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The charged relative-motion dynamics and control of a two-craft system is investigated if one vehicle is performing

a low-thrust orbit correction using inertial thrusters. The nominal motion is an along-track configuration where

active electrostatic charge control is maintaining an attractive force between the two vehicles. In this study the

charging is held fixed and the inertial thruster of the tugging vehicle is controlled to stabilize the relative motion to a

nominal fixed separation distance. Using a candidate Lyapunov function, the relative orbit control law is shown to be

asymptotically stable. Analysis of the control system gains is performed in order to achieve a desired settling time and

damping ratio. The effects of uncertainties in the vehicle charges are also examined. Using numerical simulation, the

performance of the proposed control system is investigated for a formation in geosynchronous earth orbit.

Nomenclature

aθ = along-track acceleration of the deputy
Fc = electrostatic force between chief and deputy, N
�K�, �P� = feedback gain matrices
kT = coulomb constant
L, θ, ϕ) = spherical coordinates
mT = chief mass
md = deputy mass
n = mean orbit rate of the chief
Q12,
Q12e

= actual charge product (q1q2) and estimated charge
product (C2)

qi = craft charges, C
Ri = radius of spherical craft
rT = chief (or tug) position vector
rd = deputy position vector
Tt = thrust force on chief craft, N
uT = control acceleration due to chief thrusters
Vi = craft voltages, V
μ = Earth gravitational parameter
ρ = deputy relative position vector

I. Introduction

E LECTROSTATIC force actuation for spacecraft formation
control is a concept that is gaining significant attention in the

field of formation flying [1,2]. In these Coulomb formations active
charge control is applied to generate specified intercraft electrostatic
forces that are used to manipulate the relative positions of the nodes
within the formation [3]. In the presence of perturbations, such as
differential gravity, these forces may be used to maintain coherence
of multiple craft in close proximity [4]. Electrostatic forces have also
been proposed as a method to inflate a tethered structure where
individual nodes of a formation are connected by physical tethers
such as cables [5,6].
The prior work on charged relative-motion dynamics of clusters

of spacecraft only considers the relative-motion control of a
nonperturbed system [4,7,8]. The active charge control is expected to

be extremely fuel efficient (Isp values as high as 109–1012 s) and
require small, Watt levels of electrical power to operate [9]. These
concepts assume separation distances on the order of dozens of
meters. However, an unexplored research area is how do such
Coulomb spacecraft clusters perform orbit corrections. In particular,
if only a subset of cluster elements perform inertial thrusting then the
passive cluster elements must be tugged along with the electrostatic
forces. Of interest is how can the charged relative-motion dynamics
be stabilized, without resulting in collisions of the cluster members,
while a low-thrust orbit correction is being engaged.
A related scenario is considered in [10]. Here the use of

electrostatic forces to tug a space-debris object into a disposal orbit is
investigated. Using thrusters operating on the milliNewton level the
tug craft approaches and engages the debris object. Because the
electrostatic forces do not require a physical tether to exist between
tug and target the debris object can be reorbitedwithout requiring any
physical contact. This manner of interaction is similar to the gravity
tractor concept, which is suggested as a manner of modifying the
trajectory of an asteroid to avoid collision with earth [11]. Once the
electrostatic force is active between the tug and debris, the tug utilizes
low thrust to slowly pull the debris into a disposal orbit. Schaub and
Moorer [10] consider the effort required to achieve a disposal orbit
and investigates how the debris orbital elements change with time
under the influence of the tug. It does not, however, consider the
relative motion of the two craft during the reorbiting maneuver, nor
does it propose a feedback control system for maintaing the tug and
debris object in the necessary relative positions.
The current work presents the first discussion on feedback

stabilizing the charged relative motion while one cluster element is
performing a low-thrust orbit correction. The relative equations of
motion (EOM) between a tug (or chief) craft and a secondary craft
(called a deputy) are developed, and a control algorithm is proposed
to maintain a desired relative position using inertial thrusting on the
chief only. The applications of the current study include electrostatic
debris-reorbiting applications as well as maintaining an observation
craft in close proximity to a main craft that can provide real-time
visual information. If the main craft needs to reorbit as part of its mis-
sion requirements it may do so with the observer in tow. The fol-
lowing developments aremade in a general way so as to be applicable
to any charged two-craft formation in orbit, whether reorbiting a
debris object or maintaining an observer in close proximity. Due to
the limitations of the plasma shielding of electrostatic charge the
application of the electrostatic virtual-tether reorbiting concept
focuses on spacecraft in or near geosynchronous orbit.
The paper is structured as follows: First, the fundamentals of

relative dynamics with respect to a slowly accelerating Hill frame are
provided. The relative dynamics of the two craft in the rotating Hill
frame are developed considering gravitational, electrostatic, and
thruster effects. Next, a spherical coordinate frame is introduced and
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the EOMare developed in this spherical frame. The spherical frame is
then used to develop a control law using Lyapunov stability analysis.
Consideration of desired settling times and the nature of damping in
the system response is used to select gains for the controller. After
that, the effects of uncertainties in the craft charges on the control-
system response are investigated. Finally, numerical simulation is
used to illustrate the performance of the controller in maintaining the
desired relative position of chief and deputy.

II. Relative Orbital Dynamics During Orbit
Change Maneuver

A. Hill Coordinate Frame

The Local-Vertical-Local-Horizontal (LVLH), often also referred
to as the Hill coordinate frame, is briefly outlined in this section. A
rectilinear Hill frameH∶ fôr; ôθ; ôhg is attached to the tug (or chief)
orbital position as illustrated in Fig. 1. This rotating frame has its
origin coincide with the tug center of mass, and the orientation is
defined through

ôr �
rT
rT
; ôθ � ôh × ôr; ôh �

rT × _rT
jrT × _rT j

(1)

where rT is the inertial position vector of the chief, _rT is the inertial
velocity vector, and the short-hand notation rT � jrT j is used.
The direction cosine matrix (DCM) of the Hill frame relative to an

inertial frame, expressed through N ∶ fn̂1; n̂2; n̂3g, is defined
through [12]

�NH� � �N Ôr
N Ôθ

N Ôh
� (2)

Let ωH∕N be the angular velocity of the Hill frame relative to the
inertial frame, then Hill-frame centric deputy motion Hρ is translated
into inertial motion N rd using

N rd � N rT � �NH�Hρ (3)

where

Hρ �
"
x
y
z

#
(4)

and �x; y; z� are the Hill-frame centric cartesian deputy position
coordinates. The inertia and Hill-frame relative velocities are related
using the transport theorem [12]:

N _rd � N _rT � �NH�
�
d�Hρ�
dt
� HωH∕N × Hρ

�
(5)

where

d�Hρ�
dt
� Hρ 0 �

"
_x
_y
_z

#
(6)

Note the use of the short-hand notation for Hill-frame dependent time
derivatives:

Hd�ρ�
dt

≡ ρ 0 (7)

B. Relative Motion With Respect to a Constantly Accelerating Frame

Next, the classical Hill-frame relative orbital dynamics are
revisited considering that the Hill frame is no longer on a circular
orbit but on a slowly spiraling trajectory. This study only investigates
inertial thrusting to perform semimajor axis (SMA) changes, which
require thrusting in the along-track direction.
The deputy and chief inertial position vectors are related through

rd � rT � ρ (8)

The relative motion ρ is thus expressed through

ρ � rd − rT (9)

Note that this is a coordinate-frame independent vector formulation
of the relative motion. Taking two inertial time derivatives of Eq. (9)
yields

�ρ � �rd − �rT (10)

The inertial chief or tug EOM are given through

�rT � −
μ

r3T
rT �

Fc
mT
� uT (11)

where μ is the gravitational constant, and mT is the chief mass. The
first term of the right-hand side is the gravitational acceleration,
whereas Fc is the electrostatic force acting between tug and deputy,
and uT is the net control acceleration being produced by the chief’s
inertial thrusters. The inertial deputy EOM are

�rd � −
μ

r3d
rd −

Fc
md

(12)

where md is the deputy mass.
Substituting Eqs. (11) and (12) into Eq. (10) yields the vector

relative EOM

�ρ � −
μ

r3d
rd �

μ

r3T
rT −

Fc
md

−
Fc
mT

− uT (13)

Defining the control acceleration vector u as

u � −Fc
�
mT �md
mTmd

�
− uT (14)

the relative EOM are rewritten as

�ρ � −
μ

r3d
rd �

μ

r3T
rT � u (15)

This algebraic form is equivalent now to the classical Clohessy-
Wiltshire-Hill (CWH) equations of relative motion, where u would
be the deputy control acceleration. Note that the control acceleration
u contains both the impact of performing inertial thrusting as well as
the influence of the electrostatic attraction. To obtain �ρ we need to
take two inertial time derivatives. The inertial derivative of ρ is

_ρ � ρ 0 � ωH∕N × ρ (16)

If the chief vehicle is on a circular orbit then the orbital angular
velocity vector is simply

ωH∕N � nôh (17)

where n �
�����������
μ∕a3

p
is the mean orbit rate, and a is the tug semimajor

axis. However, because the tug is performing a low-thrust semimajor
axis orbit change, the mean orbit rate n is not constant, but rather
n � n�t� is a function of time. However, the deputy reorbiting isFig. 1 Illustration of Tug Rectilinear LVLH or Hill Coordinate Frame.

HOGAN AND SCHAUB 241

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
Fe

br
ua

ry
 1

8,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.5
61

18
 



assumed to not change the orbit plane of the deputy because only the
SMA is being changed. Thus, the orbit normal direction ôh is
inertially fixed, and the orbit angular velocity is written as

ωH∕N � n�t�ôh (18)

Note that the tug can maneuver relative to the deputy a general way.
Thus, if charge control is turned on during general three-dimensional
relative motion, then small deputy orbit-plane changes are possible.
However, these variations are ignorable because the nominal
configuration has the tug accelerating the deputy in the positive
along-track direction. This configuration provides the most efficient
means to increase the semimajor axis of the deputy, and thus raise its
orbit altitude.Taking the inertial derivative of Eq. (16) yields

�ρ � ρ 0 0 � 2ωH∕N × ρ 0 � _ωH∕N × ρ� ωH∕N × �ωH∕N × ρ� (19)

For the CWH equations where the chief motion is circular the orbital
angular acceleration _ωH∕N is set to zero and dropped from this
expression. For optimal SMA corrections the along-track
acceleration aθ of the deputy is given by

aθ �
Fc
md

(20)

The orbit angular acceleration is then approximated as

_n � aθ
rd

(21)

Knowing the actual along-track acceleration aθ it would be possible
to include this term. In practice, determining this orbital acceleration
term is nontrivial because the tug-deputy system is not aligned with
the along-track direction at all times. Further, the orbital acceleration
requires knowledge of the exact electrostatic force between the two
bodies. This can be very challenging to obtain in practice. However,
as the following analysis shows, this acceleration is a very small term
that can be neglected for the purpose of modeling the slowly
accelerating relative-motion dynamics. Thus, the question is for
what electrostatic force levels F�c will _n ≈ n2. Using Eqs. (20) and
(21) we find

F�c
mdrd

� _n ≈ n2 ⇒ F�c � n2mdrd (22)

Assuming a deputy craft with the mass md � 2000 kg, and the
geostationary orbit radius of about rd � 42; 000 km, we obtain
n � 7.335 · 10−5 rad∕s andn2 � 5.3801 · 10−9 rad∕s. This leads to
a critical acceleration force of F�c � 451.9 N. Because the
electrostatic forces are expected to be in the milliNewton range the
actual Fc are about five orders of magnitude smaller than this critical
acceleration force.
Alternately, consider the evaluation of Eq. (21) with the

aforementioned md � 2000 kg and rd � 42; 000 km along with a
thrust level of Fc � 1 mN. Here, _n � 1.2 × 10−14 rad∕s2, which is
of order n3. This justifies neglecting the difficult to measure _ωH∕N in
Eq. (19) resulting in the simplified relative-motion acceleration
expression

�ρ � ρ 0 0 � 2n�t�ôh × ρ 0 � n�t�2ôh × �ôh × ρ� (23)

using Eq. (18). Note that the orbit rate n�t� will decrease by about
1.1% as the deputy is reorbited from geosynchronous earth orbit
(GEO) to a 300 km larger super-synchronous orbit. Because the
slowly varying orbit rate is easy to measure it is kept as a time-
dependent parameter in our relative EOM.
Next, let us refine thevectorEOM inEq. (15), which do not depend

on a particular coordinate system, into the equivalent matrix form
which provides the ordinary differential equations for the Hill-frame
coordinates �x; y; z�. Assuming ρ is much smaller than rT the
differential gravity term is reduced to a linear form [12]. After
linearizing the �ρ term a modified version of the classical CWH
equations are obtained:

�x − 2n�t� _y − 3n2�t�x � ux (24a)

�y� 2n�t� _x � uy (24b)

�z� n2�t�z � uz (24c)

Note that the constant mean orbit rate n of the CWH equations is
replacedwith the osculating n�t� orbit-rate expression. The Coulomb
forcing and inertial thrusting influence on the relative deputy motion
with respect to the tug is embedded within the control acceleration u
expressions.

C. Relative Spherical EOM

The Cartesian form of the CWH equations are not very convenient
for the relative-motion control development in that the rectilinear
�x; y; z� coordinates couple both information regarding the sep-
aration distance as well as the relative orientation. Instead, a set of
spherical relative-position coordinates �L; θ;ϕ� are employed where
L is the center-to-center separation distance of the tug and deputy, θ is
the inplane rotation angle, and ϕ is the out-of-plane rotation angle.
The spherical coordinate frame S∶ fŝL; ŝθ; ŝϕg is illustrated in
Fig. 2.
The relative orientation angles θ and ϕ are a 3-2 Euler angle

sequence with respect to the Hill frame H. Carrying out the matrix
multiplication leads to the DCM mapping from the Hill to the
spherical frame:

�SH� �

2
4cos�ϕ�t�� sin�θ�t�� −cos�θ�t��cos�ϕ�t�� −sin�ϕ�t��

cos�θ�t�� sin�θ�t�� 0

sin�θ�t�� sin�ϕ�t�� −cos�θ�t�� sin�ϕ�t�� cos�ϕ�t��

3
5

(25)

The S and H position coordinates are related through:

L �
���������������������������
x2 � y2 � z2

q
(26a)

θ � arctan

�
x

−y

�
(26b)

ϕ � arcsin

�
−z
L

�
(26c)

and

2
4 xy
z

3
5 � �SH�T

2
4L0
0

3
5 �

2
4 L sin θ cos ϕ
−L cos θ cos ϕ

−L sin ϕ

3
5 (27)

To obtain the relative motion-rate relationships, Eq. (27) is
differentiated with respect to time, yielding

Fig. 2 Illustration of the Spherical S Coordinate Frame.
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2
4 _x
_y
_z

3
5�

2
4 sin θ cos ϕ L cos θ cos ϕ −L sin θ sin ϕ
−cos θ cos ϕ L sin θ cos ϕ L cos θ sin ϕ

−sin ϕ 0 −L cos ϕ

3
5
2
4 _L

_θ
_ϕ

3
5
(28)

This may be inverted to map the Hill-frame rates into spherical
coordinate rates as

2
4 _L

_θ
_ϕ

3
5 �

2
4 cos�ϕ� sin�θ� − cos�θ� cos�ϕ� − sin�ϕ�

cos�θ� sec�ϕ�
L

sec�ϕ� sin�θ�
L 0

− sin�θ� sin�ϕ�
L

cos�θ� sin�ϕ�
L − cos�ϕ�

L

3
5
2
4 _x

_y
_z

3
5
(29)

Substituting the kinematic transformations in Eqs. (27) and (28) into
the rectilinear EOM in Eq. (24), and performing significant algebraic
simplifications, leads to the following spherical relative EOM:

2
4 �L

�θ
�ϕ

3
5 � �F�L; θ;ϕ; _L; _θ; _ϕ�� � �G�L;ϕ��Su (30)

where

Su �

2
4uLuθ
uϕ

3
5 (31)

�F� �

2
64

1
4
L�n2�t��−6 cos�2θ�cos2�ϕ� � 5 cos�2ϕ� � 1� � 4_θ cos2�ϕ��2n�t� � _θ� � 4 _ϕ2�

�3n2�t� sin�θ� cos�θ� � 2 _ϕ tan�ϕ��n�t� � _θ�� − 2
_L
L �n�t� � _θ�

1
4
sin�2ϕ��n2�t��3 cos�2θ� − 5� − 2_θ�2n�t� � _θ�� − 2

_L
L
_ϕ

3
75 (32)

�G� �

2
4 1 0 0

0 1
L cos ϕ 0

0 0 − 1
L

3
5 (33)

Note that due to the kinematics of spherical coordinates this de-
scription is singular for large out-of-plane motions where
ϕ → �π∕2.

D. Electrostatic Force Model

In order to implement the dynamic model an expression for the
electrostatic force between two craft is needed. Here, the two bodies
will be treated as spheres. For an isolated sphere in a vacuum, the
charge to voltage relationship is [13]

V � kT
q

R
(34)

where R is the sphere radius, q is the charge on the sphere, and kT is
the Coulomb constant. When another charged object is in close
proximity, this voltage to charge relationship no longer holds, as the
second object will affect the charge distribution on the first. In this
application the voltages on the craft are considered to be held at
constant values.
The voltages on the two spherical craft are denoted as V1 and V2.

The potential on craft one is thus a function of the voltage on craft one
[Eq. (34)] and the potential due to the second sphere [13].

V1 � kT
q1
R1

� kT
q2
L

(35)

The potential on craft two can be obtained in the same manner.
The voltages on both spheres are linear functions of the charges,
expressed as

�
V1

V2

�
� kT

� 1
R1

1
L

1
L

1
R2

��
q1
q2

�
(36)

If the voltages on the spheres are held constant, the charges may be
solved for at any point in time by inversion of Eq. (36). Here, it is
assumed that a method is available to measure the craft voltages.
Devising a method for such a purpose is beyond the scope of this
paper.
This approach to charge determination given craft voltages is

relatively new in the field of Coulomb formation flying where craft
have traditionally been treated as point charges. More information
about using this position-dependent capacitance model is given in
[14]. Craft of arbitrary geometries will certainly not be perfect
spheres. However, spherical models are more appropriate than point
charge approximations as they allow for the effects of neighboring
craft to be included in the charge to voltagemodel. Furthermore, [15]
provides a method for determining effective spheres for arbitrary
craft geometries. Essentially, a spherical approximation is found that
most closely replicates the effects of some arbitrary geometric shape.
These effective sphere radii can then be used in Eq. (36) to determine
the charges on the craft.
Once the charges on each craft have been determined the

electrostatic force between the craft is computed as [13]

Fc � kT
q1q2
L2

(37)

Note that the force acts along the line of sight vector connecting the
center of the spheres. If the craft are charged to the same polarity the
force will be repulsive. If the craft are charged to opposite polarity
the force will be attractive.

III. Relative-Motion Feedback-Control Design
and Analysis

A. Nonlinear Control Development

For the relative-control algorithm design, the EOM in the spherical
frame are used. The spherical EOM are convenient because the L
parameter corresponds directly to the separation distance between the
craft. Careful actuation of the separation distance is critical as it must
be ensured that the two craft to do not impact each other. Consider the
state vectorX � �L θ ϕ�T. With a proper control law thrusting can be
used to enforce some desired relative position of chief and deputy
defined in terms of the spherical coordinates. Such a control law is
developed using the candidate Lyapunov function

V�X; _X� � 1

2
�X −Xr�T �K��X − Xr� �

1

2
_XT _X (38)

where �K� is a positive definite-gain matrix and Xr is a vector
containing some desired steady-state values forL, θ andϕ. Taking the
time-derivative of V yields

_V�X; _X� � _XT��K��X −Xr� � �X� (39)

Substituting Eq. (30) in for �X, the Lyapunov function rate is
expressed as

_V�X; _X� � _XT��K��X −Xr� � �F�L; θ;ϕ; _L; _θ; _ϕ��
� �G�L;ϕ��Su� (40)

To ensure stability, the Lyapunov function rate is set to the negative
semidefinite form
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_V�X; _X� � − _XT �P� _X (41)

where �P� is a positive definite gain matrix. Selecting Su to be

Su � �G�L;ϕ��−1�−�P� _X − �K��X −Xr� − �F�L; θ;ϕ; _L; _θ; _ϕ���
(42)

satisfies the negative semidefinite form in Eq. (41). Although this
ensures stability in the sense of Lyapunov, it does not guarantee
asymptotic convergence to the desired reference location Xr. To
prove asymptotic convergence, higher-order derivatives of the
Lyapunov function are used, which are evaluated on the set
_V�X; _X� � 0 [16]. The first nonzero derivative is

V
· · ·

�X; _X� � −2�X −Xr�T �K�T �P��K��X −Xr� (43)

which is negative definite in terms of X due to the fact that both �K�
and �P� are positive definite. Thus, the control law is asymptotically
stabilizing. Furthermore, due to the quadratic form of bothV and _V, it
is concluded that the controller is globally asymptotically stabilizing.
The control acceleration Su contains contributions from both

the intercraft Coulomb force and the inertial thrusters on the tug
satellite,

Su �

2
4 uLuθ
uϕ

3
5 � SFc

�
1

mT
� 1

md

�
�

STt
mT

(44)

Once the necessary control acceleration is known the thrust vector is
computed as

STt � mT
�
Su − SFc

�
1

mT
� 1

md

��
(45)

The control law developed here essentially linearizes the dynamics
by compensating for the nonlinear terms in the EOM. There are no
robustness guarantees provided for the control-law performance.
However, the largest expected source of uncertainty is in estimating
the voltages on the craft, which results in improperly modeled
electrostatic forces. To provide some study of robustness the effects
of improperlymodeled electrostatic forces are considered below.Due
to the close proximity of the relative motion in this case other studies
for controller robustness are warranted due to the high collision
probability. Further studies beyond charge uncertainties are left for
future work.

B. Gain Selection

In order for the electrostatic force to be functional as a virtual tether
the inertial thrust magnitudemust be small enough so that the craft do
not pull away from each other. With an electrostatic force magnitude
on the order of milliNewtons, an inertial thruster magnitude on the
order of Newtons would be too large to prevent the tug and deputy
from pulling away. The thrust magnitude and electrostatic force
magnitude must be on the same order. Thus, it is important to select
control system gains that will result in appropriate thrust levels.
If the �K� and �P� matrices are selected to be diagonal, each of the

three coordinates, as represented by Eq. (38), decouple as

�L� PL _L� KL�L − Lr� � 0 (46a)

�θ� Pθ
_θ� Kθ�θ − θr� � 0 (46b)

�ϕ� Pϕ
_ϕ� Kϕ�ϕ − ϕr� � 0 (46c)

The response of the system for each coordinate will mimic a simple
damped harmonic oscillator. This allows for the selection of gains to
control both the damped nature of the response and the settling time.
Consider the standard harmonic oscillator EOM,

�x� 2ζωn _x� ω2
nx � 0 (47)

where ωn is the natural frequency of the system and ζ is the damping
coefficient. Here, a slightly underdamped response will be
prescribed. To achieve this the desired ζ value is set at 0.925 for
each of the three spherical coordinates. Correspondingly, each of the
Pi gains is set at 1.85ωn. Note that the natural frequency of each of
the coordinate responses is directly controlled by the gainKi with the
relationship ωn;i �

������
Ki
p

. The values for the gainsKi are determined
by choosing a desired settling time for the system. The settling time,
denoted as Ts, is the time at which the response reaches and stays
within two percent of its final value. From the system dynamics, the
settling time is computed as [17]

Ts �
− ln�0.02

�������������
1 − ζ2

p
�

ζωn
(48)

Because of the relationship between the feedback gains Ki and the
natural frequency of the system response the necessary gain for any
desired settling time can quickly be determined. For a given settling
time with the slightly underdamped response specified above, the
gains for the system are

Ki �
�
− ln�0.02

����������������������
1 − 0.9252
p

�
0.925Ts

�2

� 27.829

T2
s

(49a)

Pi � 1.85
������
Ki

p
(49b)

The effects of the settling time on the control-system gains are readily
apparent. As the settling time is increased, the gains will decrease.
This is illustrated in Fig. 3, which shows the gains necessary to
achieve a variety of settling times with nearly critical damping. Note
that the desired settling times are plotted as a fraction of aGEOorbital
period. The rate of decrease for theK gain is higher than that of theP
gain. This can be attributed to the fact thatK decreases as 1∕T2

s , while
P decreases as 1∕Ts. This inversely proportional decay has important
implications on thruster requirements. As seen from Eqs. (42) and
(45), the necessary thrust magnitudes are directly affected by these
gains; if a quick settling time is desired, the required thrust
magnitudes will be much higher than those for a slower settling time.
To illustrate this point, consider the required initial thrust magnitudes
for a particular case where the initial position errors are
�L − Lr� � 10 m, θ � 10 deg, and ϕ � 10°. Assuming the craft
are stationary relative to each other at this epoch the resulting control
thrust magnitudes for this initial error are shown in Fig. 4. The thrust
magnitudes vary by several orders of magnitude depending on the
settling time, ranging from hundredths of a Newton to tens of
microNewtons.When considering a baseline settling time to serve as
the standard for the controller, this variation must be considered
carefully. Once the parameters have converged to their desired values
the thrust in theL direction will converge to an order ofmagnitude on
par with the Coulomb force acting between the two bodies, which
will be on the order of milliNewtons. Although thrust levels on the
order of milliNewtons are certainly achievable, it would be very
difficult to achieve a resolution accuracy down to the order of
fractions of a milliNewton. For this reason it is better to choose a
settling time that will keep that maximum thrust level on the order of
milliNewtons. Thrusters operating on this level should be able to
achieve the resolution accuracy necessary to offset the Coulomb
force once the relative craft positions converge to the desired
locations. Thus, from Fig. 4, a settling time of 0.1 orbital periods will
be selected as the baseline settling time.

C. Uncertainties in Craft Charges

The craft charges will likely be the most uncertain factor in an
implementation of the control law.Obtaining a very accurate estimate
of the charges will be difficult, and it is possible that the exact values
may be unobtainable. The control system formulation assumes that
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the charges on the craft are known exactly. Naturally, it is of interest to
determine the effects on the control-system response when the craft
charges are modeled imperfectly. This is an important consideration
because in actual implementation the charges will not be known
precisely. When the charges are not modeled correctly the closed-
loop response of the control system for the separation distance L is

�L� PL _L� KL�L − Lr� �
kT
L2
�Q12 −Q12e�

�
1

mT
� 1

md

�
(50)

where kT is Coulombs constant, Q12 is the actual charge product
(q1q2) of the two craft, and Q12e is the estimated charge product
implemented in the controller. It is desired to obtain information
about where the equilibrium separation distance is with improperly
modeled charges. To do so the equilibrium conditions �L � _L � 0 are
applied. For compactness of notation, introduce

μ � kT
�

1

mT
� 1

md

�
(51a)

ΔQ � �Q12 −Q12e� (51b)

The closed-loop equilibrium positions are found by solving

KL�L − Lr� �
μ

L2
ΔQ

With minor rearranging, a third-order polynomial is obtained,

KLL
3 − KLLrL2 − μΔQ � 0 (52)

The roots of this polynomial yield the equilibrium separation distance
of the deputy relative to the chief. Note that only positiveL values are
realizable, based on theway the coordinate frame is defined. Because
the L-direction is defined from the deputy to the chief, a negative L
value can never be obtained. Thus, we are concerned only with the
existence of positive roots of the polynomial. The existence of such
roots can be determined using Descartes rule of signs.
The sign of ΔQ plays an important role in determining the

existence of positive roots. First, consider the case when the control
system overpredicts the craft-charge magnitudes. That is, the actual
magnitudes of the craft charges are smaller than implemented in the
control system. Because Q12 is negative ΔQ will be positive. In the
polynomial, only one sign change will occur between the L3 and L2

terms. As a result it is certain that there will be one positive root,
meaning the control system will drive the system to a positive value.
The magnitude of this equilibrium L is dependent on the feedback
gain, the charges, and the craft masses.
Different behavior is obtained when the charge magnitudes are

under-predicted. When the controller assumes smaller charge
magnitudes than the craft actually experience, ΔQ is negative. Now,
the polynomial will have two sign changes. Thismeans that therewill
be either zero or two real positive roots. The possibility of no
equilibria is intriguing as it implies the control system may fail to
prevent a collision between the deputy and chief. To determine at
which point the transition between zero and two positive roots occurs,
the condition where Eq. (52) and its derivative both equal zero
simultaneously is considered. The derivative of Eq. (52) taken with
respect to L is

3KLL
2 − 2KLLrL � 0 (53)

which has a root at

L � 2

3
Lr (54)

Plugging this value back into the original polynomial yields the
necessary gain that will ensure the existence of positive real roots. In
order to ensure that an equilibrium exists in the closed loop system
response, it is required that

KL ≥
27μjΔQj

4L3
r

(55)

Interestingly, the requirement on the gain is dependent on the
reference separation distance Lr and the error in the estimate of the
craft charges. The required gain actually decreases with the cube of
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Fig. 4 Effects of settling time on initial thrust magnitudes for errors of
�L −Lr� � 10 m, θ � 10°, and ϕ � 10 deg.

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10 7

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2
x 10 3

Fig. 3 Effects of settling time on control-system gains.
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the reference distance. As a result much higher gains are needed to
ensure an equilibrium exists when the craft are desired to fly close
than when they are desired to fly far apart. In order to properly bound
KL, some knowledge is needed regarding what errors may be
expected in the estimation of the craft charges.
To illustrate the importance of proper gain selection equilibrium

locations are determined for an example case as a function of
uncertainty in the craft charges. For this study, the true charge product
is assumed to be Q12 � −2.5 × 10−11 C. The reference separation
distance is set at Lr � 15 m, and the masses are md � 500 kg and
mT � 2000 kg. Assuming a feedback gain of KL � 5 × 10−7, a
range of Q12e values are considered to simulate over- and
underprediction of the true charge magnitudes. The resulting
equilibrium locations are shown in Fig. 5. The plot is divided into two
main regions. The first is ΔQ > 0, which corresponds to the
controller overpredicting the craft charges. As expected, only one
equilibrium exists in this region.As the overprediction becomesmore
severe, the location of the equilibrium configuration moves further
and further away from the desired nominal position of L � 15 m.
Note that when ΔQ � 0, the equilibrium falls exactly at 15 m. This
corresponds to perfect prediction of the craft charges by the
controller. When ΔQ < 0 the controller is underpredicting the actual
craft chargemagnitudes. The region of underprediction is subdivided
into two different cases: onewith two positive roots and onewith zero
positive roots. As ΔQ moves away from zero in the negative
direction, the larger equilibrium location decreases from 15 m, and a
new equilibrium appears at L � 0 m. This new equilibrium grows
from zero as the underprediction becomes more severe, until it
coincides with the larger equilibrium and vanishes. Numerical
simulations indicate that the larger equilibrium value is stable,
whereas the lower one is unstable.WhenΔQ is lower than this value,
no positive equilibria exist. This is a dangerous region to be in as the
craft may impact if nothing is done to prevent a collision.
The example shown here is not intended to represent a specific

operational scenario. Rather, the parameters used to generate the plot
were chosen in order to demonstrate all of the possible behavior that
may occur when the charges are improperly modeled. Practically, the
gain should be increased to a reasonably high level so as to avoid
the region with zero positive roots. AsKL increases, the width of the
yellow region in Fig. 5will increase aswell. Likewise, this regionwill
shrink when KL is decreased. It is advantageous to make this region
as large as possible as it provides awider allowable margin of error in
predicting the craft charges.
The preceding results are obtained assuming the craft charges are

fixed with time. This assumption is made in order to provide
analytical insight into the issue of improperlymodeled charges. In the
actual system model the charges change as the distance between

the bodies evolves. Unfortunately, including this behavior in the
analytical developments precludes the existence of useable insight.
Qualitatively, however, the behavior is the same. The preceding
developments provide a starting point for proper gain selection and
potential outcomes thatmay occurwith improperlymodeled charges.

IV. Numeric Simulation

To illustrate the performance of the developed control system,
inertial simulations are used. Rather than integrating the linearized
spherical EOM, the full nonlinear EOM, presented as Eqs. (11) and
(12), are used. The linearized control developed with spherical
coordinates is used to determine uT . The control system is used to
raise the semimajor axis of the deputy orbit by 300 km, starting at a
geosynchronous orbit radius of 42,164 km. Such a scenario is
representative of raising a GEO debris object into a super-
geosynchronous disposal orbit. To begin the simulation the deputy is
placed in a circular orbit with radius 42,164km.The relative spherical
coordinates between the deputy and chief at epoch are shown in
Table 1. The parameter values used in the simulation are summarized
in Table 2. The simulation is run until an increase in the semimajor
axis of 300 km is achieved.
For the simulation the control algorithm is implemented assuming

perfect knowledge of the state and craft voltages. The electrostatic-
force model described in Eq. (34) is used to model the effects of the
craft charging bymeans of the position-dependent capacitancemodel
in Eq. (36). Note that the craft voltages, presented in Table 2, are held
constant throughout the simulation. The charges vary as the relative
positions of the craft change during the maneuver according to
Eq. (36).
For comparison, a simulation is run where the electrostatic force is

not modeled properly; rather, overprediction of 10% in the force
magnitude is considered. Because the electrostatic force is a direct
function of the charge product of the craft this is akin to
overpredicting the charge product by 10%. The same parameter
values are maintained for both simulations. The case with force
overprediction is run for the same length of time as the perfect-
knowledge simulation. Considering the analytical developments in
the preceding section it is expected that this scenario will result in an
increase in the separation distance between the craft at steady state
relative to the desired nominal position.
In the control system desired values of the spherical coordinates

are needed. The target values will affect the maneuver in several
different ways. Considering first the effects of the separation distance
L the maneuver time can be significantly impacted. The thrust
magnitude at steady state implemented on the tugging craft is a direct
function of the electrostatic force between the craft. If the craft are 5m
apart, for example, this force is significantly larger than if the craft are
50 m apart. Because the thrust is a direction function of the
electrostatic force larger thrust magnitudes are possible when the
craft are held at smaller separation distances. Larger thrust
magnitudes enable the semimajor axis of the orbit to be increased at a
more rapid rate. These effects are described in further detail in [10],
where Gauss’ variational equations are used to determine how
quickly a deputy object’s semimajor axis may be increased using
electrostatic forces. Next, the effects of the angles θ and ϕ are
considered. When both of these angles are held at zero, the deputy
will follow the chief in the orbit track. When θ in nonzero and ϕ is
zero, both deputy and chief occupy the same orbit plane. In this case,

Fig. 5 Effects of incorrect charge estimate on equilibrium locations.

Table 1 Initial spherical coordinates used in simulation

L θ ϕ _L _θ _ϕ
37.03 m −34.12 deg 15.67 deg 5.97 × 10−7 m∕s 1.58 × 10−7 deg ∕s −2.58 × 10−7 deg ∕s

Table 2 Parameter values used in numeric simulation

Parameter mT md VT Vd RT Rd
Value 500 kg 2000 kg 25 kV −25 kV 2 m 3 m
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planar orbit maneuvers are possible, where the deputy orbit
semimajor axis, eccentricity, and argument of perigee may be
modified. When ϕ is nonzero, the deputy and chief are no longer in
the same orbit plane. In this configuration the deputy orbit inclination
and right ascension of the ascending node may be modified in
addition to the other orbital elements. In the current study a planar
orbit raising maneuver is considered. As such, the values targeted by
the controller are set at L � 12.5 m, θ � ϕ � 0 deg. Note that this
corresponds to the chief at 12.5 m ahead of the deputy in the along-
track direction.
To achieve the desired semimajor axis increase, slightly more than

61 days are required when perfect knowledge of the electrostatic
force is available.During the same61-day period, the 10%error in the
electrostatic-force magnitude leads to an increase in the semimajor

axis of only 211.6 km. The evolution of the semimajor axis and
eccentricity of the deputy object during the maneuver is shown in
Fig. 6. Note that the increase in the semimajor axis is shown, and the
trend is linear. This is attributed to the fact that a constant force is
applied to the deputy object in the along-track direction. As such, the
rate of increase in the semimajor axis is nearly constant throughout
the duration of the maneuver. The eccentricity spikes early on in the
maneuver then oscillates for the remainder. This early spike can be
attributed to the initial maneuvering of the chief relative to the deputy.
During this early repositioning the force on the deputy is not constant
inmagnitude or direction as the electrostatic force between the craft is
changing.Once the steady-state relative position is achieved the force
becomes constant and the oscillation results. The decreased
performance in the case of force overprediction is attributed to the
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Fig. 6 Changes in a) semimajor axis and b) eccentricity of deputy object throughout the maneuver.
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Fig. 7 Evolution of spherical coordinates a) L b) θ and c) ϕ and d) magnitude of chief thrust during the first 12 h of the maneuver for perfect charge
knowledge and overprediction of charge product by 10%.
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steady-state conditions achieved by the controller. When this force is
overpredicted the craft settle into a separation distance larger than
when the force is known perfectly. As a result the tugging force is
smaller, which leads to a lower rate of change for the semimajor axis.
Initially, the deputy and chief are not in the desired relative

position. There is a repositioning of the chief relative to the deputy
during the early portion of the maneuver. This is illustrated by
considering the evolution of the spherical coordinates during the first
12 h shown in Fig. 7. Using the gain-selection process detailed
previously gains are chosen so that the settling time for the system is
0.1 days (K � 3.7484 × 10−7 1∕s2 and C � 1.1327 × 10−3 1∕s).
The response of the system using these gains reveals the desired
settling time has been achieved. A slightly underdamped response is
obtained before the chief settles into its steady-state relative position.
When the electrostatic force is modeled exactly, the target is
achieved. When the force is overpredicted by 10% the desired angles
are achieved but the separation distance increases to about 15 m.
Once steady state is achieved in both cases the relative position is held
throughout the duration of the maneuver. Recall that inertial
simulations are used during these simulations. The spherical
coordinates shown here are obtained by computing the relative
position of the craft and then rotating the result into the appropriate
coordinate frame.
Inspection of the spherical coordinate histories reveals the

differences in performance between the two simulated cases. For
both simulations the settling time is the same, as are the histories
for the angles θ and ϕ. This is due to the decoupling between
the coordinates in the control system. In spherical coordinates, the
electrostatic force is only present in the L-direction. Thus, the
feedback compensation for the electrostatic force will directly affect
only this direction. Indirect effects are present in the dynamics due to
the coupling of the coordinates in the EOM. The control system,
however, effectively removes this coupling by compensating for
these dynamics in the control algorithm. Thus, errors in the
electrostatic force model will manifest predominantly in the L-
direction with minimal deleterious effects on the desired response for
the angles. Still, errors in the electrostatic-force model can cause
serious concerns. Here, overprediction is considered. In this scenario
the primary effect is that the desired semimajor axis increase will
take longer. A potentially more problematic scenario is when the
electrostatic force is underpredicted. If the controller assumes the
magnitude of the electrostatic force is less than it really is the two craft
could collide.
The magnitude of the thrust on the chief craft is shown in Fig. 7d

for the first part of the maneuver. Beyond this initial period the
magnitude remains constant at the steady value indicated on the plot.
Note that the steady-state value is lower for the charge overprediction
case. This corresponds to the fact that the steady-state separation
distance is larger for the charge overprediction case. As a result, the
thrusters do not need as large a magnitude to compensate for the
lower electrostatic force than they do when the craft are closer.

The effect that this has on the overall maneuver is a lower tugging
forcewhich, in turn, does not increase the semimajor axis as readily as
the case when the electrostatic force is modeled perfectly.
The relative trajectory of the chief with respect to the deputy in the

Hill frame is shown in Fig. 8 for both cases. The approach trajectory
from the initial condition is nearly identical for the case of perfect
charge knowledge and charge overprediction. This is largely due to
the same angle history achieved by the controller for both histories
(see Fig. 7). For a large duration of the repositioning, the separation-
distance history is very similar as well. It is only when the craft are
within 15 m of each other that a deviation occurs. Recall that once
steady state is achieved the relative positions of the craft remain
constant in the Hill frame.

V. Conclusions

In this paper an autonomous relative-motion-control algorithm is
proposed for the case when two charged spacecraft are in close
proximity to each other. Denoting one craft as the chief and the other
as the deputy thrust is applied to the chief to reposition it into a desired
relative position with respect to the deputy. The electrostatic force
generated between the craft is then used as a contactless tug which
enables the chief to tow the deputy into a different orbit. Here,
a planar-orbit raising maneuver is simulated to test the control
algorithm, and improperly modeled charges are considered.
The control algorithm demonstrates its validity by successfully
repositioning the chief and achieving an increase in the deputy
semimajor axis of 300 km using an electrostatic tugging force. When
the charges are not modeled properly in the controller the chief settles
into a separation distance slightly larger than desired. This has
minimal impact on the targeted mission, however; the only
significant difference between the cases is the time needed to achieve
a semimajor axis increase of 300 km. The electrostatic tug concept
has been validated as a viable means for reorbiting space objects.
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