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The linearized orbit radial dynamics and stability analysis of a two-craft virtual Coulomb structure at Earth–moon

librationpoints are investigated. The linearized studyassumes that the sunlit areas of the two-craft structure are equal

such that the differential solar radiation pressure on the formation is zero. The relative distance between the two

satellites of the Coulomb tether is controlled using electrostatic Coulomb forces. The separation distance between the

satellites is stabilized with a charge feedback law that maintains the relative distance at a constant value. The

electrostatic virtual tether between the two craft is capable of both tensile and compressive forces. The gravity

gradient torques on the formationdue to the two celestial objects is exploited to stabilize theCoulomb tether formation

in the orbit radial direction. Controlling the separation distance stabilizes the in-plane rotation angle; however, the

out-of-plane rotationalmotion is not affected by the spacecraft charge control law. The new two-craft dynamics at the

libration points is provided as a general framework in which circular Earth orbit dynamics form a special case.

Furthermore, an alternate linear control technique for a two-craft Coulomb virtual tether formation’s radial

equilibriumat a collinear librationpoint is developedandanalyzed.Numerical simulations using charge feedback law

are presented at both a collinear and a triangular libration point.

I. Introduction

T HIS paper investigates the effectiveness of linear control
techniques in stabilizing two spacecraft in a formationt virtually

connected by an electrostatic (Coulomb) force moving in the
presence of a restricted three-body system. This novel method of
exploiting Coulomb forces for formation flying was introduced in
[1,2] in 2002. Coulomb forces as a fuel efficient method for short-
distance actuation in geostationary regions is discussed in [3]. Here
active charge control is proposed to electrostatically inflate a large
reflecting structure. The basic idea of Coulomb propulsion of free-
flying vehicles is to control the spacecraft formation shape and size
using the interspacecraft forces created by electrostatically charging
the spacecraft to different potentials. This control is achieved by
varying the charge of spacecraft by emitting either positive ions or
negative electrons. For tight formation control of spacecraft sepa-
ration distances on the order of 100 m or less, this propellantless
thrusting is an attractive solution over conventional electric propul-
sion or chemical thrusting. For instance, at small separation distances
between spacecraft, electric propulsion can cause thruster plume
contamination of the neighboring spacecraft. However, Coulomb
propulsion is a highly efficient system with a renewable energy
source and Isp values ranging up to 1013 s. Furthermore, it has very
little electrical power requirements (one watt or less), and has a very
high bandwidth for relative motion control with charge transition
times on the order ofmilliseconds [1]. These advantages enable high-
precision formation flying with very little fuel consumption,
increasing the lifetime of the mission, and thus, the probability of
mission success.
In spite of themany advantages presented byCoulomb propulsion,

there are a few drawbacks. The formation dynamics are highly
coupled and nonlinear; nonhomogeneous absolute spacecraft

charging at geostationary altitudes may cause arcing; and depen-
dence of the interspacecraft Coulomb forces of the whole formation
on each and every spacecraft’s position and charge. Furthermore,
because the electrostatic forces are internal to the formation, these
Coulomb forces cannot be used to control the center of mass of
a nonorbiting formation. External forces such as thrusters or
differential gravity gradient torques are used to reorient a Coulomb
formation. Also, Coulomb formation flying requires a careful
balance between the intercraft forces and the relative orbital
dynamics. While Coulomb propulsion is nearly propellantless, the
nonaffine nature of the charge actuation and the strongly coupled
nonlinear equations of motion result in challenging and interesting
control design problems.
In 2002, King et al. [1,2] introduced the Coulomb propulsion

concept to control a cluster of free-flying spacecraft. Ever since their
pioneering work on Coulomb formations, there have been many
interesting investigations on the dynamics and control problems of
Coulomb formation. King et al. [1,2] present analytic solutions for
Hill-frame invariant static Coulomb formations with symmetry
assumptions. The analytic open-loop solutions presented are for
three- and five-craft formations, and the numerical solutions are for a
six-craft formation. The charges required to maintain the formation
shape are held constant and the spacecraft are placed at predefined
locations in the rotating Hill frame. As a result, the Coulomb forces
perfectly cancel all relativemotion of the charged spacecraft, causing
the static Coulomb formation to appear fixed as seen in theHill frame.
References [4–6] presentmore systematic analytic solutions for two-,
three-, and four-spacecraft formations. Furthermore, Berryman and
Schaub [6] numerically demonstrate that charged equilibria with as
many as nine craft are possible in geostationary (GEO) orbits. The
open-loop static Coulomb formations are all numerically unstable.
Using a noncanonical Hamiltonian formulation of the Coulomb
formation dynamics, Schaub et al. [7] formulate necessary conditions
to achieve such static Coulomb formations with constant charges.
These Hamiltonian formulations are equivalent to finding rigid body
equilibrium conditions in orbit. Reference [8] applies a similar
noncanonical Hamiltonian approach to examine the relative equilib-
ria of a rigid satellite in a circular Keplerian orbit.
Natarajan [9] presents closed-loop feedback stabilized virtual

Coulomb structure solutions for in-orbit two-craft configurations
(radial, along-track, and orbit normal). He introduces a charge
feedback law to stabilize the relative distance between the satellites
exploiting the differential gravitational attraction to stabilize the
attitude of a Coulomb tether formation relative to nadir. Along the
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orbit-normal and the along-track directions, the electrostatic line-of-
sight actuation between two bodies and the differential gravitational
accelerations are inadequate to stabilize the Coulomb tether length
and the formation attitude. Therefore, to asymptotically stabilize the
satellite formation shape and attitude, the authors present hybrid
feedback control laws that combine conventional thrusters and
Coulomb forces. Furthermore, [10] shows that for a two-spacecraft
Coulomb formation at the gravitational three-body libration points,
three equilibrium configurations exist (radial, along-track, and orbit
normal). It’s concluded that the simplified principle axes condition
suffice for two-craft Coulomb tethers less than 100 m in length.
Therefore, it is inferred that a second-order gravitational potential
model could be used in the development of equations of motion. This
paper investigates the linear dynamics and stability analysis of a two-
craft Coulomb formation at Earth–moon libration points along the
orbit-radial direction.
Considering a three-body system, this paper considers a two-

spacecraft formation near two large masses rotating around their
center of mass. For the Earth–moon system the three collinear points
L1–L3 are unstable, while the two equilateral triangle points L4–L5

are stable. These equilibrium points are the libration points (L1–L5)
in the three-body system. Tether formations at the libration points are
useful for remote sensing missions to establish a long-baseline
imaging capability or to ensure better stationkeeping configurations.
Reference [11] considers the equilibrium configurations of a rigid
tethered system near all five libration points and carries out the
stability analysis when it is near the translunar libration point. Also,
the report in [1] analyzes the suitability of Coulomb control for a
static collinear five-vehicle formation at Earth–sun Lagrange points
where the formation local dynamics ignore gravity. Reference [12]
presents compatibility results of using Coulomb satellites with
electric propulsion and autonomous path planning techniques at the
libration points for formation keeping and reconfiguration of swarms
of satellites. In the interplanetary space at a distance of 1 AU from the
sun, the debye length ismuch smaller than that in aGEOenvironment
(highest debye length of approximately 40 m); therefore, this con-
strains the maximum possible formation length, but despite the low
value of the debye length, multicraft equilibrium formations are
reported to exist at the Earth–sun L1 Lagrange point [12].
These results motivate us to study the dynamics and control of a

two-craft Coulomb formation at the Earth–moon libration points. To
stabilize the formation shape at the libration points, a similar active
charge feedback law introduced in [9] for the study of the linear
dynamics of orbit radial two-craft formations at GEO is applied at the
libration point scenario. The goal is to study the orbit radial dynamics
and stability conditions at the libration points and to investigate the
presence of any cross-coupling effects that may not exist for circular
orbits at GEO. First the nonlinear and linearized equations of motion
are investigated. It is of interest to compare these equations to the
earlier circular GEO orbit results and to determine if these can be
generalized into a single mathematical framework. To stabilize the
separation distance, a partial-state charge feedback control law
(separation distance and separation rate only) is studied, followed by
linear stability analysis of coupled attitude and separation distance
dynamics. Furthermore, an alternate linear, full-state feedback
control law (in-plane attitude, separation distance, and their rates) is
investigated for a radial equilibrium two-craft Coulomb tether
formation at a collinear libration point. The linearized analytical
results are then compared with nonlinear numerical simulations to
validate the control performance results.

II. Linear Dynamics and Stability Analysis: Collinear
Libration Points

A. Charged Relative Equations of Motion

The linearized equations of motion for a two-spacecraft Coulomb
formation at a collinear Earth–moon libration point are briefly
derived in this section. The characteristics of the frames involved in
the analysis and the notation used are summarized.
Let M1 and M2 be the dominant masses of the two gravitational

primaries, Earth and moon. As shown in Fig. 1, if O is the center of

mass of both primaries, any nonrotating frame with origin at O is
considered as an inertial frame. The circular relative motion of
primaries occurs in a plane with angular rotation axis. The synodic
frameS∶fêr; êθ; êhg is rotating around theO–z axis with the constant
angular velocity. Ω defined as

Ω �
����������������������������
G�M1 �M2�

d3

r
(1)

Here G is the gravity constant and d is the distance between the two
planets. The primaries are at rest in the synodic frame at positions
M1�−d1; 0; 0� andM2�d2; 0; 0�. If r0 � �rx0 ; ry0 ; rz0 �T is the position
vector in the synodic frame S of a collinear libration point L2 with
respect to the barycenterO, then the two distance vectors of L2 from
the two primaries in the plane are

SR1 �

2
4 rx0 � d10

0

3
5 and SR2 �

2
4 rx0 − d20

0

3
5 (2)

To describe the relative motion of the satellite with respect to the
formation center of mass, a rotating Hill orbit frame O∶fôr; ôθ; ôhg
whose origin coincides with L2 libration point is chosen as shown in
Fig. 2. The formation center of mass is assumed to be at the origin of
this rotating Cartesian coordinate system and the relative position
vector of the ith satellite is defined as ρi � �xi; yi; zi�T ; where the xi
component is in the ôr direction (orbit radial), the yi component is in
the ôθ direction of orbital velocity (along-track), and the component
zi is in the ôh direction (orbit normal). Because the orbit frame origin
coincides with the formation center of mass, the center of mass
condition is defined as

m1ρ1 �m2ρ2 � 0 (3)

wheremi is the satellite mass. Also, for a collinear libration point, the
orbit frame and the synodic frames coincide so that the position
vectors R1 and R2 are equivalent in both frames.
If the two-craft formation is treated as a rigid body and aligned in

the radial direction, then, for this orbit nadir aligned formation,
consider a body-fixed coordinate frame B∶fb̂1; b̂2; b̂3g where b̂1 is
aligned with the relative position vector ρ1 of massm1. Therefore, in
this configuration, theO and B frame orientation vectors are exactly
aligned and ρ1 in a body-fixed frame is given by

ρ1 �
m2

m1 �m2

Lb̂1 � 0b̂2 � 0b̂3 (4)

M1

d1

M2

d2

d

L3 L1 L2

L4

L5

e
er

Fig. 1 Stationary libration points.
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where L is the distance between the satellites 1 and 2. Let the 3-2-1
Euler angles (ψ , θ,ϕ) be the pitch, roll, and yaw angles that represent
the relative attitude between theB andO frames. From the point-mass
assumption of the two-craft, the yaw rotation about b̂1 (angle ϕ) can
be ignored. Then the direction cosine matrix [BO�ψ ; θ�] that relates
the O frame to B frame is given by

�BO� �

2
4 cos θ cos ψ cos θ sin ψ − sin θ

− sin ψ cos ψ 0

sin θ cos ψ sin θ sin ψ cos θ

3
5 (5)

Consequently, the position vector of mass m1 in the O frame is
written as

Oρ1�

0
@x1y1
z1

1
A� �BO�T

0
BB@

m2L

m1�m2
0

0

1
CCA� m2L

m1�m2

2
4cos θ cos ψ
cos θ sin ψ
−sin θ

3
5

(6)

Using Eq. (3), the position vector of massm2 in theO frame becomes

Oρ2 �

0
@ x2y2
z2

1
A � m1L

m1 �m2

2
4− cos θ cos ψ
− cos θ sin ψ

sin θ

3
5 (7)

Furthermore, using the transport theorem [13], the inertial velocity of
mass mi expressed in the O frame components becomes

Ovi �

0
@ _xi −Ωyi

_yi �Ω�xi � rc�
_zi

1
A (8)

The center of mass position vector rc is assumed to have a constant
orbital rate of Ω. The kinetic energy of the system is given by

T � 1

2
m1v1 · v1 �

1

2
m2v2 · v2 (9)

Using Eqs. (6–8), Eq. (9) is rewritten as

T � 1

2

m1m2

m1 �m2

� _L2 � L2�_θ2 � � _ψ �Ω�2 cos2 θ��

� 1

2
�m1 �m2�Ω2r2c (10)

The gravitational potential energy of the two-craft formation due to
the two planets is

Vg � −GM1

�
m1

jR1 � ρ1j
� m2

jR1 � ρ2j

�

−GM2

�
m1

jR2 � ρ1j
� m2

jR2 � ρ2j

�
(11)

Substituting μ1 � GM1, μ2 � GM2, ρ1 � m2

m1�m2
Lt1, and ρ2 �

m1

m1�m2
Lt2, the expression for

1
jR1�ρ1j expanded in aTaylor series about

the equilibrium point, and retaining up to the second-order terms of
L
R1
, becomes

1

jR1�ρ1j
� 1

R1

�
1−

m2

m1�m2

� L
R1

�
u1 ·t1�

� m2

m1�m2

�� L
R1

�2
�3�u1 ·t1�2−1�

�

(12)

where

t1 � cos θ cos ψ ôr � cos θ sin ψ ôθ − sin θ ôh (13)

t2 � − cos θ cos ψ ôr − cos θ sin ψ ôθ � sin θ ôh (14)

and u1, u2 are the unit vectors in the direction of R1 and R2.
After carrying out similar approximations for the other terms in

Eq. (11), Vg finally becomes

Vg � −
μ1
R1

�
�m1 �m2� �

1

2

m1m2

�m1 �m2�

�
L

R1

�
2

�3�u1 · t1�2 − 1�
�

−
μ2
R2

�
�m1 �m2� �

1

2

m1m2

�m1 �m2�

�
L

R2

�
2

�3�u2 · t2�2 − 1�
�

(15)

and the Coulomb potential for the two-craft formation [1] is

Vc � kc
q1q2
L

e−L∕λd (16)

where qi is the satellite charge and the parameter kc � 8.99 ×
109 Nm2∕C2 is Coulomb’s constant. The exponential term in the
Coulomb potential depends on the debye length parameter λd, which
controls the electrostatic field strength of plasma shielding between
the craft. At GEO the debye length varies between 80 and 1400 m,
with amean of about 180m [14]. In the interplanetary space at Earth–
moon libration points, the debye length varies between 10 and 40 m
[1,15]. Note that the simple point charge electrostatic field
formulation in Eq. (16) assumes that the vehicle potential is small
compared with the local plasma temperature. As discussed in [16],
this charge shielding formulation forms a conservative lower bound
on the actual electrostatic force created between two charged bodies.
For example, assuming an actual debye length of 4 m and a 1-m-
diameter sphere at 30 kV yields effective debye lengths λ̂d, which are
three times larger. As a result, because we are considering kilovolt
levels of potential, the effective debye lengths in deep space still yield
charged relative motion dynamics that are primarily influenced
through classical electrostatics.
The nonlinear equations of motion are deduced from the

Lagrangian L � T − �Vg � Vc� of the system in the following
form

d

dt

∂L
∂ _qi

−
∂L
∂qi
� Qi qi � �θ;ψ ; L� �i � 1 : : : 3� (17)

where Qi is the generalized force in the qith degree of freedom
excluding gravitational effects. For the circularly restricted three-
body system, using Eqs. (10), (15), and (16) in Eq. (17), the nonlinear

Fig. 2 Euler angles representing the attitude of Coulomb tether with respect to the orbit frame at L2.
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equations governing the roll angle θ out of the orbital plane, the pitch
angle ψ in the orbital plane, and the separation distance L become

�θ� 2_θ
_L

L
� cos θ sin θ�� _ψ �Ω�2 � 3Ω2 σ cos2 ψ� � 0 (18a)

�ψ − � _ψ �Ω�
�
2 _θ tan θ − 2

_L

L

�
� 3Ω2σ sin ψ cos ψ � 0 (18b)

�L − L�_θ2 � � _ψ �Ω�2 cos2 θ −Ω2σ�1 − 3 cos2 θ cos2 ψ��

� kc
m1

Q
1

L2

m1 �m2

m2

� 0 (18c)

where Q � q1q2, ν �
M2

M1 �M2

, 1 − ν � M1

M1 �M2

and

σ � 1 − ν���rx0∕d� � ν
��3 �

ν���rx0∕d� − 1� ν
��3 > 0 (19)

is a positive constant that depends on the collinear Lagrangian point
chosen. The equations of motion [Eq. (18)] are coupled nonlinear
ordinary differential equations that define the motion of a two-craft
Coulomb formation at any of the three collinear Lagrangian points. If
the two-craft formation is aligned in the radial direction, the
formation remains statically fixed relative to the rotating orbiting
frame O provided the nonlinear equations Eq. (18) satisfy the
following radial equilibrium conditions:

θ � _θ � �θ � ψ � _ψ � �ψ � _L � �L � 0 and L � Lref (20)

Equation (18c) provides the nominal product of chargesQref � q1q2
needed to achieve this static Coulomb formation as

Qref � −�2σ � 1�Ω2
L3

kc

m1m2

m1 �m2

(21)

Thus, the satellites appear frozen with respect to the rotating frame
when the charge product Qref satisfies Eq. (21). Because the charge
product term is negative it implies that the spacecraft charges will
have opposite charge signs and also, an infinite number of charge
pairs can satisfyQref � q1q2. Although unequal charges are possible
between the two crafts, in this study, the charge magnitudes are
set equal.
The linearized version of the nonlinear equations [Eq. (18)] are

obtained by applying a Taylor series expansion about the equilibrium
states given in Eq. (20). Both the roll and pitch equations of motion
are linearized about small roll and pitch angles, respectively. The
separation distance equations of motion are linearized about small
variations in δL aswell as about small variations in the product charge
term δQ as follows:

L � Lref � δL (22a)

Q � Qref � δQ (22b)

where mission requirements determine the reference separation
lengthLref , andQref is determined through the constraint Eq. (21) for
a particular choice of Lref . Performing the necessary linearizations
yields

�θ� �1� 3σ�Ω2θ � 0 (23a)

�ψ � 2Ω
Lref

δ _L� 3σΩ2ψ � 0 (23b)

δ �L − 2ΩLref _ψ − 3�2σ � 1�Ω2δL −
�
kc
m1

1

L2
ref

m1 �m2

m2

�
δQ � 0

(23c)

Thus, Eqs. (23a and 23b) and are the linearized attitude dynamics of
the Coulomb tether body frame B and Eq. (23c) is the linearized
separation distance differential equation about the static nadir
reference configuration at a collinear libration point.
Interestingly, for σ � 1, the equations turn out to be the same

equations that were found in [9] for orbit radial two-craft formation at
GEO. Thus, the linearized equations of motion for small motions
about orbit radial equilibria in Eqs. (23) form a general framework
that covers both circular GEO and collinear libration point departure
motion. By changing the constant σ either motion is described.
Furthermore, in Eq. (23c) the stiffness term on δL is the only
difference in the separation distance differential equation from [9].
Thus, the equations of motion are slightly different at a collinear
libration point, but no significant changes in the stability behavior are
expected. And, note that Eq. (23c) provides the necessary relation-
ship between the change in relative separation of the satellites δL and
the additional charge product δQ required.
It is inferred from these equations that the out-of-planemotion θ�t�

is uncoupled from the in-plane motion (ψ�t� and δL�t�) and is
analogous to that of simple oscillatory motion because of the gravity
gradient torques due to the two planets. Also, in this linearized
analysis, the decoupling of the roll motion θ�t� from ψ�t�, δL�t� and
δQ�t� prevents the control of roll motion using Coulomb charge.
Moreover, in a special case where the satellites are at rest with no
Coulomb force between them (Q � δQ�t� � _ψ � 0), Eq. (23c)
simplifies to that of an unstable oscillator. Therefore, without any
active Coulomb force, the two-craft formation cannot stay at the
specified locations. Furthermore, δL�t� is coupled to the body frame
pitch rate _ψ�t� and the pitch motion ψ�t� is coupled with the δL�t�
motion, which may make it possible to control the charge for
asymptotic stabilization. This coupling effect is analytically proven
in the next section using the controllability properties.

B. Feedback Control Development

Under the influence of external disturbances such as solar radiation
pressure, the two-craft formation deviates from the desired radial
equilibrium configuration. Because the deviations from the desired
equilibrium configuration are small, linear control design techniques
are used to stabilize the in-planemotionwithout exceeding the charge
requirements. In this section, two control laws are designed and
compared that are used to control the in-plane motion. First, the in-
plane motion is controlled with Coulomb forces using a partial-state
charge feedback control defining the small charge product variation
with a proportional-derivative feedback control of small separation
distances. The Coulomb force acts along the relative position vector
due to the charges of each craft and thus, these Coulomb charges can
be used to control the spacecraft separation distance. Second, using
state-space methods, a full-state feedback control is designed to
control the combined attitude and separation distance. Full-state
feedback control could be used for tighter mission requirements.

1. Charge Feedback Control

To stabilize the formation shape at the libration points, a similar
active charge feedback law, introduced in [9] for the study of the
linear dynamics of orbit radial two-craft formations at GEO, is
applied at the libration point scenario. A proportional-derivative
feedback control of δL is designed by defining [9]

δQ � m1m2L
2
ref

�m1 �m2�kc
�−C1δL − C2δ _L� (24)

Substituting this expression for δQ in Eq. (23c), the closed-loop
separation distance dynamics become

δ �L� �C1 − 3�2σ � 1�Ω2�δL� C2δ _L − �2ΩLref� _ψ � 0 (25)

Because the δL differential equation does not involve a δ _L damping
term, the derivative feedback is essential for asymptotic convergence.
This charge feedback control law is implemented by determining
the charges q1 and q2. Because Q � q1q2, using Eq. (22b), the
spacecraft charges must satisfy
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q1q2 � Qref � δQ (26)

where Qref value is evaluated from Eq. (21) while δQ value is given
by the charge feedback law expression in Eq. (24). Due to the above
constraint yielding an infinite number of solutions, the following
implementation is used where equal charges in magnitude across the
craft are chosen:

q1 �
������������������������
jQref � δQj

p
(27)

q2 � −q1 (28)

Because δQ≪ Qref and Qref < 0, note that here Qref � δQ < 0
which implies that q1 > 0 and q2 < 0.
To prevent numerical difficulties due to a small value of Ω, the

linearized attitude dynamics Eqs. (23a, 23b) and the closed-loop
separation distance dynamics given in Eq. (25) aremade independent
of Ω by the following transformation:

dτ � Ω dt (29a)

��� 0 � d���
dτ
� 1

Ω
d���
dt

(29b)

Thus, the orbit rateΩ independent linearized equations of motion for
a two-craft Coulomb tether formation at any collinear libration point
are given by

θ 0 0 � �1� 3σ�θ � 0 (30a)

ψ 0 0 � 2

Lref

δL 0 � 3σψ � 0 (30b)

δL 0 0 � ~C2δL 0 − �2Lref�ψ 0 � � ~C1 − 3�2σ � 1��δL � 0 (30c)

where ~C2 � C2

Ω and ~C1 � C1

Ω2 are nondimensionalized feedback gains.
Routh–Hurwitz stability criteria are used to finetune these gainvalues
that satisfy the stability requirements. The characteristic equation for
the coupled δL and ψ equation is

λ4 � ~C2λ
3 � � ~C1 � 1 − 3σ�λ2 � 3σ ~C2λ� 3σ� ~C1 − 6σ − 3� � 0

(31)

Roots of Eq. (31) should have negative real parts for asymptotic
stability. For all roots to have negative real parts, a Routh table
construction allows one to determine the following necessary
constraints on the gains ~C1 and ~C2

~C1 > 6σ � 3 (32a)

~C2 >
�����������������������������
n − 3�2σ � 1�

p
(32b)

To fix the gainvalues that satisfy the stability criteria in Eq. (32), near-
ideal damping conditions are assumed. Let the scaling factors n and β
be positive and real such that the gains are rewritten as

~C1 � n > 6σ � 3 (33a)

~C2 � β
�����������������������������
n − 3�2σ � 1�

p
(33b)

The natural frequency of theψ equation is
������
3σ
p

and is independent of

the choice of ~C1 and ~C2, and the natural frequency for the δL equation

is
�����������������������������
n − 3�2σ � 1�

p
. For the ψ 0 coupling term in the δL equation to

serve as a defacto damping term, a value of n � 9σ � 3 will match
these frequencies. Also, critical damping for the δL equation without
the ψ 0 term is ensured for β � 2. Therefore, with the inclusion of
the ψ 0 term for effective damping, one expects the value of n and β
to be in the vicinity of n � 9σ � 3 and β � 2. At L2 where
σ � 3.190432478, the root locus plots for the coupled equations
where the parameters are varied, n � 26 ensures good rates of
convergence for all the modes and β � 2.22 satisfies effective
damping for themodes. The optimal root locus plot is shown in Fig. 3.

2. Application of Linear Quadratic Regulator Design

To investigate the stability and control using the state feedback
controller, a two-craft Coulomb tether formation at a collinear
libration point must be represented in the following state-space form:

_x � Ax�Bu (34)

y � Cx (35)

where the state x is

x � �θ; _θ;ψ ; _ψ ; δL; _δL�T (36)

Using the Coulomb control as an actuator mechanism, the A and B
matrices can be represented fromEqs. (23a–23c).As previously seen,
the out-of-plane θ�t� motion is decoupled from the in-plane motion
(ψ�t� and δL�t�), which can be formally examined by checking the
controllability of the system [17]. Because the rank of the
controllability matrix is 4 and the number of state variables is 6, the
tether formation is not completely controllable with charge only.
When the out-of-plane θ�t� motion is not considered, then, with the
reduced state space of four state variables x � �ψ ; _ψ ; δL; _δL�T , the
rank of the controllability matrix is 4. Therefore, subsequent analysis
uses the following reduced A and B matrices

A �

2
6664

0 1 0 0

−3σ 0 0 −
2

Lref
0 0 0 1

0 2Lref 3�2σ � 1� 0

3
7775 (37)

B �
	
0 0 0

kc
m1

1

L2
ref

m1 �m2

m2



T

(38)

If only the length and length rate state variables are available from the
measurements of an optical sensor, then the remaining two state
variables (pitch and pitch rate) must be estimated from the output
measurements. Therefore, the C matrix in the output equation
becomes

−3 −2.5 −2 −1.5 −1 −0.5 0
−4

−3

−2

−1

0

1

2

3

4
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Fig. 3 Root locus plot of the linearized differential equations at L2 for

gain β � 2.22.
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C �
	
0 0 1 0

0 0 0 1



(39)

However, the C matrix should satisfy the observability condition
[17]. Because the rank of the observability matrix is 4, the values of
theψ and _ψ states can be estimated from themeasured outputs δL and
_δL. Also, the observability of the angles using δL and _δL is only
possible in the absence of differential solar radiation pressure on the
formation. Hence, the in-plane linear model of a two-craft Coulomb
tether formation at a collinear libration point is both controllable and
observable.
Assuming that the information about all four state variables is

available either through direct measurement or by estimation, the
following feedback control is used to control the system with the
feedback gain matrix K, computed using either the pole placement
method or the linear quadratic regulator (LQR) method

u � −Kx (40)

Here the LQR methodology is applied to determine the optimal
control u such that the gain vector K minimizes the performance
index

J �
Z

∞

0

�xTWQx� uTWRu� dT (41)

whereWQ andWR are theweighting matrices that are used as design
parameters. One can establish a faster response for in-plane control
by selecting appropriate weighting matrices for which the settling
time is less than one orbit.

C. Numerical Simulation

The performance and stability of a 25 m Coulomb virtual tether
formation is illustrated in the following numerical simulation. Table 1
lists the simulation parameters and the values used. The parameters n
and β are selected based on root locus plot analysiswhere the gains ~C1

and ~C2 computed from Eq. (33) satisfy the stability critera in Eq. (32)
and also lead to effective damping. The two-craft Coulomb tether
performance at the collinear libration point L2 is simulated by
integrating the linearized equations of motion in Eq. (30) and then
compared with the results obtained from integrating the nonlinear
equations of motion in Eq. (18). During this simulation, the debye
length is assumed to be zero to investigate the effects of linearization
on the relative motion.
Figure 4a shows the Coulomb tether motion with the proportional-

derivative charge feedback law in Eq. (24). Both the yaw motion ψ
and the separation distance deviation δL converged to zero.
Therefore, stabilizing the separation distance to zero also stabilized
the in-plane rotation angle after about 1.3 orbits, and the uncoupled
roll motion θ is a stable sinusoidal motion as expected. Furthermore,
Fig. 4a shows that the nonlinear simulation shown as dashed lines
closely follows the linearized simulation. Whereas the δL states
asymptotically converge to zero in the linearized simulation, they
reach steady-state oscillations in the nonlinear simulation. This
notable difference is observed in the two-body system as well [9].
Using the same reference charge product Qref computated from
Eq. (24) for both simulations resulted in this inconsistent behavior.
This charge yields a static formation in the linearized formulation;
however, in the nonlinear formulation, this charge will not yield a
static formation. This is due to the charge feedback control not
operating about a steady-state charge in the nonlinear problem.
Although the δL and ψ errors converge to zero in the nonlinear
simulation, the discrepancies in charge computation between the
linear and nonlinear simulations cause the orbital dynamics to perturb
the system [9]. This makes the states grow again, resulting in these
steady-state oscillations. Therefore, for the nonlinear problem, a
control strategy could be implemented wherein the Qref value could
be numerically recomputed. Despite this deviation, the nonlinear and
linear simulation results compare very well, thus validating the
performance prediction of the linearized analysis.

Figure 4b shows the spacecraft control chargeq1 usage for both the
linear and nonlinear simulation formulations. The charge results for
both converge to the static equilibrium reference value q1r. For orbit-
radial equilibrium, the control charge q1 is the negative of q2.
Because the control charges are on the order of micro-Coulombs,
they can easily be implemented in practice using charge emission
devices.
A numerical simulation using an optimal regulator results in a

settling time of less than one orbit, a maximum overshoot of less than
�2.5 m in separation distance and�:1 rad in pitch anglevariation.A
faster response for in-plane control than that of a charge feedback
control law can be obtained by selecting appropriate WQ and WR

weighting matrices. The following WQ and WR matrices allow the
settling time to be less than one orbit

WQ �

2
6664
75 0 0 0

0 0.0001 0 0

0 0 0.1 0

0 0 0 0.000001

3
7775 and WR � 10; 000

(42)

Figure 5 shows the state response of the system for the LQRmethod.
The results indicate that with the acceptable limits for separation
distance and attitude variations, the settling time is around one orbit.
However, themaximum overshoot increases the charge requirements
as compared with using the charge feedback law in Eq. (24). For
subsequent analysis, we use the charge control law because of the
minimal number of control variables used in it.

III. Linear Dynamics and Stability Analysis—
Trianglular Libration Points

A. Charged Relative Equations of Motion

This section derives the equations of motion of a two-craft
Coulomb tether whose center of mass is at the triangular equilibrium
point L4 as shown in Fig. 6 and nominally aligned in the orbit-radial
direction of the orbit frame. This derivation closely resembles the
derivation of the equations of motion for a two-craft Coulomb tether
at any collinear libration point given in Sec. II. The two distance
vectorsR1 andR2 of L4 in the synodic frame from the two primaries
in the plane are given by

sR1 �

2
4 rx0 � d1ry0

0

3
5 and sR2 �

2
4 rx0 − d2ry0

0

3
5 (43)

The expressions for the kinetic energy in Eq. (10) and Coulomb
potential in Eq. (16) remain the same. However, the gravitational
potential in Eq. (15) involves adding the two position vectors
Ri � ρi, where Ri is in the synodic frame S and ρi is in the orbiting
frameO. Therefore, the vectorsRi are expressed in its orbiting frame
components using the transformation ORi � �OS�SRi with the
transformation matrix �OS� given by

Table 1 Input parameters used in the simulation for L2

Parameter Value Units

m1 150 kg
m2 150 kg
Lref 25 m
kc 8.99 × 109 Nm2

C2

Qref −0.006816 μC2

Ω 2.661699 × 10−6 rad∕s
δL�0� 0.5 m
φ�0� 0.1 rad
θ�0� 0.1 rad
n 26
β 2.22
σ 3.190432478
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�OS� �

2
4 cos α sin α 0

− sin α cos α 0

0 0 1

3
5 (44)

where α is the angle between the synodic frame at the barycenter O
and the orbiting frame at L4 as shown in Fig. 6. For the Earth–moon
system, the value of α is 60.31 deg [11].
Using the Lagrangian formulation in Eq. (17), the nonlinear

equations governing the roll angle θ out of the orbital plane, the pitch
angle ψ in the orbital plane, and the separation distance L thus
obtained are

�θ� 2 _L

L
_θ� cos θ sin θ�� _ψ �Ω�2

� 3Ω2

4
��1 − ν��Aα cos ψ � Bα sin ψ�2

� ν�Cα cos ψ �Dα sin ψ�2�� � 0 (45a)

�ψ − 2_θ tan θ� _ψ �Ω� � 2 _L

L
� _ψ �Ω� − 3

4
Ω2

×
�
�1 − ν�

�
AαBα cos 2ψ � B

2
α − A2

α

2
sin 2ψ

�

� ν

�
CαDα cos 2ψ � D

2
α − C2

α

2
sin 2ψ

��
� 0 �45b�

0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

St
at

es
δL

,ψ
,θ time [orbits]

δL [m]

ψ [rad]

θ [rad]

Linear simulation
Nonlinear simulation

a) Time histories of length variations , in-plane pitch angle , and out-of-plane roll angle
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Fig. 4 Simulation results from integrating the linearized and nonlinear equations of motion at L2.
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Fig. 5 LQRtimehistories of length variationsδL, pitch angleψ, and roll
angle θ.
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Fig. 6 Euler angles representing the attitude of Coulomb tether with

respect to the orbit frame at L4.
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�L − L�_θ2 � � _ψ �Ω�2cos2 θ −Ω2�

� 3

4
LΩ2 cos2 θ��1 − ν��Aα cos ψ � Bα sin ψ�2

� ν�Cα cos ψ �Dα sin ψ�2�

− kc
m1 �m2

m1m2

q1q2e
−L∕λd

�
L� λd
L2λd

�
� 0 (45c)

where

Aα � cos α�
���
3
p

sin α (46a)

Bα � − sin α�
���
3
p

cos α (46b)

Cα � − cos α�
���
3
p

sin α (46c)

Dα � sin α�
���
3
p

cos α (46d)

The linearized version of the nonlinear equations in Eq. (45) comes
from expanding in a Taylor series about the equilibrium states given
in Eq. (20). Both the roll and pitch equations of motion are linearized
about small roll and pitch angles, respectively. The separation
distance equations of motion are linearized about small variations in
δL as well as small variations in the product charge term δQ defined
as in Eq. (22). Mission requirements determine the reference
separation length Lref , and Qref is determined from the following
constraint on a particular choice of Lref

Qref � −
3

4
σEQRE1Ω2

L3
ref

kc

m1m2

m1 �m2

(47)

where

σEQRE1 � 1� 2 sin2 α�
���
3
p

sin 2α�1 − 2ν� (48)

Performing the necessary linearizations yields

�θ�
�
1� 3

4
σEQRE1

�
Ω2θ � 0 (49a)

�ψ � 2Ω
Lref

δ _L −
3

2
σEQRE3Ω2ψ � 0 (49b)

δ �L − 2ΩLref _ψ −
9

4
σEQRE1Ω2δL −

3

2
LrefσEQRE2Ω2ψ

−
�
kc
m1

1

L2
ref

m1 �m2

m2

�
δQ

� 0 (49c)

with

σEQRE2 �
���
3
p

cos 2α�1 − 2ν� � sin 2α (50)

σEQRE3 �
���
3
p

sin 2α�2ν − 1� � cos 2α (51)

Thus, Eqs. (49a) and (49b) represent the linearized attitude dynamics
of the Coulomb tether body frame B and Eq. (49c) represents the
linearized separation distance differential equation about the static
nadir reference configuration at a triangular libration point. As
opposed to the collinear solution, the ψ term here is a new
component; however, due to the quite small value of σEQRE2 �

−2.0405 × 10−4 at L4, its effect is negligible on the separation
distance differential equation. Furthermore, because σEQRE1 �
3.963662 and σEQRE3 � −1.963662, the dynamics at L4 become
very similar to those found in [9] for an orbit radial two-craft
formation at GEO. Hence, the stability behavior should be
approximately the same as that observed in [9].

B. Charge Feedback Control

Using the proportional-derivative feedback control of δL from
Eq. (24), the orbit rateΩ independent linearized equations of motion
for a two-craft Coulomb tether formation at the triangular libration
point L4 are given by

θ 0 0 �
�
1� 3

4
σEQRE1

�
θ � 0 (52a)

ψ 0 0 � 2

Lref

δL 0 − 3

2
σEQRE3ψ � 0 (52b)

δL 0 0 � ~C2δL 0 − �2Lref�ψ 0 −
�
3

2
LrefσEQRE2

�
ψ

−
�
9

4
σEQRE1 − ~C1

�
δL � 0 (52c)

where ~C2 � C2

Ω and ~C1 � C1

Ω2 are nondimensionalized feedback gains.
Routh–Hurwitz stability critera can be used to finetune these gain
values that satisfy the stability requirements. The characteristic
equation for the coupled δL and ψ equation is

λ4 � ~C2λ
3 �

�
~C1 � 4 −

3

2
σEQRE3 −

9

4
σEQRE1

�
λ2

�
�
3σEQRE2 −

3

2
σEQRE3 ~C2

�
λ

� 3
2
σEQRE3

�
9
4
σEQRE1 − ~C1

�
� 0 (53)

Roots of this equation should have negative real parts for asymptotic
stability. A Routh table allows one to determine the following
necessary constraints on the gains ~C1 and ~C2 that ensures all roots
have negative real parts

~C1 >
9

4
σEQRE1 (54a)

~C2 > 0 (54b)
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Fig. 7 Root locus plot of the linearized differential equations at L4 for

gain β � 2.22.
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To fix the gain values that satisfy the stability critera in Eq. (54), near-
ideal damping conditions are assumed. Let the scaling factors n and β
be positive and real, allowing the gains to be rewritten as

~C1 � n >
9

4
σEQRE1 (55a)

~C2 � β

���������������������������
n −

9

4
σEQRE1

r
(55b)

Following the same line of reasoning discussed for collinear libration
points earlier and studying the root locus plots for the coupled
equations where the n and β parameters are varied, n � 11.71
ensures good rates of convergence for all the modes and β � 2.22
provides effective damping for themodes. The optimal root locus plot
is shown in Fig. 7.

C. Numerical Simulation

Except for the parameters listed in Table 2, the remaining
simulation parameter values used are shown in Table 1. The
parameter n � 11.71 for L4 is obtained from the root locus plot
analysis. The gains ~C1 and ~C2 computed from Eq. (55) satisfy the
stability critera in Eq. (54) and also yield effective damping.
Integrating the linearized equations of motion in Eq. (52) simulates
the two-craft Coulomb tether performance at L4. This is then
compared with the results obtained from integrating the nonlinear

equations of motion in Eq. (45). Figure 8a illustrates the Coulomb
tether motion with the proportional-derivative charge feedback law.
Both the yaw motion ψ and the separation distance deviation δL
converge to zero. Therefore, stabilizing the separation distance to
zero also stabilized the in-plane rotation angle after about one orbit,
and the uncoupled roll motion θ is a stable sinusoid as expected.
Furthermore, Fig. 8a shows that the nonlinear simulation plotted as
dashed lines closely follows the linearized simulation; whereas
the δL states asymptotically converge to zero in the linearized
simulation, they reach steady-state oscillations in the nonlinear simu-
lation. The reasons for this notable difference are already explained in
numerical simulation part of Sec. II. Despite this difference, the
nonlinear and linear simulation results compare very well, thus
justifying the linearization assumptions used. Figure 8b shows the
spacecraft control charge q1 usage for both linear and nonlinear
simulation formulations. The charge results for both converge to the
static equilibrium reference value q1r. The control charges required
for L4 are less than those of L2, which are on the order of micro-
Coulombs and can easily be implemented in practice using charge
emission devices.

IV. Conclusions

The feasibility of a two-craft Coulomb tether concept is studied at
libration points for orbit-radial equilibrium. The new two-craft
dynamics at the libration points is provided as a general framework in
which circular Earth orbit dynamics form a special case.Although the
orbit-radial dynamics at libration points are slightly different than of
those found in [9] for an orbit radial two-craft formation at
geostationary orbit, the stability conditions are similar. At libration
points, the out-of-plane motion is marginally stable and decoupled
from the in-plane motion. The in-plane motion is stabilized using
only separation distance measurements (computing rates). A
linearized charge feedback law stabilizes the separation distance
using Coulomb force and exploits the gravity gradient torque due to
the two primaries to stabilize the in-plane attitude motion. Also, a
full-state feedback linear quadratic regulator meets variable mission
requirements (i.e., stabilizing the formation within a given time). The

Table 2 Input parameters used in the simulation forL4

Parameter Value Units

Qref −0.002745 μC2

n 11.71
β 2.22
σEQRE1 3.963662
σEQRE2 −2.0405 × 10−4

σEQRE3 −1.963662
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Fig. 8 Simulation results from integrating the linearized and nonlinear equations of motion at L4.
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linearized feedback laws assume that the differential solar radiation
pressure on the formation is zero. Numerical simulations atL2 andL4

with the charge feedback law show that the formation stabilized faster
at L4 (within one orbit) than at L2 (1.3 orbits). This is perhaps due to
the unstable nature of the collinear libration point causing a slow
stabilization of the formation. Also, due to the smaller rotation rate of
the Earth–moon barycenter, themicro-Coulomb charge requirements
at the libration points is at least an order of magnitude smaller
compared with that of a two-body system in [9].
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