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a b s t r a c t

The relative equilibria of a two spacecraft tether formation connected by line-of-sight

elastic forces moving in the context of a restricted two-body system and a circularly

restricted three-body system are investigated. For a two spacecraft formation moving in

a central gravitational field, a common assumption is that the center of the circular

orbit is located at the primary mass and the center of mass of the formation orbits

around the primary in a great-circle orbit. The relative equilibrium is called great-circle

if the center of mass of the formation moves on the plane with the center of the

gravitational field residing on it; otherwise, it is called a nongreat-circle orbit. Previous

research shows that nongreat-circle equilibria in low Earth orbits exhibit a deflection of

about a degree from the great-circle equilibria when spacecraft with unequal masses

are separated by 350 km. This paper studies these equilibria (radial, along-track and

orbit-normal in circular Earth orbit and Earth–Moon Libration points) for a range of

inter-craft distances and semi-major axes of the formation center of mass. In the

context of a two-spacecraft Coulomb formation with separation distances on the

order of dozens of meters, this paper shows that the equilibria deflections are negligible

(less than 10�6
1) even for very heterogeneous mass distributions. Furthermore, the

nongreat-circle equilibria conditions for a two spacecraft tether structure at the

Lagrangian libration points are developed.

Published by Elsevier Ltd.
1. Introduction

This paper discusses the relative equilibria of two
masses connected by a tether force moving in the pre-
sence of a central gravitational force field as well as the
relative equilibria of such a formation at the libration
points moving around the barycenter. The two masses are
connected using a line-of-sight elastic force. For example,
the two masses are either connected by a massless non-
linear spring or by a virtual electrostatic (Coulomb) force.
Ref. [8] model the tether as a massless nonlinear spring
and discusses the relative equilibria for long tethers
Ltd.

mpudi),
on the order of hundreds of kilometers in a central
gravitational field at low-earth orbits (LEO). This paper
additionally investigates a Coulomb tether with inter-
craft distances on the order of dozens of meters. In
2002, Ref. [1,2] introduced this novel method of exploit-
ing Coulomb forces for formation flying control with
separation distance on the order of dozens of meters.
The Coulomb tether formation has several potential
applications in space technologies, for example, high
accuracy wide-field-of-view optical interferometry mis-
sions with geostationary orbits (GEO), spacecraft cluster
control, as well as deployment or retrieval of dedicated
sensors using Coulomb forces.

The relative equilibria of a two-craft formation at the
libration points is also explored in this paper. In a
circularly restricted three-body system, we consider a
spacecraft formation near two large celestial objects
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which are rotating around their common center of mass.
Due to the rotation of the system, there are five equili-
brium points; these equilibrium points are the libration
points (L1–L5) of the three-body system. Virtual Coulomb
structures at the libration points are useful for remote-
sensing missions to establish a long baseline imaging
capability, or to ensure better stationkeeping configura-
tions. Ref. [3] considers the equilibrium configurations of
a rigid tethered system near all five libration points and
carries out the stability analysis when it is near the
translunar libration point. Ref. [4] presents the attitude
dynamics and stability of a small rigid satellite in the
vicinity of Lagrangian points. The paper also investigates
the attitude dynamics of a satellite while it is in Lyapunov
and halo orbits. Furthermore, the NIAC report in Ref. [1]
analyzes the suitability of Coulomb control for a static
collinear five-vehicle formation at Earth–Sun Lagrange
points where the formation local dynamics ignore gravity.

In the context of a restricted two-body problem, the
existence of great-circle relative equilibria for a satellite
(spherically symmetric rigid body) implies that the center
of the circular orbit coincides with the center of the
gravitational field [5,6]. The dynamics of the satellite’s
center of mass is exactly that of the Keplerian point mass
model. If the satellite is assumed to be an arbitrary rigid
body, and making a first order approximation of the
gravitational force acting on the rigid body assuming that
the orbital motion is decoupled from the attitude motion,
the classical rigid-body attitude equilibrium study reveals
that all three rigid body principal axes must line up
with the LVLH (local vertical/local horizontal) frame
axes [7]. However, Ref. [5] uses the exact potential
function expression and proves the existence of non-
great-circle relative equilibria where the radius vector
from the center of the gravitational field to the center of
mass of the satellite traces a cone rather than a disk. Large
variations in orientation from the classical regular
motions are verified numerically for a finite rigid body [5].

Specifically, Ref. [8] discusses the relative equilibria and
relative stability of a system of two spring-connected point
masses moving in a central gravitational field. The paper
shows that nongreat-circle equilibria exist for this simple
spring system, and, for long tethers of approximately
3500 km at LEO, the attitude deflection from the vertical
can reach tens of degrees. Such differences in orientation
between great-circle and nongreat-circle solutions are
particularly noticeable if the mass distribution of the
formation is as asymmetric as possible. The spring system
possesses SO(3) symmetry and such symmetry in geo-
metric mechanics induces certain reduced dynamics which
facilitates the computation of relative equilibria conditions.
To obtain the conditions for relative equilibria, the principle
of symmetric criticality is applied [8]. In order to gain
further insights on the effects of nongreat-circle relative
equilibria and mass asymmetry on a two spacecraft forma-
tion, the tether is modeled using a Coulomb force in this
paper. The Coulomb formation has SO(3) symmetry as well.

There have been many interesting investigations on
Coulomb formation dynamics [9–12]. Refs. [13–16] study
static Coulomb structures where the differential gravita-
tional forces between spacecraft are canceled through
constant electrostatic forces. Thus, the open-loop equili-
brium charges cause the virtual structure to assume a
constant shape as seen by the rotating orbit frame. Some
of these Coulomb concepts can have very asymmetric mass
distributions. For example, consider the case of a small free-
flying camera in the proximity of a large geostationary
communication satellite. Because earlier work has shown
that asymmetric bodies facilitate nongreat-circle equilibria,
it is of interest how this impacts the 2-craft Coulomb virtual
structure studies. The necessary conditions for a virtual
Coulomb structure where the orbital motion is decoupled
from the attitude motion are discussed in Ref. [13].
Refs. [14–16] search for static Coulomb structure solutions
using genetic algorithms. Here the simple principle axes
condition of rigid body equilibria are used to speed up the
genetic search algorithms.

This paper investigates great-circle and nongreat-circle
relative equilibria of a two spacecraft formation con-
nected by any line-of-sight elastic force considering exact
models for both the gravitational and tether potentials.
Specifically, this paper presents the effects of nongreat-
circle relative equilibria and mass asymmetry as a func-
tion of spacecraft separation distances (short to long
tethers) and formation center of mass distances from
low Earth orbits (LEO) to geostationary orbits (GEO). The
aim is to identify for what formation dimension and
altitudes these nongreat-circle effects become significant.
This paper also investigates the validity of the principle
axes condition assumption [13] for Coulomb tether appli-
cations taking nongreat-circle equilibria conditions into
account. Moreover, this methodology is used to derive
new two spacecraft formation relative equilibria condi-
tions for a restricted three-body system at all five libra-
tion points.

In this paper, the following assumptions are made
1.
 The inter-spacecraft force undergoes both tensile and
compressive forces along the line-of-sight direction
between the two spacecraft.
2.
 The gravitational attraction between the two space-
craft masses is neglected.
3.
 For the three-body system, the spacecraft formation
motion is in the plane of the motion of the primary
bodies.
The paper is organized as follows. The system dynamics
and the notion of SOð3Þ symmetry applied to an elastic

tether formation moving in a central gravitational field as
well as for a restricted three-body system are discussed. An
example of modeling the tether force using Coulomb force is
discussed. The principle of symmetric criticality is applied to
determine the conditions of relative equilibria of such static
structures. For the restricted two-body system, the reduced
dynamics identifies the classical great-circle equilibria;
radial, along-track and orbit normal equilibria. Also, the
nongreat-circle effects in circular orbits for two-craft for-
mations existing from LEO to GEO are investigated. Further-
more, relative equilibria solutions for a two spacecraft
formation are derived at the libration points. Finally, the
nongreat-circle equilibria effects of such formations are
presented at L1 and L2 collinear libration points.
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2. System description and SO(3) Symmetry

In the following sections, we introduce the fundamen-
tal concepts related to the dynamics of a system of N

spacecrafts moving in a central gravitational field
(restricted two-body system) and moving under the
mutual gravitation of two bodies (restricted three-body
system).

2.1. Restricted two-body system

The spacecrafts shown in the Fig. 1 are considered to
be point masses moving in a central gravitational field.
With the static virtual tether structure the system of
spacecrafts behaves equivalently to a rigid body in orbit
because the constant elastic inter-spacecraft forces cancel
perfectly the differential gravitational forces acting across
the cluster. Let Ft be the tether force acting between the
two masses, and ri be the inertial position vector of a
single craft of mass mi. Then the center of mass position
vector rc of this formation is defined as

rc ¼
1

M

XN

i ¼ 1

miri ð1Þ

with M¼
PN

i ¼ 1 mi being the total formation mass. Let O

be the center of the inverse square field and the origin of
the inertial frame, while the formation’s center of mass
and center of gravity are denoted by C and G, respectively.
The inertial position vectors of C and G are rc and rg and
are related by

rg�rc ¼ r ð2Þ

where r is the constant vector between C and G.
From Newton’s laws of gravitation the following relation

relating the formation center of gravity and the individual
inertial vectors is obtained as

rg

JrgJ
3
¼

1

M

XN

i ¼ 1

ri

JriJ
3

mi ð3Þ
Z

Y

X

O

(m , q )

r

r

( , q )m

-F

F

L

Inertial Frame

Fig. 1. Two-craft Coulomb spacecraft formation (restricted two-body

system).
Using the two-body relative equations of motion with
respect to G, the inertial second derivative of the vector rg is

d2rgðtÞ

dt2
þ

mrgðtÞ

JrgðtÞJ
3
¼ 0 ð4Þ

where m is the gravitational constant. Therefore, from
Eqs. (2) and (4), the inertial second derivatives of the vectors
rc and rg are related by

d2rcðtÞ

dt2
þ

mrgðtÞ

JrgðtÞJ
3
¼ 0 ð5Þ

Let m1 and m2 denote the mass of each craft with inertial
position vectors r1 and r2, while each craft is assumed to
have electrostatic (Coulomb) charges q1 and q2. The kinetic
energy of the system is then given by

Tð _r1, _r2Þ ¼
m1

2
J _r1J

2
þ

m2

2
J _r2J

2
ð6Þ

The potential energy of the system is

Vðr1,r2Þ ¼ Vgðr1,r2ÞþVtðJr1�r2JÞ ð7Þ

where Vgðr1,r2Þ is the gravitational potential energy of both
the point masses in orbit defined as

Vgðr1,r2Þ ¼ �
mm1

Jr1J
�
mm2

Jr2J
ð8Þ

VtðJr1�r2JÞ is the elastic tether potential energy and is a
function of separation distance Jr1�r2J between the two
spacecraft. For example, if a Coulomb tether is assumed
between two spacecraft then Vt ¼ Vc with the Coulomb
potential energy Vc given by

VcðJr1�r2JÞ ¼ kc
q1q2

Jr1�r2J
e�Jr1�r2J=ld ð9Þ

where kc ¼ 8:99109 Nm2=C2 is the Coulomb’s constant. The
exponential term depends on the Debye length parameter
ld which controls the electrostatic field strength of plasma
shielding between the craft. At Geostationary Orbits (GEO)
the Debye length vary between 80 and 1400 m, with a mean
of about 180 m [12]. The Coulomb spacecraft formations are
typically assumed to be orbiting on high Earth orbits.
However, the tether spacecraft formations studied in this
paper are assumed to be orbiting from low to high Earth
orbits.

In this paper, the relative equilibria of a formation with
two spacecraft subjected to elastic tether forces is con-
sidered where there are no external forces acting on the
system. The relative equilibrium of the spacecraft forma-
tion is introduced by defining a uniformly rotating frame
located at the origin O which has a constant orbital
angular velocity of n. A formation moving in a circular
orbit that is stationary relative to this uniformly rotating
frame exhibits symmetry with respect to the special
orthogonal rotation group SOð3Þ. The SOð3Þ rotation group
and other group theoretic concepts used in this paper are
briefly explained in Appendix A.

As an example of an elastic tether, a Coulomb formation
possesses SOð3Þ symmetry because both the kinetic and
potential energies are invariant under the SOð3Þ group
actions. This SOð3Þ symmetry reduces the dynamics of the
spacecraft formation, and the equilibrium of the reduced
dynamics is the relative equilibrium of the formation. If the
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Fig. 3. Two-craft Coulomb spacecraft formation (restricted three-body
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center of mass of the formation moves on a great-circle
orbit, then the relative equilibrium is called the great-circle
relative equilibrium. This implies that rc � n¼ 0; if rc � na0
it is called the nongreat-circle relative equilibrium [5] as
shown in Fig. 2.

Using the properties of the Lie algebra g� of SOð3Þ, at
relative equilibria there exist two constant inertial vectors
rco and rgo with respect to O such that rcðtÞ ¼ ex̂trco and
rgðtÞ ¼ ex̂t rgo. Therefore, at relative equilibrium Eq. (5) is
reduced to

n̂n̂rcoþ
mrgo

JrgoJ
3
¼ 0 ð10Þ

Taking an inner product of Eq. (10) with n gives rgo � n¼ 0.
Consequently, at relative equilibria, the center of gravity
of a spacecraft formation moving in a central gravitational
field traces a great-circle.
2.2. Restricted three-body system

In a three-body system, as shown in Fig. 3, the space-
crafts are considered to be point masses moving around
the barycenter O under the mutual gravitation of two
bodies M1 and M2. The relative equilibrium of the space-
craft formation is introduced by defining a uniformly
rotating frame located at the barycenter O which has a
constant orbital angular velocity of n. A formation moving
in a circular orbit that is stationary relative to this
uniformly rotating frame exhibits symmetry with respect
to SOð3Þ. If m1 and m2 denote the mass of each craft with
inertial position vectors R11, R12, R21 and R22 then using
the three-body relative equations of motion, the inertial
second derivative of the vector rg is

M €rg ¼�m1

m1

R3
11

R11þ
m2

R3
21

R21

 !
�m2

m1

R3
12

R12þ
m2

R3
22

R22

 !

ð11Þ

where M is the total formation mass, and m1 and m2 are
the gravitational parameters of the two planets. The
inertial position vectors R11, R12, R21 and R22 are
expressed in rotating coordinates (synodic frame at the
barycenter O) such that the distances are invariant under
rotation. The synodic frame S : fêr ,êy,êhg is rotating
around the axis Oz with the constant angular velocity O
defined as

O¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðM1þM2Þ

d3

r
ð12Þ

where G is the gravity constant and d is the distance
between the two planets. The primaries are at rest in the
synodic frame at positions M1ð�d1,0,0Þ and M2ðd2,0,0Þ.
Also, the kinetic energy of the system is still given by
Eq. (6) with rotating position vectors r1 and r2 of the craft.
In the potential energy expression in Eq. (7), the elastic
tether potential energy remains the same, however, the
gravitational potential energy Vgðr1,r2Þ of the system
becomes

Vgðr1,r2Þ ¼�m1

m1

Jr1�d1J
þ

m2

Jr2�d1J

� �

�m2

m1

Jr1�d2J
þ

m2

Jr2�d2J

� �
ð13Þ

Since the kinetic and potential energy are invariant under
SOð3Þ actions, the elastic tether formation moving around
the barycenter has SOð3Þ symmetry. This symmetry helps
in the reduced dynamics by the SOð3Þ group action and
the equilibrium of the reduced dynamics is the relative
equilibrium of the spacecraft formation in the three-body
system. Therefore, similar to the definitions for a two-
body system, in a three-body system rc � n¼ 0 implies
that the center of mass of the formation moves on a
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great-circle orbit and hence the relative equilibrium is
called the great-circle relative equilibrium. And, if rc �

na0 it is called the nongreat-circle relative equilibrium.
Specifically, the elastic tether is modeled using Coulomb
forces and Coulomb tether formations are feasible at
Earth–Sun or Earth–Moon Lagrange points [1]. However,
in the interplanetary space at a distance of 1 AU from the
Sun, the Debye length is much smaller than that in a GEO
environment (highest Debye length of approximately
40 m); therefore, this constrains the maximum possible
formation length but despite the low value of the Debye
length, multi-craft equilibrium formations are reported to
exist at the Earth–Sun L1 Lagrange point [17].

3. Relative equilibria of the static two-craft tether
formation

Since the static two-craft tether formation possesses
SOð3Þ symmetry, the dynamics in the original phase space
of the system is reduced. The relative equilibria of the
reduced dynamics facilitates finding the equilibrium con-
figurations. Given a simple mechanical system with sym-
metry (Q,T,V,G), where Q is the configuration space with
G-invariant Riemannian metric K on Q, T is the G-invariant
kinetic energy and V is the G-invariant potential function,
and G is the symmetry (Lie) group, then we have the
following useful theorem based on the principle of sym-
metric criticality [8].

Theorem. For a simple dynamical system with symmetry

(Q,T,V,G) and the metric

KðqÞðvq,vqÞ ¼ 2TðvqÞ with vq 2 TQ ð14Þ

define the augmented potential Vx : Q-R,

VxðqÞ ¼ VðqÞ�
1

2
KðqÞðnQ ðqÞ,nQ ðqÞÞ ð15Þ

where nQ is the infinitesimal generator associated with n.
Then, at relative equilibrium, qe is a critical point of Vx for

some n 2 g�.

Therefore, for the two-craft tether formation the aug-

mented potential function Vx is

Vxðr1,r2Þ ¼ Vðr1,r2Þ�
m1

2
/nr1,nr1S�

m2

2
/nr2,nr2S ð16Þ

where n 2 R3 is an arbitrary constant vector. According to
the principle of symmetric criticality, the relative equili-
bria corresponding to some n is characterized by the
critical points of the augmented potential Vx.

4. Relative equilibria in the restricted two-body system

For the tether spacecraft formation with SOð3Þ sym-
metry, the relative equilibrium is one in a uniformly
rotating frame. If the vector n denotes the angular velocity
of the uniformly rotating frame, the augmented potential
for the two spacecraft formation is

Vxðr1,r2Þ ¼�
mm1

Jr1J
�
mm2

Jr2J
þVtðJr1�r2JÞ

�
m1

2
/nr1,nr1S�

m2

2
/nr2,nr2S ð17Þ
Then the relative equilibria of the system are characterized
by the critical points of the augmented potential Vx. The first
variation of Vx taken component wise with respect to
q¼ ðr1,r2Þ is

DVxðr1,r2Þ � ðdr1,dr2Þ ¼ mm1
r1

Jr1J
3
� dr1þmm2

r2

Jr2J
3
� dr2

þV 0tðJr1�r2JÞ
r1�r2

Jr1�r2J
� ðdr1�dr2Þ

þm1ðn̂n̂r1Þ � dr1þm2ðn̂n̂r2Þ � dr2

ð18Þ

If Vt ¼ Vc , the Coulomb potential, then V 0c denotes the
derivative of Coulomb potential with respect to Jr1�r2J,
which represents the Coulomb force acting between the two
crafts. From Eq. (9), V 0c becomes

V 0cðJr1�r2JÞ ¼�kc
q1q2

Jr1�r2J
2

e�Jr1�r2J=ld 1þ
Jr1�r2J

ld

� �
ð19Þ

Setting DVxðr1e,r2eÞ ¼ 0 we arrive at the following
conditions of relative equilibria:

mm1r1e

r3
1e

þm1n̂n̂r1eþV 0t
r1e�r2e

Jr1e�r2eJ
¼ 0 ð20aÞ

mm2r2e

r3
2e

þm2n̂n̂r2e�V 0t
r1e�r2e

Jr1e�r2eJ
¼ 0 ð20bÞ

where r1e ¼ Jr1eJ and r2e ¼ Jr2eJ. These equations are valid
for any elastic tether type formations and are analogous
to those developed in Ref. [8] for a spring-connected
system. Therefore, the mathematical development to
solve for relative equilibria with line-of-sight elastic
forces acting between two spacecraft point masses is
similar to that given in Ref. [8].

Now consider a rotation matrix ½RN� 2 SOð3Þ that maps
vectors from an inertial frame N into a new reference
frame R. If we denote the vectors R1, R2, x in the
reference frame R, then the conditions of relative equili-
bria given in Eqs. (20) are invariant under the transforma-
tion R1 ¼ ½RN�r1e, R2 ¼ ½RN�r2e and x¼ ½RN�n. In order to
solve for relative equilibria, the new reference frame
should be chosen such that the number of unknowns
are at minimum in the equilibrium equations. As illu-
strated in Fig. 4, a reference frame is chosen such that the
x-axis is parallel to the line connecting the two crafts,
with the z-axis perpendicular to both the vectors r1e and
r2e, and the y-axis completing the triad.
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In the context of the new frame R, the position vectors
are expressed as R1 ¼ ðx1,yc ,0ÞT , R2 ¼ ðx2,yc ,0ÞT , and
x¼ ðo1,o2,o3Þ

T . The equilibrium conditions (20a) and
(20b) expressed in scalar form are,

�ðo2
2þo

2
3Þx1þo1o2ycþm

x1

R3
1

¼�
V 0t
m1

ð21Þ

o1o2x1�ðo2
1þo

2
3Þycþm

yc

R3
1

¼ 0 ð22Þ

ðo1x1þo2ycÞo3 ¼ 0 ð23Þ

�ðo2
2þo

2
3Þx2þo1o2ycþm

x2

R3
2

¼
V 0t
m2

ð24Þ

o1o2x2�ðo2
1þo

2
3Þycþm

yc

R3
2

¼ 0 ð25Þ

ðo1x2þo2ycÞo3 ¼ 0 ð26Þ

where R1 ¼ JR1J and R2 ¼ JR2J. It is also assumed that
x14x2 and L¼ x1�x240. Further, define Rc ¼ ðxc ,yc ,0ÞT

where xc ¼ ðm1x1þm2x2Þ=ðm1þm2Þ. Then the expressions
for x1, x2 and yc are

x1 ¼ xcþm2L=ðm1þm2Þ ð27aÞ

x2 ¼ xc�m1L=ðm1þm2Þ ð27bÞ

yc ¼ R2
c�

L2

4

m1�m2

m1þm2

� �2
" #1=2

ð27cÞ

The relative equilibria of the two-craft formation
corresponds to solving the Eqs. (21)–(26) for a given set
of values for m, m1, m2, L and Rc ¼ JRcJ. Ref. [8] presents
great-circle and nongreat-circle equilibrium solutions in
the context of a spring force acting between two point
masses. And these equilibrium results are applicable to
X

Y

O

Z

m

m

ω

Circular Orbit

X

Y
O

Z
m

m

ω

Fig. 5. Relative equilibrium solutions: (a) tangential, (b
any elastic force type such as a Coulomb force acting
between the craft. Therefore, such results are utilized to
investigate the relative equilibria of elastic tether forma-
tion for a range of spacecraft separation distances and
semi-major axes. The great-circle and nongreat-circle
equilibrium solutions are summarized here and Ref. [8]
provides the details of the derivations.

Case1a. Setting o3a0 in the equilibrium conditions
and using yca0 yields an along-track equilibrium solution
(Fig. 5(a))

R1 ¼ ð1=2L,yc ,0ÞT , R2 ¼ ð�1=2L,yc ,0ÞT , x¼ ð0,0,o3Þ
T

yc ¼ Rc , o2
3 ¼

m
R3

and V 0t ¼ 0:

Case1b. Setting o3a0 and yc ¼ 0 gives a radial equilibrium
solution (Fig. 5(b))

R1 ¼ ðx1,0,0ÞT , R2 ¼ ðx2,0,0ÞT , x¼ ð0,0,o3Þ
T

o2
3 ¼

m
ðm1þm2ÞRc

m1

x2
1

þ
m2

x2
2

 !
and

V 0t ¼
mm1m2ðx

3
1�x3

2Þ

ðm1þm2Þx2
1x2

2Rc
40:

Case1c. Similarly, o3 ¼ 0,yca0, and R1 ¼ R2 yields orbit

normal equilibrium (Fig. 5(c))

R1 ¼ ð1=2L,yc ,0ÞT , R2 ¼ ð�1=2L,yc ,0ÞT , x¼ ðo1,0,0ÞT

m1 ¼m2, yc ¼ Rc , o2
1 ¼

m
R3

, V 0t ¼�
mm1L

2R3
o0

Case2. Setting o3 ¼ 0,yca0,R1aR2 gives nongreat-circle

equilibrium solution (Fig. 5(d)) As in Ref. [8], manipulat-
ing Eqs. (21)–(26) yields the condition xco1þyco2a0, or
equivalently, Rc �xa0. This analytically proves that for
the given conditions in Case 2 there is no great-circle
X

Y

O

Z

m
m

ω

ω

X

Y

O

Z ϕ
θ δ
C

G

m

m

R

) radial, (c) orbit normal and (d) non-great-circle.
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equilibria. Additionally, Ref. [8] shows that nongreat-
circle equilibria exist only if m1am2. For instance, Cou-
lomb formations allow very lumpy distribution of masses
and thus, these nongreat-circle equilibria conditions are
of interest. Therefore, the nongreat-circle equilibrium
conditions are

R1 ¼ ðx1,yc ,0ÞT , R2 ¼ ðx2,yc ,0ÞT , x¼ ðo1,o2,0ÞT ð28Þ

and

f ¼ fxf1þ fyf2 ¼ 0 ð29Þ

where

fx ¼
m1x1

R3
1

þ
m2x2

R3
2

f1 ¼
x2

R3
1

�
x1

R3
2

fy ¼
m1

R3
1

þ
m2

R3
2

 !
yc

f2 ¼
1

R3
1

�
1

R3
2

 !
yc

Therefore, f written in terms of m1, m2, R1, R2, xc, yc and L is

f ¼ x2
c þy2

c�
L2m1m2

ðm1þm2Þ
2

 !
m1

R6
1

þ
m2�m1

R3
1R3

2

�
m2

R6
2

 !

þ
xcL

m1þm2
ðm2�m1Þ

m1

R6
1

�
m2

R6
2

 !
�

4m1m2

R3
1R3

2

 !
¼ 0

ð30Þ

The solutions of Eq. (30) provide the nongreat-circle
equilibria. This formulation of the nongreat-circle equili-
bria is independent of tether force between the spacecraft
and is thus useful for analyzing the equilibria for a range of
spacecraft separation distances from LEO to GEO heights.
In order to simplify the solution methodology, Eq. (30) is
expressed in terms of one variable y, the angle between Rc

and the x-axis of the rotating frame as shown in Fig. 5(d).
Therefore, let xc ¼ RccosðyÞ and yc ¼ RcsinðyÞ. Plugging in
these xc and yc values into Eq. (30) yields a function of y for
given values of m, m1, m2, L and Rc. Since f ðyÞ is a
continuous function for a tether formation on ½0,p�, with
ðRc bLÞ and f ð0Þo0, f ðpÞ40, there exists at least one
solution for f ðyÞ ¼ 0. Furthermore, since df ðyÞ=dy40 on
½0,p�, this solution is unique. The actual deflection angle, f,
from the vertical is computed from the angle between x-
axis and x, while y�f is the angle between x and Rc . The
deflection angle f and error d are shown in Fig. 5(d) where
the error d is defined to be y�f�90.
Table 1
Nongreat-circle relative equilibria at LEO [8].

m1 (kg) m2 (kg) y (deg) f (deg) d (deg)

100 9900 91.052659 1.052684 �0.000026048
Ref. [8] discusses the existence of nongreat-circle
equilibria for long tethers. For spacecraft that are sepa-
rated by 350 km at LEO a deflection of about 1 from the
vertical to the orbital plane is observed. For instance,
Table 1 shows the results of f ðyÞ ¼ 0 for LEO where
Rc ¼ 7000 km and L¼ 350 km. The error da0 numerically
proves the existence of nongreat-circle equilibria for long
tethers. To gain further insights, the effect of nongreat-
circle equilibria on a two-craft formation is studied as a
function of spacecraft separation distance L and mass
distribution ratio w defined as

w¼ m1

m1þm2
ð31Þ

The spacecraft separation distances range from 10 m to
1000 km and formation center of mass distances from LEO
to GEO heights. The contour plots shown in Fig. 6 indicate
that increasing the semi-major axes Rc while holding L

fixed leads to a decrease in deflection. However, fixing Rc

and allowing L to increase leads to an increase in deflec-
tions. As the spacecraft formation becomes more asym-
metric, the contour plots show that as spacecraft
separation distances L reach 1000 km, deflections of up
to the order of 10 are observed. Therefore, large separation
distances and mass asymmetry has an effect at LEO to GEO
heights; however, for tether formation separation dis-
tances on the order of hundreds of meters, the deflection
from normal is less than 10�6 degrees, and mass asym-
metry also showed negligible effect on the attitude deflec-
tion. Even for a case where there is a 1:10,000 mass ratio,
the nongreat-circle equilibria deflection from low earth
orbits to geostationary orbits is less than 10�5 degrees.
Evaluating Eq. (30) yields very small function values (on
the order of 10�12) and hence the solutions are limited to
a lower bound of 10�6 degrees. This numerically unre-
solved region is shown as ‘‘noise’’ pattern in Fig. 6. How-
ever, this degree of accuracy is sufficient to ignore the
effect of orbit-attitude coupling for short tether formation
separation distances. Specifically, for Coulomb formation
separation distances on the order of dozens of meters at
GEO, thus ignoring orbit-attitude coupling, the use of
numerical search algorithms such as evolutionary search
strategies is justified in the search for static Coulomb
structures.

5. Relative equilibria in the restricted three-body system

In a restricted three-body system for the Coulomb
spacecraft formation with SOð3Þ symmetry, the relative
equilibrium is one in a uniformly rotating frame. If the
vector n denotes the angular velocity of the uniformly
rotating frame located at barycenter O, the augmented
potential for the two spacecraft formation is

Vxðr1,r2Þ ¼�m1

m1

Jr1�d1J
þ

m2

Jr2�d1J

� �
�m2

m1

Jr1�d2J
þ

m2

Jr2�d2J

� �

þVtðJr1�r2JÞ�
m1

2
/nr1,nr1S�

m2

2
/nr2,nr2S ð32Þ

In this case, the relative equilibria of the system are
characterized by the critical points of the augmented
potential Vx. The first variation of Vx taken component
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wise with respect to q¼ ðr1,r2Þ is

DVxðr1,r2ÞUðdr1,dr2Þ

¼ m1m1
r1�d1

Jr1�d1J
3
Udr1þm1m2

r2�d1

Jr2�d1J
3
Udr2

þm2m1
r1�d2

Jr1�d2J
3
Udr1þm2m2

r2�d2

Jr2�d2J
3
Udr2

þV 0tðJr1�r2JÞ
r1�r2

Jr1�r2J
� ðdr1�dr2Þ

þm1ðn̂n̂r1ÞUdr1þm2ðn̂n̂r2ÞUdr2 ð33Þ

If Vt ¼ Vc , the Coulomb potential, then V 0c is given by
Eq. (19). Setting DVxðr1e,r2eÞ ¼ 0 leads to the following
relative equilibria conditions:

m1m1
r1e�d1

Jr1e�d1J
3
þm2m1

r1e�d2

Jr1e�d2J
3
þm1n̂n̂r1eþV 0t

r1e�r2e

Jr1e�r2eJ
¼ 0

ð34aÞ

m1m2
r2e�d1

Jr2e�d1J
3
þm2m2

r2e�d2

Jr2e�d2J
3
þm2n̂n̂r2e�V 0t

r1e�r2e

Jr1e�r2eJ
¼ 0

ð34bÞ

The vectors R11, R12, R21 and R22 shown in Fig. 3 are
represented in terms of r1e, r2e, d1, and d2 as

R11 ¼ r1e�d1, R12 ¼ r1e�d2

R21 ¼ r2e�d1, R22 ¼ r2e�d2 ð35Þ
Therefore, Eqs. (34a) and (34b) become

m1m1
r1e�d1

R3
11

þm2m1
r1e�d2

R3
12

þm1n̂n̂r1eþV 0t
r1e�r2e

Jr1e�r2eJ
¼ 0

ð36aÞ

m1m2
r2e�d1

R3
21

þm2m2
r2e�d2

R3
22

þm2n̂n̂r2e�V 0t
r1e�r2e

Jr1e�r2eJ
¼ 0

ð36bÞ

where R11 ¼ JR11J, R12 ¼ JR12J, R21 ¼ JR21J and R22 ¼ JR22J.
Now consider a rotation matrix ½FS� 2 SOð3Þ that maps

vectors from a synodic frame S into a new reference frame
F. If we denote the vectors R1, R2, x in the reference frame
S, then the conditions of relative equilibria given in
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Eqs. (36) are invariant under the transformation
R1 ¼ ½FS�r1e, R2 ¼ ½FS�r2e and x¼ ½FS�n. As illustrated
in Fig. 7, a reference frame is chosen such that the x-axis
is parallel to the line connecting the two crafts, the z-axis
being perpendicular to both the vectors r1e and r2e, and
the y-axis completing the triad. Also, let g be the angle in
the orbit plane between the two frames S and F.

In the context of the new frame F, the position vectors
are expressed as R1 ¼ ðx1,yc ,0ÞT , R2 ¼ ðx2,yc ,0ÞT , and
x¼ ðo1,o2,o3Þ

T . The vectors d1 and d2 in the F frame
become ð�d1cosg,�d1sing,0Þ and ðd2cosg,d2sing,0Þ. Now
the equilibrium conditions (36a) and (36b) expressed in
scalar form are

�ðo2
2þo

2
3Þx1þo1o2ycþm1

x1þd1cosg
R3

11

 !

þm2

x1�d2cosg
R3

12

 !
¼�

V 0t
m1

ð37Þ

o1o2x1�ðo2
1þo2

3Þycþm1

ycþd1sing
R3

11

 !
þm2

yc�d2sing
R3

12

 !
¼ 0

ð38Þ

o1x1þo2ycð Þo3 ¼ 0 ð39Þ

�ðo2
2þo

2
3Þx2þo1o2ycþm1

x2þd1cosg
R3

21

 !

þm2

x2�d2cosg
R3

22

 !
¼

V 0t
m2

ð40Þ

o1o2x2�ðo2
1þo

2
3Þycþm1

ycþd1sing
R3

21

 !

þm2

yc�d2sing
R3

22

 !
¼ 0 ð41Þ

ðo1x2þo2ycÞo3 ¼ 0 ð42Þ

It is also assumed that x14x2 and let L¼ x1�x240. Further,
define Rc ¼ ðxc ,yc ,0ÞT where xc ¼ ðm1x1þm2x2Þ =ðm1þm2Þ.
The expressions for x1, x2 and yc are given in Eq. (27c).

Determining the relative equilibria of the two-craft
formation corresponds to solving the Eqs. (37–42) for a
given set of values for m1, m2, m1, m2, L and Rc ¼ JRcJ. Since
there are more unknowns than the number of equations,
certain constraints are needed in order to find the relative
equilibria. For libration point missions, the frame rotates
at a constant angular velocity O given in Eq. (12). Let us
consider angular velocity constraints o3 ¼Oa0 (Case 1)
and o3 ¼ 0 (Case 2).

Case1. As o3a0 Eq. (39) implies ðo1x1þo2ycÞ ¼ 0 and
x1a0 due to the adopted frame which indicates that
o1 ¼ 0 and o2yc ¼ 0. Using the conditions o3a0 and
o1 ¼ 0 in Eqs. (38) and (41) and subtracting one from
the other gives rise to

m1

1

R3
11

�
1

R3
21

 !
ðycþd1singÞ

"

þm2

1

R3
12

�
1

R3
22

 !
ðyc�d2singÞ

#
¼ 0 ð43Þ
From Eq. (43), two more conditions arise, ycþd1singa0
and yc�d2singa0, or ycþd1sing¼ 0 and yc�d2sing¼ 0.
Therefore, the conditions for relative equilibria are further
expressed as Cases 1a and 1b.

Case1a. o1 ¼ 0, o3a0, o2yc ¼ 0, ycþd1singa0 and
yc�d2singa0.

Here, ycþd1singa0 implies that yca0 and ga0. This
forces o2 ¼ 0 and Eq. (43) yields R11 ¼ R21 and R12 ¼ R22.
Applying these conditions to Eqs. (37) and (40) and
dividing by the other results in the conditions
ðm1x1þm2x2Þ ¼ 0 and g¼ 90. Therefore, the along-track

equilibrium solutions in the context of a restricted
three-body system (circular orbits) are

R1 ¼
1

2
L,yc ,0

� �T

, R2 ¼ �
1

2
L,yc ,0

� �T

, x¼ ð0,0,OÞT

yc ¼ Rc , and V 0t ¼�
m1m2L

ðm1þm2Þ

m1

R3
11

þ
m2

R3
12

 !
�O2

 !

Since Rc �x¼ 0, this is a great-circle relative equilibrium.
However, in the context of a restricted three-body system,
for any of the collinear libration points it can be
shown that O2om1=R3

11þm2=R3
12, which implies that

V 0t o0 (compressive elastic force). For any of the
triangular libration points it can be shown that
O24m1=R3

11þm2=R3
12, which implies that V 0t 40 (tensile

elastic force). For example, Fig. 8 shows the along-track
equilibrium solutions at a collinear (L2) and a triangular
(L4) libration point. In particular, for a Coulomb tether,
Eq. (19) indicates that the two spacecraft masses must be
charged with same polarity at the collinear libration
points and must be charged with opposite polarity at
the triangular libration points.

Case1b. o1 ¼ 0, o3 ¼Oa0, o2yc ¼ 0, ycþd1sing¼ 0
and yc�d2sing¼ 0.

Assuming that x14x240 for a tether formation and
since o3a0 and ycþd1sing¼ 0,yc�d2sing¼ 0 implies that
yc ¼ 0 and g¼ 0 for collinear libration points. However,
for Earth–Moon triangular libration points yc ¼ 0
and g¼ 60:31, appropriate values of R11, R12, R21 and R22

should satisfy Eq. (43). Therefore, for any libration point,
from Eq. (39) one can set o1 ¼ 0 and o2 ¼ 0. With these
conditions, Eqs. (37)–(42) reduce to

�O2
þ

m1

R3
11

þ
m2

R3
12

 !
x1þ

m1d1

R3
11

�
m2d2

R3
12

¼�
V 0t
m1

ð44aÞ

�O2
þ

m1

R3
21

þ
m2

R3
22

 !
x2þ

m1d1

R3
21

�
m2d2

R3
22

¼
V 0t
m2

ð44bÞ

Solving these equations yields a radial relative equili-
brium with the tether forces directed along the radial axis.
The equilibrium solution configuration is

R1 ¼ ðx1,0,0ÞT , R2 ¼ ðx2,0,0ÞT , x¼ ð0,0,OÞT

V 0t ¼
m1m2

m1þm2
O2L�m1

1

R3
11

�
1

R3
21

 !
�m2

1

R3
12

�
1

R3
22

 ! !

Since x14x2, from Eq. (35) it can be shown for a radial
equilibrium that R114R21 and R124R22 for both the
collinear and triangular libration points, indicating that
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V 0t 40. Again, Rc �x¼ 0 is a great-circle relative equili-
brium as shown in Fig. 9. This implies that there is a
tensile elastic force acting between the two masses along
the radial direction when the formation is at any of the
libration points. Hence, for a Coulomb tether, V 0t 40
indicates that the two spacecraft masses must be charged
with opposite polarity.

Case2. o3 ¼ 0. The relative equilibrium equations
reduce to

�o2
2x1þo1o2ycþm1

x1þd1cosg
R3

11

 !
þm2

x1�d2cosg
R3

12

 !

¼�
V 0t
m1

ð45aÞ

o1o2x1�o2
1ycþm1

ycþd1sing
R3

11

 !
þm2

yc�d2sing
R3

12

 !
¼ 0

ð45bÞ

�o2
2x2þo1o2ycþm1

x2þd1cosg
R3

21

 !
þm2

x2�d2cosg
R3

22

 !
¼

V 0t
m2

ð45cÞ

o1o2x2�o2
1ycþm1

ycþd1sing
R3

21

 !
þm2

yc�d2sing
R3

22

 !
¼ 0

ð45dÞ

Setting ycþd1sing¼ 0 and yc�d2sing¼ 0, the equilibrium
conditions yield radial equilibrium solutions as seen in
Case 1b, but with o3 replaced by o2. Therefore, we
consider only the case where ycþd1singa0 and
yc�d2singa0. Furthermore, it is assumed that R11 ¼ R21

and R12 ¼ R22 (Case 2a) as well as R11aR21 and R12aR22

(Case 2b).
Case2a. o3 ¼ 0, R11 ¼ R21, R12 ¼ R22, ycþd1singa0 and

yc�d2singa0.
Using ycþd1singa0 and yc�d2singa0 yields R11 ¼ R21

and R12 ¼ R22, giving the condition x1 ¼�x2. Eqs. (45b)
and (45d) imply that o1a0; additionally, set o1 ¼O
and o2 ¼ 0. Then, using x1 ¼�x2 and o2 ¼ 0 in
Eqs. (45a) and (45c) yields m1 ¼m2 as the only
possible condition. As a result, the equilibrium solutions
obtained are

R1 ¼
1

2
L,yc ,0

� �T

, R2 ¼ �
1

2
L,yc ,0

� �T

, x¼ ðO,0,0ÞT

m1 ¼m2, yc ¼ Rc , V 0t ¼�
m1m2L

ðm1þm2Þ

m1

R3
11

þ
m2

R3
12

 !
o0

These orbit normal equilibrium solutions are applicable for
both triangular and collinear libration points. Specifically,
for triangular libration points R11 ¼ R21 ¼ R12 ¼ R22 holds
true. Since Rc �x¼ 0, once again this is a great-circle
relative equilibrium. Since V 0t o0, there is a compressive
elastic force acting between the two masses perpendicular
to the orbital plane and the two masses are equal and
equidistant from the barycenter. Fig. 10 specifically, illus-
trates this for a collinear (L2) and a triangular (L4) libration
point. For a Coulomb formation, since V 0c o0, the two
spacecraft masses must be charged with the same polarity.

Case2b. o3 ¼ 0, R11aR21, R12aR22, ycþd1singa0 and
yc�d2singa0.

Assuming that the F frame is aligned with the orbit
normal configuration gives g¼ 90. Solving Eqs. (45b) and
(45d) yields

�ðx1�x2Þo1o2 ¼ yc
m1

R3
11

þ
m2

R3
12

 !
�

m1

R3
21

þ
m2

R3
22

 ! !

þm1d1
1

R3
11

�
1

R3
21

 !
þm2d2

1

R3
22

�
1

R3
12

 !
a0

ð46Þ
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which implies that o1a0 and o2a0. Combining
Eqs. (45a) and (45c)

ðm1þm2Þðo2xc�o1ycÞo2

¼m1x1
m1

R3
11

þ
m2

R3
12

 !
þm2x2

m1

R3
21

þ
m2

R3
22

 !
a0 ð47Þ

Eq. (47) implies that ðo2xc�o1ycÞa0. Multiplying
Eq. (45b) by m1 and (45d) by m2 and adding the resulting
equations gives

�ðm1þm2Þðo2xc�o1ycÞo1

¼ m1
m1

R3
11

þ
m2

R3
12

 !
þm2

m1

R3
21

þ
m2

R3
22

 ! !
yc

þm1
m1d1

R3
11

�
m2d2

R3
12

 !
þm2

m1d1

R3
21

�
m2d2

R3
22

 !
a0 ð48Þ

Defining fx and fy to be

fx ¼ m1

m1x1

R3
11

þ
m2x2

R3
21

 !
þm2

m1x1

R3
12

þ
m2x2

R3
22

 !
a0 ð49Þ

fy ¼ m1

m1

R3
11

þ
m2

R3
21

 !
þm2

m1

R3
12

þ
m2

R3
22

 ! !
yc
þm1
m1d1

R3
11

�
m2d2

R3
12

 !
þm2

m1d1

R3
21

�
m2d2

R3
22

 !
a0 ð50Þ

The ratio of Eqs. (47) and (48) becomes

o2

o1
¼�

fx

fy
ð51Þ

Eliminating o1 and o2 from Eqs. (46)–(48) yields

f ¼ fxf1þ fyf2 ¼ 0 ð52Þ

where

f1 ¼ x2
m1

R3
11

þ
m2

R3
12

 !
�x1

m1

R3
21

þ
m2

R3
22

 !
þ x2

m1d1

R3
11

�
m2d2

R3
12

 ! 

þx1
m2d2

R3
22

�
m1d1

R3
21

 !!
1

yc

and

f2 ¼
m1

R3
11

þ
m2

R3
12

 !
�

m1

R3
21

þ
m2

R3
22

 ! !
ycþ

m1d1

R3
11

�
m2d2

R3
12

 !

þ
m2d2

R3
22

�
m1d1

R3
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 !
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Fig. 11. Deflection for an asymmetric mass distribution. (a) w¼ 0:49975, (b) w¼ 0:0001.
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The solutions of Eq. (52) give the nongreat-circle
equilibria and it can be shown that such nongreat-circle

equilibria exist only if m1am2. The nongreat-circle equi-
libria formulation is independent of the tether force
between the spacecraft and is thus useful for analyzing
the equilibria for a range of spacecraft separation dis-
tances with the formation at the libration points. Similar
to the solution procedure followed for a two-body system,
Eq. (52) is expressed in terms of one variable y, the angle
between Rc and the x-axis of the rotating frame.

At the Earth–Moon collinear libration points, the effect of
nongreat-circle equilibria on a two-craft formation is stu-
died as a function of spacecraft separation distance L and
mass distribution ratio w defined in Eq. (31). The spacecraft
separation distances range from 10 m to 5000 km with the
formation center of mass distances fixed at the libration
points L1–L3. Fig. 11 shows the numerical solutions for a
range of spacecraft separation distances. For spacecraft
separated by more than 5000 km at L1 and L2, a deflection
of about 1 from the vertical to the orbital plane is observed.
For such large separation distances, a deflection of about 10
is observed at L3. This is due to L3 being close to Earth
compared to that of L1 and L2. On the other hand, for short
separation distances the deflection becomes negligible. For
instance, Coulomb formations are feasible at the libration
points with the spacecraft separation distances ranging from
10 to 30 m due to the reduced range of the Debye length. As
shown in Fig. 11(a), for Coulomb formation distances at
L1–L3, the deflection from normal is less than 10�6 degrees.
From Fig. 11(b), mass asymmetry of the two craft also
yielded negligible effect on the attitude deflection at such
short separation distances. Consequently, at libration points,
although the orbit-attitude coupling effects dominate for
large spacecraft separation distances on the order of thou-
sands of kilometers such effects can be ignored for short
separation distances such as in Coulomb formations.

6. Conclusions

In this paper, the relative equilibria of a two-craft
formation moving in a two-body system and a three-body
system are discussed. A general framework of two-craft
connected by an elastic tether force is studied with an
emphasis on a virtual Coulomb tether as a special case. The
orbit-attitude coupling effects should be considered for
large spacecraft separation distances; for LEO, greater than
tens of kilometers, for GEO, hundreds of kilometers, and at
libration points, tens of thousands of kilometers. Such
coupling effects can be ignored for shorter spacecraft
separation distances. For example, previous Coulomb for-
mation flying work used the simple principle axes condition.
The negligible nongreat-circle effects shown in this paper
for smaller inter-craft separation distances validates this
assumption for Coulomb tether applications. Consequently,
for a charged two-craft formation, the principal axis condi-
tion is very good for genetic algorithms which seek approx-
imate equilibrium answers. However, for full nonlinear
solutions, these effects can be taken into consideration.
Moreover, this paper presents the relative equilibria of a
two-craft formation at all five libration points and also
numerically shows that nongreat-circle effects exist at the
Earth–Moon collinear libration points. Interestingly, in the
restricted three-body system, a tether force is required for
the along-track equilibrium, however, no tether force is
necessary in the restricted two-body system. Furthermore,
the results obtained in here could be used to investigate the
linearized dynamics and stability of a 2-craft Coulomb
tether formation at libration points.

Appendix A. Lie Groups

To explain the terminology used in this paper, basic
properties and definitions of Lie Groups are introduced
here. Refs. [18,19] present these concepts in detail.

Definition 1 (Group of transformations). A group of trans-
formations G is an aggregate set of transformations gi

such that the following properties are satisfied:
(i)
 It contains the identity transformation.

(ii)
 Corresponding to each transformation gl there is an

inverse transformation g�1
l .
(iii)
 The composition of transformations holds glgk 2 G

and the associativity rule ðgigjÞgk ¼ giðgjgkÞ is satisfied.
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For instance, the set of nonsingular linear transforma-
tion matrices forms a group as all the above three proper-

ties are satisfied. Another important example is the
symmetry group of a rigid body. To maintain the sym-
metry of a rigid body, symmetry groups or symmetry
transformations gives rise to the set of all distance
preserving transformations which transforms the position
of the body but preserves the distance between all pairs of
points of the rigid body.

Definition 2 (Lie group). A Lie group is a smooth mani-
fold G that has a group structure consistent with its
manifold structure such that the group operation and its
inversion are smooth maps between manifolds. A matrix
representing a rotation about an axis through an angle is
an example of a Lie group. The three-dimensional rotation
group SOð3Þ is defined as

SOð3Þ ¼ fC : R3-R3 linear, CT C ¼ E and detC ¼ 1g

Lie groups describe continuous symmetries in physical
systems using its Lie algebra g� for its calculations.
A Lie algebra is a vector space and uses linear algebra
to study Lie groups. For example, SOð3Þ is a Lie group and
is characterized by its Lie algebra. A Lie group G and its Lie
algebra g� are related in a manner similar to which a flow
and the associated vector field are related. The corre-
sponding vector field v on a flow Uðx,tÞ given by

vðxÞ ¼
d

dt

����
t ¼ 0

Uðx,tÞ,

is called the infinitesimal generator of the flow.

Let soð3Þ be the set of skew-symmetric matrices
defined by

soð3Þ ¼ fx̂ : R3-R3, linear jn̂þ n̂
T
j ¼ 0g

where n¼ ðx1,x2,x3Þ is a vector and n̂ is

½n̂� ¼

0 �x3 x2

x3 0 �x1

�x2 x1 0

2
64

3
75

This set soð3Þ forms the Lie algebra of SOð3Þ given as
n̂r¼ nr for any r 2 R3. If we define the Lie algebra
isomorphism between the space R3 and soð3Þ by
n/soð3Þ then the matrix exponential en̂t is a rotation
about n by the angle JnJt in the form

CðtÞ ¼ en̂t :
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