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a b s t r a c t

Coulomb formations refer to swarms of closely flying spacecraft, in which the net electric

charge of each vehicle is controlled. Active charge control is central to this concept and

enables a propulsion system with highly desirable characteristics, albeit with limited

controllability. Numerous Coulomb formation equilibria have been derived, but to

maintain and maneuver these configurations, some inertial thrust is required to

supplement the nearly propellant-less charge control. In this work, invariant manifold

theory is applied to two-craft Coulomb equilibria, which are admitted in a linearized

two-body gravity model. The manifolds associated with these systems are analyzed for

the first time, and are then utilized as part of a general procedure for formulating optimal

reconfigurations. Specifically, uncontrolled flows along the manifolds are sought which

provide near continuous transfers from one equilibrium to another. Control is then

introduced to match continuity, while minimizing inertial thrusting. This methodology

aims to exploit uncontrolled motions and charge control to realize the shape-changing

ability of these formations, without large inertial control efforts. Some variations in

formulating and parameterizing the optimal transfers are discussed, and analytical

expressions are derived to aid in establishing control parameter limits, under certain

assumptions. Numerical results are provided, as demonstrative examples of the optimi-

zation procedure, using relatively simple control approximations. Finally, Particle Swarm

Optimization, a novel stochastic method, is used with considerable success to solve the

numerically difficult parameter optimization problems.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Formations of close-proximity spacecraft have many
advantages over a single large craft, including overall
mass reduction, shape-changing ability, and multiple
launches for deployment, assembly, and repair. Applica-
tions for these satellite swarms are many, for example
enabling separated space-borne interferometry [1,2].

Initially, electric propulsion (EP) systems were proposed
for controlling the relative craft motions; however, EP
suffers from limited throttle-ability and introduces the
problem of thruster-plume impingement, where thruster
ejecta may damage or impede neighboring craft [2]. An
alternative to EP for controlling free-flying craft, known as
Coulomb thrusting (active charge control), is explored by
King et al. in Refs. [2,3]. This concept proposes to servo the
electric potential (or net charge) of each vehicle, to yield
desired inter-craft forces. The earliest study of active
charge control is by John Cover et al. [4], where this
mechanism is proposed to inflate and maintain the shape
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of a large reflecting mesh. This nearly-propellant-less
system ðISP� 1013 sÞ avoids thruster-plumes, has fast
throttling (transition time�ms), and can sustain a given
force using less power and fuel than EP [2,4]. Proposed
applications for this concept include advanced docking/
rendezvous, autonomous inspection, contact-less removal
of hazardous material, and the deployment/retrieval of
instruments [5]. Also, Coulomb thrusting can provide
equilibrium forces ð � mN2mNÞ to cancel differential
gravity accelerations, resulting in ‘virtual structures’ or
so-called static Coulomb formations. Furthermore, this
concept is based on the existing technology, since active
control of spacecraft charge was successfully executed
during the SCATHA [6] and ATS [7] missions, and cur-
rently on the CLUSTER [8] mission. Unfortunately, this
propulsion system has a couple of drawbacks. First,
Coulomb forces are shielded by the surrounding plasma,
which may render charge control infeasible for particular
orbit regimes and mission applications. Second, Coulomb
thrusting alone provides limited controllability, and can-
not alter the overall formation angular momentum [9].
Therefore, it must be supplemented with inertial thrust
(e.g. EP or chemical) to enable full controllability, which
has led to the adoption of hybrid controllers [10,11].

A wide-variety of static Coulomb formations are
derived with respect to a circular reference orbit, analy-
tically for o5 craft (numerically otherwise), and thus far,
all are dynamically unstable [2,5]. Formations with
motions referenced to the Hill-frame, a rotating frame
with origin at the formation center-of-mass, are consid-
ered in the most detail, generally using the linearized
Clohessy–Wiltshire–Hill gravitational model [12]. Other
known equilibrium include three-craft forms in the
absence of gravitational forces [13], two-craft forms in
fully non-linear 2-body and circular-restricted 3-body
(CRTBP) gravitational models [11], and two- and three-
craft spinning configurations [14,15]. Of these spinning
configurations, stable 2-body scenarios have been
identified where the plasma shielding effect is included
in the stability analysis [14]. And a recent study by
Hogan and Schaub demonstrates the marginal in-plane
stability of particular collinear spinning equilibria if
proper separation distance and speed conditions are met
[15]. Moreover, the highly nonlinear and coupled system
dynamics permit the potential existence of numerous, yet
undiscovered, equilibrium and periodic flows (constant or
variable potentials).

This research applies invariant manifold theory to two-
craft configurations which exist in the two-body gravity
Hill-frame model, for the first time. The system manifolds
are analyzed, in the interest of exploiting them for
station-keeping and maneuvering of the formations.
Invariant manifold theory has successfully been used to
design low-thrust transfers between regions of space, in
multi-body gravity fields, for example in the work of
Russell and Lam [16]. Here, manifold theory is applied
to Coulomb formations with an analogous purpose. Nat-
ural flows along manifolds are sought which ‘hop’ from
unstable to stable branches in order to partially achieve
reconfigurations. More generally, it is expected that
non-intuitive trajectories and dynamical motions will

become more tractable upon applying this theory, which
will prove useful in the Coulomb formation design, con-
trol, and navigation.

This is a continuation and improvement upon the work
of Jones [17], where a generalized procedure for targeting
optimal transfers between Coulomb equilibria is outlined.
The current method is similar to Jones [17], in that a
parameter optimization problem is formulated to differ-
entially correct an uncontrolled, and discontinuous, initial
trajectory along manifolds. However, the method
details, the dynamical model, and the results have been
improved, and applied specifically to two-craft Hill-frame
equilibria. Lastly, a unique stochastic method, known as
Particle Swarm Optimization (PSO), is used in solving the
nonlinear programming problems [18,19].

Much attention is devoted to the development of
continuous feedback controllers to maintain Coulomb
formations. Controllers are derived and tested by Natar-
ajan and Schaub (in the presence of gravity gradient
torque and other disturbances) for the two-craft Hill-
frame equilibria [10,20], and by Inampudi for CRTBP
equilibrium configurations about Earth–Moon libration
points [11]. Some research on realizing the shape-
changing ability of these formations is also available.
Natarajan [21] presents a feedback control to transfer
between the two-craft Hill-frame configurations, and
Inampudi adds optimization to that work, by applying a
pseudo-spectral discretization method to minimize: time,
fuel, and total power usage [11]. Here, optimal reconfi-
gurations between the same equilibria are pursued;
however, the problem setup differs substantially, with
added emphasis on generality. The current work also
contrasts with Inampudi [11], by its utilization of invar-
iant manifold theory and employment of a stochastic
rather than a deterministic optimization solver.

2. Coulomb formation background and dynamical
model

A conductive surface will naturally exchange ions and
electrons with the plasma of space, and as a result will
assume a non-zero electric potential f (measured in
Volts). In a vacuum, a charged point-mass f varies in
proportion to kc q/r, where kc is the Coulomb constant, q

the net charge, and r is the radial distance. When
immersed in a plasma, this ideal fðrÞ is effectively limited
(or shielded) due to interactions with free particles and
photons. The Debye length ld is used to approximate this
shielding, such that a charged particle at a distance r4ld

will not be effected by fðrÞ. The ld is a measure of the
time-dependent local plasma temperature and density,
and experimental values for it have been acquired in
various regimes (e.g. LEO: 0.02–0.4 m, GEO: 140–1500 m,
interplanetary: 7.4–24 m [2]).

Computing f for realistic shapes that interact with a
dynamic plasma and with other charged vehicles is some-
what intractable, but can be modeled using the Vlaslov–
Poisson partial differential equations. High-fidelity
numerical computations of f are available, from finite
element analysis techniques and/or experimental data
[3,21,22]. Specifically, Stiles et al. [22] discuss that the
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potential is bounded above by the vacuum model and
below by the conservative Debye–Hückel model (a trun-
cation of the Vlaslov–Poisson). In part, this shows that
simple analytical expressions for f (and the resulting
electrostatic forces) can be quite accurate under certain
conditions. Such conditions are enforced throughout this
research, allowing more manageable f models to be
used.

A steady-state f occurs when the net current to the
vehicle is zero [2], and altering this f artificially has
substantial mission heritage [6–8]. This involves utilizing
an electron-gun or similar device to eject electrons/ions
into the surrounding plasma with sufficient kinetic
energy to escape the ‘potential-well’. Therefore, the
device must have sufficient power Pout to supply a voltage
equal to the desired f, at a current Iout at least greater
than the incoming environmental current Ien (since this
will tend to drive f back towards natural equilibrium).

2.1. General Coulomb formation dynamical model

It is assumed that all spacecraft have a spherical,
perfectly conductive, outer surface of uniform charge
density of radius Rsc, such that all act as equivalent point
charges at a distance. These assumptions allow Eq. (1a) to
relate f (at Rsc) to the net surface charge q, analytically.
Also, Eq. (1b) is the result of combining Ohm’s law with
Eq. (1a), and is an expression for the device power Pout

and the time required Dtq to change the potential by a
quantity: 9Df9

f¼ kc
q

Rsc
ð1aÞ

Pout ¼fIout, Dtq ¼
9Dq9
Iout
¼

Rsc9Df9
kcIout

ð1bÞ

The fiðtÞ are continuous and controllable functions of
time, and can therefore be approximated, to some order,
by piecewise polynomial functions. For simplicity, the
highest degree polynomial used in this work is the
piecewise linear approximation. This contrasts with other
studies which maintained fðtÞ as a continuous function,
subject to a feedback control law [11,21]. The net Cou-
lomb acceleration of craft i (net charge qi and mass mi),
denoted Hi, is defined using the Debye–Hückel point-
charge model, given by Eqs. (2a) and (2b). This accounts
for partial shielding of each potential, using a constant
and finite ld, where rij ¼ Jri�rjJ is the distance between
crafts i and j

Hi ¼
f i

mi
¼�

R2
scfi

kcmi

X
jai

fj

@

@ri

e�rij=ld

rij

� �
ð2aÞ

Hi ¼
f i

mi
¼

R2
scfi

kcmi

X
jai

fje
�rij=ld

r3
ij

1þ
rij

ld

� �
rij ð2bÞ

It has been demonstrated that this model accurately
approximates experimental/numerical solutions for f
and Hi, so long as Rsc 5ld (generally valid at GEO), and
rij410Rsc [21,22]. Eq. (3) provides the dynamical frame-
work for this work, where in addition to Hi given by
Eq. (2b), terms are included to account for gravitational Gi

and inertial control ui accelerations, respectively

€r i ¼HiþGiþui ð3Þ

In this study, the spacecraft are assumed to be of equal
build and type, and holding a similar attitude. Thus,
differential solar radiation pressure (SRP) is not consid-
ered at this stage. Also, Coulomb force magnitudes being
considered here are of at least mN order, and therefore at
GEO all perturbing forces, with the exception of SRP,
are much smaller, and therefore reasonably neglected in
Eq. (3).

In general, any Coulomb formation (of N craft) may be
written as a first order ODE system, denoted as
_X ¼ FðX, Xp, tÞ, where t is the independent variable of
integration (assumed time). The state vector X includes
position and velocity vectors (ri and vi), fi, and possibly
mass mi (if variable), for each craft. The elements of Xp

may be constant or t dependent, and include the control
approximating parameters for each uiðtÞ and fiðtÞ. Small
state perturbations dX about some reference trajectory
Xn, may be considered using the following:

d _X ¼
@F

@X

� �����
Xn

dX¼ AdX ð4Þ

This linearized ODE system for the perturbation vector dX,
has a Jacobian matrix A that can be transformed to Jordan
canonical form. In this way, the Jacobian matrix may be
decomposed into unstable, stable, and center eigenspaces (Eu,
Es, Ec with dimensions Nu, Ns, and Nc, respectively) such that
N¼NuþNsþNc. In this system, perturbations along the Eu

basis vectors will grow, whereas those in Es will dissipate.

2.2. Two-craft Coulomb formation model

The following two-craft model, is a particular case of
the general model, and is adopted in this work for the
analysis of invariant manifolds and in the optimization of
reconfigurations. Both craft’s motions are described rela-
tive to the Hill-frame, which is centered at and rotates
with a nominal center-of-mass (CM) orbit (assumed
circular with semi-major-axis a0 near GEO). The Hill-
frame is depicted in Fig. 1, with origin at CM and axes
labeled: êR for radial, êT for transverse, and êN for normal.
The vehicles then appear statically fixed with respect to the
rotating Hill-frame, for equilibrium configurations admitted
by this model. The gravitational acceleration of craft 1, is
modeled using the linearized Clohessy–Wiltshire–Hill (CW)
equations of motion [12], given by Eq. (5a). Then, since the

Fig. 1. Rotating hill-frame showing relative position vector ri .
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CM is at the origin, the other craft’s motion is determined
explicitly from Eq. (5b)

G1 ¼

2o _y1þ3o2x1

�2o _x1

�o2z1

2
64

3
75 ð5aÞ

0¼m1r1þm2r2 ð5bÞ

where o is the nominal CM orbit rate (or Hill-frame
rotational rate with respect to inertial), and L¼ r12 is the
separation distance of the two craft. It is clear from Eq. (5b)
that r1 and r2 are dependent, and in fact may be related via
L using some mass fractions, as follows:

L¼ Jr1�r2J¼ r1=Mr1 ¼ r2=Mr2

Mr1 ¼
m2

Mtot
¼

m2

m1þm2
, Mr2 ¼

m1

Mtot
¼

m1

m1þm2
ð6Þ

The total craft 1 acceleration €r1 is given by Eq. (7a), which
results from substituting Eq. (5a) into Eq. (3), and using
Eq. (5b) to eliminate the craft 2 state variables. The accel-
eration €r1 is then a function of its own state-vector X1 only,
and a potential-product F12 ¼f1f2

€r1 ¼

1þ
r1

Mr1ld

� �

exp
r1

Mr1ld

� �
k1F12x1

r3
1

k1F12y1

r3
1

k1F12z1

r3
1

2
666666664

3
777777775
þ

2o _y1þ3o2x1

�2o _x1

�o2 z1

2
64

3
75þu1

ð7aÞ

k1 ¼
R2

scM2
r1

kcm1
, X1 ¼

r1

v1

" #
¼

x1

y1

z1

vx1

vy1

vz1

2
6666666664

3
7777777775

ð7bÞ

2.3. Two-craft Coulomb formation equilibrium

configurations and stability

Eqs. (5b) and (7a) admit three known static equilibrium
configurations: Radial and Orbit-Normal as depicted in
Fig. 2(a) and (b), and a third equilibrium (not shown)
denoted Along-Track (the two craft are along the êT line).
A derivation of the conditions for equilibrium, summarized
in Table 1, is given by Berryman and Schaub [5]. The
constant F12 to achieve equilibrium, denoted Fref , is depen-
dent on m1, m2, and L. An attractive force is required for the
Radial configuration, whereas the Orbit-Normal configura-
tion requires a repulsive force.

The first order ODE systems are linearized about each
equilibria, as defined by Eq. (4), yielding Jacobian matrices A.
The linearized stability properties are determined from the
eigenvalues of each A, and some of the important properties
are summarized as follows [10,20]:

1. All three equilibrium configurations are dynamically
unstable and the stability properties remain constant

(i.e. there are no bifurcations, despite the eigenvalues
dependence on: ld, m1, m2, and o).

2. Radial: All eigenvalues are distinct. One is unstable and
the other is stable, and both are real ðNu ¼Ns ¼ 1Þ. The
stable/unstable eigenvectors are in the x–y plane. The
center eigenspace (Nc¼4) has one mode in the x–y

plane and the other along the z-axis.
3. Orbit-normal: All eigenvalues are distinct. One unstable

and one stable complex conjugate pair ðNu ¼Ns ¼ 2Þ,
resulting in oscillatory modes with components in the x,

Fig. 2. Two-craft Coulomb formation equilibrium configurations in

the hill-frame: (a) radial and (b) orbit-normal.

Table 1
Two-craft Coulomb formation equilibrium conditions.

Configuration Craft 1 position, r1 Potential product Fref (V2)

Radial x1 ¼Mr1L �3o2kcm1m2L3eðL=ld Þ

R2
sc Mtotð1þL=ldÞy1 ¼ z1 ¼ 0

Orbit-normal x1 ¼ y1 ¼ 0 o2kcm1m2L3eðL=ld Þ

R2
scMtotð1þL=ldÞz1 ¼Mr1L

Along-track x1 ¼ z1 ¼ 0

y1 ¼Mr1L 0

D.R. Jones, H. Schaub / Acta Astronautica 83 (2013) 108–118 111
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y, and z directions. The center mode is along the z-axis
(Nc¼2).

4. Along-track: All eigenvalues associated with this con-
figuration have zero real part (Nc¼6), but there is a
zero modulus repeated eigenvalue with algebraic
multiplicity less than geometric multiplicity, making
it unstable (albeit weakly).

3. Invariant manifold theory applied to Coulomb
formations

The global stable and unstable manifolds (if they exist)
are subspaces containing all trajectories (or flows) gov-
erned by the original nonlinear system dynamics (F), with
the following properties:

1. Unstable manifold (Wu): set of all trajectories which
depart Xn asymptotically as t-1.

2. Stable manifold (Ws): set of all trajectories which
approach Xn asymptotically as t-�1.

3. The manifolds are invariant, and therefore a state
contained within Wu or Ws remains in that subspace
for all time (e.g. Wu2Ws flows cannot occur).

4. The manifolds are tangent to their respective eigen-
spaces, in both 7 directions at Xn, and the 7 yields
two branches for Wu and Ws. Also, the manifold
subspaces are 1-D higher than their corresponding
eigenspaces (i.e. Wu has dimension of Nuþ1).

The manifolds are created by initiating a small man-
euver ðDvu=s ¼ 7EEu=s

v Þ, where Eu=s
v indicates the velocity

components of the normalized eigenvectors which span
either Eu or Es. When constructing Wu, the perturbed
states Xu

¼Xn7EEu
v are propagated forward in time using

F (from t¼ 0-tu
max), whereas for Ws the perturbed states

Xs
¼Xn7EEs

v are propagated backward in time (from
t¼ 0-�ts

max).

4. Generalized methodology for targeting optimal
Coulomb reconfigurations along manifolds

Uncontrolled flows along manifolds, that complete as
much of the transfer as possible, are sought first and provide
a discontinuous initial guess (IG) trajectory to maneuver
from some charged configuration to another. Control is then
introduced to a portion of the IG, to differentially correct the
flows to match continuity, while minimizing a scalar cost
function J (e.g. total DV). The optimization problem is solved
directly, by approximating the control functions fiðtÞ and
uiðtÞ (for each i craft), using a finite number of parameters.
The general procedure for formulating and solving optimal
Coulomb reconfigurations is outlined as follows:

1. Globalize the starting configuration unstable manifold
ðXu
�Wu

Þ and target configuration stable manifold
ðXs
�Ws

Þ. Then let Xu
i 2Wu and Xs

i 2Ws denote parti-
cular manifold state vectors at the times tu=s

i , where tu
i

and ts
i denote propagation times along the respective

manifold branches.

2. Define C
!

i � ðX
s
i�Xu

i Þ to be a manifold state disconti-
nuity vector, which must be driven to zero for a
continuous trajectory. Next, tu

i and ts
i are found that

minimize a scalar weighted norm function of C
!

i

(denoted ci), within the bounds of Eq. (8). This yields
quality propagation times: tu

tot 2 ft
u
min,tu

1, . . . ,tu
maxg and

ts
tot 2 ft

s
min,ts

1, . . . ,ts
maxg

tu
minrtu

totrtu
max, ts

minrts
totrts

max ð8Þ

An IG transfer is thus established, with a state dis-
continuity function C

!
at the patch point time tf, and

total duration bounded below by ðtu
minþts

minÞ and
above by ðtu

maxþts
maxÞ. This trajectory is on Wu for

t : 0-ðtu
tot ¼ tf Þ, and on Ws for t : tf-ðt

s
totþtf Þ.

3. A number of control segments M (for each branch) and
corresponding start times (tu

j and ts
j ) are introduced,

subject to Eq. (9), where M, tu=s
j , and Eq. (8) bounds are

inputs

0otu
j�1otu

j otf , tf ots
j�1ots

j o ðtf þts
totÞ 8j

2 f2 . . .Mg ð9Þ

4. A vector of independent decision variables Xp is
defined, along with upper/lower limits on each ele-
ment, where the elements consist of combinations of:
� Impulsive changes to each Xi (e.g. Dv).
� The parameters used to approximate each fiðtÞ and

uiðtÞ piecewise, over each segment.
� Segment start times (tu

j and ts
j ) and manifold

propagation times (tu
tot and ts

tot).

5.

A nonlinear programming solver is used to iterate on
Xp, to minimize some J, subject to C

!
¼ 0 (and any

inequality constraints).

In addition to using invariant manifolds in this optimal
reconfiguration procedure, Jones [17] discusses some
other potential applications of the theory, for Coulomb
formation navigation and control purposes.

4.1. Charge control bounds for two-craft transfers

For the two-craft model presented in Sections 2.2–2.3,
some bounding functions on parameterized fiðtÞ are
derived by making the following assumptions:

1. The two potentials are equal in magnitude for all time
9f1ðtÞ9¼ 9f2ðtÞ9, and initially f140. This then implies
that if Fref o0 then F12ðtÞ ¼�f1ðtÞ9f1ðtÞ9, otherwise
F12ðtÞ ¼f1ðtÞ9f1ðtÞ9.

2. The f1ðtÞ control is approximated as either piecewise
linear f1ðtÞ ¼f1ðtjÞþ

_fjðt�tjÞ or impulsive f1ðtÞ ¼

f1ðtjÞþDfj.
3. The patch point time tf and segment start times tu=s

j

remain fixed (and tu=s
j are equally spaced).

With these assumptions, f1 is denoted f (f2 and F12 are
computed explicitly), and fu

ðtÞ and fs
ðtÞ are used to denote

f1 on each branch ðfu=s
ref 40Þ. Enforcing fðtf Þ continuity

provides the establishment of a lower bound on the para-
meters, as given by Eqs. (10a), (11a) for the impulsive model

D.R. Jones, H. Schaub / Acta Astronautica 83 (2013) 108–118112
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and Eqs. (10b), (11b) for the linear model. These expressions
ensure that fu

ðtf Þ is capable of equaling fs
ðtf Þ; however, the

problem will not always be constrained to have fðtf Þ

continuity. Relaxing this continuity is reasonable so long as
the jump from fu

ðtf Þ to fs
ðtf Þ can occur in a relatively short

time. In the absence of power limits, this is generally valid
since f can be throttled very quickly [2].

� Case 1: Fu
ref �F

s
ref 40

9Dfu=s9bndZ9fs
ref�f

u
ref 9 ð10aÞ

9 _f
s
9bndZ

9fs
ref�f

u
ref 9

ts
1�tf

, 9 _f
u
9bndZ

9fs
ref�f

u
ref 9

tf�tu
1

ð10bÞ

� Case 2: Fu
ref �F

s
ref r0

9Dfu=s9bndZfs
refþf

u
ref ð11aÞ

9 _f
s
9bndZ

9fs
refþf

u
ref 9

ts
1�tf

, 9 _f
u
9bndZ

9fs
refþf

u
ref 9

tf�tu
1

ð11bÞ

Other requirements include 9Iout949Ien9, and possibly a
maximum power PoutrPmax. Expressions for the max-
imum possible Pout as a function of: Iout and parameter
bounds, are given by Eqs. (12a)–(12b), for the impulsive
and linear models, respectively.

Pout ¼ Iout maxf9fu=s
ref 9þM9Dfu=s9maxg ð12aÞ

Pout ¼ Ien maxf9fu=s
ref 9þ9tf�t

u=s
1 99 _f

u=s
9maxg ð12bÞ

Lastly, an instantaneous f change is only reasonable if
steady-state is reached on a time-scale much less than the
spacecraft dynamical response. An expression for ensuring
impulsive model accuracy, is then given by Eq. (13), where
ðDtqÞmax is the maximum allowable Df transition time.
Eq. (13) can also be used in post-processing to determine
solution validity, when not enforcing fðtf Þ continuity.

9Dfu=s9maxr
kcðDtqÞmaxIout

Rsc
ð13Þ

Numerical values for the parameter bounds, and maximum
required Pout and Iout, are computed based on the following
two cases:

1. Continuity of fðtf Þ is enforced. For the impulsive model,
9Dfu9max and 9Dfs9max are set equal to the bounds
given by Eq. (10a) or Eq. (11a), and Iout is increased
from Ien until Eq. (13) is satisfied (Pout is computed
from Eq. (12a)). For the linear model, the parameters
are bounded using an input factor 0rgr1, according
to Eq. (14), where fmax denotes the larger of 9fs

ref 9 and
9fu

ref 9. And, the maximum possible power is computed
from Eq. (12b). For both models, a Pmax requirement
may be enforced by iterating on Iout and g, respectively.

9 _f
u=s

9max ¼ 9 _f
u=s

9bndþ
gfmax

9tu=s
1 �tf 9

ð14Þ

2. Continuity of fðtf Þ not enforced. The parameter limits
9Dfu9max and 9Dfs9max (or 9 _f

u
9max and 9 _f

s
9max), are

inputs or computed from Eqs. (12a)–(12b) with a Pmax

requirement. For the impulsive case, Eq. (13) is solved
for Iout using the larger 9Dfu=s9max.

5. Particle swarm optimization

The methodology of the previous section formulated the
optimal Coulomb reconfigurations as nonlinear programming
problems, whose methods of solution can be classified as
either deterministic or stochastic. Deterministic or gradient
methods require derivatives of J with respect to Xp, and an
initial guess (IG) for Xp that is within some unknown
convergence tolerance, whereas stochastic methods generally
require neither. In the paper by Jones [17], a variety of
numerical difficulties encountered when applying a gradient
solver to this methodology, are discussed. These obstacles
(although not insurmountable), and the overall problem
sensitivity, led to the adoption of a stochastic method. The
stochastic method used here, is a variation of Particle Swarm
Optimization (PSO), and it has thus far avoided many of the
numerical and IG generation difficulties inherent in gradient
methods.

PSO, introduced by Kennedy and Eberhart [18], is inspired
by the motion of bird flocks searching for food. Pontani and
Conway (among others) successfully apply PSO to optimal
spacecraft trajectory problems including: impulsive and
finite-burn transfers, low-thrust maneuvers, and targeting
of Lyapunov orbit conditions in the CRTBP [19]. Moreover,
PSO is often able to avoid local minima (unlike gradient
methods) and in contrast to other stochastic methods it is
very simple to implement. Its minor drawbacks include
occasional difficulty in handling/satisfying constraints and
an increase in computational complexity (relative to gradient
methods) [19]. Specified bounds on the elements of Xp are
required by PSO, but these may be justified using simple
analytical expressions (as demonstrated in Section 4.1). The
PSO implementation utilized in this work, closely follows that
of Pontani and Conway [19], summarized as follows:

1. Generate initial random population. A population of Mpop

individuals is created, each with a corresponding para-
meter vector Xp and an update/direction vector dXp. The
Xp components are uniformly and randomly generated
within specified upper and lower bounds, and the dXp

components (with bounds) are generated similarly.
2. Begin iteration, at l0 ¼ 1.
3. Augmented performance index ~J is computed for each

individual at iterate l. The performance index J is aug-
mented with penalty function terms to account for and
handle constraints. The equality constraints ðC

!
k ¼ 0Þ are

treated according to Eq. (15a), where the weights ak

must be provided as inputs to the algorithm. Inequality
constraints are handled differently as specified by Eq.
(15b), where a very large ~J is assigned if any inequality is
violated, thereby enforcing feasibility

~J ¼ Jþ
X

k

ak9C
!

k9 ð15aÞ

Inequality violation : ~J ¼1 dXpðlÞ ¼ 0 ð15bÞ

4. Update Xp from dXp and enforce bounds. The best para-
meter vector (yielding lowest ~J) for each i individual
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(from l0 . . . l) is denoted as Zi
p. And the best parameter

vector for the entire population (from l0 . . . l) is
denoted as Zmin (with global best cost ~Jmin). Each
individual’s direction and parameter vectors are
updated according to Eqs. (16a)–(16c).

dXpðlþ1Þ ¼ CIdXpðlÞþCC ½ZpðlÞ�XpðlÞ�

þCS½ZminðlÞ�XpðlÞ� ð16aÞ

CI ¼
1þr1

2
, CC ¼ 1:49445r2, CS ¼ 1:49445r3 ð16bÞ

Xpðlþ1Þ ¼XpðlÞþdXpðlþ1Þ ð16cÞ

where the terms r1, r2, and r3 are independent uniform
random-numbers distributed over the interval (0,1),
and computed at each l, and the terms CI, CC, CS are
inertial, cognitive, and social heuristics, respectively.
After the update, each component of dXpðlþ1Þ is
forced to be within its bounds. Furthermore, if any
Xp component violates its bound, that element is set to
be on-boundary, and its corresponding dXp component
is set equal to zero.

Pontani and Conway use the heuristic functions of
Eq. (16b) (optimized for various problems during early
PSO performance research), and their procedure stops
when a maximum number of iterations is reached [19].
In this work, Eq. (16b) heuristics are also adopted,
but an alternate stopping criterion is proposed, where
convergence is said to occur when: Zmin satisfies all
constraints to some tolerance ðE1Þ, and the average ~J of
the entire population is within a small tolerance ðE2Þ of
~Jmin. The few variables that must be tuned when using
this method are ak, Mpop, and parameter bounds. The
most problematic being the ak values (penalty function
weights), in that the PSO method has difficulty converging
to a continuous transfer (i.e. satisfying C

!
¼ 0) when the

order of magnitude of any of these weights are set
improperly.

6. Numerical test cases: optimal two-craft Coulomb
formation reconfigurations

In this section, numerical demonstration cases are
presented for Radial and Orbit-Normal reconfigurations.1

For all numerical results, the two craft are assumed to
have equal mass and radius Rsc, and Table 2 parameter
values are used. These values closely follow those of
Natarajan and Schaub [10], in their work on targeting
such transfers. The mean value for ld at GEO is
used [11], and the environmental current Ien is set at
the worst-case value for GEO,2 based on the previous
research [2,23].

6.1. Invariant manifold examples for the radial and orbit-

normal configurations

Following the aforementioned procedure, global invar-
iant manifolds associated with the Radial and Orbit-
Normal configurations are generated, for L¼25 m, and
integer values of the CM orbital period Tp for the propaga-
tion times. Although the system flows are parameter
dependent (functions of ld, o, m1, and m2), no bifurca-
tions occur in the eigenspaces. Therefore, Figs. 3 and 4
(Radial) and 5(a), (b) (Orbit-Normal) are representative of
the overall manifold structures. There is a substantial
symmetry between stable and unstable branches (and the
two vehicles, since m1 ¼m2).

The Radial configuration manifolds are planar and
comparing Fig. 3 (stable) with Fig. 4 (unstable) sug-
gests that nearly tangential crossings of the respective
manifold branches are likely. Because of these obser-
vations, it is sensible to begin with transfers from one
Radial configuration to another, which can be expan-
sions (increase in L) or contractions (decrease in L).
However, the Radial manifoldþbranches result in close
encounters of the vehicles, and therefore targeting a
practical transfer may require introducing a minimum
allowable L constraint. The Orbit-Normal manifolds in
Fig. 5(a) and (b) are seen to exhibit an oscillatory
frequency in the x–y plane, and another along the
z-axis (resulting in multiple crossings or piercings of
the x–y plane).

6.2. Additional numerical reconfiguration assumptions

First, since two-craft formations are being considered,
only the trajectories of craft 1 are plotted. This is because
the CM condition of the Hill-frame model explicitly
ensures the transfer of craft 2. Also, the reconfigurations
along manifolds, once converged, are propagated for-
ward in time to ensure that complete transfers are, in
fact, achieved. A lengthly listing of the many permuta-
tions possible in the formulation of the optimal trans-
fers, and their relevance is given by Jones [17]. In this

Table 2
Numerical test cases: input parameters.

Parameter Value Units

a0 4:227� 107 m

Rsc 1 m

ld 180 m

m1 ¼m2 150 kg

o 7:2593� 10�5 rad/s

kc 8:99� 109 Nm2/C2

9Ien9 80 mA

ðDtqÞmax 1 ms

E 0.01 –

E1 r 1:0e�3 m

E1 v 1:0e�6 m/s

E2 1:0e�7 –

1 The Along-Track is emitted due to the lack of unstable/stable

modes in the linearized system.
2 Ien is dependent on many factors including whether the vehicle is

in sunlight or shadow and the magnitude of f.
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work, all results adhere to the following assumptions/
limitations:

1. Only time-fixed optimal transfers are considered, with
equally spaced control segments.

2. Coulomb thrusting is modeled as either impulsive or
piecewise linear fðtÞ, and inertial thrusting is modeled
as impulsive Dvj maneuvers occurring at the 2Mþ1
control segment nodes.

3. The performance index is J¼DV ¼
PMþ1

j ¼ 1 JDvjJ.

Also, Eq. (17a) is used to define c, a weighted norm
function of C

!
, and its minimal value yields: manifold

propagation times (tu
tot and ts

tot) and IG trajectories

ci ¼
X3

k ¼ 1

9rs
ki�ru

ki9þ
X3

k ¼ 1

10009vs
ki�vu

ki9

tu=s
minrtu=s

i rtu=s
max ð17aÞ

where ru
ki/r

s
ki and vu

ki/v
s
ki denote unstable/stable position

and velocity vector k components at: tu
i /ts

i .

6.3. Optimal radial expansion and contraction examples

As noted in Figs. 3 and 4, low-cost unstable to stable
manifold transfers are easy to visualize (and converge
upon) for the 2-D Radial configuration. Examples of a
converged expansion ðL0 ¼ 25-Lf ¼ 50 mÞ and a contrac-
tion ðL0 ¼ 40-Lf ¼ 15 mÞ are demonstrated in Fig. 6(a) and
(b). These optimized reconfigurations are generated with:
tu

max ¼ ts
max ¼ 1:0Tp and tu

min ¼ ts
min ¼ 0:5Tp (total transfer

bounded to around 1–2 days), and each k component of all

Dv maneuvers bounded by: Dvkr1 cm=s. Also, these radial
reconfiguration examples have M¼3, and tu=s

1 set such that
85–87% of the total transfer durations are uncontrolled.

A linear f parameterization with a f discontinuity at tf

is used, and the maximum possible Pout are 4.4 W for the
expansion (3.2 W for contraction). Optimal impulsive f
cases are also converged, for the same power bounds. The
impulsive and linear f expansions net optimal costs
of DV ¼ 7:30 mm=s and DV ¼ 6:76 mm=s, respectively
(transfer time of 1.54 days for both). The impulsive/linear
f contractions have DV ¼ 5:47 mm=s=DV ¼ 6:22 mm=s

Fig. 3. Radial stable manifolds in hill-frame for spacecraft (S/C) 1 and

2: propagated 1Tp.

Fig. 4. Radial unstable manifolds in hill-frame for spacecraft (S/C) 1 and

2: propagated 1Tp.

Fig. 5. Orbit-normal manifolds in hill-frame for spacecraft (S/C) 1 and 2:

propagated 2Tp: (a) stable and (b) unstable.

Fig. 6. Example optimal radial - radial reconfigurations: (a) expansion

of: L¼ 25-50 m and (b) contraction of: L¼ 40-20 m.
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(transfer time of 1.68 days for both). As further illustra-
tion, the fðtÞ history and Dv radial ðêRÞ and transverse ðêT Þ

component magnitudes are shown in Fig. 7(a) and (b), for
the linear f optimal solutions.

6.4. Radial expansions for varying problem formulations

This section demonstrates how the optimization pro-
blem formulation, and the values assigned to parameters
in the methodology, affect the optimal solution. To
qualitatively understand these changes, problem formu-
lation parameters are altered, one at a time, from a
nominal set of parameters. This is done for an expansion
of L0 ¼ 25-Lf ¼ 30 m, chosen because of the relative ease
in obtaining converged solutions. An IG is targeted with total
transfer bounded between 1 and 2 days, and 84% of the
transfer uncontrolled (tu

1 ¼ 0:08tf and ts
1�tf ¼ 0:08ts

tot),
which yields the 1.03 day duration IG trajectory, shown in
Fig. 8. Nominal optimal costs of DV ¼ 3:01 mm=s (impulsive)

and DV ¼ 2:75 mm=s (linear) are found, for the following

set of parameters: M¼3, Mpop ¼ 30, 9Dfu=s9max ¼ 1 kV,

9 _f
u=s

9max ¼ 0:15 V=s, Dvkr1 cm=s, and fðtf Þ continuity

not enforced.
Tables 3 and 4 summarize changes to the optimal costs

and iterations to converge, versus different problem for-
mulation parameter values, for the impulsive model and
linear model, respectively. The changes in cost are rela-
tively small for all parameter variations, except for the
fðtf Þ continuity assumption. This illustrates that good
solutions are obtained with the nominal PSO setup.

However, because the Dv’s are being applied at the same
times as fðtÞ switching events, the manner in which the
potentials are varied has a strong influence on the
maneuver solution to connect the two manifolds. Chan-
ging the potential smoothly allows for practical consid-
erations such as power usage to be included. But, the
resulting optimal solutions are sensitive to how this
smoothness is enforced.

In comparison, a fðtÞ feedback controller (no inertial
control) is used to expand and/or contract the Radial
formation in the work of Natarajan [10,21]. The presented
results using invariant manifolds are different in
approach, specifically in having fðtÞ held piece-wise
constant. It is hypothesized that the resulting DV for
expansions/contractions may be driven closer to zero
for: increased M, higher order approximations for uðtÞ
and fðtÞ, and further tuning of the PSO method. Moreover,
while Natarajan employs linearizing assumptions to
develop the reconfigurations, the presented method
makes no small departure assumptions (beyond linear-
ized gravity).

6.5. Optimal orbit-normal expansions and contractions

The manifolds associated with the Orbit-Normal con-
figuration evolve more slowly, due to those modes having
oscillatory parts, and therefore reconfigurations involving
them will generally require more time. Similar to the
Radial expansions, an Orbit-Normal expansion ðL0 ¼ 25-
Lf ¼ 50 mÞ is provided as a numerical example, with a
total transfer time bounded between 3 and 6 days.
Fig. 9(a) and (b) illustrates the IG trajectory (with the

Fig. 7. Optimal control histories for radial - radial reconfiguration

examples: (a) expansion of: L¼ 25-50 m and (b) contraction of:

L¼ 40-20 m.

Fig. 8. Radial - radial expansion IG ðL¼ 25-30 mÞ.

Table 3
Optimal radial expansion cost and iteration changes from nominal for:

impulsive f and L¼ 25-30 m.

New parameter value DV Change
(mm/s)

Total iterate
change

Mpop ¼ 20 �0.5 �67

Mpop ¼ 60 �0.032 �139

tu
1 ¼ 0:1tf , ts

1�tf ¼ 0:1ts
tot �0.557 �23

tu
1 ¼ 0:2tf , ts

1�tf ¼ 0:2ts
tot �0.931 þ385

9Dfu=s9max ¼ 2 kV þ0.105 þ44

9Dfu=s9max ¼ 0:9 kV �0.270 �13

fðtf Þ continuous þ4.18 0
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control start times tu=s
1 shown), and a converged optimal

solution, respectively. The reconfiguration is generated
with: 9Dfu=s9max ¼ 2:0 kV ðPouto5:0 WÞ, Dvkr1 cm=s,
M¼3, Mpop ¼ 30, tu

1 ¼ 0:1tf , and ts
1�tf ¼ 0:1ts

tot. Unlike in
the transfers between Radial equilibria, this reconfigura-
tion takes craft 1 from L0 to the craft 2 slot with Lf (and
craft 2-to craft 1). This provides ease of convergence by
taking advantage of the anti-symmetry exhibited in the
manifolds, and is reasonable, so long as: m1 ¼m2 and for
fðtÞ not changing sign in the solution (crafts 1 and 2 are
interchangeable). The transfer required DV ¼ 8:84 mm=s,
for a total duration of around 4.5 days.

6.6. Optimal orbit-normal to radial reconfigurations

The Orbit-Normal manifolds have multiple piercings of
the x�y plane, with bounded x and z components.
Whereas, the Radial manifolds are in the x�y plane, either
near the origin or unbounded. Unfortunately for Orbit-
Normal to Radial transfers, the x�y piercings occur at
increasingly large y values, and the initial crossings occur

such that the direction is opposite to that of any nearby
opposing (stable or unstable) Radial manifold branches.
Upon analysis, it can be concluded that the best use of
invariant manifolds for such transfers is having only the
Orbit-Normal branch controlled to target an unpropa-
gated Radial state. Moreover, the best IG result from craft
1 to craft 2 transfers, and for Radial configurations with L

slightly larger than the Orbit-Normal L.
An example Orbit-Normal - Radial expansion of this

type ðL0 ¼ 15-Lf ¼ 35 mÞ, is provided in Figs. 10(a)–(b).
The IG in Fig. 10 shows vehicle 1 transferring to the Radial
configuration craft 2 slot, which is stationary (unpropa-
gated). The optimal impulsive f solution is: DV ¼

2:67 mm=s (total transfer of around 1.65 days), for:
9Dfu9max ¼ 3 kV ðPouto5:2 WÞ, Dvkr1 cm=s, M¼4,
Mpop ¼ 30, and tu

1 ¼ 0:1tf . For this example, fðtf Þ continu-
ity is not required; however, for realistic Orbit-Normal to
Radial transfers this assumption would be a poor choice,
since the fðtf Þ discontinuity is necessarily large. This is
because F12 (and therefore f) must change sign when
transferring between these equilibria. Nevertheless, the
example still demonstrates the best use of the invariant
manifolds for this class of transfer.

7. Conclusions and future studies

Active charge control of closely flying spacecraft, result
in Coulomb forces which supply a nearly propellant-less
propulsion system, that avoids the problem of thruster
impingement. These charged swarms admit numerous
equilibrium configurations, that render ‘virtual struc-
tures’, referred to as so-called Coulomb formations. In
the current work, a generalized method is developed for
formulating and solving optimal transfers from one Cou-
lomb configuration to another. The method exploits
uncontrolled flow along invariant manifolds to complete

Table 4
Optimal radial expansion cost and iteration changes from nominal for:

linear f and L¼ 25-30 m.

New parameter value DV increase
(mm/s)

Total iterate
change

Mpop ¼ 20 �0.245 �28

Mpop ¼ 60 þ0.223 �100

tu
1 ¼ 0:1tf , ts

1�tf ¼ 0:1ts
tot þ0.249 þ58

tu
1 ¼ 0:2tf , ts

1�tf ¼ 0:2ts
tot þ0.355 þ74

9 _f
u=s

9max ¼ 0:3 V/s þ0.318 þ24

9 _f
u=s

9max ¼ 0:1 V/s þ0.232 þ25

fðtf Þ continuous þ2.43 þ95

Fig. 9. Example orbit-normal - orbit-normal reconfiguration, Craft 1 -

Craft 2, along manifolds: (a) IG expansion of: L¼ 30-40 m and

(b) optimal expansion of: L¼ 30-40 m.

Fig. 10. Example orbit-normal - radial reconfiguration, Craft 1 - Craft

2, along unstable manifold: (a) IG expansion of: L¼ 15-35 m and

(b) continuous expansion of: L¼ 15-35 m.
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as much of the trajectory as possible, and therefore is
useful for minimizing consumables; however, the natural
motions necessitate transfers on the order of days. Invar-
iant manifold theory is applied to two-craft Coulomb
formations for the first time, and numerical results are
presented, for these particular equilibria, demonstrating
how optimal reconfigurations are targeted using this
unique method.

A novel stochastic solver, Particle Swarm Optimization
(PSO), inspired by the random motion of bird’s seeking
food, is successfully used to solve the parameter optimi-
zation problems. The PSO method eases many of the
numerical and initial guess difficulties associated with
these sensitive transfers; however, consistent PSO con-
vergence remains challenging at times. Future work
should attempt to address this, in part, by improving the
numerical method, possibly by adopting a hybrid gradi-
ent/stochastic solver.

Further work will be directed in multiple directions.
The first will be to apply invariant manifold theory to
other known Coulomb formations (e.g. two-craft spinning
and three-craft static), and analyze this motion to deter-
mine if reconfigurations may be targeted using the gen-
eral method presented here. Second, inequality
constraints that account for thruster plume impingement
and minimum separation distance will be added to the
optimization problem formulation. And finally the two-
craft reconfigurations presented in this work will be
explored in higher fidelity. This should include free seg-
ment start times, higher-order control approximations,
and the inclusion of primary perturbations (i.e. solar
radiation pressure) to ascertain their effect on the mani-
fold structures and transfer trajectories.
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