
Invariant Shape Solutions of the
Spinning Three Craft Coulomb Tether

Problem

Islam Hussein and Hanspeter Schaub

Simulated Reprint from

Celestial Mechanics and Dynamical
Astronomy
Vol. 96, No. 2, 2006, pp. 137–157



Invariant Shape Solutions of the Spinning Three Craft

Coulomb Tether Problem

Islam I. Hussein

Postdoctoral Research Associate, Coordinated Science Laboratory, University of

Illinois, Urbana-Champaign, IL 61801. Phone: +1 (217) 265-9883, Fax: +1 (217)

244-5705, e-mail: ihussein@uiuc.edu.

Hanspeter Schaub

Assistant Professor, Aerospace and Ocean Engineering, Virginia Tech, Blacksburg,

VA 24061-0203. Phone: +1 (540) 231-1413, Fax: +1 (540) 231-9632, e-mail:

schaub@vt.edu.

Abstract.

In this paper we study shape-preserving formations of three spacecraft, where

the formation keeping forces arise from the electric charges deposed on each craft.

Inspired by Lagrange’s three body problem, the general conditions that guarantee

preservation of the geometric shape of the electrically charged formation are derived.

While the classical collinear configuration is a solution to the problem, the equilateral

triangle configuration is found to only occur with unbounded relative motion. The

three collinear spacecraft problem is analyzed and the possible solutions are catego-

rized based on the spacecraft mass-charge ratio. Precise statements on the number

of solutions associated with each category are provided. Finally, a methodology is

proposed to study boundedness of the collinear solution that is inspired by past

understanding and results for the three body problem. Given initial position and

velocity vectors of each craft along with the charges, analytical solutions are provided

describing the resulting relative motion.
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2 Hussein and Schaub

1. Introduction

Spacecraft naturally charge to negative potentials while in Earth orbit.

The cause is the interaction of the spacecraft with the ambient plasma

environment. For a given plasma temperature, the craft is more likely to

be struck by electrons than by positively charged ions. Geostationary

spacecraft assume a steady-state potential which causes a zero net-

current to flow to and from the craft. A NASA NIAC study in 2002 was

conducted by King et al. (2002) to study the spacecraft charge data of

the SCATHA mission (Mullen et al., 1986). The results found that the

naturally occurring GEO spacecraft charge can become large enough to

produce micro- to milli-Newton level forces on neighboring spacecraft

20–30 meters away. Besides measuring the plasma environment and the

spacecraft potential levels, the SCATHA mission also demonstrated

that the spacecraft charge can be artificially controlled by emitting

ions or electrons. This method of generating inter-spacecraft forces

is referred to as the Coulomb propulsion concept. Spacecraft are de-

signed to control their charge level relative to the plasma environment,

and will thus produce forces onto neighboring charged satellites. The

associated fuel consumption is extremely small, with estimated fuel ef-

ficiencies ranging from 1010–1013 seconds (King et al., 2002; King et al.,

2003). For this reason the Coulomb propulsion concept is referred to

as being essentially propellantless. Further, the typical electrical power

requirements are approximately 1 Watt or less. The spacecraft charge

control technology has been also demonstrated more recently on the
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CLUSTERS mission (Escoubet et al., 2001). However, in this mission,

the idea to use spacecraft charge is not used for relative motion control,

but to zero the spacecraft charge to avoid biases in the sensitive particle

instruments (Torkar and et. al., 1999; Torkar et al., 2001).

The Coulomb propulsion concept can provide very fuel- and power-

efficient means to control close relative motion between spacecraft.

Applications range from flying 20–100 meter wide-field-of-view space

interferometery sensor platforms (King et al., 2002; Chakravorty, 2004;

Hussein, 2005), forming virtual semi-rigid structure of variable shape

and size (King et al., 2002; King et al., 2003; Schaub et al., 2004; Berry-

man and Schaub, 2005b; Berryman and Schaub, 2005a; Schaub et al.,

2005), using electrostatic forces to guide a smaller scout craft about a

larger primary craft, as well as forming electrostatically tethered strings

of spacecraft formations (Natarajan and Schaub, 2005). With Coulomb

tether formations, physical ropes are replaced with massless Coulomb

force fields to tie together a series of craft. Natarajan and Schaub (2005)

introduced a nadir pointing 2-craft Coulomb tether formation of fixed

length. Exploiting the small gravity gradient torque at GEO, a feedback

control law is presented to stabilize both the length and in-plane atti-

tude of the 2-craft systems. However, the Coulomb thrusting concept

is only applicable at certain orbit altitudes. A charged craft within the

space plasma environment will gather plasma particles of the opposite

charge about itself. This causes a phenomena called charge shielding,

where the electric field of the spacecraft is masked from another craft

nearby. The colder or denser the plasma is, the worse the shielding
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4 Hussein and Schaub

will be. The conventional simplified mathematical model of this charge

shielding effect adds an exponential decay term to the traditional vac-

uum electrostatic field equation. The exponential decay is controlled

through a parameter called the Debye length (Nicholson, 1992; Garrett

and DeFrost, 1979). At low Earth orbits, the Debye lengths are on the

order of centimeters, making Coulomb thrusting infeasible. However,

at GEO Debye lengths can range from 100-1000 meters, depending on

solar activities (King et al., 2002; King et al., 2003). Within the solar

system at 1 AU radius, the Debye length is about 10–30 meters due to

interaction with the solar wind (King et al., 2002).

This paper investigates dynamic charge spacecraft formations. Here

three craft are assumed to be freely floating in space where the dom-

inant force acting on the craft is the Coulomb force. For example,

spinning charged three-craft formations are of interest that are on he-

liocentric orbits far removed from the gravitational influence of planets.

Thus, differential gravitational accelerations between the craft are not

yet considered in this work. At 1 astronomical unit distance away from

the sun the Debye length can be 20-40 meters due to the interaction

with the solar wind. For missions with greater sun separation distances

this Debye length would increase. Of interest is developing necessary

conditions for the three craft to retain a fixed formation shape. Previous

work on fixed Coulomb formation shapes assumed the formation is

static relative to the orbiting Hill frame (King et al., 2002; King et al.,

2003; Schaub et al., 2004; Berryman and Schaub, 2005b; Berryman and

Schaub, 2005a; Schaub et al., 2005). The spacecraft were placed at very
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specific locations with specific charges such that the differential orbital

accelerations were zero. In this study the three craft are assumed to

be orbiting each other. For example, the three craft could dynamically

sweep through an area while taking interferometry measurements. In-

stead of having a large number of craft occupy critical interferometric

nodal points in the image plane, the three craft would visit these nodal

points over time as a revolution is completed.

Mathematically this problem is strongly related to the general three-

body problem of celestial mechanics (Szebehely, 1967; Roy, 1982; Bat-

tin, 1987; Schaub and Junkins, 2003). In 1772, Lagrange presented an-

alytical solutions to the three-body problem where certain restrictions

were applied (Lagrange, 1772). In particular, he found that equilateral

and collinear solutions exist where the shape is invariant over time. Ig-

noring the shielding effect of the space plasma environment, the electric

potential field strength drops with the square of the separation, equiv-

alent to how the gravitational potential fields of point masses decay.

However, with the electrostatic bodies, the potential field strength can

be tuned by controlling the spacecraft charge. This provides interest-

ing generalizations to Lagrange’s gravitational three-body solutions.

Starting from basic principles, feasible invariant rotating three-craft

Coulomb formations are investigated. This study includes the charge

shielding effect. Particular solutions for large and small Debye length

scenarios are discussed.

The paper is organized as follows. In Section 2, we derive necessary

conditions that any shape-preserving formation must satisfy. In Section
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3, we study the collinear and triangular configurations as tentative

solutions to the problem. Finally, in Section 4, we propose a procedure

that stems from the two body problem to determine the boundedness

(elliptic, parabolic or hyperbolic) of the orbits of the formation.

2. The Three Spacecraft Coulomb Tether Problem

The treatment in this section is almost identical to Lagrange’s solution

to the restricted three body problem except that the potential field

is created by the electric charge deposited on each spacecraft in the

formation. For the sake of completeness, we will briefly go through the

full details. The basic assumption we make is that the formation is in

free space. That is, there are no external forces acting on the system.

The only force each spacecraft experiences is that generated by the

electric field produced by the charges on the spacecraft.

Refer to Figure 1. The system is composed of three point mass

particles of masses m1, m2, and m3 and charges q1, q2 and q3, possibly

functions of time, respectively. Let N be an inertial reference frame

and rc be the position vector of the center of mass of the three particle

system. The vectors r1, r2 and r3 are the position vectors of the three

masses relative to the system center of mass. Let rij = rj − ri be the

relative position vectors between the masses. The angles αi, i = 1, 2, 3,

are the angles between the relative vectors rij as shown in the figure.

Finally, the unit vectors eri and eθi
are unit vectors centered at the
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configurations as tentative solutions to the problem. Finally, in Section 3, we propose a
procedure that stems from the two body problem to determine the boundedness (elliptic,
parabolic or hyperbolic) of the orbits of the formation.

1 THE THREE SPACECRAFT COULOMB TETHER PROBLEM

The treatment in this section is almost identical to Lagrange’s solution to the restricted
three body problem except that the potential field is created by the electric charge deposited
on each spacecraft in the formation. For the sake of completeness, we will briefly go through
the full details. The basic assumption we make is that the formation is in free space. That is,
there are no external forces acting on the system. The only force each spacecraft experiences
is that generated by the electric field produced by the charges on the spacecraft.

N

rc

er1

eθ1

er2

eθ2

er3

eθ3

m1, q1

m2, q2

m3, q3

α1

α2

α3

r12

r13

r23

r1

r2

r3

Figure 1. The Three Spacecraft Problem.

Refer to Figure 1. The system is composed of three point mass particles of masses m1, m2,
and m3 and charges q1, q2 and q3, possibly functions of time, respectively. Let N be an
inertial reference frame and rc be the position vector of the center of mass of the three
particle system. The vectors r1, r2 and r3 are the position vectors of the three masses
relative to the system center of mass. Let rij = rj − ri be the relative position vectors
between the masses. The angles αi, i = 1, 2, 3, are the angles between the relative vectors
rij as shown in the figure. Finally, the unit vectors eri and eθi

are unit vectors centered at

3

Figure 1. The Three-Spacecraft Problem.

centers of each of the three masses, where eri is along ri and eθi
is

perpendicular to ri such that the triple eri , eθi
, e3 form a dextral set of

orthonormal unit vectors and where e3 is perpendicular to the plane

containing the three masses.

Since the system does not experience any external forces, the system

center of mass satisfies

M r̈c = 0 (1)
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where

M = m1 + m2 + m3 (2)

is the total system mass. The only force acting on each craft is that

due to the interaction of the electric charges generated by all spacecraft.

Hence, the individual spacecraft equation of motion is given by (Schaub

and Junkins, 2003)

mir̈i = Fi =
3∑

j=1, 6=i

kcqi(t)qj(t)
rji

r3
ji

e−
rji
λd (3)

where kc = 8.99 × 109Nm2/C2 is Coulomb’s constant and λd is the

Debye length. The quantity rij = rji ≥ 0 denotes the distance between

spacecraft i and j. Similarly, we have ri = |ri| ≥ 0. Since the relative

positions ri, i = 1, 2, 3, are relative to the center of mass, then

m1r1 + m2r2 + m3r3 = 0 (4)

This and equation (2) imply

Mr1 = −m2r12 −m3r13

Mr2 = m1r12 −m3r23

Mr3 = m1r13 + m2r23

(5)

Squaring these equations, we obtain

M2r2
1 = m2

2r
2
12 + m2

3r
2
13 + 2m2m3r12 · r13

M2r2
2 = m2

1r
2
12 + m2

3r
2
23 − 2m1m3r12 · r23

M2r2
3 = m2

1r
2
13 + m2

2r
2
23 + 2m1m2r13 · r23

(6)

Assume we seek solutions which retain the shape of the three charged

particles in a rigid formation. Let f(t) be a non-zero, generic, time vary-

ing function such that f(0) = 1. To maintain the initial configuration
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shape, we require

r12(t)
r12(0)

=
r13(t)
r13(0)

=
r23(t)
r23(0)

= f(t) (7)

or, equivalently, that the angles αi, i = 1, 2, 3, be fixed. Substituting

equation (7) into (6), we obtain

M2r2
1(t) = f2(t)

(
m2

2r
2
12(0) + m2

3r
2
13(0) + 2m2m3r12(0)r13(0) cos α1

)
(8)

Since f(0) = 1, then we have

r1(0) =
1
M

√
m2

2r
2
12(0) + m2

3r
2
13(0) + 2m2m3r12(0)r13(0) cos α1 (9)

and, therefore, we get r1(t) = r1(0)f(t). A similar derivation for r2(t)

and r3(t) gives

ri(t) = ri(0)f(t), i = 1, 2, 3 (10)

Let ωi = ri×vi denote the angular rate of rotation vector of particle

i, i = 1, 2, 3, about the center of mass. To retain formation shape, we

must have

ω1(t) = ω2(t) = ω3(t) = ω(t)e3 (11)

Again, since no external forces are applied to the system, then the total

angular momentum must remain constant

H =
3∑

i=1

ri × (miṙi) = constant (12)

By definition of the unit vectors eri and eθi
, we have

ri = rieri

ṙi = ṙieri + riωeθi

r̈i =
(
r̈i − riω

2
)
eri + (2ṙiω + riω̇) eθi

(13)
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This and equations (10) allow us to write the momentum as

H =
3∑

i=1

mir
2
i (0)f2ωe3 (14)

Since H is constant, then f2(t)ω(t) is a constant quantity. Looking

at each individual momentum Hi we find that Hi = ri × (miṙi) =

mir
2
i (0)f2ωe3, which must be constant since f2ω is constant. Therefore,

we have

Ḣi = ri × (mir̈i) = ri × Fi = 0 (15)

where we used equation (3). This implies that a necessary condition to

maintain the shape of the formation is that Fi and ri be aligned. Hence,

we must have

Fi = Fieri (16)

Substituting this and the third equation in (13) into equation (3), we

obtain

Fi = mi

(
r̈i − riω

2
)

, i = 1, 2, 3 (17)

Another consequence is that we must have

ṙi = −riẇ

2ω
(18)

in order to achieve a rigid formation. This and the second of equations

(13) imply that ṙi = − riω̇
2ω eri + riωeθi

. Hence, the angle (determined

from ri · ṙi = ‖ri‖ ‖ṙi‖ cos βi) between the velocity vectors and the

position vectors of each of the spacecraft relative to the system center

of mass is given by

cos βi = cos β = − ω̇√
ω̇2 + 4ω4

(19)
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and is therefore the same for all craft.

Substituting equation (10) into equation (17), we obtain

Fi

miri
=

f̈

f
− ω2 =: A(t), i = 1, 2, 3 (20)

which implies Fi(t) = miri(t)A(t). Since ri × Fi = 0, then we have

0 = r1 ×
(

q2r2e
− r21

λd

r3
21

+ q3r3e
− r31

λd

r3
31

)

0 = r2 ×
(

q1r1e
− r21

λd

r3
21

+ q3r3e
− r32

λd

r3
32

)

0 = r3 ×
(

q1r1e
− r13

λd

r3
13

+ q2r2e
− r23

λd

r3
23

) (21)

This provides general conditions for a generic fixed-shape formation

motion.

To summarize, the general conditions to preserve the geometric

shape of the formation are:

1. The net resultant force Fi on each spacecraft must pass through

the system center of mass and, hence, must be along the radial

vector locating each spacecraft relative to the system center of mass

(equation (15)).

2. The magnitude of each spacecraft’s velocity vector ṙi is proportional

to the magnitude of the distance of the respective spacecraft to

the system center of mass (from the second of equation (13) and

equation (18)). Moreover, the angles βi between the velocity vectors

ṙi, i = 1, 2, 3, and the respective position vector of each of the

spacecraft to the system center of mass is equal for all spacecraft.

That is, we have β1 = β2 = β3 (equation (19)).
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3. Particular Solutions

3.1. The Collinear Solution

We now study the existence of particular solutions to equation (21).

One particular solution is when all spacecraft are located along a straight

line. We will assume that the formation is configured as shown in Figure

2 with r3 > r2 > r1 ≥ 0. Since these distances are measured from

the center of mass, the configuration as shown in Figure 2 will result

whenever m1 > m3. In this case we have

r1 = r1er, r2 = −r2er, r3 = −r3er (22)

where er is as shown in the figure. This configuration will be assumed

without any loss of generality. Particularly, if m3 > m1 then the system

center of mass will lie between the second and third craft and, in this

case, only the position vector of craft 2 will change to be r2 = r2er.

Note also that we are assuming without loss of generality that r2 >

r1, which will not always hold true. If this condition does not hold,

then the ensuing analysis will only need some adjustment, but the

qualitative results will hold. In this and later sections we will assume

the configuration given in Figure 2 with r2 > r1.

Substituting equations (22) into the equations of motion (3) and

using the expression Fi = Fier (condition 1 above for preservation of
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er

m1, q1 m2, q2 m3, q3

r1
r2

r3

Figure 2. The Collinear Three Spacecraft Problem.

geometric shape) and equation (20), we obtain

F1

m1

= A(t)r1 =
kcq1

m1

[

q2

r1 + r2

r3
21

e
−

r21
λd + q3

r1 + r3

r3
31

e
−

r31
λd

]

F2

m2

= A(t)r2 =
kcq2

m2

[

q1

r1 + r2

r3
12

e
−

r12
λd + q3

r2 − r3

r3
32

e
−

r32
λd

]

(23)

F3

m3

= A(t)r3 =
kcq3

m3

[

q1

r3 + r1

r3
13

e
−

r13
λd + q2

r3 − r2

r3
23

e
−

r23
λd

]

Let us define the positive non-dimensional spacecraft separation

distance ratio χ as

χ =
r32

r21

> 0 (24)

then

r31

r21

= 1 + χ (25)

Recall that r1 + r2 = r12 = r21, r1 + r3 = r13 = r31 and r3 − r2 = r32 =

r23. In equations (23), add the first equation to the second to obtain

A(t)

kc
(r1 + r2) =

q1q2

r2
12

(

1

m1

+
1

m2

)

e
−

r32
λd +

q1q3

m1r2
31

e
−

r31
λd − q2q3

m2r2
32

e
−

r32
λd

(26)

and subtract the third from the second to obtain

A(t)

kc
(r2 − r3) =

q2q3

r2
23

(

1

m2

+
1

m3

)

e
−

r23
λd − q1q2

m2r2
21

e
−

r21
λd +

q1q3

m3r2
31

e
−

r31
λd

(27)
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geometric shape) and equation (20), we obtain

F1

m1

= A(t)r1 =
kcq1

m1

[

q2

r1 + r2

r3
21

e
−

r21
λd + q3

r1 + r3

r3
31

e
−

r31
λd

]

F2

m2

= A(t)r2 =
kcq2

m2

[

q1

r1 + r2

r3
12

e
−

r12
λd + q3

r2 − r3

r3
32

e
−

r32
λd

]

(23)

F3

m3

= A(t)r3 =
kcq3

m3

[

q1

r3 + r1

r3
13

e
−

r13
λd + q2

r3 − r2

r3
23

e
−

r23
λd

]

Let us define the positive non-dimensional spacecraft separation

distance ratio χ as

χ =
r32

r21

> 0 (24)

then

r31

r21

= 1 + χ (25)

Recall that r1 + r2 = r12 = r21, r1 + r3 = r13 = r31 and r3 − r2 = r32 =

r23. In equations (23), add the first equation to the second to obtain

A(t)

kc
(r1 + r2) =

q1q2

r2
12

(

1

m1

+
1

m2

)

e
−

r32
λd +

q1q3

m1r2
31

e
−

r31
λd − q2q3

m2r2
32

e
−

r32
λd

(26)

and subtract the third from the second to obtain

A(t)

kc
(r2 − r3) =

q2q3

r2
23

(

1

m2

+
1

m3

)

e
−

r23
λd − q1q2

m2r2
21

e
−

r21
λd +

q1q3

m3r2
31

e
−

r31
λd

(27)
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geometric shape) and equation (20), we obtain

F1

m1
= A(t)r1 =

kcq1

m1

[
q2

r1 + r2

r3
21

e−
r21
λd + q3

r1 + r3

r3
31

e−
r31
λd

]
F2

m2
= A(t)r2 =

kcq2

m2

[
q1

r1 + r2

r3
12

e−
r12
λd + q3

r2 − r3

r3
32

e−
r32
λd

]
(23)

F3

m3
= A(t)r3 =

kcq3

m3

[
q1

r3 + r1

r3
13

e−
r13
λd + q2

r3 − r2

r3
23

e−
r23
λd

]
Let us define the positive non-dimensional spacecraft separation

distance ratio χ as

χ =
r32

r21
> 0 (24)

then

r31

r21
= 1 + χ (25)

Recall that r1 + r2 = r12 = r21, r1 + r3 = r13 = r31 and r3− r2 = r32 =

r23. In equations (23), add the first equation to the second to obtain

A(t)
kc

(r1 + r2) =
q1q2

r2
12

(
1

m1
+

1
m2

)
e−

r32
λd +

q1q3

m1r2
31

e−
r31
λd − q2q3

m2r2
32

e−
r32
λd

(26)

and subtract the third from the second to obtain

A(t)
kc

(r2 − r3) =
q2q3

r2
23

(
1

m2
+

1
m3

)
e−

r23
λd − q1q2

m2r2
21

e−
r21
λd +

q1q3

m3r2
31

e−
r31
λd

(27)
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Since r1 + r2 = r12 and r3 − r2 = r23, divide equation (26) by r12

and equation (27) by −r23 and equating the two resulting equations we

obtain

0 =
q1q2

m1m2r2
12

[
1

r12
(m2 + m1) +

m1

r23

]
e−

r21
λd

+
q1q3

m1m3r2
13

[
m3

r12
− m1

r23

]
e−

r31
λd

− q2q3

m2m3r2
23

[
m3

r12
+

1
r23

(m2 + m3)
]
e−

r32
λd (28)

which, after multiplying by r23r
2
12 throughout, simplifies to

0 = c1c2 [m1 + χ (m1 + m2)] e
− r21

λd +
c1c3 (χm3 −m1) e−

r31
λd

(χ + 1)2

−c2c3 (m2 + m3 + χm3) e−
r32
λd

χ2
(29)

where ci = qi/mi. After multiplying throughout by χ2 (1 + χ)2 er21/λd

we finally obtain

0 = c1c2 [m1 + χ (m1 + m2)]χ2 (1 + χ)2 + c1c3 (χm3 −m1) χ2e
−r21χ

λd

−c2c3 (m2 + m3 + χm3) (1 + χ)2 e
r21(1−χ)

λd (30)

There are two special cases that we may wish to consider next.

3.1.1. Case I: Large Debye Lengths

In this case we consider mission scenarios where rji << λd. This situ-

ation occurs in environments where the ambient plasma is of (almost)

neutral charge. Interstellar (or, deep space) missions are one possibility

for this to occur. Expression (30) now takes a particularly simple form
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that is only a function of χ and is given by

0 = −c2c3(m2 + m3)− c2c3(2m2 + 3m3)χ

+ [c1m1(c2 − c3)− c2c3 (m2 + 3m3)]χ2

+ [c1c2 (3m1 + m2) + c3m3(c1 − c2)]χ3 + c1c2(3m1 + 2m2)χ4

+c1c2(m1 + m2)χ5 (31)

This is a quintic equation in χ, which one can solve for. By the definition

of χ, each solution to this equation gives a family of equilibria for the

formation. Since the coefficients are of arbitrary signs, depending on

the signs of q1, q2, q3 there could be as many as five real roots to this

equation, each with a family of solutions. Specifying either r2 + r1 or

r3 + r1, along with a particular solution of the above equation we are

able to uniquely solve for the equilibrium configuration.

Remark. Note that in equation (3), if we replace qi with mi and ignore

the exponential (Debye) term, we obtain the equations of motion due

to gravitational interaction between the three spherical bodies (the re-

stricted three body problem), or what is known as Lagrange’s problem.

In this case equation (31) is now given by Lagrange’s famous quintic

equation in celestial mechanics (see Chapter 10 in (Schaub and Junkins,

2003)), which is precisely

0 = −(m2 + m3)− (2m2 + 3m3)χ− (m2 + 3m3) χ2 + (3m1 + m2) χ3

+(3m1 + 2m2)χ4 + (m1 + m2)χ5 (32)

and has exactly one real root. This verifies our results so far. Also

observe that if we set c1 = c2 = c3 6= 0, which corresponds to all
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16 Hussein and Schaub

craft having the same ratio of mass to charge, then again we obtain

Lagrange’s quintic equation (32). •

Depending on the signs and values of c1, c2, c3, there will be many

solution possibilities ranging from zero shape preserving solutions to a

maximum of five. A special and important case is when all spacecraft

have identical masses. Let m1 = m2 = m3 6= 0. The quintic equations

now becomes

0 = −2q2q3 − 5q2q3χ + (q1q2 − q1q3 − 4q2q3) χ2

+(4q1q2 + q1q3 − q2q3) χ3 + 5q1q2χ
4 + 2q1q2χ

5 (33)

Dividing throughout by q2q3 (since we assume that all craft carry some

nonzero charge) and setting δ = q1

q3
and σ = q1

q2
, we get

0 = −2− 5χ + (δ − σ − 4) χ2 + (4δ + σ − 1) χ3 + 5δχ4 + 2δχ5

=: f(χ) (34)

To facilitate studying this equation, we first recall Descartes’ rule of

signs.

Fact 3.1 (Descartes’ Rule of Signs). Let f(χ) = anχn+an−1χ
n−1+· · ·+

a1χ1 + a0 be a polynomial where an, an−1, . . . , a0 are real coefficients.

The number of positive real roots of f is either equal to the number of

sign changes of successive terms of f(χ) or is less than that number by

an even number (until 1 or 0 is reached). The number of negative real

zeros of f is either equal to the number of sign changes of successive

terms of f(−χ) or is less than that number by an even integer (until 1

or 0 is reached).
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For equation (34), there are four general cases, which are as follows:

Case A: δ − σ − 4 > 0 and 4δ + σ − 1 > 0. In this case, δ is guaran-

teed to be positive (see Figure 3). Hence, Eq. (34) has only a

single sign change, implying that there is exactly one real positive

solution. Recall that χ > 0 by definition and negative solutions

are not allowed.

Case B: δ − σ − 4 < 0 and 4δ + σ − 1 > 0. In this case, δ is not guar-

anteed to be sign-definite (see Figure 3). If δ > 0, f(χ) has a single

sign change and, hence, exactly one positive real solution. If δ < 0,

there are two sign changes implying that we have either two or no

positive real solutions.

Case C: δ − σ − 4 < 0 and 4δ + σ − 1 < 0. In this case, δ again is not

guaranteed to be sign-definite (see Figure 3). If δ > 0, f(χ) has a

single sign change for exactly one positive real solution for χ. In

case δ < 0, f(χ) has no sign changes and, hence, does not yield

any positive real solutions. So, for Case C, δ must be positive to

obtain exactly one positive real collinear formation.

Case D: δ − σ − 4 > 0 and 4δ + σ − 1 < 0. In this case, σ is guaran-

teed to be negative (see Figure 3), though this does not affect the

number of sign changes. If δ > 0, then f has three sign changes

and, hence, either three or one positive real solutions. Therefore,

for δ > 0, we are guaranteed at least one positive solution for χ.
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18 Hussein and Schaub

If δ < 0 then Eq. (34) has two sign changes and, hence, either two

or zero positive real solutions.

Only Cases A and C require that δ be positive for a collinear solution

to exist. In these cases, q1 and q3 must have the same sign. Cases B

and D allow for a charge sign difference between craft 1 and 3 for a

collinear solution to exist. We also note that for all four cases, there

are at most three positive real solutions for a given δ and σ.

Case C

Case A

Case B

Case D

δ = 4 + σ

δ =
1− σ

4

1

− 1
4

δ

σ

Figure 3. Different cases for collinear formation with large Debye lengths.

3.1.2. Case II: Small Debye Lengths

In this case we cannot ignore the exponents of rij

λd
. Equation (30) is a

nonlinear algebraic equation that has to be solved numerically. Note,

however, that in this case we need to specify r21 a priori and then solve
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for χ (or vice-versa). If the separation distance r12 is time varying,

then equation (30) will yield time varying χ values. This violates the

condition that χ be constant, which is necessary for shape-preserving

dynamic Coulomb formations to exist. As a result, if the Debye length

effect is included, then dynamic invariant shape solutions are only pos-

sible if r21 is constant. This corresponds to having all three craft orbit

on circular orbits about their common center of mass. This statement

does not exclude other bounded relative motion solutions to exist,

it merely states that circular solutions are the only shape-invariant

collinear solutions if Debye lengths are included.

3.2. On the Equilateral Triangle Configuration

Lagrange’s gravitational 3-body problem also yielded equilateral tri-

angle solutions. This section investigates if such invariant shapes are

feasible with the charged three-craft problem. To do this we revisit

equations (21) and set |rj − ri| = rij = ρ > 0 for i 6= j = 1, 2, 3. Note

that the exponential terms e−rij/λd = e−ρ/λ3 factor out trivially. In this

case the conditions (21) simplify to become

0 = r1 × (q2r2 + q3r3)

0 = r2 × (q1r1 + q3r3)

0 = r3 × (q1r1 + q2r2)

(35)

These equilateral triangle conditions are satisfied if either the terms in

parentheses on the right hand side are zero or if each of the terms in

parentheses is aligned with the respective ri vector. Let’s consider the
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latter case first. Assume that the spacecraft charges qi are proportional

to the mass mi through

qi = κmi, i = 1, 2, 3 (36)

where κ is a non-zero constant. The center of mass condition in equa-

tion (4) can now be written as

q1r1 + q2r2 + q3r3 = 0 (37)

Using this modified center of mass condition in equation (37), the right

hand side in equation (35) is always ri × (−qiri) = 0. Thus, if the

spacecraft charges are proportional to the masses, then the equilat-

eral triangle is an invariant shape solution of the charged three-body

problem. However, note that using equation (36) results in all charges

having the same sign, and thus all craft will repel each other. As a

result all these equilateral triangle solutions will grow infinitely large.

Next, let us consider the case where the terms in parentheses in

equation (35) must be zero. For an equilateral triangle solution note

that ri can never be zero. Hence, equation (35) implies that we must

have 
0 q2 q3

q1 0 q3

q1 q2 0




r1

r2

r3

 = 0 (38)

The determinant of the 3×3 matrix on the left is given by the product

2q1q2q3. If all spacecraft charges are nonzero, then the only solution to

equation (38) is r1 = r2 = r3 = 0, which is not allowed for a triangular
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solution. Say that only one spacecraft has a net zero charge on it. Say,

without loss of generality, q1 = 0. Conditions (38) imply that q2r2 = 0

and q3r3 = 0, which requires q2 = q3 = 0 since we can not allow ri = 0,

i = 1, 2, 3. Finally, if two of the craft have zero charge, say q1 = q2 = 0,

then we must have q3r3 = 0 which implies that we must have q3 = 0

since r3 is not allowed to be zero.

The above discussion shows that bounded equilateral triangle con-

figurations are not permissible for the three spacecraft problem except

for the trivial case where q1 = q2 = q3 = 0 . A physical interpre-

tation of this result is as follows. Equilateral solutions exist for the

gravitational three-body problem. However, here all three bodies are

exerting attracting forces between each other. In the charged three-

body problem it is impossible for all craft to mutually attract each

other. For example, if craft 1 and 3 have opposite charge signs and

generate an attractive force, and craft 2 and 3 also have opposite signs

to cause mutual attraction, then it is impossible for craft 1 and 2 to

have opposite charge signs as well.

3.3. Are there other solutions?

In the above discussion, the collinear and equilateral triangle constant

charge solutions of equation (21) are studied. While these are the only

two solutions for the gravitational three body problem, we do not have

a conclusive statement regarding solutions for the three spacecraft

Coulomb formation other than these two solutions. We believe that
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there are no other solutions if the charges are constant. A future task

is to verify this statement.

4. Boundedness of the Charged Three-Spacecraft Solutions

Next, we would like to determine what shape the resulting invari-

ant shaped charged spacecraft motion will describe. Depending on the

charge magnitudes, charge signs, and the spacecraft initial velocity or

energy levels, the resulting motion will either be bounded or grow un-

bounded with time. To do so, the equations of motion are rewritten for

each case in a form equivalent to the gravitational two-body problem.

4.1. Collinear Solutions

Let us study the equation of motion governing the first craft in a

collinear configuration. This is the first of equations (23). Because r21 =

|r2 − r1| = |−r2 − r1| = r2 + r1 and r31 = |r3 − r1| = |−r3 − r1| =

r3 + r1, the equation simplifies to

r̈1 =
kcq1

m1

[
q2

r2
21

e−r21/λd +
q3

r2
31

e−r31/λd

]
er (39)

Note that for a collinear configuration we have α1 = α3 = 0◦ and

α2 = 180◦. Using the first of equations (6) and the relationship r13 =

(1 + χ)r12, then we have

r̈1 =
kcq1

M1r2
1

[
q2e

−r21/λd +
q3

(1 + χ)2
e−r31/λd

]
er (40)
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where

M1 =
m1M

2

m2
2 + m2

3(1 + χ)2 + 2m2m3(1 + χ)
(41)

If we let

µ1 = −kcq1

M1

[
q2e

−r21/λd +
q3

(1 + χ)2
e−r31/λd

]
(42)

then we get the following equation of motion for spacecraft 1

r̈1 = −µ1

r3
1

r1 (43)

where we used the fact that r1 = r1er and r1 > 0. Note that the

algebraic form of equation (42) is identical to that of the gravitational

2-Body Problem (2BP). However, the equivalent gravitational constant

µ1 can be time varying here for general motions and finite Debye length

values. If the Debye length is assumed to be infinite (vacuum condition),

then µ1 is constant. Unlike the gravitational problem, this µ1 parameter

can be positive or negative for the charged spacecraft scenario.

We now study the equation of motion governing the craft 2, which

is the second of equations (23). In addition to r21 = r2 + r1 we also

have r32 = −(r2 − r3), the equation simplifies to

r̈2 =
kcq2

m2

[
− q1

r2
12

e−r12/λd +
q3

r2
32

e−r32/λd

]
er (44)

Using the second of equations (6) and the relationship r32 = χr21, then

we have

r̈2 =
kcq2

M2r2
2

[
−q1e

−r12/λd +
q3

χ2
e−r32/λd

]
er (45)

where

M2 =
m2M

2

m2
1 + m2

3χ
2 − 2m1m3χ

(46)
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If we let

µ2 =
kcq2

M2

[
q1e

−r12/λd − q3

χ2
e−r32/λd

]
(47)

then we get the following equation of motion for spacecraft 2

r̈2 = −µ2

r3
2

r2 (48)

where we used the fact that r2 = −r2er and r2 > 0. Similarly for

spacecraft 3, we get

r̈3 = −µ3

r3
3

r3 (49)

with

µ3 =
kcq3

M3

[
q1

(1 + χ)2
e−r13/λd +

q2

χ2
e−r32/λd

]
(50)

and

M3 =
m3M

2

m2
1(1 + χ)2 + m2

2χ
2 + 2m1m2χ(1 + χ)

(51)

Note that each µi is a function of the relative distances. Moreover,

note that each µi is of indefinite sign depending on the values of

q1, q2, q3. In the limit when we have a large Debye length, then the

expressions for µi, i = 1, 2, 3, simplify to become

µ1 = −kcq1

M1

[
q2 +

q3

(1 + χ)2

]
(52a)

µ2 =
kcq2

M2

[
q1 −

q3

χ2

]
(52b)

µ3 =
kcq3

M3

[
q1

(1 + χ)2
+

q2

χ2

]
(52c)

which are now constant functions of the masses and charges of all

spacecraft in the formation.
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For general Debye lengths λd, the only invariant shape solution is

with the spacecraft performing circular orbit motions about their com-

mon center of mass. This is justified at the end of Section 3.1 under

Case II. Invariant shape unbounded collinear motion is not possible.

The charges qi must be chosen such that the resulting equivalent gravi-

tational parameters µi are positive constants. In this case the spacecraft

motion is equivalent to that of the 2BP. Here the required spacecraft

velocity vectors are given by

ṙ1 = v1eθ ṙ2 = −v2eθ ṙ3 = −v3eθ (53)

where

vi =
√

µi

ri
(54)

4.2. Equilateral Triangle Solutions

The only equilateral triangle solutions found require that the charges

qi = κmi are proportional to the spacecraft masses. Here rij = ρ is

the common separation distance between all three craft. Defining the

negative constant G as

G = −kcκ
2e−ρ/λd < 0 (55)

the equations of motion in (3) are written for this special case as

m1r̈1 = Gm1
ρ3 (m2r12 + m3r13) (56)

m2r̈2 = Gm2
ρ3 (−m1r12 + m3r23) (57)

m3r̈3 = −Gm3
ρ3 (m1r12 + m2r23) (58)
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These equations are identical to equations of motion of the equilateral

triangular solution of the gravitational three-body problem (Schaub

and Junkins, 2003). However, instead of G being the positive universal

gravitational constant, it is a negative effective universal gravitational

constant for the charged spacecraft problem. The equations of motion

of each spacecraft are again written as

r̈i = −µi

r3
i

ri (59)

where the effective gravitational constant is now µi = GMi with

M1 = 1
M2

(
m2

2 + m2
3 + m2m3

)3/2 (60)

M2 = 1
M2

(
m2

1 + m2
3 + m1m3

)3/2 (61)

M3 = 1
M2

(
m2

1 + m2
2 + m1m2

)3/2 (62)

Thus, for triangular invariant shape solutions, the parameters µi are

always negative.

4.3. Relative Orbit Geometry Discussion

The equations of motion of all charged spacecraft solutions are written

in the form

r̈i = −µi

r3
i

ri (63)

where µi is a constant regardless of the magnitude of the Debye length.

This expression is equivalent to equations of motion of the gravitational

2BP, with the exception of the sign of µi. Recall that for the general
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gravitational 2BP with µ > 0, the eccentricity vector c

c = ṙ× h− µ

(
r
r

)
= µeee (64)

is found to be conserved in the absence of perturbations. Here ee is the

perifocal frame unit direction vector which points towards periapsis,

and h = r× ṙ is the mass-less angular momentum vector. Using c the

orbit radius is shown to satisfy

r =
p

1 + e cos f
(65)

where e ≥ 0 is the eccentricity, p = h2/µ is the semi-latus rectum,

and f is the true anomaly angle relative to periapsis. Let us investigate

what happens if we allow µ to have negative values for the charged

spacecraft motion case.

Following equivalent steps as with the derivation of the gravita-

tional two-body problem eccentricity vector, we can develop an equiv-

alent invariant eccentricity vector ci of the collinear charged spacecraft

motion:

ci = ṙi × hi − µi

(
ri

ri

)
(66)

Here hi = ri × ṙi is the angular momentum vector of the ith craft.

Next we determine the magnitude and heading of this invariant vector.

Evaluating ci · ri leads to the condition

ci · ri = h2
i − µiri = ri|ci| cos(∠ri, ci) (67)

Equation (67) is solved for the position coordinate ri to obtain

ri =
h2

i /µi

1 + |ci|
µi

cos(∠ri, ci)
(68)
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Comparing this to the 2BP conic section radius equation r = p/(1 +

e cosf), we define the semi-latus rectum pi to be

pi = h2
i /µi (69)

Note that depending on the sign of µi, the value of pi can be both

positive or negative. Let eei be a unit direction vector, then we can

write the eccentricity vector as

ci = µieieei (70)

where ei > 0 is the orbit eccentricity. In the conic 2BP solution in

Eq. (65), the angle f is measured relative to the periapsis passage.

Similarly, we define the angle fi for our collinear charged spacecraft

motion to be the angle between the position vector ri and the eccen-

tricity vector ci. Using Eq. (70) the radial coordinate ri is reduced

to

ri =
pi

1 + ei sign(µi) cos fi
(71)

To show that Eq. (71) also represents conic solutions no matter what

the sign of µi, we need to consider the 2 cases illustrated in Figure 4.

Case 1 considers the traditional µi > 0 scenario and is shown in Fig-

ure 4(a). The result is equivalent to that of the gravitational 2BP with

both ci and the unit direction vector eei pointing towards periapsis.

The charged spacecraft radii ri are governed by the traditional orbit

radius equation of a conic section:

ri =
pi

1 + ei cos fi
(72)

HuSc_CELE-367-Final.tex; 26/06/2006; 10:54; p.28



Three Craft Coulomb Tether Problem 29

f

F1F2 eeici

ri = ±rier

(a) Case 1 with µi > 0

f

F1F2

er

ci eei

ri = ±rier

(b) Case 2 with µi < 0

Figure 4. Illustration of the Conic Solutions to the Two µi Sign Cases.

Note that this case will result in motions satisfying all conic solutions.

Depending on the orbit energy levels, the resulting motions are either

elliptic, parabolic, or hyperbolic.

Figure 4(b) illustrates Case 2 where µi < 0. The orbit radial coor-

dinate equation reduces to

ri =
pi

1− ei cos fi
(73)

Studying the first equality in Eq. (67), we find that ci ·ri > 0 must hold

for all times. This dictates that cos fi = 0, which shows that the true

anomaly angle can only lie within −π/2 ≤ fi ≤ π/2. Further, studying
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Eq. (70) it is clear that ci and eei point in the opposite directions.

Because pi = h2
i µi < 0, the eccentricity in Eq. (73) must be hyperbolic

with ei > 1. Bounded elliptic motion is not possible for this case. A

physical example of such a scenario is the case where all three craft have

equal charge signs. This can occur with the collinear solutions, and is

required for all equilateral triangle solutions. Here the three craft repel

each other regardless of the orbital speed or energy level, and travel on

hyperbolic trajectories relative to the formation center of mass. Every

hyperbola has two possible arcs. For the gravitational 2BP only the arc

surrounding the occupied focus is the real trajectory. As illustrated in

Figure 4(b), the conditions in case 2 result in the charged spacecraft

using the 2nd hyperbolic arc which surrounds the unoccupied focus F2.

This is how the angle f is limited to −π/2 ≤ f ≤ π/2.

Table I. Orbit Types for Different

µi Sign Cases.

Case 1 Case 2

µi > 0 < 0

elliptic ai > 0 N/A

hyperbolic ai < 0 > 0

Using the collinear position vector definition ri = ±rier the energy

equation can be derived for both µ sign cases in an equivalent manner

to the 2BP and yields an identical expression (Schaub and Junkins,
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2003):
v2
i

2
− µi

ri
= − µi

2ai
(74)

where ai is the semi-major axis of the resulting motion. Because all

scenarios considered are invariant shape motions, all spacecraft tra-

jectories about the center of mass must be the same conic solution

(i.e. elliptical, parabolic, hyperbolic). Thus, it is not possible to have

invariant shape solutions where the signs of µi differ among the craft.

Considering case 1 with µi > 0, if ai > 0, then the three craft are

performing elliptical or circular motion about the focus and remain

bounded. If ai < 0, then the craft have too much velocity for the

Coulomb forces to compensate for, and the motion is hyperbolic and

grows unbounded. Note that even as ri → ∞, the separation distance

ratios will remain constant. Thus, by computing the semi-major axis

of the collinear solutions it is possible to determine if the resulting

spacecraft orbits will remain bounded, or if they will grow infinitely

large. Remember that these results are only valid if µi > 0 is a con-

stant, which requires the Debye length to be very large compared to the

spacecraft motion. Considering Case 2 with µi < 0, then only ai > 0 is

possible which results in unbounded hyperbolic motion. These results

are summarized in Table I.
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5. Numerical Illustrations

The following numerical illustrations are generated by numerically inte-

grating the fundamental charged particle equations of motion in equa-

tion (3). The spacecraft are assigned the masses m1 = 100 kg, m2 =

75 kg, and m3 = 50 kg. Note that these masses satisfy the assumption

that m1 > m3 used in this paper’s developments. The charges are

q1 = q3 = 10µC and q2 = ±10µC. The second craft always has the

same magnitude, but the charge sign can vary from case to case. The

separation distance between the first and second craft is set to r21 = 20

meters for all cases considered.

First, let us consider cases where the Debye length λd is much larger

than the formation size. Here the collinear equations of motion of each

craft can be written in an equivalent form to the gravitational 2BP. The

simulation parameters for the 4 cases considered are listed in Table II.

Cases 1–3 have the second spacecraft charge set to a negative value.

This causes an attractive force to be generated between the inner and

outer spacecraft. The resulting collinear side ratio χ is the same for

these cases, as well as the equivalent gravitational constant µ1. Note

that to determine if the resulting charged spacecraft motion is bounded,

it is sufficient to study the motion of the first spacecraft. This numerical

analysis will thus only focus on the trajectory of m1. The resulting

relative orbits are illustrated in Figure 5.

In case 1 the spacecraft velocity of m1 is set up using the circu-

lar orbit speed v1 =
√

µ1/r1. The other craft velocities are then set
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Table II. Set of Numerical Simulation Test Cases with Infinite Debye Length.

Parameter Case 1 Case 2 Case 3 Case 4

q2 -10 µC -10 µC -10 µC +10 µC

χ 1.083175 1.083175 1.083175 1.131453

µ1 0.00438648 0.00438648 0.00438648 -0.00714325

a1 15.9252 m 15.9252 m -79.6261 m 5.37993 m

v1(t0) 0.016596 m/s 0.016596 m/s 0.024616 m/s 0.021037 m/s

β1(t0) 90o 70o 90o 90o

accordingly to guarantee that all craft are rotating at the same rate

at the initial time. Because both µ1 and a1 are positive, the relative

orbits are expected to be bounded. The resulting motion is seen in

Figure 5(a). The spacecraft locations are shown at three different times

through solid disks, while the craft trajectory is shown for one revolu-

tion. The ratio of spacecraft separation distance is maintained, yielding

an invariant-shape motion.

Case 2 is set up using the same kinetic energy, and has the same

semi-major axis a1 as case 1. However, the initial velocity vector is

rotated 30o relative to the eθ direction. As predicted, the resulting

charged spacecraft motion are elliptical orbits with the formation center

of mass being at the ellipse focus.

Case 3 uses the same set up as case 1, except that the initial craft

velocity magnitude is increased. The resulting semi-major axis a1 is
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negative, indicating hyperbolic motion. Figure 5(c) illustrates how the

Coulomb forces are insufficient here to compensate for the increased for-

mation kinematic energy level. As a result, the craft perform hyperbolic

trajectories while maintaining a constant formation shape. Also, note

that the formation center of mass is the focus of all three hyperbolas.

Case 4 duplicates the simulation set up of case 1, but reverses the

craft 2 charge sign to q2 = +10µC. As a result, the equivalent gravita-

tional constant µ1 is negative, indicating that only hyperbolic motion

is possible. The resulting motion shown in Figure 5(d) shows that the

spacecraft are on hyperbolic orbits where the formation center of mass

is on the un-occupied focus.

The previous analysis showed that, if the Debye length is not large

compared to the spacecraft separation distances, only circular collinear

solutions or unbounded equal charge equilateral triangle solutions will

yield shape-invariant formations. A collinear solution is simulated by

using the spacecraft charges of case 1, and a Debye length of λd = 20

meters, we solve for a ratio χ = 1.06770 and µ1 = 0.0019116. The sim-

ulation results are illustrated in Figure 6. Even with this short Debye

length, an invariant-shape charged formation is produced. However,

note that this solutions is more sensitive to integration or setup errors

due to the higher degree of nonlinearity with the additional exponential

term.
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(a) Case 1: Circular Orbits, µi > 0
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(c) Case 3: Hyperbolic Orbits, µi > 0
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(d) Case 4: Hyperbolic Orbits, µi < 0

Figure 5. Numerical Illustration of dynamic invariant shape Coulomb formations

with an infinite Debye length for spacecraft 1 (- - -), spacecraft 2 (——) and

spacecraft 3 (- · -).

6. Conclusion

This paper studies shape-preserving formations of three spacecraft kept

in formation via Coulomb tethers. The craft are assumed to be flying in

deep space and the differential orbital accelerations are not considered
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Figure 6. Numerical Illustration of circular invariant shape Coulomb formation with

a small Debye length of λd = 20 m for spacecraft 1 (- - -), spacecraft 2 (——) and

spacecraft 3 (- · -).

in this work. Inspired by Lagrange’s three body problem, general con-

ditions are derived that guarantee preservation of the geometric shape

of the formation and show that the classical collinear configuration is

a solution to the problem. The three collinear spacecraft problem is

analyzed for the equal mass case, yielding conditions that guarantee

no, unique, or multiple solutions. Finally, the boundedness of the in-

variant shape solutions is studied by writing the equations of motion

in an equivalent form to the 2-body gravitational problem and using

the energy equation to determine the semi-major axis of the charged

spacecraft motion.
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