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Abstract

This paper studies the stability and control of relative equilibria for the spinning three-craft Coulomb
tether problem. General conditions are derived whose solutions are all relative equilibria for the spinning
charged three-craft cluster. In particular, the collinear three-craft spinning family of solutions are derived.
Routhian reduction is used to employ the conservation of angular momentum to simplify the equations
of motion of the system and, hence, restricting the analysis to its internal shape dynamics. This paper
mainly focuses on symmetric Coulomb-tether systems, where all three craft have the same mass and nom-
inal charge values. Based on a linearized analysis, the uncontrolled symmetric three-craft Coulomb tether
system is shown to be unstable. Linear feedback control based on the linearized equations are derived to
control the nonlinear dynamics of the system. The closed-loop system converges to a neighborhood of the
desired equilibrium in general. If the initial condition is chosen such that the system angular momentum is
equivalent to that of the desired equilibrium, asymptotic convergence is achieved.
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1. Introduction

Recent research has begun to investigate exploiting the naturally occurring electrostatic forces
of spacecraft operating High Earth Orbits (HEO) or deep space. The NIAC study performed by
King et al. (2002) illustrates that the absolute spacecraft charges can reach kilo-volt levels at
GEO. This results in micro- to milli-Newton levels of disturbance forces if the craft are flying
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dozens of meters apart. Over an orbit, this disturbance can cause hundreds of meters of error mo-
tion. The Coulomb thrusting concept proposes to use active charge control to servo the absolute
spacecraft charge levels to desired values and exploit this disturbance force to perform direct rel-
ative motion control (Schaub et al., 2004; King et al., 2003). The electrostatic charge of a craft is
partially masked from another nearby craft due to the interaction with the space plasma ions and
electrons. The strength of this shielding is measured through the Debye length (Nicholson, 1992;
Gombosi, 1998). The cold and dense plasma environment at Low Earth Orbits (LEO) causes
the Debye lengths to be of the order of centimeters, making Coulomb thrusting over dozens of
meters separation distances infeasible. At Geostationary Earth Orbits (GEO) the Debye length
can range between 100-1000 meters, making it feasible to exploit Coulomb thrusting (King et al.,
2002; Romanelli et al., 2006). At 1 AU distance from the sun the deep space Debye lengths range
between 30-50 meters (King et al., 2002).

Close proximity flying on the order of dozens of meters is very challenging due to the large
number of small orbit corrections that must be performed to avoid collisions and maintain a
desired relative orbit geometry. Further, exhaust plume impingement issues must be addressed
to avoid having one spacecraft fire in the direction of a neighboring spacecraft. The Coulomb
thrusting typically only requires Watt levels of electrical power, while consuming essentially no
fuel. Isp fuel efficiencies range between 109 – 1012 seconds (King et al., 2002; Lappas et al.,
2007). Spacecraft charge control has been demonstrated on the earlier SCATHA (Mullen et al.,
1986) and ATS (Whipple and Olsen, 1980) missions, as well as more recently by the European
CLUSTERS mission (Escoubet et al., 2001; Torkar and et. al., 1999). With CLUSTERS the
absolute spacecraft potential is controlled to near zero relative to the plasma ground to avoid
biasing the particle sensors.

The Coulomb thrusting research has led to a multitude of novel relative motion missions. The
concept of virtual Coulomb structures has open-loop electrostatic forces perfectly cancel out the
differential gravitational acceleration, resulting in a spacecraft cluster whose satellite positions
appear frozen as seen by the rotating chief local-vertical-local-horizontal (LVLH) frame (King
et al., 2002; Schaub et al., 2005; Berryman and Schaub, 2005a,b). However, all charged static
relative equilibria solutions in orbit or in deep space have been unstable and will required active
charge feedback to stabilize.

The first feedback stabilized charged virtual structures is the 2-craft Coulomb tether concept
discussed by Natarajan and Schaub (2006), Natarajan et al. (2006) and Natarajan and Schaub
(2007). While a physical tether must always be in tension, the Coulomb tether can exert both
attractive and repulsive forces between the 2 craft. However, the Coulomb tether concept is only
viable for relatively short separation distances up to 100 meters, while the typical space tether
concepts consider kilometer size tether lengths.

Both of these Coulomb mission concepts consider static scenarios where are craft are at nom-
inally fixed locations relative to a reference frame (orbit frame). More recently the feasibility
of spinning charged spacecraft formations has been considered. Hussein and Schaub (2006a)
investigate the similarity between the gravitational and electrostatic spinning 3-body problem
to determine invariant shape solutions. Lagrange’s treatment of the gravitational 3-body prob-
lem is applied to the electro-static 3-body problem to develop collinear and equilateral triangle
solutions, as well as discuss the boundedness of these motions. However, the stability of these
solutions is not addressed in this paper.

The first passively stable virtual Coulomb structure is the spinning 2-craft system discussed
by Schaub and Hussein (2007). Without the plasma charge shielding effect, the attractive force
between two oppositely charged bodies is mathematically equivalent to the gravitational 2-body

2



Coulomb 

Force Fields

charged 

spacecraft

+

-

-

attractive 
force

repulsive 

force

Fig. 1. Illustration of a 3-craft Coulomb spacecraft formation spinning in deep space about their cluster center of mass.

force. The resulting trajectories of the 2 craft are also conic solutions which are orbitally sta-
ble. With the finite Debye lengths and charge shielding included, the relative trajectories are no
longer closed conic solutions. Rather, the charge shielding causes an additional weakening of the
attractive force. Schaub and Hussein (2007) show that if the nominal circular relative motion has
a radius less than the Debye length, then the resulting nonlinear motion is still stable.

While Hussein and Schaub (2006a) investigate invariant shape solutions to the spinning charged
3-craft problem illustrated in Figure 1, this paper studies the general relative equilibriums of such
a system, as well as discuss the open-loop stability. Energy-momentum methods are employed
to study the complex dynamical system where charge shielding is included through a finite De-
bye length value. Close flying spinning multi-craft systems can be used for interested distributed
interferometry missions such as the terrestrial planet finder concepts. The charged spacecraft are
assumed to be flying on circular heliocentric orbits, far removed from the gravitational potential
fields of planets or other celestial bodies. Thus this study can neglect the relative gravitational
forces and focus on the motion of free-flying bodies due to the electrostatic forces.

2. The Three-Craft Constellation

2.1. Invariance of the Hamiltonian

Consider a spacecraft cluster composed of three charged craft operating in deep space. Thus
the orbital dynamics are ignored in this development. However, the plasma shielding effect is
included with a finite Debye length. At 1 AU the Debye length can range between 30–50 meters
due to the solar flux (King et al., 2002). The craft have masses m1, m2 and m3 and charges c1,
c2 and c3, respectively. The inertial positions of the three craft are denoted by r1, r2, and r3. The
total system kinetic energy is given by

K(r1, r2, r3, ṙ1, ṙ2, ṙ3)

=
1
2

(
m1 ‖ṙ1‖2 + m2 ‖ṙ2‖2 + m3 ‖ṙ3‖2

)
, (1)

where ‖·‖ denotes the Euclidean norm in R3.

3



m1, c1

m2, c2

m3, c3

r1

r2

r3

q1

q2

rc

N

Figure 2 The three-craft Coulomb tether system.

where λd is the Debye length which determines the strength of the electrostatic shielding of the

surrounding space plasma, and

µ12 = kcc1c2,

µ13 = kcc1c3,

µ23 = kcc2c3. (4)

The Lagrangian is given by L = K − V .

We now express the kinetic energy in terms of the momentum variables

p1 =
∂L

∂q̇1
=

m1(m2 + m3)

M
q̇1 −

m1m3

M
q̇2

p2 =
∂L

∂q̇2
=

m3(m2 + m1)

M
q̇2 −

m1m3

M
q̇1. (5)

The kinetic energy is given by

K(q1,q2,p1,p2) =
1

2

(

(m1 + m2)

m1m2
‖p1‖

2 +
(m2 + m3)

m2m3
‖p2‖

2 +
2

m2
p1 · p2

)

, (6)

with Hamiltonian given by

H(q1,q2,p1,p2) = K(q1,q2,p1,p2) + V (q1,q2). (7)

We now consider the action of the rotation group SO(3), which corresponds to a rigid body

rotation of the two-craft formation:21

ΨR (q1,q2) = Ψ (R,q1,q2) = (Rq1,Rq2), (8)
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Let q1 = r1 − r2, q2 = r3 − r2 and qc = m1r1+m2r2+m3r3
m1+m2+m3

be the relative position vector
between the first and second spacecraft, the relative position vector between the second and third
spacecraft, and the system center of mass vector. We will fix the center of mass with qc = 0.
This is equivalent to restricting the system motion to the zero linear momentum surface.

In terms of q1 and q2, the kinetic energy is then given by

K(q1,q2, q̇1, q̇2)

=
1
2
(m1(m2 + m3)

M
‖q̇1‖2 +

m3(m2 + m1)
M

‖q̇2‖2

− 2m1m3

M
q̇1 · q̇2

)
, (2)

where M = m1 + m2 + m3 is the total cluster mass. The potential energy V is purely due
to the electrostatic charges c1, c2 and c3, and is a function of q1 = ‖q1‖, q2 = ‖q2‖, and
q12 = ‖q1 − q2‖. The total cluster electrostatic potential function is given by

V (r) =
µ12

‖q1‖
e−

‖q1‖
λd − µ12

λd

∫ ∞

‖q1‖
λd

e−s

s
ds +

µ23

‖q2‖
e−

‖q2‖
λd

−µ23

λd

∫ ∞

‖q2‖
λd

e−s

s
ds +

µ13

‖q1 − q2‖
e−

‖q1−q2‖
λd

−µ13

λd

∫ ∞

‖q1−q2‖
λd

e−s

s
ds, (3)

where λd is the Debye length which determines the strength of the electrostatic shielding of the
surrounding space plasma, and

µ12 = kcc1c2, µ13 = kcc1c3, µ23 = kcc2c3. (4)
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The Lagrangian is given by L = K − V .
We now express the kinetic energy in terms of the momentum variables

p1 =
∂L
∂q̇1

=
m1(m2 + m3)

M
q̇1 −

m1m3

M
q̇2

p2 =
∂L
∂q̇2

=
m3(m2 + m1)

M
q̇2 −

m1m3

M
q̇1. (5)

The kinetic energy is given by

K(q1,q2,p1,p2) =
1
2
( (m1 + m2)

m1m2
‖p1‖2

+
(m2 + m3)

m2m3
‖p2‖2 +

2
m2

p1 · p2

)
, (6)

with the Hamiltonian given by

H(q1,q2,p1,p2) = K(q1,q2,p1,p2) + V (q1,q2). (7)

We now consider the action of the rotation group SO(3), which corresponds to a rigid body
rotation of the two-craft formation (Marsden and Ratiu, 1999):

ΨR (q1,q2) = Ψ (R,q1,q2) = (Rq1,Rq2), (8)

for all R ∈ SO(3), with the corresponding lifted action

TΨR (q1,q2, q̇1, q̇2) = (Rq1,Rq2,Rq̇1,Rq̇2) . (9)

This lifted action is on the tangent space (i.e., space of configurations and velocities). This lifted
action says that under a rigid body rotation of the entire system, the rate of change of q has to
be rotated exactly by the rotation matrix R in order to preserve the shape of the formation. The
action on the space of momenta is denoted by T ∗ΨR and is given by:

T ∗ΨR (q1,q2,p1,p2) = (Rq1,Rq2,Rp1,Rp2) . (10)

The Hamiltonian is invariant with respect to the action of the rotational group SO(3) action (i.e.,
H (T ∗ΨR (q1,q2,p1,p2)) = H(Rq1,Rq2,Rp1,Rp2) = H(q1,q2,p1,p2)). This is easy
to verify because ‖Rpi‖2 = ‖pi‖2 and ‖Rqi‖2 = ‖qi‖2 (noting that V is a function of the
magnitude of its argument), and R ∈ SO(3) is an orthonormal matrix. This invariance implies
that there is a conserved quantity JSO(3), called the momentum map, associated with action of
SO(3). It can be shown that this conserved quantity is given by (see Marsden and Ratiu (1999))

JSO(3) = q1 × p1 + q2 × p2, (11)

which is the angular momentum of the system. This momentum is conserved if the system is not
actuated by any external forces.

2.2. Relative Equilibria

To obtain expressions for relative equilibria of the system, we first need to compute the locked
inertia tensor, which is a map I(q) : so(3) → so∗(3), where so(3) is the SO(3) Lie algebra (the
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algebra of spatial “twists”). This tensor is the inertia of the system if its shape coordinates are
locked as if the system is a rigid body. The locked inertia tensor is given by

〈I(q)η, ξ〉 =( ηSO(3), ξSO(3) ),

for all η, ξ ∈ so(3), and where ( ·, · ) denotes the kinetic energy metric. ξSO(3) denotes
the infinitesimal generator associated with the action of SO(3). The infinitesimal generator of an
action is the infinitesimal description of an action. It is is a velocity vector (in this case an angular
velocity vector) that completely describes how the action transforms a configuration while the
shape of the system is maintained. The infinitesimal generator for the SO(3) group action is
simply given by the cross product: ξSO(3)(q1,q2) = (q1,q2, ξ × q1, ξ × q2), which acts at the
configuration (q1,q2) and to induce a velocity vector (ξ×q1, ξ×q2). The infinitesimal generator
in this case is simply given by taking the cross product of the angular velocity variable ξ ∈ so(3)
with the configuration variables q1,q2. Under such an operation the system is transformed to a
new configuration that has exactly the same shape as that before application of the action ΨR. In
this case it represents a pure net change in orientation while the shape is preserved.

Using the above definition for the locked inertia, one can find that the locked inertia tensor is
given by:

I(q1,q2) =
m1(m2 + m3)

M

(
‖q1‖2 Id− q1 ⊗ q1

)

+
m3(m2 + m1)

M

(
‖q2‖2 Id− q2 ⊗ q2

)
(12)

−m1m3

M
(2(q1 · q2)Id− q1 ⊗ q2 − q2 ⊗ q1) ,

where Id : so∗(3) → so∗(3) is the identity operator and qi ⊗ qj is often denoted as the dyadic
qiqj .

The augmented augmented potential function Vξ is defined by

Vξ = V (q1,q2)−
1
2
〈ξ, I(q1,q2)ξ〉

= V (q1,q2)−
1

2M

{[
m1(m2+m3) ‖q1‖2

+m3(m1+m2) ‖q2‖2 − 2m1m3q1 · q2

]
‖ξ‖2

−m1(m2 + m3) (q1 · ξ)2 −m3(m1 + m2) (q2 · ξ)2

+2m1m3(q1 · ξ)(q2 · ξ)
}

(13)

can be used to determine the relative equilibria (Marsden, 1992).
A point in the cotangent space (q1e,q2e,p1e,p2e) is a relative equilibrium of the system if

and only if there is a ξ such that (p1e,p2e) = FL(ξSO(3)) and (q1e,q2e) is a critical point
of Vξ(q1,q2) (Marsden, 1992). In the present case, this means that a point in phase space is a
relative equilibrium if there is a velocity ξ such that satisfy:
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0 =−µ12e−‖q1‖/λd

‖q1‖3
q1 −

µ13e−‖q1−q2‖/λd

‖q1 − q2‖3
(q1 − q2)

− 1
M

[
m1(m2 + m3)ξ × (q1 × ξ)

−m1m3ξ × (q2 × ξ)
]

0 =−µ23e−‖q2‖/λd

‖q2‖3
q2 +

µ13e−‖q1−q2‖/λd

‖q1 − q2‖3
(q1 − q2)

− 1
M

[
m3(m1 + m2)ξ × (q2 × ξ)

−m1m3ξ × (q1 × ξ)
]

p1e =
m1(m2 + m3)

M
ξ × q1e −

m1m3

M
ξ × q2e

p2e =
m3(m1 + m2)

M
ξ × q2e −

m1m3

M
ξ × q1e.

The above conditions represent sufficient conditions for the existence of relative equilibria,
which in the present case are spinning three-craft configurations. These conditions are nonlinear
and very difficult to solve. However, one can check for example that collinear solutions do ex-
ist. In previous work, the authors solved for shape preserving three-craft constellations, which
include circularly spinning three-craft relative equilibria (Hussein and Schaub, 2006b). In that
work, one had to solve a quintic nonlinear equation and then for the spin rate ξ. Using the
method described in this paper, that relies on the geometric approaches described by Marsden
(1992), the conditions given above cater solutions to the quintic equation directly.

For example, consider a three-spacecraft collinear spinning constellation. Say that we are given
a desired charge on spacecraft 1 and 2, and given desired separation distances qe1 and qe2. The
above conditions when evaluated at these equilibrium values become linear algebraic equations
in the charge c3 of the third spacecraft and in the square of the magnitude of the spin rate ξ.
Solving for c3 and ξ2 = ‖ξ‖2, one obtains

c3 =
c1c2e(qe2/λd)m3q2

e2(qe1 + qe2)2(m2qe2 + m1(qe1 + qe2))
q2
e1(c1m2q2

e2(m1qe1 −m3qe2) + c2e(qe1/λd)m1(qe1 + qe2)2(m2qe1 + m3(qe1 + qe2)))
(14)

and

ξ =

√
−c1c2e(−qe1/λd)kcM

(
c1q2

e2 + c2e(qe1/λd)(qe1 + qe2)2
)

(q2
e1(c1m2q2

e2(m1qe1−m3qe2)+c2e(qe1/λd)m1(qe1+qe2)2(m2qe1+m3(qe1+qe2))))
.

(15)

Hence, we see that for an equilibrium c1 and c3 have to be of the same sign (from equation
(14)) and that c2 has to be opposite to both c1 and c3 (from equation (15)). One can check that
the above value for c3 solves the quintic equation derived by Hussein and Schaub (2006b). The
advantage of the above approach is that the quintic equations is readily solved, along with the
desired spin rate ξ.

One can see that there is a large family of collinear spinning three spacecraft solutions. The
above solution (equations (43) and (44)) completely describe the entire family of collinear solu-
tions. One can then use the energy omentum method to determine the stability conditions needed
for a stable spinning three craft problem.

7



3. Formation Shape Instability with Equilibrium Charges

Unlike the charged spinning two-craft problem discussed by Schaub and Hussein (2007), un-
der no condition is the circular trajectory relative equilibrium of the three-craft problem stable
without a charge feedback control law. By means of linearization of the second order dynamics
of the formation, we will show that the system is unstable. For the perfectly symmetric case (i.e.,
three craft with identical masses and equally space craft), this will be proven analytically. For
the general nonsymmetric formation, instability will be shown numerically since the resulting
equations are far too complex.

3.1. The Reduced Equations of Motion

So far we have not written down the equations of motion. We do so in this section using
Routhian reduction. The Lagrangian for this system is given by L = K − V , where K and V
are expressed in Eqs. (2) and (3). We have so far not used any specific coordinate definition for
q1 and q2. To simplify the analysis we will assume a planar formation. In this case, we use the
following coordinates: q1 = |q1| = |r1 − r2| is the relative distance between vehicles 1 and 2,
q2 = |q2| = |r3 − r2| is the relative distance between vehicles 2 and 3, θ1 is the angle between
the vector q1 and an inertial x-axis, and θ2 is the angle between q2 and q1.

With this definition for a coordinate system, one can easily verify that ∂L
∂θ1

= 0 and, hence, the
(angular) momentum associated with θ1, pθ1 , is conserved: ṗθ1 = 0 (this is easily checked from
the Euler-Lagrange equation for θ1). Routh reduction (Marsden, 1992) is a procedure that uses
conservation of momenta variables to reduce the size of the resulting equations. In the present
case, the value of pθ1 is set to a constant value h determined by the initial conditions. Obtaining
an expression for pθ1 from the fact that

h = pθ1 =
∂L
∂θ̇1

=
1
M

(
(m1 + m2)m3

(
θ̇1 + θ̇2

)
q2
2

+m1m3

(
sin θ2q̇1 − cos θ2q1

(
2θ̇1 + θ̇2

))
q2

+m1q1

(
(m2 + m3)q1θ̇1 −m3 sin θ2q̇2

) )
.

Using this expression to solve for θ̇1, one obtains

θ̇1 =
hM + m1m3 sin θ2 (q1q̇2 − q2q̇1)−m3q2((m1 + m2)q2 −m1 cos θ2q1)θ̇2

m1(m2 + m3)q2
1 − 2m1m3 cos θ2q2q1 + (m1 + m2)m3q2

2

. (16)

Eq. (16) is then used to remove θ̇1 in

L(q1, q2, θ1, θ2, q̇1, q̇2, θ̇1, θ̇2)− hθ̇1

to obtain the Routhian R(q1, q2, θ1, θ2, q̇1, q̇2, θ̇2).
The equations of motion of the three-craft system are obtained from the Euler-Lagrange equa-

tions, but with the Lagrangian replaced with the Routhian. One can reconstruct the solution for
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θ1 using equation (16). The equations of motion for q1, q2, θ2 are given by (we omit the detailed
expressions due to their length):

d
dt

∂R
∂q1

− ∂R
∂q1

= 0

d
dt

∂R
∂q2

− ∂R
∂q2

= 0 (17)

d
dt

∂R
∂θ2

− ∂R
∂θ2

= 0.

3.2. Linearized Equations of Motion

In this section we linearize the equations of motion about a nominal equilibrium solution
described by q1 = qe1, q2 = qe2, θ2 = π with all their derivatives equal to zero. Note that this
equilibrium in the reduced space corresponds to a spinning formation with angular rate given by

ξ =
(m1 + m2 + m3)h

m2m3q2
e2 + m1 (m2q2

e1 + m3(qe1 + qe2)2)

and with θ1 = ξt. The spacecraft charges are assumed constant in the linearization. Later, when
we use the spacecraft charges as control inputs, the three charges c1, c2, c3 will be treated as
variable and the equations have to be linearized with respect to them as well.

Linearizing the equations of motion about the circular equilibrium solution described above
one gets

Aδẍ + Bδẋ + Cδx = Dδh, (18)

where the matrices A, B, C and D are defined in the appendix. Note that perturbations may also
cause the value of the conserved angular momentum be different from the nominal angular mo-
mentum h. For this system δh is viewed as a constant (persistent) input force. In these equation
we have substituted c3 from equation (14), h from equation (18), and where x = [q1 q2 θ2]T.
Next we will study the stability of these linearized equations for a special case.

3.3. System Stability: Symmetric Case

In this section we will check the eigenvalues of the linearized system for the circular equilib-
rium of interest with q1e = q2e = qe (this equilibrium also implies that the nominal equilibrium
charges are c1 = c3 = −c2 = c). We will also assume that m1 = m2 = m3 = m. To study the
stability of the unactuated system, one need only study the unforced system (i.e., with δh = 0).
The reasoning is as follows. If under zero error in the angular momentum h (i.e., the initial con-
ditions are such that δh = 0) the system is stable, then due to a (constant) nonzero momentum
error δh, the linearized system converges to a neighborhood of the desired relative equilibrium.
The neighborhood is given by the steady state error:

δxss = C−1Dδh.

If the relative equilibrium is unstable, then it is unstable for all initial conditions, whether they
result in a zero or nonzero δh. Hence, if the relative equilibrium is unstable with δh = 0 for
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the linearized system, then it must be unstable in general (i.e., for all other initial conditions that
result in a nonzero angular momentum error δh), and so must be the original nonlinear system.

The characteristic equation is given by

f(s) = det
[
As2 + Bs + C

]
, (19)

which is a sixth order equation with 6 roots. These roots are the system eigenvalues. In the
symmetric case, the matrices A, B, and C are given by

A =





2m

3
m

3
0

m

3
2m

3
0

0 0
mq2

e

6




,

B =





0 0
mqeξ

3
0 0 −mqeξ

3
−mqeξ

3
mqeξ

3
0





C =





−c2
0kce−2β

4q3
e

− m(2 + 3β)ξ2

3
c2
0kce−2β(1 + β)

4q3
e

+
5mξ2

3
0

c2
0kce−2β(1 + β)

4q3
e

+
5mξ2

3
−c2

0kce−2β

4q3
e

− m(2 + 3β)ξ2

3
0

0 0
c2
0kce−2β

8qe
+

1
3
mq2

eξ2




.

One can check that the eigenvalues are given by

s1,2 =±
√

α
√

(β − 1)h̄− e−2ββ

2mq2
e

s3,4 =±

√
e−4βα

(
3e2β(β+1)+e4β(3β+1)h̄−

√
3
√

e4β(e2β h̄+1)(3(β+3)2+e2β(β(3β+10)+19)h̄)
)

m2q4
e

2
√

2
(20)

s5,6 =±

√
e−4βα

(
3e2β(β+1)+e4β(3β+1)h̄+

√
3
√

e4β(e2β h̄+1)(3(β+3)2+e2β(β(3β+10)+19)h̄)
)

m2q4
e

2
√

2
,

where

α = c2kcmqe β =
qe

λd
h̄ =

h2

α
.

Showing that at least one of these eigenvalues is a positive real number is not easy. Instead we
will show instability by studying the coefficients of the characteristic polynomial.
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Letting x = s2, the characteristic function can be rewritten in the cubic form

f(x) = a3x
3 + a2x

2 + a1x + a0. (21)

In the above, a3, a2, a1, a0 are functions of qe, c,m:

a3 =
m3q2

e

18

a2 =
e−

2qe
λd m

(
−16e

qe
λd kcmqe(2λd + qe)c2 + kcmqe(5λd + 2qe)c2 + 8e

2qe
λd h2λd

)

72λdq2
e

a1 =
1

288λ2
dmq6

e

×
(

e−
4qe
λd

(
6k2

cλdm
2q2

e(λd + qe)c4 − 24e
qe
λd k2

cm2q2
e(2λd + qe)(3λd + qe)c4

−80e
3qe
λd h2kcλdmqe(2λd + qe)c2 + 2e

2qe
λd kcmqe

(
λd(8λd + 5qe)h2

+24c2kcmqe(2λd + qe)2
)
c2 + 13e

4qe
λd h4q2

e

))

a0 =
1

3456q10
e

(
3e−

2qe
λd kcqec

2 +
2h2

m

)

×
[ 


3e−

2qe
λd kcqe

(
λd + qe − 4e

qe
λd (2λd + qe)

)
c2

λd
+

4h2

m





2

−
(

3e−
2qe
λd kcqe(λd + qe)c2

λd
+

5h2

m

)2 ]
.

The roots of the characteristic equation (which correspond to the eigenvalues of the linearized
system) turn out to be quite complex to be easily analyzed. Instead of attempting to solve for the
roots directly, we will use Descartes’ rule of signs.
Fact 1 (Descartes’ Rule of Signs) Let f(x) = anxn +an−1xn−1 + · · ·+a1x+a0 be a polyno-
mial where an, an−1, . . . , a0 are real coefficients. The number of positive real roots of f is either
equal to the number of sign changes of successive terms of f(x) or is less than that number by
an even number (until 1 or 0 is reached). The number of negative real zeros of f(x) is either
equal to the number of sign changes of successive terms of f(−x) or is less than that number by
an even integer (until 1 or 0 is reached).

Our strategy is to show that not all roots of f(x) are negative real. If one of the roots of f(x),
χ, is not a negative real number, then f(s2) will have at least one eigenvalue with a positive
real part, which is the square root of χ. If one eigenvalue of the linearized system has a positive
real part, the unactuated nonlinear equations are then unstable. By way of contradiction, we will
show that not all roots of f(x) are negative.

Assume that all roots of f(x) are negative. Then, by the Descartes rule of signs, we must have
exactly three sign changes in the successive terms of f(−x), which is given by

f(−x) = −a3x
3 + a2x

2 − a1x + a0.

11



Clearly we have a3 > 0. So the first term in f(−x) is negative. To ensure existence of 3 negative
real roots, we need to have a2 > 0, a1 > 0 and a0 > 0. In what follows, we will show that a2

and a0 can not both be positive.
First, lets rewrite a2 in the form:

a2 =
e−2βmα

72q2
e

(
8e2βh− 16eβ(β + 2) + 2β + 5

)
,

where

α = c2kcmqe β =
qe

λd
h̄ =

h2

α
.

For a2 to be positive, we must have

h̄ >
1

8e2β

(
16eβ(β + 2)− 2β − 5

)
= κ(β). (22)

Note that κ(β) > 0 for all values of β > 0.
Next, we consider the expression for a0, which can be rewritten as:

a0 =
α3

(
2h̄ + 3e−2β

)

3456m2q10
e

[ (
4h̄ + 3e−2β

(
β − 4eβ(β + 2) + 1

))2 −
(
5h̄ + 3e−2β(β + 1)

)2
]
.

For a0 to be positive, the expression in square brackets has to be positive. This expression is
quadratic in h̄, has two roots one negative and one positive. Let η denote the positive root. The
negative root is of no concern to us because h̄ is positive. The positive root η is given by

η(β) =
2
3
e−2β

(
2eββ − β + 4eβ − 1

)
.

Moreover, the quadratic term in square brackets has a negative hessian at the critical point. Hence,
for a0 is to be positive, we must have

h̄ < η. (23)

One can verify that κ >η for all β ≥ 0 and, hence, inequalities (22) and (23) can not both
be true. Hence a2 and a0 can not both be positive, which violates the necessary condition for
having three negative real roots of f(x). Thus, finally, there must exist a root χ that is either (1)
positive real, or (2) complex with nonzero imaginary part. In both these cases, the square root of
χ, which is a root of f(s2) and an eigenvalue of the linearized equations of motion, will have a
positive real part. This concludes the proof that the linearized equations of motion are unstable
and, hence, so are the full nonlinear equations of motion.

This instability is illustrated in the numerical simulation results shown in Fig. 3. The sim-
ulation time is 3 periods of the unperturbed solution. The numerical collinear invariant shape
solution example of Hussein and Schaub (2006a) is used, but with the initial position vectors
scaled by 0.1%. Without charge shielding the craft start to depart significantly from the equilib-
rium after one period. With the charge shielding present, the craft depart even quicker within 1
period.
Remark 3.1 (Stability of the Out-of-Plane Motion) Note that the 3 spacecraft at any point in
time form a plane. The initial angular momentum vector JSO(3)(0) about the cluster center of
mass uniquely defines the initial plane. However, it was shown above that the overall angular

12
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Fig. 3. Instability Illustration of Collinear Spinning Equilibrium with and without Plasma Charge Shielding

momentum JSO(3) of the system is conserved. Hence, the common plane defined by the three craft
remains fixed throughout the entire motion unless the system is acted upon by an external force.
In the above analysis, we have essentially chosen the reference frame such that two of the fame
axes lie within the orbital plane (as defined by the angular momentum) and the third is chosen
as the normalized angular momentum vector JSO(3). If the system experiences an impulsive
out-of-plane small (and, hence, finite) perturbation force, the system angular momentum adjusts
its direction, hence causing an overall acquired nonzero inclination i0 from the original orbit.
Hence, the out-of-plane motion is guaranteed to be bounded by the inclination angle i0. Thus,
regardless of initial conditions, the out-of-plane angle inclination is guaranteed to be stable for
the nonlinear system thanks to the conservation of angular momentum.
Remark 3.2 (General Nonsymmetric Case) Studying the stability of the general nonsymmet-
ric three-craft Coulomb-tether problem is not very tractable in symbolic form. In this case, one
can numerically study the stability of the open loop system. This will be investigated separately
by the authors in the future. •

4. Stabilization

In this section we will use the linearized equations to design linear feedback control laws to
locally stabilize the nonlinear system. We will follow a procedure similar to that of Sanyal et al.
(2004) for physical tethers. We will first carry out a controllability test to determine whether all
or some of the three charges need to be controlled to guarantee controllability of the linearized
system The control inputs are the charges c1, c2 and c3. We will restrict the discussion to the
symmetric formation case (equal masses and equal nominal charge magnitudes with equal sepa-
ration distances). In linearizing the equations of motion we also have to linearize with respect to
c1, c2 and c3. With c1, c2 and c3 treated as control inputs in the fully-actuated case, the linearized
equations motion are

Aδẍ + Bδẋ + Cδx = Dδh + Eδc. (24)
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where the matrices A, B, and C are given in equations (20)-(20) and with

D =





ξ

qe
ξ

qe

0





E =





mqeξ2

c0
−kcc0e−β

q2
e

−kcc0e−2β

4q2
e

−kcc0e−2β

4q2
e

−kcc0e−β

q2
e

mqeξ2

c0

0 0 0





c0 being the nominal spacecraft charging of craft 1 and 3, with craft 2 having a nominal charge
of −c0. In the above c = [c1 c2 c3]T is the control input. The parameter c0 is free to be chosen,
with the spin rate ξ found through Eq. (15):

ξ =

√
c2
0kce−2β (−1 + 4eβ)

4mq3
e

. (25)

The system is controllable using the controls c1, c2, and c3 if and only if

rank
([

s2A + sB + C E
])

= 3

holds for all eigenvalues s that satisfy det
(
s2A + sB + C

)
= 0 (Laub and Arnold, 1984;

Sanyal et al., 2004). These eigenvalues are given in equation (20). Checking the controllabil-
ity rank condition assuming all three charges are actuated, one finds that the rank is in fact 3 for
all eigenvalues, which implies that the reduced equations of motion (i.e., shape dynamics) are
controllable.

Note that any shape-stabilizing control law based on linear feedback control will guarantee
stability of the motion even under perturbations in the spin rate ξ.

5. Numerical Simulations

The motion of three charged spacecraft in deep space is simulated numerically to illustrate the
performance of the shape feedback control algorithm. These simulations assume a symmetric
collinear setup where all craft have a mass of 50 kg, and a nominal separation distance of qe1 =
qe2 = 20 meters. The equilibrium spacecraft charges are ce1 = ce3 = 10µC and ce2 = −10µC.
Two scenarios are tested with two different initial condition cases. The initial conditions for case
1 are described in Table 1. Here the initial separation distances are too large and the formation is
not collinear. However, in case 1 the velocity magnitudes are chosen such that the actual angular
momentum matches that of the equilibrium momentum.

The first stabilizing charge control is a simple linear PD control of the form

δc = −
[
K1 K2

]


δx

δẋ



 (26)
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State Value Units

r1(t0) (20.1, 0.0) meters

r2(t0) (0.0, 0.0) meters

r3(t0) (-19.0, 0.0) meters

ṙ1(t0) (0, 0.022003) meters/second

ṙ2(t0) (0, 0) meters/second

ṙ3(t0) (0, -0.022003) meters/second
Table 1
Initial Conditions for Simulation Case 1.

where K1 and K2 are the 3 × 3 proportional and derivative feedback gain matrices. For the
presented simulations the feedback gain matrices are determined by solving the standard LQR
gain selection problem with the weights of Q defined as

Q = diag(60, 60, 3600, 60, 60, 7200) (27)

and R being a 3× 3 identity matrix scaled by 1011.
Case 2 has identical simulation parameters as in case 1, but the initial velocity magnitudes are

increased by 143% over those of case 1. This results in the actual angular momentum magnitude
being different from the equilibrium momentum magnitude and δH = 61.505 kg m2/s. The
linear stability analysis for this simulation case shows that the resulting motion will converge to
the steady state tracking errors:

δxss = (C + EK1)−1DδH = (0.62865 m, 0.62865 m, 0 rad)T (28)

The heading errors δθ2 are expected to converge to zero, with the separation distance errors δqi

reaching finite values.
While the closed loop stability is obtained using linearization results, all of the following

numerical simulations integrate the full nonlinear equations of motion given by

mir̈i =
3∑

j=1, &=i

kcci(t)cj(t)
rji

r3
ji

e−
rji
λd (29)

where ri are the inertial position vectors and rji = ri − rj are the relative position vectors.
The numerical results of case 1 are illustrated in Figure 4. The craft 2-D trajectories are il-

lustrated in Figure 4(a) over a time span of 1.6231 hours, or 1 revolution of the un-perturbed
problem. The shape tracking errors are shown in Figure 4(b) where initially both the separation
distances q1 and q2 contain errors. With the charge feedback control active the 3-craft cluster
shape assumes the desired collinear formation after about half a revolution. Furthermore, be-
cause δH is zero in this simulation setup, all shape tracking errors converge to zero over time.
The spacecraft charges are illustrated in Figure 4(c). As the cluster converges to the desired
spinning shape, the spacecraft charges converge to the equilibrium charges.

The numerical results of simulation case 2 are illustrated in Figure 5. Here the initial angular
velocity magnitudes are increased by 143% such that δH -= 0. With the linear PD control the
spacecraft cluster still stabilizes its spinning motion about the desired collinear shape. However,
the shape tracking errors δq1 and δq2 in Figure 5(b) do not converge to zero. The additional an-
gular momentum causes the resulting shape to be too large. Or, the nominal charge are to weak to
maintain a spinning formation at the desired shape. The offsets of the nonlinear simulation match
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Fig. 4. Numerical Simulation Results of Linear PD Control with Case 1 where δH = 0.

up reasonably with the analytically predicted offsets of the linear stability analysis. The Debye
shielding is causing enough of a nonlinearity to cause a small difference in predicted and actual
offset. Note that even in this case the orientation error δθ2 converges to zero. Similarly the space-
craft charges shown in Figure 5(c) converge to a value different from the equilibrium charge. This
difference is due to the persistent disturbance caused by the non-zero δH . This steady-state off-
sets to due momenta differences between actual and the desired equilibrium configuration could
be compensated for with integral feedback.

These steady-state offsets could be removed with the addition of integral feedback of the shape
errors

∫
δq1 and

∫
δq2.

δc = −
[
K1 K2 K3

]





δx

δẋ




∫
δq1

∫
δq2









(30)

To select the feedback gains, the earlier Q weight matrix is expanded to be defined as
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Fig. 5. Numerical Simulation Results of Linear PD Control with Case 2 where δH != 0.
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Fig. 6. Numerical Simulation Results of Linear PID Control with Case 2 where δH != 0.

Q = diag(60, 60, 3600, 60, 60, 7200, 0.0001, 0.0001) (31)

Figure 6 shows the numerical simulation results using the case 2 initial conditions with a non-
zero δH momentum difference. With the integral feedback added to the length errors, these shape
errors now converge to zero as shown in Figure 6(a). The spacecraft charges shown in Figure 6(b)
do not converge to the nominal design charge magnitude of 10 µC. Instead they converge to larger
values to compensate for the increased angular momentum of the system.
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6. Conclusion

This paper studies the stability and control of relative equilibria for the three-craft Coulomb
tether problem. General conditions are derived whose solutions are all relative equilibria for
the spinning three-craft Coulomb tether constellation. Using linear feedback control theory, we
stabilize the nonlinear system, guaranteeing that the system converges to a neighborhood of the
desired relative equilibrium. Future research will focus on asymptotically stabilizing the desired
relative equilibrium, regardless of the value of the angular momentum h. This will require the
nominal equilibrium charge value to be changed to reflect the actual angular momentum of the
system. We will also consider general nonlinear stabilization techniques, that may have larger
regions of stability than linearization-based techniques considered in this paper.
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Appendix: Linearized Collinear Relative Equations of Motion

In Eq. (18) the linearized equations of motion for the collinear equilibrium condition are given
as:

Aδẍ + Bδẋ + Cδx = 0

The matrices A, B, C and D are as follows:
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A =





m1(m2 + m3)
M

m1m3

M
0

m1m3

M

(m1 + m2)m3

M
0

0 0
m1m2m3q2

e1q
2
e2

m2m3q2
e2 + m1 (m2q2

e1 + m3(qe1 + qe2)2)





B =
1

m2m3q2
e2 + m1 (m2q2

e1 + m3(qe1 + qe2)2)
×





0 0 2m1m2m3qe1q
2
e2ξ

0 0 −(2m1m2m3q
2
e1qe2ξ)

−(2m1m2m3qe1q
2
e2ξ) 2m1m2m3q

2
e1qe2ξ 0





C =





C11 C12 C13

C21 C22 C23

C31 C32 C33





D =





2m1(m2qe1 + m3(qe1 + qe2))ξ
m2m3q2

e2 + m1 (m2q2
e1 + m3(qe1 + qe2)2)

2m3(m2qe2 + m1(qe1 + qe2))ξ
m2m3q2

e2 + m1 (m2q2
e1 + m3(qe1 + qe2)2)
0





The matrix coefficients of C are given by:

C11 =
1

λdq3
e1(qe1 + qe2)

×

1(
c1m2(m1qe1 −m3qe2)q2

e2 + c2e
qe1
λd m1(qe1 + qe2)2(m2qe1 + m3(qe1 + qe2))

) ×

1
(m2m3q2

e2 + m1 (m2q2
e1 + m3(qe1 + qe2)2))

×

c1c2e
− qe1

λd kc

(
c2e

qe1
λd m1

(
λd

(
−m1(m2+m3)2q3

e1+3(m1+m2)m3(m2+m3)q2
e2qe1

+2(m1 + m2)m2
3q

3
e2

)

+qe1(m2qe1+m3(qe1+qe2))
(
m2m3q

2
e2+m1

(
m2q

2
e1+m3(qe1+qe2)2

)))
(qe1+qe2)3

+c1q
2
e2

(
m1qe1(qe1+qe2)(m2qe1+m3(qe1+qe2))

(
m2m3q

2
e2+m1

(
m2q

2
e1+m3(qe1+qe2)2

))

+λd

(
− 2m2

2m
2
3q

4
e2 + m1m2m3(m3(qe1 − 2qe2)(qe1 + qe2) + m2qe1(qe1 + 3qe2))q2

e2

−m2
1qe1(qe1 + qe2)

(
(m2+m3)2q2

e1 + 2m3(m2 + m3)qe2qe1+m3(m3 − 3m2)q2
e2

)))
)
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C22 =
1

q2
e1

(
c1m2(m1qe1−m3qe2)q2

e2+c2e
qe1
λd m1(qe1+qe2)2(m2qe1+m3(qe1+qe2))

) ×

c1c2kcm3

(
c1e

− qe1
λd (m2qe2 + m1(qe1 + qe2))q2

e2

λd

+
2c1e

− qe1
λd (m2qe2 + m1(qe1 + qe2))q2

e2

qe1 + qe2
+

c2(qe1 + qe2)2(m2qe2 + m1(qe1 + qe2))
λd

+(m1 + m2)
(
c1e

− qe1
λd q2

e2 + c2(qe1 + qe2)2
)

−
4e−

qe1
λd m3(m2qe2 + m1(qe1 + qe2))2

(
c1q2

e2 + c2e
qe1
λd (qe1 + qe2)2

)

m2m3q2
e2 + m1 (m2q2

e1 + m3(qe1 + qe2)2)

+
2c2(qe1 + qe2)2(m2qe2 + m1(qe1 + qe2))

qe2

)

C33 =
1

qe1(qe1 + qe2)
×

1(
c1m2(m1qe1 −m3qe2)q2

e2 + c2e
qe1
λd m1(qe1 + qe2)2(m2qe1 + m3(qe1 + qe2))

) ×

c1c2e
− qe1

λd kcm3qe2

(
c1m2q

3
e2 − c2e

qe1
λd m1(qe1 + qe2)3

)

C12 =
1

q2
e1

(
c1m2(m1qe1 −m3qe2)q2

e2 + c2e
qe1
λd m1(qe1 + qe2)2(m2qe1 + m3(qe1 + qe2))

) ×

c1c2e
− qe1

λd kcm3

(
c1(m2qe2 + m1(qe1 + qe2))q2

e2

λd
+

2c1(m2qe2 + m1(qe1 + qe2))q2
e2

qe1 + qe2

+m1

(
c1q

2
e2 + c2e

qe1
λd (qe1 + qe2)2

)

−
4m1(m2qe2+m1(qe1+qe2))(m2qe1+m3(qe1+qe2))

(
c1q2

e2+c2e
qe1
λd (qe1+qe2)2

)

m2m3q2
e2 + m1 (m2q2

e1 + m3(qe1 + qe2)2)

)

C12 = C21

C13 = C31 = 0
C23 = C32 = 0
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