‡ The framework has predefined operators

available for selection, mating, and mutation. DEAP also offers

the ability to define custom operators. The selection operator used

in this work is the selection tournament which returns the best

individual from a set of three individuals. The mating strategy used

is a one-point crossover operator with a probability of 0.25. The

population mutates using a uniform mutation operator where a

sequence of actions has a probability of 0.25 to mutate, and each

action in a mutating sequence has a probability of 0.3 to mutate.

IV. Results

A. Communication Methods

Todetermine how assumptions regarding communication between

satellites impact performance, several benchmark experiments are
performed for each communication method deployed in different
Walker-delta constellation designs. In the first experiment, each

communication method is tested in a constellation ofK satellites that
reside in a single orbital plane. In the second experiment, each
communication method is tested in a constellation of satellites dis-

tributed among P orbital planes.

1. Single-Plane Results

In the single-plane experiments, a constellation of K �
f4; 7; 10; 15; 20; 30; 40g satellites is deployed in a single plane at
45 deg inclination. The purpose of this experiment is to determine
how performance of the trained agent depends on intraplane commu-

nication. Analytical predictions about this performance can be
readily made based solely on whether or not the satellites in the
orbital plane can communicate with one another or not. First and

foremost, it is always expected that the free communication
assumption will outperform the no communication assumption.
The reason for this is obvious. However, the performance of the

line-of-sight communication assumption is not as easily predicted.
There will be some critical number of satellites K� that determines
whether or not the Earth occludes communication. ForK < K�, there
will never be line-of-sight communication between the satellites, and
the performance of the line-of-sight communication assumptions
should match that of no communication. For K > K�, the satellites
will always maintain line-of-sight communication with one another,
and the performance of the line-of-sight communication assumption
should match that of free communication.
Assuming a semi-major axis of 6871 km and occlusion occurring

for altitudes less than 100 km (due to atmospheric interference), the

critical number of satellites K� may be computed as follows, where
θ� is the angle between the right triangle formed by the satellite’s
radius and the occluding radius:

K� � π

θ�
� π

cos−1�RE � 100 km∕RE � 500 km� � 9.2 satellites

(10)

A diagram for this is provided in Fig. 7. Therefore, for nine or

fewer satellites, line-of-sight communication is identical to no com-
munication. For ten or more satellites, line-of-sight communication
will approximate free communication.
An experiment is performed for the described Walker-delta constel-

lations; 16 samples are generated for each combination of constellation

design and communication model. The results of this experiment are
provided in Figs. 8–10. In Fig. 8, two-dimensional and three-
dimensional views of the global and local reward are plotted. Global

reward is the sum of reward across all satellites, and local reward is the
average reward of each satellite following Eq. (2). The first observation
to note is that the analytical prediction regarding when line-of-sight
communication approximates no communication or free communica-

tion matches the experimental results. For the blue and orange curves
(4 and7 satellites), line-of-sight communicationapproximatelymatches
no communication. For the green, red, purple, brown, and pink curves

(greater than or equal to ten satellites), line-of-sight communication

Algorithm 2 Mixed-integer programming target

distribution

1: initialize set of initial conditions for K spacecraft.

2: for spacecraft k = 1:K,
3: propagate spacecraft trajectory.
4: pull access times oi;j;k.

5: end for

6: construct mixed integer programming (MIP) formulation.
7: solve optimization problem.
8: construct local target sets Tk.

9: assign local target sets to spacecraft initial conditions.

Algorithm 3 Genetic algorithm

1: initialize population.
2: evaluate fitness of each individual in population
3: for generation 1:N,

4: generate offspring by mating and mutating population.
5: evaluate offspring.
6: add offspring to population.
7: perform selection on population and offspring.
8: end for

††Data available online at https://www.python-mip.com/.
‡‡Data available online at https://deap.readthedocs.io/en/master/index.

html.
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approximatelymatches free communication. The second observation to

note is that the performance difference between the single- and multi-

degree line-of-sight communication assumptions is not discernible. The

two communication methods perform approximately the same. This is

due to the fact that one-way information sharing between neighbors

(i.e., single degree line-of-sight communication) is sufficient to ensure

neighboring satellites do not duplicate another satellite’s efforts.
In addition to observations regarding the performance of each

communicationmethod, observations can bemade about the depend-

ency of global and local reward on the size of the constellation and the

number of global targets. In general, more global targets correlates

with higher reward. For smaller constellations, the satellites become

saturated with imaging tasks, and the reward plateaus. Furthermore,

more satellites generally results in higher global reward. This intui-

tively makes sense. As satellites are added to the constellation, there

are more resources available to image and downlink targets. How-

ever, local reward decreases as more satellites are added to the

constellation. Because there is more competition for the available

imaging targets, and because many of the satellites share the same

imaging targets, local reward decreases with an increase in satellites.
In Fig. 9, the performance of the deployed agents is displayed in

terms of the unique number of imaged and downlinked targets. Note

that the shape of the unique number of imaged and downlinked

targets match one another as well as the shape of the reward function,

shape of the curves.
In Fig. 10, the percent of the collected imaging targets that are

unique is plotted. As expected, the no communication assumption

results in a low percentage of images that are unique. For a large

constellation of 40 satellites with only 200 imaging targets, less than

10% of the imaged targets are unique. For a small constellation of

four satellites with 3200 imaging targets, about 90% of the collected

imaging targets are unique. The percentage of unique targets for the

free communication case is heavily dependent on the size of the

constellation as well. Only about 50–80% of the targets imaged

assuming free communication in a constellation of 40 satellites are

unique. The reason for this is that the satellites are not coordinating

during a given decision-making interval. It is possible, and, depend-

ing on the priority of the target likely, that more than one satellite will

attempt to image the same ground target at the same decision-making
interval.

2. Multi-Plane Results

Duplicate benchmarks are performed for a Walker-delta constel-
lation with multiple planes. A set of P � f1; 3; 5; 7; 9g planes with
four satellites in each plane at a 45 deg inclination is benchmarked for
M � f200; 800; 1200; 1600; 2400g global imaging targets. A phas-
ing factor of 0 is used. Similar to the single-plane experiments, there
exists some number of planes P� where two satellites in adjacent
planes at the equator can communicate with one another. Using the
same assumption as the single-plane case, this number is computed as
follows:

P� � π

2cos−1�RE � 100 km∕RE � 500 km� �
1

2
K� � 4.6 planes

(11)

Therefore, four or fewer planes will result in no communication at
the equator. Five or more planes will result in communication at the
equator. To determine how the number of planes impacts perfor-
mance, four satellites per plane are selected such that there is no
intraplane communication. The global and local reward of the experi-
ment is provided in Fig. 11. The local reward plots in Figs. 11c and
11d demonstrate the impact of the interplane communication on
performance. For P � f1; 3g planes, line-of-sight communication
more closely matches that of no communication. However, because
there is intermittent communication where orbit lines intersect, the
line-of-sight communication assumption does not match the no
communication assumption like it did for the single-plane
experiments.
The number of unique imaged and downlinked targets is provided

in Fig. 12. As expected, the no communication assumption results in
the fewest amount of uniquely imaged and downlinked targets. The
free communication assumption results in the most amount of
uniquely imaged and downlinked targets.
Finally, the percent of imaged targets that are unique are provided

in Fig. 13. These experimental results match that of the single-plane
experiment. No communication results in the lowest percentage of
targets that are unique. Furthermore, more planes and more satellites
results in fewer uniquely imaged and downlinked targets because the
probability that two satellites will image the same target at the same
decision-making interval increases. This probability decreases as the
number of global targets increases, but the trend is still present.

3. Communication Method Discussion

Several insights may be drawn from the results of the communica-
tion experiments. First, it is evident that the communication
assumption has a significant impact on the performance of the con-
stellation. However, there is little to no difference between the free and
line-of-sight communication assumptions if there are enough satellites
in a single plane to communicate with one another. The more satellites
available in a plane, the more targets that can be imaged and down-
linked.However, the probability that two satelliteswill image the same
target increases aswell, and the overall efficiency of the constellation is
decreased, as evidenced by Fig. 10. If there are enough satellites in the
constellation such that line-of-sight (LOS) communication approxi-
mates free communication, then there will be an overlap in the targets
available to neighboring satellites (and even nonneighboring satellites
if the plane is dense enough). The proposed decentralized decision-
making architecture cannot ensure that the satellites do not image the
same targets, as the individual decision-making agents do not commu-
nicate intent to one another, but only communicate the targets they
have already imaged and downlinked. Therefore, the satellites will not
know what targets their neighbors are planning to image. This is a
significant limitation of the proposed decentralized decision-making
architecture. However, the results of the communication experiments
show that this limitation is not a significant issue if the constellation is
small enough. In that case, performance is limited bywhether or not the
satellites can communicate at all.

Fig. 7 The critical angle θ�, which determines when LOS communica-

tion is not possible.
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Another insight deals with the number of planes. When an equal
number of satellites are distributed among planes such that no intra-
plane communication is available, but interplane communication is
available, the performance of the constellation improves signifi-
cantly. This is because the satellites within the plane do not have to
worry about imaging the same targets as their neighbors and benefit
from information being propagated between the planes. When com-
paring the efficiency metrics from the single- and multi-plane results
(Figs. 10 and 13), it is evident that the multi-plane results are
significantly better. In this case, a coordinated approach would likely
have less of a potential to improve the results, unless the use of
coordination and intent communication can help improve resource
management for a single satellite, which can better prepare it for
future science opportunities.

B. Ground Target Distribution Comparison

The last set of experiments addresses the question of how best to
distribute targets. Two approaches are taken: one centralized and one
decentralized. The centralized approach formulates a MIP optimiza-
tion problem to distribute the targets between satellites such that no
targets are shared. The decentralized approach assigns imaging tar-
gets to satellites as they are available, and the first satellite to capture
and downlink the ground target receives the reward. For each com-
parison, the centralized approach uses a neural network trainedwith a
jUkj � 1. The decision-making agent only looks one target ahead.

The decentralized approach uses a neural network trained with a
jUkj � 3. The decision-making agent looks three targets ahead. The

reason for this is that the centralized distribution approach effectively

prunes the list of targets to provide the next best one to the decision-
making agent. Therefore, the lookahead capabilities provided by

jUkj � 3 are not necessary for the centralized approach.

1. Single-Plane Results

The first set of ground target distribution experiments compares
each method for varying numbers of satellites in a single plane. The

parameters of the experiment are the exact same as the parameters of

the communication experiments. For the decentralized distribution
approach, free communication between satellites is assumed. For the

centralized distribution, no communication between satellites is nec-

essary. For each initial condition, provided that the access intervals are
already computed, it takes on average 0.73 s to solve the MIP for the

smallest case of satellites (K = 4) and imaging targets (200). However,
it takes an average of 170 s to solve for the largest case of satellites (K=

40) and imaging targets (3200). The global reward for each method is

provided in Fig. 14. A general trend can be observed with these plots.
For large constellations (greater than or equal to 30 satellites), the

decentralized target distribution approach performs best for all num-

bers of global targets. For small constellations (fewer than or equal to
10) satellites, the centralized distribution method performs better for

almost all numbers of imaging targets. For constellations of 15–20

c) 2D view of local reward

a) 2D view of global reward b) 3D view of global reward

d) 3D view of local reward

Fig. 8 Global and local reward for the single-plane experiment.
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a) 2D view of imaged targets

c) 2D view of downlinked targets

b) 3D view of imaged targets

d) 3D view of downlinked targets

Fig. 9 Global numbers of unique imaged and downlinked targets for the single plane experiment.

a) 2D view b) 3D view
Fig. 10 Percent of imaged targets that are unique for the single-plane experiment.
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satellites, the centralized approach performs best for large numbers of

targets but worse for small numbers of targets.
In Fig. 15, more specific metrics are plotted to better understand

where and why each method performs best. In Fig. 15a, the percent
difference in reward between the decentralized and centralized meth-

ods is plotted. Blue indicates that the centralized approach is better,
and red indicates that the decentralized approach is better. In Fig. 15b,

the average number of targets in Tk divided by the total number of
steps is plotted for the centralized method. Avalue of 1 indicates that

each satellite has on average one target available for imaging at each
time step. Finally, Figs. 15c and 15d plot the percent difference in the

number of unique imaged and downlinked targets.
Several observations may be made regarding these plots. First, in

Fig. 15b, the centralized approach has almost one target on average
per decision interval in the bottom right region, which occurs when

small numbers of satellites and large numbers of targets are present.
Furthermore, this region of high target assignment shows up in

Fig. 15a. When the centralized approach has almost one target
available each decision-making interval, it performs better than the

decentralized approach. An interesting observation can be made
when low numbers of targets are available (fewer than 1000). In this

region, the centralizedMIP approach results in fewer than 0.5 targets
distributed to each satellite at each step on average. However, the

centralized MIP approach performs better than the decentralized
approach, which seems counter to the previous argument. An explan-

ation for this can be found in Fig. 10. For low numbers of targets, the

decentralized approach, even with free communication, results in a
relatively high amount of duplication because there is more competi-
tion for a given ground target. The centralized approach ensures
duplication is not an issue, so for very low numbers of targets, the
centralized approach outperforms the decentralized approach.
In Fig. 15c, it is shown that the decentralized approach always

results in more unique targets imaged. Two exceptions to this are in
the aforementioned bottom right region, where the centralized dis-
tribution method has about the same number of uniquely imaged
targets, and the left-hand region,where the centralized region has few
targets distributed but performs better. Finally, Fig. 15d provides the
rest of the story. In the areas where the percent difference in reward
favors the centralized approach, the centralized approach is shown to
have downlinked more targets on average. Intuitively, this makes
sense because the largest component of reward is downlink.

2. Multi-Plane Results

The second set of ground target distribution experiments repeats the
comparison between the centralized and decentralized distribution
methods for Walker-delta constellations with multiple planes. The
Walker-delta and ground target parameters are the same as those used
in the communication experiment. The global reward comparing the
two methods is provided in Fig. 16. The same trends observed for the
single-plane experiments are shown here as well. For large constella-
tions (more thanor equal to nine planes, 36 satellites), the decentralized
target distribution approach performs best for all numbers of global

a) 2D view of global reward

c) 2D view of local reward

b) 3D view of global reward

d) 3D view of local reward

Fig. 11 Global and local reward for the multi-plane experiment.
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a) 2D view of imaged targets 

c) 2D view of downlinked targets

b) 3D view of imaged targets

d) 3D view of downlinked targets

Fig. 12 Global numbers of unique imaged and downlinked targets for the multi-plane experiment.

a) 2D view b) 3D view
Fig. 13 Percent of imaged targets that are unique for the multi-plane experiment.
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targets. For small constellations (fewer than or equal to one plane, four
satellites), the centralized distribution method performs better for
almost all numbers of imaging targets. For constellations with three
to seven planes, the centralized approach performs best for large
numbers of targets but worse for small numbers of targets.

Metrics regarding the percent difference in reward, the average
number of distributed targets per step, the difference in number of
unique images, and difference in number of unique downlinks are
plotted in Fig. 17. The trends present in the single-plane experiment
are also present here. When the centralized distribution approach

a) 2D view b) 3D view
Fig. 14 A comparison of global reward for nominal vs MIP target distribution methods.

a) Percent difference in reward b) MIP target distribution statistics

c) Difference in unique images per satellite d) Difference in unique downlinks per satellite
Fig. 15 Nominal and MIP target distribution comparison metrics.
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results in roughly one target distributed to each satellite at each
decision-making interval, the centralized distribution method either
performs the same as or better than the decentralized distribution
method. The centralized approach also outperforms the decentralized
approach for low numbers of targets because it eliminates the issue of
target duplication. In all other regions, the decentralized approach

outperforms the centralized approach because of its ability to capture
missed targets. Finally, the decentralized distribution method results
in more unique targets imaged, but the centralized distribution
method results in more unique targets downlinked in regions where
there centralized target assignment averages are close to 1 or where
duplication following the decentralized approach is relatively high.

a) 2D view b) 3D view
Fig. 16 A comparison of global reward for nominal vs MIP target distribution methods.

a) Percent difference in reward

c) Difference in unique images per satellite

b) MIP target distribution statistics

d) Difference in unique downlinks per satellite

Fig. 17 Nominal and MIP target distribution comparison metrics.

HERRMANN, STEPHENSON, AND SCHAUB 129

D
ow

nl
oa

de
d 

by
 U

ni
v 

of
 C

ol
or

ad
o 

L
ib

ra
ri

es
 -

 B
ou

ld
er

 o
n 

Ju
ne

 1
7,

 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
73

6 



3. Target Distribution Discussion

The difference in the performance between the two target distri-
butions highlights the power of the approach taken in this work. The
centralized method of target distribution typically only improves
performance for constellations with small numbers of targets or
constellations with small numbers of satellites. In larger constella-
tions with many targets, the ordered access distribution algorithm
performs better because it providesmore flexibility in regard towhich
satellite collects the target. If one satellite must perform resource
management activities and miss a collection opportunity, another
satellite can collect the target later. This method is also more robust
to additions to target lists from other satellites within the constella-
tion. If the satellites in the constellation fly science detection algo-
rithms that can detect new targets, the satellites can communicate the
existence of the new targets to the other satellites in the constellation.
In this case, the other satellites simply need to determine when they
can access the new targets and add them to their target lists accord-
ingly. This is a much simpler process than the centralized approach,
which would need to reoptimize the target distribution problem.

C. Genetic Algorithm Comparison

To compare the selected solutionmethod to other state-of-the-art
methods, a genetic algorithm is used to solve the MSAEO sched-
uling problem. For this experiment, two Walker-delta configura-
tions are investigated. To keep the required computation to a
minimum, each Walker-delta configuration contains only four
spacecraft. With four spacecraft and jUj � 3, the size of the action

space is �3� jUj�4 � 1296. In the first experiment, each of the four
satellites is located in a single plane and has 3200 imaging targets
available. In the second experiment, the four satellites are distrib-
uted among four planes and have 2400 targets available. The
inclination of each satellite is 45 deg. Again, a phasing factor of
0 is used.
The results of the experiment are presented in Fig. 18. The genetic

algorithm is benchmarked for different numbers of population size
and generations. Each bar in the figure is the average of the GA
performance for 20 different trials, where each trial is a different
initial condition. The maximum of the z axis is set to the maximum
average reward of the RL algorithm for four satellites in a single
plane. This is done to provide a direct comparison between the two
methods. The results here show that the GA, using the selected
hyperparameters, performs worse than the RL methodology even
though the GA is searching for a globally optimal solution. The GA
likely needs more generations and a larger population size to con-
verge to the globally optimal solution. However, this would come at a
huge cost in terms of computation. For reference, the GA takes an
average of 1.23 h to complete 100 generations with a population size
of 200 using 64 cores of an AMDMilan CPUwith 240 GB of RAM.
At 400 generations and a population size of 800, this increases to an

average of 16.97 h. The GA would need days of computation to
converge to the solution found by the RL method for a single initial
condition. For reference, the RLmethod takes 1–2 days to generate a
neural network that can generalize to any initial condition, depending
on howMCTS is parameterized and how many initial conditions are
solved for.

V. Conclusions

This work explores the application of single-agent reinforcement
learning to multi-satellite constellation operations. To explore the
performance and scalability of this method, performance benchmarks
are collected for different communication assumptions and different
methods of target distribution in different Walker-delta constellation
designs. Four communication models are tested: no communication,
single-degree line-of-sight communication, multi-degree line-of-sight
communication, and free communication. The free communication
model always outperforms the no communication model because
satellites following the no communication model are constantly imag-
ing and downlinking the same targets, receiving no reward for the
duplication of efforts. The performance of the single- andmulti-degree
line-of-sight communication assumptions converge to either free com-
munication or no communication, depending on how frequently the
satellites may communicate. To test the impact on performance when
coordination is used, two separate target distribution methods are also
tested. The default target distribution method takes a decentralized
approach where satellites are assigned targets based on their access to
the imaging targets. The second target distribution method takes a
centralized approach where a mixed-integer program is formulated,
and the targets are optimally distributed among the satellites based on
their access. The centralized target distributionmethod performs better
than the decentralized approach when 1) the centralized approach
results in 0.9–1.0 targets distributed to each satellite at each
decision-making interval on average and2) there are few targets,which
results in high amounts of duplication for the decentralized approach.
In the majority of other cases, the decentralized approach is best
because it allows satellites to share imaging targets. If one satellite
misses a ground target because it must perform resource management
activities, another satellitemay image that target. Finally, theRL-based
solution method is compared to the performance of a genetic algo-
rithm. The RL-based solution method is shown to outperform the GA
for a fraction of the computation cost.
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