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Abstract

Charged spacecraft experience electrostatic forces and torques from both charged neigh-
boring spacecraft and the local space environment. These forces and torques can be
used for a variety of novel touchless actuation concepts. In contrast to the multipole
method which provides an expansion of the potential field, this paper presents a direct
binomial series expansion of the forces and torques called the Appropriate Fidelity
Measures (AFMs) method. A two-stage process is presented where first the force and
torque vectors are expanded assuming a known charge distribution, followed by a
second stage which provides an approximation of the charge distribution through the
susceptibilities of the measures. AFMs provide a direct analytical solution and thus
provide new insight for charged single- and two-body configurations. The accuracy
of a truncated expansion is numerically studied and validated. With a second-order
AFM solution, the errors drop below 5% at separations greater than ~ 6 craft diame-
ters. This new method is well-suited for control analysis due to the analytical solutions
produced. An AFM solution of the torque on an axis-symmetric cylinder is developed
that yields closed form analytic solutions that match prior numerically fit solutions.

Keywords Electrostatics - Touchless Actuation - Space Debris

Introduction

In the Geosynchronous Earth Orbit (GEO) regime, satellites charge to very high volt-
ages on the order of tens of kiloVolts [9]. This charging causes small forces and
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torques on the body due to interactions with Earth’s magnetic field. This can change
the orbits of uncontrolled lightweight debris objects [10, 21, 22, 30]. If nearby space-
craft use active charging such as through electron and ion guns, larger forces and
torques are felt between the crafts. This enables novel Coulomb formation flying
missions [7, 16, 23, 26, 27]. Electrostatic forces are also being studied for touch-
less re-orbiting of GEO debris to a graveyard orbit in a matter of months using the
Electrostatic Tractor (ET) [2, 33]. The ET concept directs the charge emission of the
servicer or tug at the debris object to yield an attractive inter-spacecraft force. If a
spacecraft has a non-spherical shape, it may also experience torques which can be
harnessed for touchless de-spin before servicing or grappling [3, 5, 6].

There are many separate challenges to electrostatic actuation such as prescribing
the appropriate electron and/or ion beam current and voltage, sensing the voltage,
position, and attitude of a passive space object, and designing control laws that per-
form well for either tugging or de-spinning. This paper addresses the challenge of
analytically predicting the force and torque vectors on each spacecraft given the volt-
ages of each craft, and their relative position and attitude. This is important to perform
dynamic stability and control analysis, as well as implement robust feedback con-
trol solutions. For example, Reference [17] illustrates how an under-prediction of the
nominal ET force can lead to an unstable bifurcation in the closed loop dynamics.

The problem of two charged conductors interacting through electrostatics is sim-
ilar to that of two bodies interacting gravitationally. The differential force in both
cases is proportional to the product of either the masses or charges, and inversely
proportional to the square of the distance between them. The gravitational problem
can be readily solved using conic sections if both bodies are treated as point masses.
For added fidelity, the larger body is treated as a general shape through the use of a
spherical harmonic expansion. If both bodies are near the same size and very close,
they must both be treated in a general manner solving the full gravitational two-body
problem. This problem can be solved using a range of methods including expansions
of mass distribution through MacCullagh’s approximation [13], inertia integrals [18]
or numerically using a lumped-mass approach [34]. In the electrostatic problem, there
is also an added complication: the total mass and its distribution is fixed in a rigid
body while the total charge and associated charge distribution change easily within a
conductor. As the two conductors rotate and translate, the charge distribution changes
and impacts the electrostatic forces and torques. For example, consider two nega-
tively charged objects approaching each other. The electrons will repel each other
and gather on the far sides of the objects, causing a differential charge distribution.
In contrast, as two rigid asteroids approach each other their mass distribution remain
unchanged.

Many methods exist to solve the electrostatic problem numerically, and they all
begin with prediction of the charge distribution. This can be done using full FEA
software which is very accurate but much too slow for dynamics simulations, or more
faster methods like the Method of Moments [12, 15]. Once the charge distribution is
known, the total Coulomb force can be found by summing the force between every
facet in one body and every facet in the other body. A new method for force and
torque prediction is the Multi-Sphere Method (MSM) [37], which places spheres of
tunable radii and position throughout the conductor. This process divides into Surface
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MSM (SMSM), which was optimized for large numbers of spheres constrained to
be on the surface of the conductor by Stevenson et. al. in [38] and Volume MSM
(VMSM), which uses a small number of spheres with unconstrained positions and was
optimized by Chow et. al. in [8] and later using E field matching by Ingram et al. in [24].
While these methods offer an excellent trade study between accuracy and speed, all are
numerical and do not enable closed-form analysis. Analytical insight is instrumental
in any dynamics and stability studies, such as for the de-spin and ET concept.

Analytical formula for the electrostatic two-body problem are found for the special
case of two conducting spheres using the Method of Images [25, 28, 29]. If the bodies
are not spherical, the multipole expansion method can be used to find the electric
potential in the vicinity of a charge distribution by expanding the charge distribution
in powers of 1/R [25]. The potential energy of two charged molecules can also be
found and differentiated with respect to position attitude to find force and torque
[31]. These expansions use terms similar to the inertia integrals used by Hou [18].
The conference paper cited in Reference [19] introduces a similar method for finding
the electrostatic force and torque between two charged spacecraft, but differs in that
it does not find the potential but finds the force and torque directly. This method
for predicting force and torque is called the Appropriate Fidelity Measures (AFM)
method, named for the measures of the charge distribution that appear due to the
appropriate fidelity truncation of the binomial series.

Reference [19] illustrates an early form of the AFM concept and investigates some
special cases of an isolated body in a flat or radial field, but doesn’t develop the
full two body AFM theory. Flat field analysis was furthered for the special case of
a High Area-to-Mass Ratio (HAMR) object’s orbit being perturbed by Earth’s mag-
netic field in References [21, 22]. This paper provides the first comprehensive theory
of AFMs for general spacecraft applications, including the general case of two inter-
acting charged bodies, and shows how the radial field is a special case of the general
two body problem. Providing this general framework allows modeling a range of sce-
narios including locally flat environmental fields as well as Coulomb forces using the
same equations. This work differs from the multipole expansion cited in Reference
[31] in that this work also presents a method for predicting the moments of the charge
distribution from the voltage and attitude of each craft as well as their separation.

The general AFM formulation is developed by first investigating the field inte-
grals over both bodies of general shape. These integrals are approximated using a
binomial series which is truncated at the point corresponding to appropriate fidelity
for the scenario. Three key moments of the charge distribution appear when solv-
ing these integrals, which allow for compact representation of the force and torque.
The second step is to predict these moments from parameters more easily accessed
in situ such as the voltage of each craft, the relative attitude of the crafts, and their
separation. In the case of an isolated object the ambient magnetic and electric fields
are used along with the object’s voltage. The charge distribution is evaluated for gen-
eral shapes, potentials and external magnetic fields by studying the susceptibilities
of the measures. The goal of this process is to analytically determine AFM expan-
sion coefficients for a given object shape and potential. Next the numerical accuracy
of this method is found using SMSM as a truth model. Lastly, the use of analytical
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AFMs is illustrated in a novel electrostatic analysis to investigate the general torque
expression of a cylinder-sphere system with a variable center of mass.

Problem Statement

This section establishes the notation and variables used in this paper, as well as the
fundamental charging and force models employed and the key binomial expansion
used. Consider two charged, conducting neighboring spacecraft as is shown in Fig. 1
with a known charge distribution. This later assumption is relaxed later in the devel-
opment to assume that only the potentials and relative attitude and separation are
known. They each experience a force and torque due to the other’s charge. The force
and torque on body 2 is found by integrating the differential force, which is a function
of body 1’s charge distribution, across body 2.

_ dqidgxR

dF, =
2 4megR3

(H
where R points from dg; to dg,. The separation vector is expressed from body vectors
and a vector between the center of mass of each body R = R, + r, — r1. Using this
substitution makes the differential force

_dqidgy Rc+ra—r)

dF, =
4rmeg ||R: +r2 —ril]?

2

where € is the permittivity of free space, €y~ 8.854187 % 10~'2 F/m. The differen-
tial force is approximated by binomially expanding the denominator and truncating

Fig. 1 Coordinate system for inter-craft derivation
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higher-order terms on the assumption that the body radii (r; and r;) are small
compared to their separation (R.).

-3/2
_ 2 2 2
m—(RC"I‘rl+r2+2(RL"r2_R("rl_rZ'rl)) (3)

) ) —3/2
X 1+ ri+i+i(R-r —R.-r1—r2-r)) )
R? R? er Rg cr2 c 1 2 1

3/2 A

Expand the denominator to second order using a binomial series (1 + x)~
1 - %x + %xz and reassemble to approximate the differential force as:

dgy dga 3rl2 3r22 3(R.-ro—R.-ry—ry-ry)
dF, = R, - 1—— - —= —
2= drery Bt 2=\ 1= 55 ~ 5 R2 *

I5((R; - 12)> + (R - r1)* — (Rc - r1) (R, - rz)))

2R? ®

This differential is integrated over the entire body to obtain the net electrostatic force
on this object, or crossed with the body position vector and integrated over the body
to obtain torque.

Appropriate Fidelity Measures
Fundamental AFM Expansion Terms Definition

The problem of two charged bodies interacting through electrostatics is similar to two
massive bodies interacting through gravity. Just as moments of the mass distribution
play a key role in solving the gravitational two-body problem [18], moments of the
charge distribution play a key role in predicting electrostatic force and torque. Three
especially important moments of the charge distribution are identified and named

here:
Q=/dq q=/rdq [Q]=/ _[[iFlde 6
B B B

Q is a scalar and is the total charge, ¢ is a 3 x 1 vector and is defined as the dipole
moment, and [Q] is a 3 x 3 tensor defined as the charge tensor. The vector r points
from the center of mass to the differential charge dg, and [7] is the matrix form of
the vector cross product: @ x b = [a]b. If the gravity analogy is used, the total
charge Q is similar to the total mass, the dipole moment ¢ is similar to the total mass
multiplied by the offset between the center of a coordinate system and the true center
of mass, and the charge tensor [ Q] is similar to the inertia tensor. The dipole moment
q provides a measure of where the center of charge is in relation to the center of
mass. If g is zero, then the center of charge and mass locations are identical. To relate
these AFM terms to the variables commonly used in multipole expansions, Q and ¢
are the mono and dipole terms, and the charge tensor [ Q] defined here is related to
the quadrupole [Q,] by [Q ] = —3[0] + 2tr([Q]) [25].
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Inter-Craft Electrostatic Reactions

This section derives the force and torque on body 2 due the charge on body 1 and
2. This is done using the 2nd order binomial expansion for the denominator of the
differential force.

Force Derivation

The total force on body 2 is found by integrating the differential force over the entire
body

: 32 3r2 3(R.-r2—R.-r1—r2-
= 73/ (Rc+ry—ry) 1_i_l_ (R -1 e T —T2 r1)+
4meoR? Jp, Jb, 2R2 2R R
15((R, - 2 R.. 2 R.. R..
((Re-r2)* + (Re ;;34 (Re - 11)(Re r2)>)dq2dq1 -
c

This equation is broken into three parts: terms resulting from the R, ri, and ro
which are denoted as F5,, F», and F»,, respectively. The first term F is expressed
as

37 33 3(Rc.-ra—Re-ri—ry-ryp)
Fy = 3 ToR2 T 2R 2 +
47‘[6()R B /B Rc 2R Rc

I5((R: -12)? + (Re - 11)* — (Re - r1)(R. - rz))>
2RY

= K 1o —3/r2d/d 3/rd/d
T Imek 1¢2 — 2R2 3, 1 441 q2 2R2 2 492 5 q1
*<7Rc~/ dq1/ rqu2> +( / dqz/ rldq1)
Rc By B, ) B
3 / 5
+ = r1dq2/ rquz) + (—/ dg1 | (Rc-r2) dQ2>
(Rc2 By By ZR? By By ‘

15 ) 15
— d. R, d — — R, - d R, - d. 8
+(2R;‘ /Bz q2 Bl( ¢ T1) 611) <2R§ 32( ¢ T2) 612/31( ¢ T 41)] (®)

dgadq

Here the moments of the charge distribution given in Eq. 6 are used to simplify the
equations. Using the identity [ r2dg = tr([Q])/2 to simplify the above equation
yields:

Q1 Q]
F -
%~ e R3 [Q‘QZ 4R2 AR2 RZ Re-q>
3Q2 30, 150, 2
222p., 22 (R, r)2d
R2 q+ R? -3 92491+ 2R Bz( ¢ 1r2)dgn
15 (R, -r1)d 15 (R.-q>)(R. -q1) 9)
.r —_—— . .
ZR? 5, c T q1 ZR? c qr c q

@ Springer



52 The Journal of the Astronautical Sciences (2019) 66:46-67

To solve the two remaining integrals, apply the vector identity (a -b)b = ([I;][l;] +
b*[I1)a to the terms of the form (R, - r)? and integrate to yield

R.- (R, -r)r = R, - ([FI[F1 + r*[IDR. = RT[FIIFIR. + R>r*>  (10)
— —RT[QIR. + R*u([Q])/2 (11)

and re-write I, finally as:

R. 3
Fy = b3 [Q1Q2+ 9 —-tr([ Q1] Q & R:.-q,+ QC R:-q,
+%q2~ql 25‘ RI1021R, — Z%RZ[QI]RC—F(RC~q2>(Rc~q1>] (12)

The second part of the force F», is much simpler because many of the terms become
third order and are neglected in this second order expansion.

1 3(Rc'r2_RC‘rl)
Fr = —— 1-— dgrd 13
2 breo R /B| /32"2( R ) q2dq (13)
1 Q1 301 3(Rc'111)
= — —tr R.+—+— 14
dreoR] [ 2R2 ([Q2D) R? q,|(14)

The third part of the force F, is similar in form to F5, with the r; being replaced
witha —rj.

3(Rc-ry—Re-1y)
Fy = — dgod. 15
2 4n60R /;31/82 rl( R2 >42Q1 (15)
Q2 30 3(Rc “q2)
= — R, R, A+ —— 1
47TeoR§ [ 029 + —5- [Ql] 2R2t r([Q1]) R 111] (16)
The total force is then expressed as
1 300 30:
Fr = m |:<Q1Q2 + 2R? —tr([01]) + W“’([QZD
30, 302 302
R2R gy + /5 R R - 41+R2‘Iz q
1504 150,
~ 2R RI[Q2]R. — 2R RI[QI]R. — F?(Rc “q42) (R, -111)) R
R, - 3 3(R. -
Ql 3( ql)qz_ 02 ( qz)ql](”)

R? R? ¢ R?
This equation is visualized in Table 1, where the common factor of 4 e Rf. is omit-
ted, allowing easy ordering of terms based on which measures (Q, ¢, [Q]) they
incorporate. They are also ordered by the dimensionless ratio /R, where r is a char-
acteristic dimension of either spacecraft. As the spacecraft move farther and farther
away, the higher order terms in this variable matter less and less. The zeroth order
term is in the upper left, the two boxes with two terms each are the first order terms,
and the three boxes containing twelve terms along the diagonal are the second order
terms. This table allows easy selection of the force terms needed for appropriate
fidelity.
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Table 1 Force ordering matrix

0 a1 [01]
0, 010:R. & (R q))Re — 024, S u(QiDR,
— 557 (RIIQ1IRR,
392 21011R.
e 014> — 2 (Re - 42)R. 7@ qDR.

~ 7 (Re - q2)(Re - q)Re
+3(R( ql)q +3(R< qz)q

[02] Serur(Q2DR.

— S (RITQ2IRR,

39' H[Q21R,

As might be expected, the force expression is symmetric, if one changes the sign
on all R, terms and switches the subscripts the force on body 1 is found to be equal
in magnitude but opposite in direction to the force on body 2. This satisfies Newton’s
3rd law.

Torque Derivation

The torque on body 2 is given by T = |’ B, /. B, T2 X dF, where the same binomial
expansion as before is used to approximate dF to second order.

1 3(Rc-r2— R, -r1)
= rox (Re+ra—rp)(1— dg>d.
4HGOR§/31/322X(C+2 1)( ) q2dq1

c
(18)
Because of the extra r», many of the terms in the differential force expansion become
third order and are neglected. The differential torque has three parts corresponding to
the ro X R, ro X rp and rp x ri components. The middle term is zero and the first
and third are labeled by T'», and T'»,, respectively. T, is evaluated first:

1 3(Re-r2— R -11)
T, = roxR.(1— dgod 19
2 4n€OR3 /1;1/132 2 c( R ) q2dqr  (19)

S(Rc'rZ_Rc'rl))
= — ro d 2d 1 (20)
4neoR3 fBl /32 ( R? 7254

where higher order terms in the binomial expansion are neglected. The integral is
identical to the force integral in Eq. 13 evaluated earlier, and is written down from
inspection as:

Ty =—

1 X[quz 3(Re-q1)q | 301[Q2]R,

21
4meo R} R} R R> ] @1
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The other part of the torque comes from the r; and is evaluated below:

1

T, =———
2 47T60R2

/ (r2 x r1)dg2dq; (22)
By VB,

The binomial expansion here is truncated to just the first term because the ry x ry
term is already second order. This gives

1

T, =———
2 47‘[60R3 7

X ¢4 (23)

The total torque is found by summing T'5, and T'5, to yield

3(Rc '111)‘12 X Rc _ 3Q1Rc X [Q2]Rc
R? R?

T, [quz X Re + +(gq; X ‘12)] (24)

- 4 €0 Rg’
This equation is visualized in Table 2 which follows Table 1 in omitting the factor
of 47t60R2 and grouping terms by their order in the dimensionless ratio r/R.. Terms
closer to the upper left corner are lower order.

As expected, there are no zeroth order terms, in fact there are no terms at all
corresponding to the scalar charge Q,. Unlike the force expansion in which the forces
are equal and opposite, the torque is not symmetric, i.e. T'1 # —T'5. This is because
the torque on body 1 and body 2 are not measured about the same point, but rather the
center of mass of each body. If all torques are measured about the same point, such
as the barycenter of the system, the torques are equal and opposite since the forces
are equal and opposite. Thus, they cancel out and are not able to change the angular
momentum of the system.

Radial Electrostatic Field Simplification

In Reference [19], the force and torque on a charged body in a radial field are found
by assuming a differential force of

Q1dg2

dF, =
2 4megR3

(25)

and integrating over body 2. Rather than repeating this integration, the force and
torque can be produced by summing the terms in the first column of the force and
torque tables (Tables 1 and 2) which only consider the scalar charge of body 1. This

Table 2 Torque ordering matrix

0 q [01]
0>
q 0149, x R. R%(Rc ~q1)q, x Re + (g x q3)
[02] —R%QlRf x [021R,
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works because if body 1 has only a scalar charge, it is a point charge and creates a
purely radial field. This yields

O 3(q - R.) 3[02]R,
Fr = 4]T60R2 |:Q2 ct+qr— Rg Re+ ——— R% 2R2 ([QZ])
5
~ s (R [QZ]RC)RC] (26)
01
R [qz+ 5[021R }ch 27

which agrees with the derivation done with the point charge differential force. This
shows how force and torque in a radial field is a special case of the general two body
problem. This is similar to how in most treatments a satellite is treated as a point
mass while the earth is treated as a general body using spherical harmonics.

Flat Electrostatic Field Simplification

It is also of interest to calculate the force and torque on charged conducting bod-
ies due to ambient flat electric and magnetic fields [20]. The differential force on a
differential charge moving at v subject to E and B fields is given in Reference [14]
as:

dF =dg(E +v x B) (28)

This differential force only varies significantly across a body if it is rotating very
quickly near the geostationary point. The velocity is the orbital velocity v, plus the
transport velocity: wp e X r [32], where wp/¢ is the angular velocity between the
satellite body frame 5 and the magnetic field frame £. For a spacecraft with » = 1 m,
wp/s = 1 deg/sec, and an ECEF orbital velocity of 1 km/sec, the ratio of the transport
velocity to the orbital velocity will be less than 107>, In many scenarios the transport
term can be dropped. The force is then:

=/B(E+voxB)dq=Q(E+voxB) (29)
and the torque is
L:/Brx(E+v0><B)dq=—(E+v(,xB)xq 30)
This is the exact answer for the torque on a pure dipole in a flat field [11, 14].
Susceptibilities of the Measures

The expansions for force and torque in the electrostatic two-body problem, radial
field, and flat field are useful formula. However, they rely on knowledge of the charge
distribution on both bodies in order to perform the integrations and find the mea-
sures. Unlike the gravitational two-body problem, these measures change as charge
moves throughout the bodies. Recalculating the entire charge distribution for both
bodies would be a very intensive process. Here, a method for predicting the measures
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from parameters that are much more feasible to measure in situ such as the voltage,
attitude, and position of each craft is presented.

To do this, a matrix dependent on the relative position and attitude is used to trans-
late the voltage of each craft into a representation of the charge distribution. From this
distribution, the measures are formed as functions of the voltage of each craft. There
are many ways to make this matrix, including the Method of Moments or Boundary
Element Method. A recent addition is the Multi-Sphere Method, which uses hand-
tuned parameters for the size and locations of spheres which are constrained to be
equipotential [36, 37].

MSM emerged as a way to predict the force and torque with high-enough fidelity
to be useful, while also evaluating fast enough to be practical. MSM approximates
the satellite as a collection of spheres with variable position and radii. The voltage
of any sphere is a function of both its own charge and the charge on neighboring
spheres. If these spheres are far enough away to be approximated as point charges,
the voltage on the i™ sphere is given by: [14, 36, 37]

1 g N g
V: = 1 E 27 31
! 4]T6()R,'+.  Admegrj D
Jj=1j# ’

where g; and R; are the charge and radius of the i sphere, respectively, and Ti
is the distance between spheres i and j. If the voltages of each sphere are given by
V =[Vi, Va,...Vy]T and the charges are given by Q = [q1, q2, . - .qN]T, the rela-
tionship between the two is V = [S]Q or Q = [C]V, where [C] is the capacitance
matrix and [S] is the elastance matrix defined below [35]:

/Ry 1/r1p -+ I/ri N
1 I/ra1 1/Ry -+ 1N

T 4w

[S] (32)

l/ryg 1/rno -+ 1/RyN

Since the voltage is assumed known, the charge distribution is found by numeri-
cally solving the linear system. If two conductors with n| and n, spheres each are
considered, the elastance matrix can be put into block form:

Vil_ 1 [ S Su Q1]
|:V2]_47reo|:5;4 Sz}[Qz (33

where the voltage and charge of each craft are separated. Note that the self elastance
terms S; and S, are much larger than the mutual elastance terms Sy because the
inter-sphere separations are much smaller inside one body rather than between the
two bodies. Additionally, the self elastance matrices contain the diagonal 1/R terms
which are larger than the off-diagonal 1/r terms. As an example, consider a template
box and panel spacecraft with an 8 m boom made from 248 spheres and a3 x 1 m
cylinder made from 138 spheres. The log of the elastance matrix for these two objects
with a separation of 40 m is shown in Fig. 2. This figure uses color to show the size
of elements of the matrix; each element of the matrix is converted to a colored square
at an x, y position corresponding to the row and column.
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Fig.2 Log of elastance matrix. X and y axes are row and column numbers

There are clearly four blocks, and the diagonals are 10> — 10° times larger than
the non-diagonal blocks. The blocky structure in the upper diagonal block comes
from the method of assembly for the the box and panel spacecraft which is made
from six rectangles. In general, the diagonal blocks will not change with relative
position or attitude. The blocky structure, symmetry, and the time-fixed properties of
the diagonal blocks are exploited when inverting using the Schur complement.

[ A B ]‘1 _ [ (A— BD1BT)! —A7'B(D - BTA-'B)"! ]
BT D | =D 'BT(A - BD!BT)"! (D—BTA1B)"!

(34)
Recognizing that A and D represent the self capacitance matrices, which contain
much larger terms than the mutual matrix B, terms second order in B are dropped:

A B AT —ATIBDTY] [ Gl —CiSuGy
[ BT D ] ~ [ -D~'BTA"1 D! } - [ ~GSher G ]
(35)
where [C;] = [S;]7! for all blocks. The two matrices C; and Cs are not functions of
the relative separation and orientation, which means they will be constant in time. The

terms in Sy are of the form 1/||R.+r2, —ry,||. Since the center to center separation
R is much greater than the dimensions of either craft r| or r;, this is approximated as

1 1

Syl = ~ —
Shlis IRc+ry —rill Re

(36)

Approximating all elements in the mutual capacitance matrix as 1/R. assumes that
all spheres are located at the center of mass of the other craft for the purposes of
inverting the elastance matrix. This loses the dependence on relative attitude but cap-
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tures the first order mutual capacitance and susceptibility. The elastance matrix is
now approximately inverted as

[ Ql} _ 1 [ C —clﬂ(nl,nz)cz/Rc} [vl]
0, —C21(n2,n1)C1/Re G2 V) (37)

T dwe
where 1(n, m) is a matrix consisting of ones of size (n, m). If the two bodies are
both conductors, each MSM sphere is at the same voltage and this matrix equation is
transformed to a vector equation

[Ci11(ny, np)[C3] 1

0, =[Cill(n1, HV; — R (n2, HV> 38)
. _ [C2]L(n2, n)IC1]
0, = [C2]1(np, H V2 R I(n, HVy (39

Now the charge on each MSM sphere is approximated as a function of a collection
of matrices that do not change with state, and the scalar voltage of each craft. The
susceptibility of the total charges, dipoles, and charge tensors to the voltage of each
craft are found next.

Total Charges

The total charge on each spacecraft is found by summing the charge on each sphere

Q=) q=1(1,mQ
i=1 (40)

Thus, the scalar charge of body 1 is given by
Q1 =CsVi+CuVz 41

where the self and mutual capacitances are given by
n nj
Cs = 1L a)[Ci1L(m, 1) = ) Y [Cil;;
i=1 j=1 (42)
no

—1(1,m)(C1IL0n, m)[Col(np, 1) _ Xt XG5 [C1]L(n1, m)[Co]
R a R (43)

Cy =
The scalar self capacitance can be computed with high fidelity using a MSM model
with hundreds or thousands of spheres and re-used in each time step for computation.
The numerator of the mutual capacitance can be similarly computed at high fidelity
and then divided by the norm of the separation vector at each time step.

Dipole Moments

The dipole ¢ is defined in a continuous charge distribution and MSM model as

N
q= fB rdg =Y rigi=I[Rlq (44)
i=1
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where [R] is a 3 x N matrix containing the x, y, and z coordinates of each MSM
sphere:

X ... XN
[RI=| y1 ...y~ (45)
21 ... 2N
The dipole is given by
q=xsV1+xuV2 (46)
where the self and mutual susceptibilities of the dipole for body 1 are
Xs = [Ri][C1]1(ny, 1) (47)
o = —[Ri1[C1]1(n1, n2)[C2]1(n2, 1)
Re (48)

Once again, these 3 x 1 vectors can be computed with high fidelity from SMSM mod-
els of each body. Each element in the mutual term must be divided by the separation
distance, which may change with time.

Charge Tensor

The charge tensor is defined from a continuous charge distribution or MSM model as

N
101= [ ~iFtFldg = Y - 171 (49)
B ,
1
Define [R;] as a 3 x 3N matrix containing the cross product matrix of each MSM
sphere position and B is a 3N x N matrix used to interweave three copies of the
charge vector made from smaller matrices b.

il b0...0

T 0b...0

[Rl=| : 1= | 1 Bl=|... .| 60
lrxl 00...b

The charge tensor is now found as a function of both voltages, and two 3 x 3 matrices,

(1] = [¥sIVi + [YymIV2 (51
where the self and mutual susceptibilities of the charge tensor for body 1 are given by
[¥s] = [Ry,1" diag(IBI[C111(n1, 1))[Ry,] (52)
diag([Bl[C1]1(n;, Ca]1(ny, 1
(Wl = —[R,1" iag([B][C1] (ﬂ;e n2)[C2]1(n2 ))[Rsl]
c (53)

These matrices can be found using high fidelity MSM models before propagation
and the mutual term can be adjusted by dividing by the separation distance. The
derivations are done for body 1, but the susceptibilities for body 2 can easily be found
by changing all subscript 2s to 1s and vice versa.
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Flat Field Susceptibilities

A flat environmental field will change the charge distribution, but not the scalar
charge. The only measures that contribute in a flat field are the dipole and the total
charge. The scalar charge is still given by

0=CV (54)

To find the dipole, write the voltage of each sphere as a function both of the charges
and its position relative to the total field A = E 4+ v x B where v is the velocity with
respect to the magnetic field.

V=I[CI"'g—[RI"A (55)
The charges are found by
Q =[CI(V —[R]"A) (56)
The dipole is then
q = xsVr +xalA (57)

where the self and ambient susceptibilities are given by

Xs = [RI[C]L(n, 1) (58)
[xal = [RICIIR]" (59)

for a model with n spheres. The ambient susceptibility is similar to the electric
susceptibility used to calculate the polarization of dielectrics in an electric field [14].

Numerical Validation

In a flat field, AFMs and MSM give the same answers down to machine preci-
sion assuming the same MSM model is used to calculate the susceptibilities of the
measures because there is no truncation of a binomial series. For the two-body prob-
lem, the accuracy of predictive AFMs is checked against the truth model of SMSM,
which places a large number of equal radius spheres uniformly across the surface
of the body. The radius of all spheres is varied to achieve the known self capaci-
tance. Although this method is slower to evaluate (due to the much larger number of
spheres), it removes the need for hand tuning and has good accuracy relative to com-
mercial FEA software [38]. An example SMSM model for two template “box and
panel” spacecraft in close proximity is shown in Fig. 3. Note that charge, which is
shown as color, tends to bunch up at the corners of conductors and is affected by the
nearby spacecraft.

For validation, one “box and panel” spacecraft has fixed location and attitude at
the origin of the coordinate system. The second spacecraft occupies many different
positions and attitudes on a shell of a given radius. SMSM is used to find the force
and torque on the fixed craft. The force and torque is also predicted using AFMs with
the susceptibilities Cs, Car, X5, X - [¥s], and [¥p] for each craft found before

@ Springer



The Journal of the Astronautical Sciences (2019) 66:46-67 61

Fig. 3 Example SMSM
configuration for two satellites 300
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computation from the same 256-sphere SMSM model. The average percent error is
computed for each spherical shell. The percentage error is computed as:

PE:IOO*M (60)

llal|
where a is either the force or torque, and the subscript “T” indicates the truth model.

The second craft is placed at points on a spherical shell precomputed using a
golden spiral algorithm [1] which arranges 20 points equidistantly on the surface of a
sphere. The shells are varied in radius logarithmically from 15 to 200 m in 10 steps.
The attitude of the second object at each of these points is changed using three ran-
dom Euler angles while the first object is held fixed in attitude at the origin. The
mean percentage error per shell is shown in Fig. 4.

The mean percentage error for the zeroth, first, and second order expressions for
force are shown as red, green, and blue lines in the force plot. Since there is no
zeroth order term for torque prediction, only the first and second order expressions
are shown in the torque plot. A dashed line is shown 1 standard deviation above each
of these to give a sense of the variation a user should expect.

10? 3 10?
5 8
S 10 & 10
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5 10° £ 10°
¥
g 2
% 1 g 1
= 10 FO 10 —O— 1st
—6—2nd
1072 ' 107 '
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(a) Force percent error (b) Torque percent error

Fig.4 Percentage errors for force and torque using predictive AFMs
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Fig.5 Coordinate system for
example analysis Yy

N
\

The errors are initially very high, a few tens of percent on average depending on
order, but they drop quickly as the spacecraft move farther apart. Since the AFM
derivation hinges on the assumption that the spacecraft sizes are much smaller than
the distance between them, this matches intuition. The second order term for force
drops below 5% error at 25 m and the second order term for torque drops below 5%
at 48 m.

Analysis and Applications

There are many numerical methods for electrostatic force and torque prediction for
conductors. However, they do not give good analytical forms for force and torque.
This section summarizes previous work that curve fit the angular and voltage depen-
dencies of electrostatic torque, and then uses AFMs to analytically predict the same
result. Next AFMs are used to predict the torque in the case where the center of mass
is not aligned with the exact center of the target object.

Bennett et. al. used MSM to calculate the torque on a 3 x 1 m target cylinder due
to a spherical tug craft for different voltages and angles [4]. This set up is shown
in Fig. 5. The cylinder has the same voltage magnitude as the sphere, and is always
positive while the tug sphere can change the polarity of its voltage: Vo> = |¢|, V1 = ¢.
The torque is only about the z axis due to the symmetry, and is shown as a function of
both the angle 6 and the voltage ¢. This plot is shown for near field (2.5 m separation)
and far field (15 m separation) cases in Fig. 6. The voltage dependance follows a
quadratic relationship, and the angular dependance is well approximated by sin(26).
The torque is then curve fit to be [4]:

L=yf(#)g®) =yolo|sin(20) (61)

In the near field, y divides into a larger value for attraction y, and a smaller
value for repulsion y,. At further separations the difference between attraction and
repulsion is less evident.
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(a) Separation d = 15 m (b) Separation d = 2.5 m

Fig. 6 MSM torque surfaces at a separation distances of d = 2.5 mand d = 15 m for V| = ¢ and
Va2 =19l [4]

The angular, voltage, and attraction/repulsion trends that have been empirically
found using MSM are now derived using AFMs. Referencing Eq. 26, the torque on a
general body due to a nearby point charge is given by

01
— R 62
= o [ [Q2] ] (62)
re-writing this in terms of susceptibilities gives:

CsiVi+CyVa |:(

L, =
2 4meoR3

3
+ ﬁ[ws]Rc) Vot (xM + 2 lwR ) } « R,

(63)
This equation is grouped into four separate terms

1 3 ) 3
Ly = ek |:CM (XS + —2[WS]Rc> Vi +Csi (XM + —Z[WM]Rc> v

+<C51 <X5+ 2[1/fS]R>+CM<XM+ 2[1/fM] ))V1V2>:|><Rc

= AV} + BV] + (C+ D)V V; (64)
In this 1-D case the torque is purely about the z axis and is written using scalars as
L=AV}+ BV} +(C+D)ViV, (65)

The terms A and B have one mutual term and are thus st order in (1/R.), C is Oth
order, and D is 2nd order. This means that in the far field terms linked to C will
persist longer than those linked to A and B, which will persist longer than those
linked to D. Because the mutual susceptibilities (Cas, x s, [¥ar]) are negative but
the self susceptibilities are positive, A, B and D are negative, but C is positive and
larger than D.
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Thus the following development switches to the positive variables FF = |A + B|
and G = C + D, and makes use of the definitions V| = ¢, Vo = |¢| to match prior
work [4]. The torque for attractive (L,) and repulsive (L, ) cases is given by:

L, = (=F + G)¢* = (=F + G)p|¢| (66)
L, = (=F — G)¢* = (F + G)¢|¢| (67)

In the attractive cases the magnitude of the torque is larger because F and G add
rather than subtract. This can be seen empirically in Fig. 6a. Additionally, since G
has the highest order term, it will matter most in the far field. Since F' matters less in
the far field, the difference between the attractive and repulsive torque decreases in
the far field, which can also be seen by comparing Fig. 6a and b.

In prior work Reference [4] numerically fit the far field parameter y to a value of
2.234 % 1074 for a 3 m by 1 m cylinder 15 m away from a 1 m diameter sphere. To
compute the corresponding value from AFMs, assume that the center of mass is per-
fectly aligned with the center of charge so that x ¢ = 0 and the body axes are aligned
so that [s] is given by diag(y¥p, ¥, ¥p), where ¥ p > . This represents the case
of a perfectly axis-symmetric cylinder as shown in Fig. 5. Ignoring the mutual part
of G which decays quickly gives the torque as

L= 55 g lusRV V.
= 47'[6()R§ clVSIfc V1V
3Cs: . .
= 5 (W — ) sin(20) Vi Vaz (68)
8megR?
where G is defined as

S Ep— (69)
- 87‘[60R2 B s

SMSM is used to find the values of 5 and g which gives G ~ 2.531 % 1014,
only a 13% difference with the numerically fit value used in Reference [4]. These
two results agree well considering that only a second order AFM model is used and
the mutual part of G is ignored, and Reference [4] fits y to the full MSM solution.

Now consider the same cylinder, but allow the center of mass to move within the
craft by a few centimeters along the y axis ( xg = [0, xs, 017). The torque is still
only about the z axis and is given by

Ly=——FR | xs+ ﬁ[wS]RC Viva
C

dmeoR3
3B — ¥s)
2R

C

—Csi
= 9
8reo 2 |:XS cos(6) +

sin(29):| ViVaz (70)

Setting xs = 0 recovers Eq. 68, but even a small CM offset can make the cos(6)
term dominate, especially at large separations. As the CM moves away from the
geometric center, xs grows linearly, and some elements of {/s grow quadratically.
The torque as a function of 8 is shown for a variety of CM offsets in the example of
the same cylinder 15 m away from a 1 wC point charge in Fig. 7. The different curves
are for different values of xg — the center of mass offset is shown in the legend.
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Fig.7 Torque on cylinder for a variety of center of mass offsets

The torque slowly changes from a perfect sin(20) to an augmented -cos(6) curve as
the CM offset varies. The magnitude of the torque also increases by a factor of 3.38.
This factor is even greater at further separations since the cos(6) term has lower order
in 1/R.. Knowledge of center of mass to center of charge differences are essential
for the stability of control laws used for de-spinning of passive space debris. If the
center of charge location is not properly accounted for, the sign of the predicted
torque can be wrong, leading to instabilities in the closed-loop control discussed in
Reference [4].

Conclusion

This paper presents a novel method for analytically predicting the force and torque on
conducting bodies using knowledge of the voltage of each, their relative separation,
and relative attitude. This is accomplished by approximating the force and torque
using a truncated binomial series to identify the first three moments of the charge
distribution (Q, ¢q, [ Q]). Next, these measures of the charge distribution are predicted
using a capacitance-matrix formulation, where the structure of the capacitance matrix
is found using MSM and the block pseudo inverse formula is approximated. This
method yields less than 5% accuracy errors for separations larger than 50 m for the
case of two 8 m template GEO satellites. This level of accuracy is sufficient for
controls analysis beyond a few craft diameters.

The biggest strength of the AFMs is their ability to provide analytical force and
torque expression for many control and dynamics applications. As an example, AFMs
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are used to predict the torque on a cylinder in the presence of a nearby point charge.
The sign and magnitude of the torque have a strong dependance on the possible offset
between the center of mass and center of charge in the cylinder. While challeng-
ing to derive, AFMs offer analytic insight to difficult charged dynamics and control
problems.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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